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Abstract: In data mining for knowledge explanation purposes, we would like to build 
simple transparent fuzzy models. Compared to other fuzzy models, simple 
fuzzy logic rules (IF ... THEN... rules) based on triangular or trapezoidal 
shape fuzzy sets are much simpler and easier to understand. For fuzzy rule 
based learning algorithms, choosing the right combination of attributes and 
fuzzy sets which have the most information is the key point to obtain good 
accuracy. On the other hand, the fuzzy ID3 algorithm gives an efficient model 
to select the right combinations. We therefore discover the set of simple fuzzy 
logic rules from a fuzzy decision tree based on the same simple shaped fuzzy 
partition, after dropping those rules whose credibility is less than a reasonable 
threshold, only if the accuracy of the training set using these rules is 
reasonably close to the accuracy using fuzzy decision tree. The set of simple 
fuzzy logic rules satisfied with this condition is also able to be used to interpret 
the information of the tree. Furthermore, we use the fuzzy set operator "OR" 
to merge simple fiizzy logic rules to reduce the number of rules. 

Key words: Simple shaped fuzzy partition, fiizzy ID3 decision tree, simple fuzzy logic 
rules (SFLRs), classification problem, prediction problem. 

INRODUCTION 

The classification and prediction problems, where the target attribute is 
respectively discrete (nominal) or continuous (numerical), are two main 
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issues in data mining and machine learning fields. General methods for these 
two problems discover rules and models from a database of examples. IF ... 
THEN ... rules, neural nets, Bayesian nets, and decision trees are examples 
of such models. 

To be able to handle imprecision and uncertainty of the representation of 
concepts and words in the real world, these models have been used with 
fiizzy logic ^̂^ introduced by Zadeh in 1965. These fuzzy models overcome 
the sharp boundary problems ^^\ providing a soft controller surface and good 
accuracy in dealing with continuous attributes and prediction problem. 

In classification and prediction problems, we would like the fuzzy model 
to be as simple as possible and provide an easy means of providing an 
explanation for the result. The fiizzy logic rules (IF ... THEN... rules) are 
good choice, because they are not only much simpler than the other models 
but also formulate human reasoning and decision-making into a set of easily 
understandable linguistic clauses. For explanation purpose, we have to use 
the simple triangular or trapezoidal shape fuzzy sets, so that simple fuzzy 
logic rule model based on these fuzzy sets are produced. 

In order to use less number of simple fuzzy logic rules to provide 
reasonable accuracy, we firstly discover a fuzzy ID3 decision tree with post-
pruning ^'^^^^^ based on the simple triangular fuzzy sets, and transfer the tree 
into a set of simple fiizzy logic rules after dropping those rules whose 
credibility is less than a reasonable threshold, only if the accuracy of the 
training set using simple fuzzy logic rules is reasonably close to the accuracy 
using fiizzy decision tree. 

In Fril ^^\ a symbolic AI uncertainty logic programming system 
combining fuzzy reasoning, possibility and probability reasoning, we 
interpret the simple fuzzy logic rules as conditionalisations rather than as 
implications. Deflizzification in Fril takes a very simple form. 

To reduce the complexity of our model, we merge simple fuzzy logic 
rules with neighbouring fiizzy sets to give trapezoidal fiizzy sets. 

2. SIMPLY SHAPED FUZZY PARTITION AND 
FUZZY ID3 DECISION TREE 

2.1 Simply triangular or trapezoidal shape fuzzy sets 

When Zadeh proposed fuzzy set theory ^^^ in 1965, the use of simple 
linguistic words in place of numbers for computing and reasoning was one 
of the key ideas. This provides fiizzy logic with a simplified explanation 
power of being a suitable interface between human users and computing 
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systems. This power does, though, depend on the form of fuzzy sets. If the 
fiizzy sets are simple triangular or trapezoidal in shape, then they can be 
given an easy interpretation. If they have a complicated shape, /\^^.^/\P\ 
such as Figure 1, they do not provide a useful linguistic -^—^-—-^ 
description. figure i 

