
INCORPORATING ELEMENTS FROM CAMLE 
IN THE OPEN REPOSITORY 

C. Gonzalez-Perez, B. Henderson-Sellers, J. Debenham and G.C. Low, Q.­
N.N. Tran 
University of Technology, Sydney, Australia 
University of New South Wales, Australia 

Abstract: The CAMLE approach offers a methodological framework for the development 
of multi-agent systems. However, this approach does not provide fiill coverage 
of the needs often found in information systems development, lacking, for 
example, an appropriate capability for customization or links to infrastructural, 
non-engineering processes. By adopting a method engineering perspective, it 
is possible to integrate the best parts of CAMLE into the OPEN repository so 
organizations can create and own customized variants of CAMLE as necessary. 

Key words: agent-oriented methodologies, CAMLE, OPEN, method engineering 

1. INTRODUCTION 
The CAMLE method [12] provides a fairly comprehensive language and 

environment for multi-agent software systems development. As with many 
other methods, it has been defined using natural language, which lacks the 
level of formalism needed to cater for extensions and customizations. 

While individual methodologies may be useful for creating specific 
agent-oriented information systems, they have no flexibility as systems 
requirements change over time or as new concepts are understood and 
accepted. In contrast to these very rigid, single methodologies, the concept 
of situational method engineering (SME) provides a much more flexible 
environment in which to create a standard and useful methodological 
approach for systems design ([13], [10]). Here, we utilize one particular. 



56 Intelligent Information Processing II 

SME-focused methodological approach - that provided by the OPEN 
Process Framework [3], originally developed for creating object-oriented 
systems, but more recently expanded into "Agent OPEN" to include support 
for agent-oriented systems development [2, 6, 7]. As well as supporting 
SME, OPEN is formally defined using a metamodel. This means that 
individual method fragments are easily generated as instances of classes in 
the metamodel and, consequently, specific methods can be derived. In this 
paper, we show how the OPEN repository can be used to generate CAMLE. 

However, before this is possible, we need to evaluate the extent of existing 
support (in terms of repository-housed method fragments) in OPEN, 
particularly with respect to some of CAMLE's idiosyncratic features for 
multi-agent systems development. 

In this paper, the major aspects of CAMLE are captured and integrated 
into OPEN. This is beneficial for both approaches, since CAMLE obtains a 
higher level of formalism (by being re-defined from a metamodel) and the 
OPEN repository is augmented with new contents. Section 2 briefly 
describes CAMLE and its main features, focussing on the major 
characteristics that differentiate it from other agent-oriented methods. 
Section 3 describes the OPEN Process Framework and its underpinning 
paradigm of method engineering. Section 4 provides a catalogue of new 
method fragments that are defined within the OPEN repository from CAMLE 
specifications. Finally, Section 5 presents our conclusions. 

2. BRIEF DESCRIPTION OF CAMLE 
CAMLE, as defined by its authors, is a caste-centric agent-oriented 

modelling language and environment [12]. It is caste-centric because castes, 
analogous to classes in object-orientation, are argued to provide the major 
modelling artefact over the lifecycle by providing a type system for agents. 
A significant difference is claimed between castes and classes: while objects 
are commonly thought of as statically classified (i.e. an object is created as a 
member of a class and that is a property for its whole lifetime), agents in 
CAMLE can join and leave castes as desired thus allowing dynamic 
reclassification. 

CAMLE provides a graphical notation for caste models (similar to class 
models in 0 0 methodologies), collaboration models and behaviour models. 
Caste diagrams are similar to conventional class diagrams in that they depict 
the types involved in the system as surrogates for the actual instances that 
will comprise it at run-time In CAMLE, these instances are agents and types 
are castes. In addition to inheritance and UML-style composition and 



Intelligent Information Processing II 57 

aggregation relationships (see [9], sec. 2.7.2.2), caste diagrams include 
notation for congregation, a kind of whole/part relationship in which the 
parts are detached from their type (i.e. caste) when the whole is destroyed; 
this is possible in CAMLE since dynamic classification of instances is fully 
supported. Similarly, notation for migration and participation relationships 
is available, representing cases of agents leaving their caste and joining a 
new one (migration) or agents that join a new caste without leaving their 
current ones (participation). 

