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Abstract: Based on the definition of linear specificity measure, this paper discusses 
detailedly the conditions on which the first-order universal implication 
operators satisfy the information boundedness principle in fuzzy reasoning, 
and gets the corresponding conclusion: when fuzzy propositions have positive 
measuring errors for their membership grades, first-order universal 
implication operators satisfy the information boundedness principle only if 
they are rejecting or restraining correlative; when they have negative ones, the 
operators satisfy the principle only if they are restraining correlative. This 
conclusion has important directive meaning for how to give the value of the 
general correlative coefficient h in practical control application. 
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1. INTRODUCTION 

As is well known, fuzzy reasoning now has become a theoretical basis 
and an important method for the design and analysis of fuzzy controller. 
However, an important problem involved in fuzzy reasoning is how to define 
the implication operator. People have presented many different definitions^^" 
^̂ , but the majority usually relies on the subjective experience without 
theoretical guide and analyses of their effectiveness, which are often given at 
will and blindly. In 1996, Universal Logic proposed by Prof. He provided a 
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valid path to resolve this problem '̂̂ '̂ ^l Universal implication is the 
implication connective of Universal Logic, which is a cluster of R-
implications determined by the general correlation coefficient h between 
propositions. In practical application, according to the inherent correlation 
between propositions, we can take a corresponding implication operator 
from the cluster, so that overcome effectively the blindness. 

In fuzzy reasoning, the starting objects and the resulting object are all 
fiizzy sets, and the semantic interpretation associated with the output of the 
FMP process depends on the value of the resulting fuzzy subset at all points 
in its domain. Thus, in considering the appropriateness of the implication 
operator used in FMP, account must be taken of the whole resulting fuzzy 
subset, not only some points in its domain^ '̂̂ l So, Yager proposed the global 
requirements for implication operators in fuzzy reasoning, called as 
information boundedness principle^^l 

In practical control application, how to determine the value of h between 
propositions has been a problem for further studies. When taking no account 
of the measuring errors for the membership grades of propositions, we have 
proceeded the detailed research on information requirement of zero-order 
universal implication operators, and get an important conclusion^^ l̂ 
However, in practical application, the measuring errors are ineluctable. 
Therefore, based on the information boundedness principle, this paper 
discusses further the information requirement of first-order universal 
implication operators in a specific way, and draws the general conclusion, 
which has important directive meaning for how to give the value of Ä. 

2. FUNDAMENTAL CONCEPTS 

2,1 Basic model of fuzzy reasoning 

In fuzzy reasoning, the basic model of FMP can be represented as 
follows: 

rule A -^B 
forgiven ^4* (1) 

to determine 5* 
where A and A * are the fuzzy sets in X, and B and 5* are the fuzzy sets in Y. 

2.2 Basic idea of Universal Logic^^^'^^^ 

1. Basic idea of Universal Logic 
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Based on the investigation on the general regulation of the logics having 
existed, in 1996, Prof. He proposed firstly a kind of totally new theoretical 
frame of mathematical logic, called as Universal Logic. It is a continuous 
and parameterized logic system and describes the logic regulation of the 
flexible world. And it contains every kind of logics and reasoning forms. Its 
basic idea can be summarized as follows: it is the general correlation 
between propositions that makes logic operators are uncertain. 

He leads the Chinese classical philosophic thought into the theory of 
flexible logics, which is all things in the world are correlative, namely either 
mutual promoting or restraining. So he uses the general correlation to 
explain why the logic operators of proposition connectives are not unique. 
The general correlation is the inherent character of things and contains 
general correlation and general self-correlation, which represent the 
correlation between fuzzy propositions and the measuring errors of the 
membership grades of fuzzy proposition, respectively. 

And he uses general correlation coefficient h to describe general 
correlation, changing continuously from 1 to 0. General correlation changes 
continuously from the max-attracting state to the max-restraining state. As 
the tolerance decreasing from its maximum, general correlation decreases 
continuously from its max-attracting state(/2=l) to the independent 
correlation state(Ä=0,75), and then to the max-rejecting state(namely the 
min-restraining state, Ä=0.5). After that, with the restraint increasing, it 
continues decreasing from its min-restraining state(Ä=0.5) to the max-
restraining state(Ä=0) through its deadlock one(Ä=0.25). Similarly, general 
self correlation coefficient k is used to describe general self-correlation, 
changing continuously from 0 to 1, too. For example, if measuring errors are 
the positive maximums, then =̂=1, if they are the negative ones, then k=0, 
and if there are no measuring errors, then /:=0.5. Thus, based on the theory of 
norms and the correlation coefficients, we can get the corresponding clusters 
of operators for different connectives. The operators can change 
continuously, and the ones gotten with the same correlation coefficient are 
corresponding with one another. 