Optimised fuzzy sets, such as neuro-fuzzy sets ^̂ \ are used to obtain good 
accuracy but they have no explanation power because of their complicated 
shape. We investigate methods of deriving rules and models using a simple 
shaped fuzzy partition for each attribute, which is defined as a family of 
triangular or trapezoidal fuzzy sets in Definition 1 such that for any 
argument value the memberships add tol. ^̂^̂^̂  

Definition 1: A simply shaped fuzzy partition {/j} is a set of triangular 
or trapezoidal fuzzy sets such that 

Y^Xj] (̂ ) = 1 for any data point x e X where X is the universal set. 

2.2 Fuzzy partition model and membership function 

In this paper, we use equal data points fuzzy sets (EDP-FS) model in 
Definition 2 for continuous (numerical) attributes, which are normally 
asymmetric, and still use crisp sets as a special case of fuzzy sets for discrete 
(nominal) attributes. 

Definition 2: Equal data points fuzzy sets (EDP-FS) 
In th is m o d e l , t h e n u m b e r o f d a t a Equal data points fuzzy sets 

examples in each interval covered by a Fuzzy set 1 2 3 ... n 
triangular fuzzy set in the universal set [a, \i\ / \ / \ / 
b] is equal. For n fuzzy sets and m \ / \ / \ X 
examples in database sorted in ascending jy \ / \/ \ ^ 
order, if the value of example x is val (x) aj a+U )̂ j- ^+vaif~^ jb 
where x G [1, m], then the fiizzy partition Numbe-f IJ^^^^^^^ i ^̂^̂.̂^ i ,̂̂ _̂̂^ i 
is illustrated in Figure 2. Figure 2 

Mass Assignment Theory ^^^^^^ proposed by Baldwin in 1991 integrated 
fuzzy logic and probability theory, points out that for simple shaped fuzzy 
partition {f-} of kth attribute, input such as x = g, where g can be point 
value, fuzzy set or probability distribution, is translated into distribution 
over fuzzy sets of words using membership function Z/. X ^ [0, 1] ^̂ l The 
membership values Zf(x) where x E X is the conditional probability of each 
fuzzy set given input Pr (fi \ g), ^^^^^^ 

Definition 3: Membership value Zf,(^) =l?r (f\ \ g), where if g is the 
point value, then Pr (/i \ g) Z/^is) = , otherwise we will use point value 
semantic unification ^̂^̂^̂  to calculate it. 
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2.3 Fuzzy ID3 decision tree 

Fuzzy ID3 algorithm ^^^^"^^ developed by Baldwin and co-workers and 
described below is an efficient algorithm to generate fuzzy decision tree. 

Input 3 parameters of model: training set S, the number of fuzzy sets/and 
the depth of decision tree /, 
Start to form fuzzy decision tree from the top level, 
Do loop until '̂̂  the depth of the tree gets to / or ^̂^ there is no node to expand 

a) Determine expected entropy £E(Ak) for each attribute of S not already 
expanded in this branch, 

b) Expand the attribute x with the minimum expected entropy £E(Ax), 
c) Stop expansion of the leaf node Â f of attribute k if entropy E(Akf) = 0 

or nearly 0, 
d) Use post pruning to prune the tree and stop. 

End do loop 

During the process of learning fuzzy decision tree, the leaf nodes Akf in 
each stage have the entropy 

E(A,,) = 2]Pr(ti |A,,)xLn(Pr(tJA„.)) 
i 

where the node belongs to the kth attribute and fth &zzy set, and ti is ith 
class or fiizzy set of the target attribute. Pr(ti | Akf) is the conditional 
probabilities associated with each class in the target attribute. 

Definition 4: For the kth attribute, the expected entropy is 

f 

where the renormalized branch probability passed in each branch is 
Pr(A,,) = i?e7Vorm(XZ...i; Z ...XPr(A.,..A„„T)) 

T '^If '^(k-l)f '^(k+l)f ^ n f 

where the subscript f could be the different number of fuzzy sets in each 
attribute and the set of nodes {Aif,...,Akf,...,Anf,T} comprises the branch 
which is the path of the target T. 