Collaboration diagrams depict the interactions between agents or castes. 
Unlike in UML collaboration diagrams ([9], sec. 3.65), interactions in 
CAMLE are produced by an agent observing the actions of other agents rather 
than by direct message sending or operation invocation. Therefore, arcs in 
CAMLE collaboration diagrams are labelled with an action name of the 
source agent rather than an operation name of the target. This suits well the 
autonomous and loose coupling nature of agents. 

Behaviour models can be expressed in CAMLE using two kinds of 
diagrams. Scenario diagrams take the perspective of a given caste, 
describing a specific situation to which it must respond and what the 
response must be. A scenario diagram is necessary for each situation. 
Multiple scenario diagrams can be combined into a behaviour diagram, 
similar to a UML activity diagram ([9], sec. 3.84), which depicts the overall 
behaviour of a given caste. 

From the process side, CAMLE defines three stages: 

• the analysis and modelling of the existing information system 
• the design of the new system as a modification of the existing one 
• the implementation of the new system 

CAMLE relies heavily on the fact that an information system already 
exists when a new project is started, so that the new system is designed as a 
modification to the current one. Although this situation is indeed common, 
the construction of systems from scratch also happens. CAMLE, however, 
seems to ignore this possibility. 

At the same time, CAMLE defines a set of six activities that comprise the 
process of agent-oriented analysis and modelling, supposedly covering the 
two first stages in the list above. These activities produce caste models, 
collaboration models and behaviour models using an iterative and recursive 
approach. Agent castes that are too complex to be directly implemented are 
treated as complete systems and decomposed into component castes, 
applying the same activities to them recursively. 



58 Intelligent Information Processing II 

3. BRIEF DESCRIPTION OF METHOD 
ENGINEERING AND OPEN 

The method engineering paradigm, introduced by the works of, for 
example, Kumar and Welke [8], Brinkkemper [1], Rolland and Prakash [10], 
and Saeki [11], advocates the definition of a method (or methodology) as a 
collection of method fragments, i.e. self-contained chunks that define work 
products, tasks, techniques or processes^ independently of their potential 
context. Once a repository of such components has been constructed, a 
method engineer can select a sub-set and connect them together into a 
situated method. It is called "situated" because it is constructed purposefully 
for a particular means, usually a specific project or organization. 

The OPEN Process Framework (see, e.g., [3-5]) adopts a process 
engineering perspective and defines di framework composed of a metamodel 
plus a repository of method fragments. The metamodel establishes what 
concepts and relationships can be utiHzed to define these method fragments. 
For example, the OPEN metamodel defines the concepts of Activity ("a 
major Work Unit that models a cohesive yet heterogeneous collection of 
Tasks that achieves a related set of goals", [4], p. 98) and Work Product 
("any significant thing of value that is developed during an Endeavour", [4], 
p. 65), and states that each activity produces zero or more work products ([4], 
fig. G.4). The OPEN repository is populated with method fragments that are 
instances of the concepts defined in the metamodel; following our example, 
the OPEN repository could contain an activity named "Requirements 
Engineering" (an instance of Activity) plus a work product named "System 
Requirements Specification" (an instance of WorkProduct), plus a link 
between them (an instance of the association between Activity and 
WorkProduct). 

The OPEN metamodel is often seen as something fixed and given to 
method engineers "as is". Having an unchanging background on which 
everything else is based is useful for the common understanding and 
compatibility between methodologies. Each method engineer, however, is 
free to utilize the method fragments already pre-defined in the OPEN 
repository or create new ones if necessary. In fact, the addition of new 
method fragments to the repository comprises OPEN's major mechanism for 
extension and customization. This paper studies the CAMLE method and 
creates new OPEN repository method fragments based on CAMLE's 
specification, thus incorporating the process and work product definitions of 
the latter. Once this is done, CAMLE exists embedded in the OPEN 

We are using these terms here in their conventional sense. No technical meaning is attached. 