As long as the values of h and k are given, the corresponding operators of 
connectives can be gotten. So, in practical application, we can get the 
appropriate operators of connectives by the inherent correlation between 
propositions, this avoiding effectively giving them at will and blindly. 

2. First-order universal implication 
In Universal Logic, first-order universal implication is defined as: 
Definition 1^^^"^First-order universal implication is the cluster 
I{x,y, h, /:)=te{l|x<3;;0|m<0,;;=0,X9^0;r*[(l-x^"+);"^")'̂ ^""^]}. (2) 
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where m = (3 - 4h) / (4h(l - h)\ ÄG[0, 1], meR, n=~\llog2K ke[Q, 1], 
neR\ 

Remark: the conditional expression ite{ß\ a; y} represents that if a is true, 
then the result is /?, otherwise y. Similarly, ite{ßl\al: ß2\a2; y}=ite{ßl\al; 
ite{ß2\a2; y}}. And r^[x]=//e{l|x>l; 0|x<0 or x is an imaginary number; x) . 

For the sake of convenience, the following piecewise form is given̂ ^̂ :̂ 

ite{y I jc = 1;1} {0} x (0,1]u (0,0.75) x {1} 

m\ni\,ylx) [0,1]x {0}u {0.75} x (0,1] 

ite{\ \x<y-y} (0.75,1] x {1} u {1} x (0,1) 

1 . X < r,(0»0.75) X (0,1)u (0.75,1) x (0,1) 

0 x >;;,;; = 0,(0.75,l)x (0,1) 

(X-x""" + y'""f^'""'> e l se 

Iix,y,h,k)-- (3) 

wh^re suppose that lim (—— — ) x l i m ( - - - ) = 0 lim ( 
l o g , k ) * >' 4 Ä ( I - h) 

W^};̂ r̂ ^^W-]̂ ^==' , m=={3-4h)/(4h(l-h)l he[0, 1], meR, n=-\llog2K ^e[0, 
1], neR^, {0} X [0, 1] represents h=0 and Ä:G[0,1], and the others are similar. 

The first-order universal implication is a continuous super-cluster of 
implication operators determined by h and k. In practical application, 
according to the general correlation between propositions and the general 
self-correlation, we can take the corresponding one from the cluster. 

3. Some common properties of first-order universal implication 
For the sake of convenience, some common properties of first-order 

universal implication are given ̂ '̂ ' ^̂ :̂ 
11 lfxi<X2, then/(x/,3;, h, k)>I{x2,y, h, k), where /ZG[0,1], Ä:G[0,1]. 

12 If;;/<y2, then/(x,;;/, h, k)<I(x,y2, h, k), where AG[0,1], ^G[0,1] . 

13 7(0,;;, h, k) = 1, where he[OM ^G[0,1] . 

141{l,y, K k) =y, where ÄG[0,1], ;CG[0,1]. 

2.3 Information boundedness principle 

IVlost of the discussions about the selection of the implication operator 
have been based on satisfaction to a number of properties associated with the 
classical binary implication operator̂ '̂ ^\ such as the famous D-P 
conditions^^l However, these properties except continuity are all local or 
pointwise requirements. As said above, in considering the appropriateness of 
the implication operator used in FMP, account must be taken of the whole 
resulting fuzzy subset, not only some points in its domain^ '̂̂ l Therefore, 
Yager proposed the information boundedness principle, which requires that 
the information contained in a fuzzy granule resulting from an inference 
must be no greater than the information contained in the consequent of the if-
then proposition and that the information contained in inferences under two 
different inputs should be ordered by the matching degree between the input 
and the antecedent of the if-then proposition^^l In fact, if the implication 
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operator satisfies the property 14, the latter contains the former. So, in the 
following sections, we will emphasize to discuss the latter. 

In [13], Yager proposed a characterization of measure of specificity, 
which provides an appropriate measure of the information contained in a 
proposition. 