We modify Laplace's formula to prune the fuzzy decision tree. The error 
of the//A children node Sf of any node S in fuzzy decision tree is 

^ NxPr-(S,)-NxPr-(S,)xPr(tJS,) + k-l 
' NxPr'(Sf) + k 

where N is the number of examples in the training set, and Pr'(Sf) is the 
probability passed in the branch before renormalization in Definition 4. Then, 
we calculate backup error of node S. If BackUpError(S) > Error(S), the tree 
is pruned by halting at S and cutting all its children nodes. ^̂^ 
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3. SIMPLE FUZZY LOGIC RULES BASED ON 
FUZZY DECISION TREE 

For machine learning and data mining purpose, various types of fiizzy 
rules and models can be used, such as general Fril rules ^^\ fuzzy decision 
trees, fuzzy Bayesian nets and IF.. .THEN.. .fuzzy logic rules. Depending on 
the simply shaped fuzzy sets, fuzzy logic rules provide a simple transparent 
formulation of human reasoning and hence can be explained easily. Though 
those rules over optimised fiizzy sets would provide good accuracy, they 
lose their main advantage of fiizzy logic rules in original. We therefore only 
use those over simply triangular or trapezoidal shape fiizzy sets that are 
called as simple fuzzy logic rules in this paper. 

3.1 Simple fuzzy logic rules (SFLRs) 

Suppose there are k attributes and the jth attribute is the target attribute, 
the simple fuzzy logic rule (SFLR) based on the simple shaped fuzzy sets is 
of the form shown in (1): 
(Aj is large) IF / j \ 

(A, is small) AND ... AND (Aj., is small) AND (AJH is medium) AND ... AND (Ak is large) 

where the term on the left side of IF is the head of this rule and the set of 
terms on the right is the body, and the clauses of the terms are words of 
attributes defined by fuzzy sets. Every SFLR has support and credibility 
defined as below. 

Definition 5: The joint probability/;;. = Pr(A] is small A...A AJ.I is small 
A Aj is large A AJ+I is medium A. . .A Ak is large) is the support of the simple 
fuzzy logic rule in (1). ^̂^ 

The support of a SFLR represents the frequency of occurrence of the 
particular combination of attribute values in the SFLR in the training set. 

Let p = Pr(A , is small A ... A AJ., is small A AJ^, is medium A ... A A,, is large) 

~ ^ Pr(A, is small A ... A A,̂  is large)' ^^^^ 
Aj is large 

Pr 

Definition 6: the value of ~ is the credibility (confidence) of the 
simple fuzzy logic rule in (1). ^̂^ 

The credibility of a SFLR represents how often it is likely to be true. 
Only the SFLRs whose credibility is greater than or equal to the 

credibility threshold 8 are chosen. Those SFLRs are likely to be true, if s is 
reasonably high. 
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3.2 Simple fuzzy logic rules from fuzzy ID3 decision tree 

All kinds of decision trees can be changed into IF.. .THEN.. .rules. In our 
model, fuzzy ID3 decision tree is transferred into a set of SFLRs with one of 
the model parameters — a credibility threshold s. The head of a SFLR is the 
class or fuzzy set of a leaf node with maximum conditional probability, and 
this conditional probability is equivalent to the credibility of the SFLR 
transferred. The body is the path of this target in the tree. Any SFLR whose 
credibility is less than 8 is dropped. 

For example, in the Pima Indian Diabetes classification problem, we 
discovered a fuzzy decision tree ^̂^̂"̂^ shown in Figure 3 using 3 fiizzy sets 
defined in Definition 2 in each attribute and assigning the depth of tree as 3, 
where each pair of integer numbers in a bracket on the left side represents a 
node in the tree, and the first number represents an attribute number and the 
second represents a selected fiizzy set of this attribute. Those float numbers 
on the right side are the conditional probabilities associated with each class 
in the target attribute. For instance, the first path of the tree shows the node 
with 2"̂ * attribute 1̂^ fiizzy set leads to the target node with probability equal 
to 0.862725 for the 1'' class and 0.137275 for the 2"̂  class. 