Intelligent Information Processing II 59 

repository as a collection of method fragments, and CAMLE itself or any 
variant of it, even those involving method fragments other than CAMLE's, 
can be generated. 

4. INTEGRATING CAMLE ELEMENTS INTO 
OPEN 

This section explores different aspects of CAMLE from the perspective of 
the OPEN metamodel. For those CAMLE aspects that can be satisfactorily 
represented by an already-existing method fragment, this method fragment is 
identified. For those aspects of CAMLE that cannot be modelled by any 
method fragment in the OPEN repository, a new method fragment is 
introduced and fully defined. 

4.1 Lifecycle 

An OPEN lifecycle is the span of time associated with the development 
of a given software system. In this respect, CAMLE uses an iterative and 
recursive lifecycle that fits well into OPEN's Iterative, Incremental, Parallel 
Lifecycle. No new method fragments need to be introduced. 

4.2 Phases and Activities 

An OPEN phase is a large-grained span of time within a lifecycle that 
works at a given level of abstraction. An OPEN activity is a large-grained 
unit of work that specifies what to do in order to accomplish some results. 
Activities state what to do, while phases set the temporal frame stating when 
to do it. 

CAMLE does not make a difference between what and when to do things. 
On the contrary, it defines three "stages" that involve work description and 
temporal issues altogether. First of all, the existing information system is 
analysed and modelled, which is likely to comprise an appropriate mix of 
requirements engineering and legacy mining. OPEN's activities 
Requirements Engineering plus probably Component Selection and 
Environment Engineering, assembled into an Initiation phase, are 
appropriate to model this. 

Secondly, the new system is designed as a modification of the existing 
one. This is basically a design job that can be satisfactorily represented by 
OPEN's activity Design. Finally, the new system is implemented, which can 
be modelled by OPEN's activities Implementation and Integration. All these 
design and implementation activities can be packaged into a Construction 
phase. 



60 Intelligent Information Processing II 

CAMLE always assumes that an existing system is present and that the 
new system is constructed as a modification from it. OPEN does not impose 
this perspective on the phases of the lifecycle, or any other for that matter. In 
any case, the three "stages" defined by CAMLE can be easily mapped to 
already existing OPEN activities and phases, and therefore no new method 
fragments need to be introduced. 

4.3 Tasks 

An OPEN task is a small-grained, atomic unit of work that specifies what 
must be done in order to achieve some stated result. CAMLE defines six 
"activities", all within the second "stage", namely system design (see 
Section 4.2). No "activities" are described for the other two "stages". CAMLE 

"activities" semantically correspond to OPEN's tasks. 
First, agents and their roles in the system are identified according to their 

functionality and responsibilities, and then grouped into castes. This 
produces a caste model. Agent OPEN's Analyse use requirements. Identify 
CIRTs and, most importantly. Model agents * roles and Construct the agent 
model are suitable tasks to model this. CIRT stands for "class, instance, role 
or type" and, in the context of CAMLE, the concept of CIRT can be extended 
to castes as well. 

Then, inheritance and whole/part relationships between castes are 
modelled, augmenting the caste model with new information. Agent OPEN's 
Construct the agent model, again, can be used to model this. 

The third "activity" involves identifying the communication links 
between castes in terms of how agents influence each other, producing a first 
version of the collaboration model. Agent OPEN's Evaluate the design 
(since the already existing caste model must be evaluated and possibly 
modified) and Construct the agent model can be used to model this. 

Then, visible actions and state variables of each caste are identified and 
associated with communication links in the collaboration model. OPEN does 
not include any task appropriate to representing the identification of actions, 
so a new one must be introduced. Agent OPEN does, however, include the 
task Construct the agent model, which is appropriate to model the 
identification of state variables. 

