
A SHORT TUTORIAL ON REINFORCEMENT
LEARNING
Review and Applications

CHENGCHENG LI & LARRY PYEATT
Computer Scinece Department, Texas Tech University, Lubbock, Texas, 79401 USA

Abstract: Dynamic Programming (DP) has been widely used as an approach solving the
Markov Decision Process problem. This paper takes a well-known gambler's
problem as an example to compare different DP solutions to the problem, and
uses a variety of parameters to explain the results in detail. Ten C++
programs were v^ritten to implement the algorithms. The numerical
results from gamble's problem and graphical output from the tracking
car problem support the conceptual definitions of RL methods.

Keywords: Reinforcement Learning, Dynamic Programming, Monte Carlo method.
Temporal Difference, Markov Decision Process

1. INTRODUCTION

The three fundamental classes of RL methods are dynamic programming
(DP), Monte Carlo (MC) and temporal difference (TD) methods. Almost all
the RL methods are evolved from or from the combinations of these
fundamental RL methods.

Dynamic Programming (DP) is one of the major methods used to solve
MDP(Markov Decision Process) problems (Puterman, p.81). The pohcy
iteration method is the straightforward way to apply DP to an MDP problem.
A random policy or any non-optimal policy is evaluated by calculating the
state values using the Bellman equation. A new policy replaces the old policy
and is regarded as a more optimal policy than the old one, based on the
calculated state values. The loop then keeps going on until either policy or
state values converge and do not change. Value iteration is actually an
improved version of policy iteration. It truncates the policy improvement

510 Intelligent Information Processing II

process in policy improvement and still keeps a guaranteed convergence
toward the optimal solution.

The basic idea of MC methods is based on averaging sample returns. If a
state or state-action pair has been visited many times, the average value of the
returns of these visits is supposed to converge to the true value of this state or
state-action pair. Based on this assumption, MC methods only consider and
use experience. MC methods do value evaluation and improvement
simultaneously,

TD methods combine the advantages of both MC and DP methods. TD
methods do not require a complete knowledge of the environment. However,
TD methods use bootstrapping which is similar to DP methods. On the other
hand, TD methods do not go through the whole episode. In stead, they use a
number of steps in each episode. The most commonly used on-policy TD
method is SARSA, and off-policy TD method, which evaluates one policy
while following another, is Q-leaming method.

2. GAMBLER'S PROBLEM

A classic Gambler's problem is used to show a DP solution to a MDP
problem. The description of the problem is as foUowings: "A gambler bets on
the outcomes of coin flips. He either wins the same amount of money as his
bet or loses his bet. Game stops when he reaches 100 dollars, or loses by
running out of money." (Sutton and Barto, p. 101)

Figures 1 and 2 show the value function and optimal policy when p=0.4,
where p is the winning rate. The state value function is no longer linear.
There are some local maximums when the capital reaches 25, 50, and 75.
Fifty is the state with the most abnormally high state value. The policy is to
reach the high value states before reaching the goal.

Capila

Figure 1. Optimal State Value
Functions (p=0.4)

Figure 2. Optimal Policy (p=0.4)

There are many spikes in the graph shown in Figure 2, and they are
considered noise. We found that it is caused by roundup errors of the floating
point limitation of CPUs. Different errors are shown on AMD, Pentium, and

Intelligent Information Processing II 511

Sun CPUs. The computer makes the wrong decision due to the floating point
limitation by truncating the number after the 16th digit. The solution to this
problem is that an updated policy must increase the action value by at least
the smallest decimal number which the CPU can handle, for example, l̂ "'̂
for double precision. By applying this concept, and changing the policy
improvement rule from

" If (actionvalue > previousmaxvalue)
Then choose this action" to

" If (actionvalue > previous_max_value-M0E-16)
Then choose this action ," all the noise is eliminated. The optimal

policy graphs for 0<p<0.5 are all the same. Another way to explain this is
that because of the nonlinear property of the state value fiinction, there is a
certain amount of bet which can result in obtaining an optimal return for each
state before betting all the capital. The exception to this is when current states
are local maximums (25, 50, 75).

