
MULTI-AGENT SYSTEM DEVELOPMENT KIT
MAS SOFTWARE TOOL IMPLEMENTING GAIA
METHODOLOGY

Vladimir Gorodetski, Oleg Karsaev, Vladimir Samoilov, Victor Konushy,
Evgeny Mankov and Alexey Malyshev
St. Petersburg Institute for Informatics and Automation, 14th line, 39,SPIIRAS, St.
Petersburg, 199178, Russia
Phone: +7-812-2323570, fax: +7-812-3280685, E-mail:
{gor, ok, samovl, kvg, eman, A.Malyshev }@mail.iias.spb.su,
http://space.iias.spb.su/ai/gorodetski/gorodetski.jsp

Abstract: Recent research in area of multi-agent technology attracted a growing attention
of both scientific community and industrial companies. This attention is
stipulated by powerful capabilities of multi-agent technology allowing to
create large scale distributed intelligent systems, and, on the other hand, by
practical needs of industrial companies to possess an advanced and reliable
technology for solving of practically important problems. Currently one of the
topmost questions of the research is development of powerful methodologies
for engineering of agent-based systems and development of more effective and
efficient tools supporting implementation of applied systems. The paper
presents one of such tools, Multi Agent System Development Kit, based on
and implementing of Gaia methodology. It supports the whole life cycle of
multi-agent system development and maintains integrity of solutions produced
at different stages of the development process.

Key words: Software engineering, Multi agent systems. Methodology, Software tool

1. INTRODUCTION

Although agent-oriented software engineering is being a subject of active
research for over a decade, it does not still come to the age of maturity
required to be rated as an industrial technology. In spite of rich theoretical
achievements in this area, there practically exist no powerful Multi-Agent
System (MAS) software tools capable to support the whole life cycle of

http://iias.spb.su
http://space.iias.spb.su/ai/gorodetski/gorodetski.jsp

70 Intelligent Information Processing II

industrial MAS comprising analysis, design, implementation, deployment
and maintenance, although to date a lot of MAS software tools are developed.
Among them, the most mature and popular are AgentBuilder [18], Jack [16],
JADE [3], ZEUS [7], FIPA-OS [11], agentTool [9], etc.

Analysis of the existing software tools allows understanding potential
directions that can bring necessary results for considerable increasing
powerfulness and maturity of MAS software tools. One of them is
exploitation and adaptation of the experience accumulated within object-
oriented approach and existing (at least, de-facto) "standards" of analysis,
design and implementation commonly used in the information technologies
[5]. In this respect, several initiatives are currently undertaken, and one of
them is Agent UML project [1] that is being carried out by two leading
international organizations, FIFA and OMG, focused on standardization
within advanced information technology scope.

The other source of evolution and perfection of the MAS software tool is
further development of the existing methodologies of agent-based system
engineering that should potentially provide designers with new opportunities.
Among the existing methodologies, Gaia [19], MESSAGE [6], MaSE [10],
Prometheus [17], Adelfe [4], Tropos [12] and some others pretend to be very
promising. Gaia methodology considers two stages of applied MAS
development that are (1) analysis and (2) design. The objective of the
analysis is to reach "an understanding of the system and its structure
(without reference to any implementation details)'' [19]. This stage assumes
design of solutions of a high-level of abstraction concerning system
organization, i.e. discovery MAS tasks, discovery roles and their
responsibilities within particular MAS applications, description of roles'
tasks and high-level scheme of roles' interactions during ftilfillment of the
MAS tasks, etc. The objective of the design stage is '7o transform the
abstract models derived during the analysis stage into models at a
sufficiently low level of abstraction that can be easily implemented' [19].
This stage assumes formal specification of how the community of agents
interacts in order to solve the MAS tasks and also formal specification of
each particular agent of applied MAS under development.

Thus, the current trends in MAS technology prompt that sound
methodology enriched by ideas and experience from object-oriented design
scope can considerably improve MAS technology providing it with such
properties as consistency and integrity of solutions being produced at the
subsequent stages of MAS engineering life cycle.