The newly proposed OPEN Task (to support CAMLE) is defined as 
follows: 



Intelligent Information Processing II 61 

OPEN Task 
Task Name: Determine Caste Actions 
Relationships: Semantically close to Identify CIRTs and Construct the 

object model. 
Focus: Dynamic modelling 
Typical supportive Techniques: Responsibility identification. Responsibility-

driven design, Delegation analysis. Event modelling, 
Interaction modelling 

Explanation: This task defines the visible actions that a given agent 
caste is capable of performing. 

Then, scenarios in the operation of the system as a whole are identified. 
O P E N ' S Analyse user requirements and Design user interface can be used to 
model this. Sub task Use case modelling deals predominantly with use cases 
using techniques such as Hierarchical task analysis and Scenario 
development. 

Finally, each caste's response to each of the identified system scenarios is 
analysed and described, producing a behaviour model for each caste. 
Design-focussed tasks in OPEN, useful here, include Capture the design. 
Document the design and Refactor; with many techniques such as 
Collaborations analysis, Relationship modelling and Robustness analysis. 

4.4 Work Products 

An OPEN work product is an artefact of interest for the performed work 
units. Work products usually comprise models and documents. CAMLE 

defines several kinds of diagrams, which can be modelled as OPEN work 
products. 

A caste diagram in CAMLE is similar to a conventional class diagram, but 
it incorporates new constructs such as congregation, migration and 
participation relationships. In addition, the CAMLE Hterature does not 
mention the usage of UML-style associations ([9], sec. 3.41) in caste 
diagrams, which is probably an additional difference. Therefore, a new 
method fragment needs to be introduced. 

OPEN Work Product 
Name: Caste Diagram 
OPEN classification: Static Architecture set of work products 
Brief description: A caste diagram depicts the castes in a system, together 

with the inheritance and whole/part relationships among 
them. Whole/part relationships include the conventional 
composition and aggregation relationships plus the newly 
proposed relationships of congregation, migration and 
participation [12]. 



62 Intelligent Information Processing II 

A collaboration diagram in CAMLE is similar to a UML collaboration 
diagram, but incorporates the major difference of having the arcs labelled 
with a sender's action rather than a receiver's operation. This is a large 
enough distinction as to require the introduction of a new method fragment. 

OPEN Work Product 
Name: 
OPEN classification: 
Brief description: 

Caste Collaboration Diagram 
Dynamic Behaviour set of work products 
A caste collaboration diagram depicts the interactions 
between agent castes by showing what actions of what 
castes are observed (and reacted to) by other castes. Arcs 
in the diagram are labelled with the source caste's action 
name. 

Behaviour models in CAMLE describe how a specific caste behaves from its 
own perspective. In particular, scenario diagrams show how agents of a 
given caste act when in a given scenario. Although scenario diagrams are 
similar to UML Statechart diagrams ([9], sec. 3.74), they incorporate 
additional notation for predicates, state assertions and logic connectives. A 
new method fragment is necessary to reflect this. 

OPEN Work Product 
Name: CAMLE Scenario Diagram 
OPEN classification: Dynamic Behaviour set of work products 
Brief description: A CAMLE scenario diagram depicts the sequence of 

actions and state assertions that agents of a given caste go 
through when in a given scenario. Single and repetitive 
actions, as well as simple and continuous state assertions 
can be depicted, using logical connectives (and, or, not) if 
necessary. 

Behaviour diagrams combine all the scenario diagrams of a given caste 
into a single diagram showing its overall behaviour and hiding the details of 
each single scenario. A new method fragment is introduced here. 

OPEN Work Product 
Name: 
OPEN classification: 
Brief description: 

CAMLE Behaviour Diagram 
Dynamic Behaviour set of work products 
A CAMLE-derived behaviour diagram depicts the 
interrelations between scenarios, preconditions and 
actions of a given agent caste. All the notation available 
for scenario diagrams is available, as well as a conflux 
notation that can be used to represent a logical 
conjunction of scenarios and/or preconditions. 