The local maximum is the smallest integer value divisible by a
polynomial of two from the number of states. The reason is that the gambler
problem is a discrete MDP problem, and every state has an integer value as
capital. Keeping this in mind, let us ftirther compare the results in Figures 3
and 4. Figure 3 has 1,024 states, which is a polynomial of two. So the local
minimum is as small as 1. The result of this is that if a player sets a slightly
different goal, for example, from 1,023 to 1,024, there may be completely
different optimal policies for different goals, as can be seen in Figure 4,
which has 1,023 states.

59 117 175 233 291 349 407 465 523 581 639 697 755 613 871 929 987

C«pttal

233 291 349 407 465 523 581 $39 697 755 813 871 929 987

Figure 3. Optimal Policy (0<p<0.5),
1,024 States

Figure 4. Optimal Policy (0<p<0.5),
L023 States

3. TRACKING CAR PROBLEM

The tracking car problem is very special which could be solved by using
MC, DP, and TD methods. Thus, the tracking car problem can be used to
compare the three methods. The specification of tracking car problem is as
follows. "Find the best strategy to accelerate or decelerate a racing car at a
turning track. The maximum velocity of the car is 5. A random accelerate on
either vertical or horizontal direction may occur." (Sutton and Barto, p. 127)

512 Intelligent Information Processing II

Figure 5. Optimal
Tracks from On-Policy

MC algorithm.
There are more

problem because

Figure 6. Optimal Figure 7. Optimal
Tracks from DP Value Track from SARAS and

Iteration algorithm. Q-leaming algorithms,
states defined in DP algorithm for this tracking car

car positions on track with a particular vertical and
horizontal speed are counted as factors of states. There are four horizontal
and four vertical speed, and they can not both be zero. So, the number of
states is calculated by

NumberOfStates=OnTrackPositions*(4*4-1) (1)

DISCUSSION ON RESULTS AND CONCLUSIONS

MC methods have a very close relationship to TD methods, which are
also based on experience and sample episodes but bootstrap. If we increase
the number of steps in the TD methods till the end of every episode, MC may
be viewed as a special case of TD methods. MC methods are based on
experience and sample episodes. They do not require a full definition of the
environment, which is the major advantage of MC over DP methods. MC
methods do not bootstrap and convergence of state or action values is
guaranteed by a large number of visits on every state or action.

In practice, we found that correct setting of initial value of every state is
critical for the correct convergence of state or action values. For example, we
set that every state has been visited 45 times and every visit has a return of 1
before the loop starts. As a result, all states values are set much higher than
their real values. The first several iterations of loop then would not set states
to very low values. We then guarantee values of states slowly get close to
their true values from only one side of their true values, so that large number
of visits on every state are guaranteed.

Choosing greedy actions to update action values makes Q-leaming an off-
policy TD method, while SARSA is an on-policy TD method which uses e-
greedy method. Figure 7 shows that SARSA intends to take a saver track and
avoid being on the most left and the most top lanes of the track because the
probability of being off the track is high on those lanes. Q-leaming then
chooses more greedy tracks than SARSA. If there is no or low-probability of
random left and right accelerations, the results from Q-leaming would be
more close to the real optimal solution. If the probability of random
accelerations is high, SARSA is the method to use. In most cases, greedy
methods are more close to the real optimal solutions.

Intelligent Information Processing II 513

This study covers the major concepts of reinforcement learning and the
Markov decision process. DP, MC, and TD methods are discussed and
compared through solving problems. A noise reduction method and computer
floating point limitations are also discussed. Ten C++ programs were written
to implement the algorithms. The numerical results from gamble's problem
and graphical output from the tracking car problem support the conceptual
definitions of RL methods.

REFERENCES

1. Richard S. Sutton and Andrew G. Barto (1998), Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA.

2. Martin L. Puterman (1994), Markov Decision Processes: Discrete Stochastic Dynamic
Programming. A Wiley-Interscience Publication, New York.