The paper presents a recently developed software tool. Multi-agent
System Development Kit 3.0 (MASDK) providing support for the whole life
cycle of applied MAS development. This software tool is based on Gaia

Intelligent Information Processing II 71

methodology integrated with ideas of object-oriented design of MAS
resulted from the Agent UML project. This software tool was the subject of
research during last years and the current version is the third one. Previous
versions of MASDK [13] were used for rapid prototyping of different MAS
applications [14, 15]. The experience accumulated so far allowed
understanding of the drawbacks and limitations of the previous two versions
of MASDK and developing adequate requirements to its current version, 3.0.

MASDK 3.0 software tool is now being evaluated based on design of
applied MAS for detection of intrusions in computer network, situation
assessment and design activity support. In the rest of the paper, section 2
outlines general ideas of MASDK supported technology. Sections 3, 4 and 5
describe the analysis, design, and implementation stages respectively of
MAS technology. Conclusion outlines the paper results and fiiture work.

2. OUTLINE OF MASDK 3.0 SOFTWARE TOOL AND
TECHNOLOGY SUPPORTED

MASDK 3.0 software tool consists of the following components (Fig.l):
(1) system kernel which is a data structure for XML-based representation of
applied MAS formal specification; (2) integrated set of the user friendly
editors supporting user's activity aiming at formal specification of an applied
MAS under development at the analysis, design and implementation stages;
(3) library of C-f-f- classes of reusable agent components constituting what is
usually called Generic agent, (4) communication platform to be installed in
particular computers of a network; and (5) builder of software agent
instances responsible for generation of C++ source code and executable code
of software agents as well as deployment of software agents over already
installed communication platform.

Specification of applied MAS in the system kernel is being carried out by
use of editors structured in three levels. Editors of the first one provide
support for meta-level specification of applied MAS corresponding to the

MASDK

System kernel,
XML specification

of MAS

iL-iD[z:^

Integrated
multitude of editors

Generic
agent

Host

Host

Software agent]
builder

Communication
platform

Figure I. MASDK software tool components and their interaction

72 Intelligent Information Processing II

analysis stage in Gaia methodology. The set of the first level editors includes
(1) application ontology editor, (2) editor for description of roles, names of
agent classes, and high-level schemes of roles' interactions, (3) editor of
roles' interaction protocols. Editors of the second level support the design
activities and primarily aim at specification of agent classes. The following
editors are used for this purpose: (1) editor specifying meta-model of agent
classes' behavior, (2) editor specifying particular agent functions and
behavior scenarios in terms of state machines; (3) editor specifying software
agent private ontology inheriting the notions of shared domain ontology.

Editors of the third level support implementation stage of applied MAS
and aim at (1) implementing (in C++ language) a set of particular
components and functions specified in design stage; (2) specifying sub­
network within which the designed MAS is to be deployed; (3) specifying
lists of agents instances of all classes with the references to their locations
(hosts names), and (4) initial states of mental models of each agent instance.

Applied MAS specification produced by designers exploiting the above
editors is stored as XML file in the system kernel. This specification,
including set of particular components and functions implemented in C++,
and Generic Agent reusable component form the input of the software agent
builder generating automatically software code based on XSLJ technology.

3. ANALYSIS STAGE: APPLIED MAS META-MODEL

At the analysis stage conceptual description of applied MAS is produced.
While having the MAS high-level tasks determined, the first step of problem
domain analysis assumes (1) discovery and description of roles, (2) high-
level mapping of role interactivities to protocol list, (3) determination of
agent classes' names, and (4) designation of roles to them. At that,
information about roles, interaction protocols, their mapping and textual
description of the roles behavior according to respective protocols are used
for defining the set of agent classes and assigning of roles to them. It is
assumed that each agent class can perform one or several roles. Actually,
this mapping determines functionalities of agent classes. Altogether these
descriptions constitute what is called hereinafter an applied MAS meta-
model. This activity is supported by editor (it is opened within main
MASDK window) called ''Agent Framework' (Fig.2). Project browser (in
the left-upper area) and (2) description of element selected in browser (in the
left-down area) are two other sections of the framework.

Intelligent Information Processing II 73

MJ<i
Tife Edit Pioieci ^Jm<f fje^

5yst«n-i I ,,.„„„.,..„„.<,,,,„„,.,„.,„ f'teharfiodd | Oncolociy [

-•> G^ Ontcifog/
A Ontolog?'