1. (2 1) (0.862725 0.137275) 
2. (2 2) (0.6685410.331459) 

tree: 

. . 3. (2 3)(8 2) (0.308811 0.691189) 
Fuzzy decision ^ (2 3)(8 3) (0.275786 0.724214) 

5. (2 3)(8 1)(7 1) (0.814304 0.185696) 
6. (2 3)(8 1)(7 2) (0.525588 0.474412) 
7. (2 3)(8 1)(7 3) (0.236044 0.763956) 

Credibility >= 0.6 

1. (attribute_9 is class_l) IF (attribute_2 is f u z z y s e t l ) 
2. (attribute_9 is c l a s s l ) IF (attribute_2 is fuzzy_set_2) 
3. (attribute_9 is class_2) IF 

(attribute_2 is fuzzy_set_3) AND (attribute_8 is fuzzy_set_2) 
Simple fuzzy 4 (attribute_9 is class_2) IF 

logic rules (attribute_2 is fuzzy_set_3) AND (attribute_8 is fuzzy_set_3) 
(SFLRs): 5 (attribute_9 is class_l) IF 

(attribute_2 is fuzzy_set_3) AND (attribute_8 is f u z z y s e t l ) 
AND (attribute_7 is f u z z y s e t l ) 

7. (attribute_9 is class_2) IF 
(attribute_2 is fuzzy_set_3) AND (attribute_8 is fuzzy_set_l) 
AND (attribute_7 is fuzzy_set_3) 

Figure 3 

As we can see in Figure 3, these SFLRs with information of fuzzy ID3 
decision tree have the simpler form and are easier to understand than the 
decision tree. 

Our model has two uses: one is to efficiently discover a set of SFLRs 
with good accuracy, when their training set accuracy is reasonably close to 
the fuzzy decision tree; the other is to use the set of SFLRs transferred from 
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fuzzy decision tree to interpret the information of the tree, if the training set 
accuracy of SFLRs is reasonably close to the accuracy of fuzzy decision tree. 

3.3 Using simple fuzzy logic rules (SFLRs) to evaluate 
new case for classification or prediction problem 

In Fril we interpret the IF...THEN... simple fuzzy logic rules as 
conditionalisations rather than as implications ^̂ l This makes more sense 
when uncertainties are involved since it is the conditional probabilities that 
are naturally apparent in data. 

To evaluate a new example {xi,...,Xk} over k attributes using the SFLR 
in (1), we calculate Pr (body) = Pr (small | Xi) x ... x Pr (small | Xj.i) x Pr 
(medium | Xj+i) x ... x Pr (large | Xk) over k-1 attributes in the body. Let Pr 
(body) = ((), Fril inference of the SFLR is formulated as Pr (head) = Pr (head | 
body) x Pr (body) + Pr (head | - body) x Pr (-' body) = 1 x (|) -f [0, 1] x (1 - (j)) 

= [*, 1] '''''' 
Definition 7: For {tj classes in the target attribute, the Fril inference of 

SFLRs will give {t. : [^., 1]} for each class. We therefore choose the class tf 
of the target attribute as the predicted class that has maximum inference 
MAX (^i)-

/, 
Definition 8: For {f.} fuzzy sets in the target attribute, the Fril inference 

of SFLRs will give {f. : [^., 1]} for each fuzzy set, where there is ^ ĵ < 1. 
Let ;̂  ^ (m.) = 1, the predicted value is: ' 

X = (Xy + X/) / 2, where 

^u = MAX Z "'A ̂ -t ̂ , ̂ ^,21 («// 0, E ,̂ = 1 
{0,} i /• 

^1 = MINE"^A s.t<!>, <e,<\{alli),EÖ, = 1 

The predicted value x equals to the average of possible maximum value 
Xu of X and possible minimum value x/. In the formula, we take the maximum 
value nii of each fuzzy set / (;try;(m,.) = l) that is multiplied by the 
probability distribution 6i associated with ith fuzzy set. To make Xu maximal, 
we keep probability distribution öas much as possible in the fuzzy set whose 
maximum value m is maximal among all fuzzy sets, and then the rest of 6i is 
assigned to the associated Fril inference /̂. Vice versa for x/. 