Intelligent Information Processing II 63 

4.5 Other Method fragments 

CAMLE does not provide any information on appropriate techniques, 
necessary roles or other kinds of method fragments. Therefore we must 
assume that the repository of OPEN method fragments is already rich 
enough for the implementation of CAMLE. 

5. CONCLUSIONS 

We have shown in this paper how the major elements of CAMLE can be 
re-defmed formally in terms of the OPEN metamodel, and how the OPEN 
repository is augmented with method fragments made out of them. This 
results in an increased level of formality for CAMLE, which enables it to be 
extended, customized and integrated with other method fragments already 
present in the OPEN repository. It also results in a benefit for OPEN, since it 
gains additional content for its repository that enhances its capability to 
tackle agent-oriented systems development. 

ACKNOWLEDGEMENTS 

We wish to acknowledge financial support from the University of 
Technology, Sydney under their Research Excellence Grants Scheme and 
from the Australian Research Council. This is Contribution number 04/22 of 
the Centre for Object Technology Applications and Research. 

REFERENCES 
L Brinkkemper, S., 1996. Method Engineering: Engineering of Information Systems 

Development Methods and Tools. Information and Software Technology. 38(4): p. 275-
280. 

2. Debenham, J. and B. Henderson-Sellers, 2003. Designing Agent-Based Process Systems -
Extending the OPEN Process Framework, in Intelligent Agent Software Engineering, V. 
Plekhanova (ed.). Idea Group, p. 160-190. 

3. Firesmith, D.G., 2004. Firesmith OPEN Process Framework (OFF) Website (web site). 
Accessed on 21^^ April 2004. http://www.donald-firesmith.com/ 

4. Firesmith, D.O. and B. Henderson-Sellers, 2002. The OPEN Process Framework. The 
OPEN Series. London: Addison-Wesley. 

5. Graham, I., B. Henderson-Sellers, and H. Younessi, 1997. The OPEN Process 
Specification. The OPEN Series. Harlow (Essex), UK: Addison-Wesley Longman. 

6. Henderson-Sellers, B., J. Debenham, and Q.-N.N. Tran, 2004, Adding Agent-Oriented 
Concepts derived from Gaia to Agent OPEN. In Procs. CAiSE 2004. Springer-Verlag: 
Berlin, Germany. 

http://www.donald-firesmith.com/


64 Intelligent Information Processing II 

7. Henderson-Sellers, B., J. Debenham, and Q.-N.N. Tran, 2004. Incorporating the Elements 
of the MASE Methodology into Agent OPEN. In Procs. of the 6^^ International Conference 
on Enterprise Information Systems 2004. 4. 

8. Kumar, K. and RJ. Welke, 1992. Methodology Engineering: a Proposal for Situation-
Specific Methodology Construction, in Challenges and Strategies for Research in Systems 
Development, W.W. Cotterman and J.A. Senn (eds.). John Wiley & Sons: Chichester, UK. 
p. 257-269. 

9. OMG, 2001. Unified Modelling Language Specification, formal/01-09-68 through 80 (13 
documents). Object Management Group. 

10. Rolland, C. and N. Prakash, 1996. A Proposal for Context-Specific Method Engineering. 
In Procs. IFIP WG8 International Conference on Method Engineering. Atlanta, GA. 

ll.Saeki, M., 2003. CAME: the First Step to Automated Software Engineering. In Procs. 
OOP SLA 2003 Workshop on Process Engineering for Object-Oriented and Component-
Based Development. Anaheim, CA, 26-30 October 2033. COTAR: Sydney. 

12. Shan, L. and H. Zhu, 2004. CAMLE: A Caste-Centric Agent-Oriented Modeling Language 
and Environment. In Third International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems. Edinburgh, 24-25 May 2004. [in press]. Springer-Verlag. 

13.ter Hofstede, A.H.M. and T.F. Verhoef, 1997. On the Feasibility of Situational Method 
Engineering. Information Systems. 22(6/7): p. 401-422. 