- t'iti Roles

i P.ole2
:^ Rde3

- (^ PfOtOCüi>

f f Pfotocof^

^ Pfomtoä'5

.'S; AoeriirClassl

.*S; AgeritOass^
L^ Hosts

Onto{ogy i n c l u d e «
d e c r i p t i o n of n o t i o n
c l a s s c ü of ' i 'ntrMsion
d e t e c t i o n in c o m p u t e r
n e t w o r k " . Pa r t i cu la r ly^
j d e s c r i p t i o n of a t t a c k s

TJ

J

Rol82"| Role4 f I ri;o!e3 |

Aac?mClö&c<l

O

i>

0

i>

O il

• • • ^ • •

O

6
O
o

Figure 2. Meta-model editor

Detailed description of the roles interaction protocols is one of the key
tasks of the analysis stage. Realizing the importance of this task was perhaps
one of the reasons motivated the Agent UML project [1] initiated by both
FIPA and OMG. Let us remind that the project objective is an extension of
UML language to agent-based system specification language, and one of the
focuses of this Project is development of a language directly destined for
specification of agent interaction protocols [2].

MASDK 3.0 includes graphical editor of roles' interaction protocols that
makes use of main principal solutions of Agent UML project. Not all the
proposals of Agent UML project, pretending to develop future standards of
MAS, are used in MASDK 3.0, because Agent UML is currently in progress
and, thus, some of its proposals are tentative while others seem to be not
well grounded or too overloaded with secondary notations, what makes it
difficult both to understand and to implement such notations. For example,
agent interaction protocol specification language used in MASDK 3.0 is a
simplified version of the analogous language of Agent UML although the
former preserves basically the expressive power of the latter.

4. DESIGN STAGE: AGENT CLASSES

Applied MAS meta-model developed at the analysis stage is further used
as an input of the design stage. Specification of agent classes is a key point

74 Intelligent Information Processing II

Specific functions

Functionality
{State machine}

Behavior model

4 i
Generic A^ent

Figure 3. Agent structure

of this stage. Generalized architecture of an agent
is presented in Fig,3. Its basic components are the
followings: (1) invariant (reusable) component
called Generic Agent, (2) meta-model of agent
class's behavior, (3) a multitude of functions of
agent class represented in terms of state machines;
(4) library of specific auxiliary functions. In the
first component, the common agent meta-behavior
rules are specified. They constitute the invarint
component of any software agent and particular
agent class design is focused on specification of its
three other components.

Specification of agent class' behavior meta-model is supported by editor
depicted in Fig.4. It supports transformation of the conceptual solutions into
formally specified structure of components for each agent class. Its main
component is Agent class functionality model. It includes description of
agent class' functions list. The initial information about each agent class
consists of textual descriptions of the respective roles and tasks of roles
(defined at analysis stage of MAS development) allocated for execution to
agent class. Detailed specification of the above functions is the designer's
responsibility. An example of the set of such functions represented as state
machines is demonstrated graphically in Fig.4.

The rest of the agent class components can be divided into two groups.
The first of them specifies event classes initiating execution of functions
specified within the following four components:

Input messages. This component indicates relations between certain
protocols and functions. The sense of these relations is to point out the
protocols in which agent class in question takes part if the above protocols
are initiated by certain other agent classes. These protocols are determined
formally by use of meta-model of applied MAS developed at the analysis
stage. Let us note that the first messages of protocols play the roles of events
initiating execution of the respective functions.

User commands. This component is present in agent class if it interacts
with user initiating certain agent class behavior in certain situations. In this
component, if any, the user commands mapped to respective functions are
specified.

Pro-active model. If non-empty, it includes specification of rules in the
form 'When ... if ... then ...". The precondition ''When'' indicates events
(e.g., time instants) when the second condition has to be the subject of
checking. The condition "//' specifies the agent class mental state when the
function indicated in the third part of the rule has to be executed.

Intelligent Information Processing II 75

5« i<k h'^i&y Vftw Help

1 ->ŝ em

1 - Öj Rotes

1 4 KOse:
1 ± Rcse:

-•̂ k l
i^ ACS

1 Agent Class 1
[ÄcUvjty tniuaior

i

Ir-put ")

Mode! J

StateMachineA |

j

SiateMachineß

, StateMachineC

St'ateMüchlneO'

StateMachineE

1

,«

U<-6f
!ritcrface$

(&räi

1

f As-ynctiroiious
j Rocssses

«̂ (-•*; « ^'^

Figure 4. Meta-model of agent class behaviour

Environment events. Content of this component specifies classes of
environmental events and respective behavior of agent class.