For example, suppose we have Firl inferences {̂ „laii .' [0.2, 1],/medium ' 
[0.5, l],/arge i [0.1, 1]}, whcrc ;^_„(1) - 1, ;rn.ediuJ5) = 1, aud ;f ,,^,(9) = 1. 
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ThQnXu= 1 X 0.2 + 5 X 0.5 + 9 X (1 - 0.2 - 0.5) = 5.4 and x/= 1 x (1 - 0 . 5 -
0.1) + 5 x 0.5 + 9 x 0.1 = 3.8. The predicted value x = (5.4 + 3.8) / 2 = 4.6. 
This provides the defuzzification. 

3.4 Merging simple fuzzy logic rules (SFLRs) 

The number of rules is the main measurement of the complexity of rule-
based model. To reduce the number of SFLRs, we merge those rules where 
their heads are the same, and fuzzy sets separately in one term of their bodies 
are neighbouring but the other terms are same, by fuzzy _set_i OR 
using fuzzy set operator "OR". The Fril inference fuzzy_set_2 fuzzy _set_3 
of one merged rule equals the sum of inferences ^/..M"» ^ ^ > 4 ' ' \ / 
of those rules before mergence shown in Figure 4, +XJAX) 

because of Definition 1. The mergence therefore Figure 4 
would not affect the accuracy of classification or prediction at all. 

For example, the first 4 SFLRs in Figure 3 can be merged into two rules: 
(attribute_9 is c l a s s l ) IF (attribute_2 is [fuzzy_set_l OR fuzzy_set_2]) and 
(attribute_9 is class_2) IF (attribute_2 is fuzzy_set_3) AND (attribute_8 is 
[fuzzy_set_2 OR fiazzy_set_3]). In result, the number of SFLRs in Figure 4 
is reduced from 6 into 4. 

4. EXPERIMENTS 

To evaluate our models, we choose some typical databases in UCI 
Machine Learning Repository ^̂^ to separate each of them into training set 
and test set by selecting database examples randomly, and then use the same 
training set and test set to get the accuracy each time. 

In the following tables, "Number of Fuzzy Sets" represents the number of 
fuzzy sets we used for each attribute of database. "Depth of Tree" and 
"Credibility Threshold" are also model parameters mentioned in section 2.3 
and 3.2. "Number of Leaf Nodes" and "Number of Rules" respectively show 
the complexity of fiizzy decision tree and SFLRs, where the number on the 
left of " ^ " is the number of SFLRs before merging and one on the right is 
after merging. The accuracy for "Training set" and "Test set" using fuzzy 
ID3 decision tree and SFLRs are in the percentage format and respectively 
calculated in (2) or (3) for classification or prediction problems: 

. the number of successfiiUy classified instances .^. 
Accuracy = (2) 

the number of instances in total in the dataset 
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Accuracy = 1 predicted - T original 

range (T) 
(3) 

where Tpredicted is the predicted target value, Toriginai is the original target 
value in the dataset, and rangeij) is the range of the target attribute T. 

In the bottom of tables, we use models of Weka ^̂^ to compare our.model 
in classification problem using the same training set and test set. 

Tree examples in classification are shown in Table 1, 2, 3 below. 