The second group of components describes actions that can be or has to
be performed during execution of respective functions. They are 1) initiation
of interaction protocols, 2) dialogs with user, 3) effects on environment and
4) execution of specific fiinctions in asynchronous mode. In contrast to the
components of the first group, which must be completely specified at this
stage, specification of the components of second group is considered as
specific application-dependent requirements to be taken into account in the
subsequent steps of the design stage. The editor supports graphical mode of
representation of the relationships between components and functions in
form of explicit connections between them. Connections between functions
represent the facts that certain functions are nested ones and their execution
is invoked by other functions.

Each function is represented (specified formally) in terms of state
machine composed of the following standard components: (1) state machine
states; (2) transitions and conditions determining the transition selection
depending on the agent current state; (3) state machine behavior
corresponding to each particular state. Specification of the first and the
second components is executed at the design stage and it is supported by

76 Intelligent Information Processing II

graphical editor. On the contrary, the third component is specified at the
implementation stage. Specification of state machines is carried out in two
steps. The first step is carried out automatically based on meta-models of
agent classes' behavior. The second step in carried out by designer
developing the first step specification through insertion of new states with
respective updating of the transitions structure.

5. IMPLEMENTATION AND DEPLOYMENT

The next stage of an applied MAS development corresponds to its
implementation that is completely based on the results of two previous
stages. Implementation technology consists of the following activities:
1) Implementation of the private ontology of each agent class, which inherits
the shared application ontology. The inherited notions of shared ontology are
used in specification of agent class messages content. The rest of notions
specified in the private ontology of agent class (they can also inherit the
notions of shared ontology) represent the agent class mental model.
2) Implementation of the library of specific auxiliary C++ classes of all the
agent class components specified at the design stage. These classes
correspond to scripts of agent classes behavior in particular states of state
machines and functions (see Fig.3).
3) Specification of the applied MAS configuration, in particular,
specification of instances of each agent class and indication of their locations
in computer network where applied MAS under development is deployed.
4) Specification of initial mental model of each agent.

The next step of implementation stage is destined for generation of
software agent instances and their placing in the respective hosts of
computer network according to their addresses. While generating software
code of an agent instance, three types of its components are combined. These
components are (1) reusable component called Generic agent; (2) C++
library that is software implementation of particular functions; and (3)
software components implementing meta-models of behavior and state
machines of agent classes. It should be noted that software code of the last
component and agents as a whole are generated automatically.

6. CONCLUSION

MASDK environment described in the paper possesses a number of
practically important advantages allowing noticeably decrease the total

Intelligent Information Processing II 77

amount of efforts and costs of multi-agent systems development. Among
them, the most important ones are the followings:

1) Development process is carried out according to a well grounded
methodology that is the Gaia methodology, whose abstract notion classes
closely interrelate with the other ones used at the subsequent stages of
applied MAS design and implementation.

2) User friendly multitude of graphical editors of MASDK provides clear
presentation and simple understanding of all the stages of applied MAS
development process. Together with the property mentioned in the item 1,
graphical mode of the development process provides simple and clear
cooperation between designers and programmers during the whole life cycle
of applied MAS.

3) Due to well structured set of abstract notion classes, the MASDK
environment provides development process with a capability of consistency
maintenance and checking of integrity at all stages of process.

4) Representation of interaction protocols that is one of the key tasks of
agent-based systems specification, based on solutions evolving experience of
object-oriented approach makes the resulting applied MAS potentially
compatible with the de-facto standards that are being developed within
OMG and FTP A efforts within Agent UML project.

5) The developed technology is strongly based on reusability idea and
Generic agent library, which includes necessary set of reusable
solutions/software components, allows reducing the development process to
specification of application-oriented knowledge.

Due to these advantages MASDK environment pretends to be a
sufficiently effective and efficient tool with industry-oriented potential.

Currently the basis components of MASDK software tool are
implemented and it is being validated via its use for development of applied
MAS in such application domains as data fusion, computer network security,
and design activity support and monitoring.

ACKNOWLEDGEMENT

This research is supported by grants of European Office of Aerospace
R&D (Project #1993P) and Russian Academy of Sciences (Department of
Information Technologies and Computer Systems), Project # 4.3.