Table 1. Pima Indians Diabetes Database 
Number of Depth Leaf 
Fuzzy Sets of Tree Nodes 

3 1 3 

3 5 9 

4 5 19 

5 5 69 

Training Set 
(ID3) 

71.09% 

72 .13% 

75.26 % 

80.21 % 

Weka J48 (C4.5 decision tree) 

Weka Naive Bayes 

Weka Neural Network 

Table 2. Sonar Data 
Number of Depth Leaf 
Fuzzy Sets of Tree Nodes 

3 5 37 

5 5 65 

Training Set 
(ID3) 

90.38 % 

93.27 % 

Weka J48 (C4.5 decision tree) 

Weka Naive Bayes 

Weka Neural Network 

Table 3. Vision Data 
Number of Depth Leaf 
Fuzzy Sets of Tree Nodes 

4 5 28 

5 5 37 

6 5 71 

Training Set 
(ID3) 

65.75 % 

66.98 % 

68.41 % 

Weka J48 (C4.5 decision tree) 

Weka Naive Bayes 

Weka Neural Network 

Test Set 
(ID3) 

76.82 % 

75.52 % 

78.64 % 

79.17% 

Test Set 
(ID3) 

87.50 % 

71 .15% 

Test Set 
(ID3) 

65.78 % 

67 .15% 

69.07 % 

Credibility Number of 
Threshold Rules 

0.6 3 - ^ 3 

0.6 9 -> 6 

0.6 18 ->11 

0.6 6 4 - > 4 1 

7 leaf nodes* 

7 nodes** 

Credibility Number of 
Threshold Rules 

0.6 3 7 - > 2 9 

0.6 62 -> 33 

8 leaf nodes* 

33 nodes** 

Credibility Number of 
Threshold Rules 

0.4 2 7 - > 1 5 

0.4 33 -> 14 

0.4 56 -> 23 

625 leaf nodes* 

20 nodes** 

Training Set 
(SFLRs) 

71.09% 

71.35% 

75.26 % 

78.38 % 

76.30 % 

74.22 % 

80.47 % 

Training Set 
(SFLRs) 

89.42 % 

92.31 % 

9 7 . 1 1 % 

75.96 % 

100% 

Training Set 
(SFLRs) 

67.18% 

65.42 % 

68.04 % 

91.45% 

49.36 % 

76.47 % 

Test Set 
(SFLRs) 

76.82 % 

75.78 % 

78.64 % 

79.43 % 

78.12% 

77.60 % 

77.60 % 

Test Set 
(SFLRs) 

84.61 % 

71.15% 

74.03 % 

73.08 % 

84.61 % 

Test Set 
(SFLRs) 

68.25 % 

65.97 % 

68.86 % 

73.18% 

50.47 % 

75.69 % 

* The tree is pruned by using Weka's default pruning. ^̂^ 

** Those nodes include all of nodes (internal and external nodes) in the neural network. 

Table 4 is a example in prediction, where the 3-attribute and 529-data-
point training set is created by function Z = Sin(X*Y) plotted in Figure 6, 
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but the test set has 2209 data points. "5-6-6" in Table 4 represents using 5 
fuzzy sets in the target attribute and 6 fuzzy sets in the other attributes. 

Table 4. Function SinXY 
Number of Depth Leaf Training Set Test Set 
Fuzzy Sets of Tree Nodes (ID3) (ID3) 

Credibility Number of Training Set Test Set 
Threshold Rules (SFLRs) (SFLRs) 

5-6-6 2 31 90.66% 90.68% 0.3 

5-8-8 2 57 94.54% 94.46% 0.3 

5-10-10 2 82 95.36% 95.33% 0.3 

5-12-12 2 122 97.16% 97.03% 0.3 

13-13-13 2 145 97.89% 97.66% 0.2 

29->17 92.35% 92.40% 

57 -» 34 96.25 % 96.42 % 

82->44 95.69% 95.90% 

122-^55 96.02% 96.44% 

145-> 107 98.02% 98.04% 

Figure 6: Original Function Figure 7: Test Set (SFLRs) 5-10-10 Figure 8: Test Set (SFLRs) 13-13-13 

As we can see, if the training set accuracy using the set of SFLRs 
transferred from fuzzy decision tree is reasonably close to the training set 
accuracy using decision tree, the test set accuracy using SFLRs is reasonably 
close to the other or even better than it. 

Furthermore, comparing other models, the SFLRs based on decision tree 
have a reasonable accuracy with less complexity (the number of rules). 
Considering their advantages of simplicity, transparency, and linguistic 
explanation power ability, it is one of most useful models in data mining and 
machine learning. 
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