REFERENCES

1. Agent UML: http://www.auml.org/

http://www.auml.org/

78 Intelligent Information Processing II

2. Bauer, B., Muller, J. P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent
Interaction. In: Ciancarini, P. and Wooldridge, M. (eds): Agent-Oriented Software
Engineering, Springer-Verlag, Berlin, (2001) 91-103

3. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade Programmer's Guid. JADE 2.5
(2002) http://sharon.cselt.it/projects/jade/

4. Bemon, C, Gleizes, M.P., Peyruqueou, S., Picard, G.: Adelfe, a methodology for Adaptive
Multi-Agent Systems Engineering. In: Third International Workshop "Engineering
Societies in the Agents World" (ESAW-2002), Madrid, (2002)

5. Booch, G.: Object-Oriented Analysis and Design, 2"̂ ^ ed., Addison-Wesley: Reading, MA,
(1994)

6. Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon, J., Kearney, P.,
Stark, J., and Massonet, P.: Agent-oriented analysis using MESSAGE/UML. In:
Wooldridge, M., Ciancarini, P., and Weiss, G., (editors): Second International Workshop
on Agent-Oriented Software Engineering (AOSE-2001), (2001) 101-108

7. Collis, J. and Ndumu, D.: Zeus Technical Manual. Intelligent Systems Research Group,
BT Labs. British Telecommunications. (1999)

8. Dam, K. H., and Winikoff, M.: Comparing Agent-Oriented Methodologies.
http://grial.uc3m.es/~dcamacho/resources/papersAOSE/dam03comparing.pdf

9. DeLoach S. and Wood, M.: Developing Multiagent Systems with agentTool. In:
Castelfranchi, C, Lesperance Y. (Eds.): Intelligent Agents VII. Agent Theories
Architectures and Languages, 7̂ ^ International Workshop, LNCS. Vol.1986, Springer
Verlag, (2001)

10. DeLoach, S. A., Wood, M. F., and Sparkman, C. H.: Multiagent systems engineering. In:
International Journal of Software Engineering and Knowledge Engineering, 11(3), (2001)
231-258

11. FIPA-OS: A component-based toolkit enabling rapid development of FIPA compliant
agents, http://fipa-os.sourceforge.net/

12. Giunchiglia, F., Mylopoulos, J., and Perini, A.: The Tropos software development
methodology: Processes, Models and Diagrams. In: Third International Workshop on
Agent-Oriented Software Engineering, Jula (2002)

13. Gorodetski, V., Karsaev, O., Kotenko, I., Khabalov, A.: Software Development Kit for
Multi-agent Systems Design and Implementation. In: Dunin-Keplicz, B., Navareski, E.
(Eds.): From Theory to Practice in Multi-agent Systems. Lecture Notes in Artificial
Intelligence, Vol. # 2296, (2002) 121-130

14. Gorodetski, V., Karsaev, O., Konushi, V.: Multi-Agent System for Resource Allocation
and Schedulling. In: Lecture Notes in Artificial Intelligence, Vol. # 2691, (2003) 226-235

15. Gorodetsky, V., Karsaev, O., Samoilov, V.: Multi-agent Technology for Distributed Data
Mining and Classification. In: Proceedings of the IEEE Conference Intelligent Agent
Technology (IAT-03), Halifax, Canada, (2003) 438-441

16. Jack. Jack intelligent agents - version 3.1, agent oriented software pty. Ltd., Australia,
http://www.agent-software.com.au .

17. Padgham, L. and Winikoff, M.: Prometheus: A pragmatic methodology for engineering
intelligent agents. In: Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, Seattle, (2002) 97-108

18. Reticular Systems Inc: AgentBuilder An Integrated Toolkit for Constructing Intelligent
Software Agents. Revision 1.3. (1999) http://www.agentbuilder.com/.

19. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. In: Journal of Autonomous Agents and Multi-Agent Systems, Vol.3.
No. 3(2000)285-312

http://sharon.cselt.it/projects/jade/
http://grial.uc3m.es/~dcamacho/resources/papersAOSE/dam03comparing.pdf
http://fipa-os.sourceforge.net/
http://www.agent-software.com.au
http://www.agentbuilder.com/