Definition 2̂ ^̂^ Suppose that X is a finite set of cardinality n and .4 is a 
fixzzy subset in X. A measure Sp\ F{X)—^[0, 1] is called a measure of 
specificity if it satisfies the following properties: 

1) Sp{A)=\ if and only if v4 is a singleton set, ^={x}. 
2) Sp{0) = 0. 
3) If ̂  and C are normal fuzzy sets inXand ^ e C, then Sp{B)>Sp(Q. 
Of course, in practical application, we can define many different concrete 

models of measure of specificity. In this paper, we will use a class of 
specificity measures, called as linear specificity measure^^^^: 

Definition 3 ̂ ^̂^ Suppose that X is a finite set of cardinality /7, ^ is a fuzzy 
subset in X and a, is the yth largest membership grade in 4̂. A linear 
specificity measure is defined as 

5p(^)=a;-Z;3-Ä (4) 
where and the wy's are a set of weights satisfying: 1) wyG[0, 1]; 2) YM^J =1; 

3) w^Wj for /</'. 

INFORMATION REQUIREMENT OF FIRST-
ORDER UNIVERSAL IMPLICATION m FUZZY 
REASONING 

3.1 Information requirement of implication operators 

Without loss of generality, we assume that 7 is a finite set of cardinality n\ 
{yhyi, "',yn} and its elements have been indexed such that jUßiyd'^Biyj) for 
i<j in £" .̂(1). And suppose that all propositions have the same level of 
measuring errors, namely the equal values for k in an application. In fuzzy 
control, the input x corresponding to the state variable is crisp, x = x*, then 
y4' is a singleton, that is, JUA{X) = 1 if x = x*, and JUA{X) = 0 if x:5ẑ x*. Thus, we 
will get the following expression using the CRI method: 

MB* (y) = sup T;, ^, (MA*M> h. ,k (MA (X), MB (y))) 

^I,^,{ß,{x^f,^,{y)) - (5) 
where T^ ̂  and/^ ,̂ are the first-order universal conjunction operator and 

ihQ first-order universal implication operator determined by the hj, h2 and k 
between propositions, respectively. 
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According to the reasoning process in [17], we can similarly get the 
following conclusions: 

Proposition 1 In fuzzy reasoning, the implication operators satisfying the 
information boundedness principle should satisfy the requirement, that is, the 
truer the consequent of the if-then proposition is, the more insensitive //,, k {^, 
y) is to the change of x. 

Proposition 2 In fuzzy reasoning, the implication operators satisfying the 
information boundedness principle should satisfy the requirement, that is, 
D{y)=Ih,kiy, ä)-Ih,k(y, b) is a non-decreasing function of v for all a>b. 

Obviously, PropA and Prop.l are equal, which describe the different 
aspects of one thing. 

3.2 Information requirement of first-order universal 
implication 

In this section, we will analyze the information requirement of the first-
order universal implication in detail, and give the general conclusion. 
According to its piecewise definition, we have: 

1. Suppose that m-^-co, ne(0, +oo), that is, Ä=1, ke(0, 1). So 4,^(JC, y) is 
Gödel implication operator RG{^, y) = ite{11 x<y\ y). 

D(v) = 4^(v, a) -h,k{v, b) = ite{l\v<a; a}-ite{l| v<b; b). 
1) lfv<b<a, then D{v) = Ih,k{v, a)-Ih,ii^, b) = 1-1= 0. 

2) If b<v<a, then D(v) = Ih,k{v, a)-Ih,kiy, b) = 1 -feO. 
3) lfb<a<v, then D{v) = Ih,k{y, a)-Ih,k{v, b) = a-b<l -b. 
According to the above analyses, hA^, y) do not satisfy the principle. 
2. Suppose that me(-oo, 0), /t^^+oo, that is he(0J5, 1 ] , k=l. So Ih,k(pc, y) 

is Gödel implication operator RQ. According to the above analyses, Ih,k{^, y) 
do not satisfy the principle. 

3. Suppose that m=0, ne(0, +oo), namely, A=0.75, ke{0, 1 ] . So hA^^ y) 
is Goguen implication operator/?GO(-^J;^)=^*^^{1 I =̂=0; min{\,ylx)], 

D{v) =Ih,k{v, a)-Ih,k(y, b) =//^{l|v=0;mm(l, a/v)}-ite{l\v=0\min{l, blv)} 
If v=0, thenD{v) - 4 , ( v , a)-Ih,k{v, b) = 1-1 = 0. 
2) If 0<v<ö<a, then D(v)=^\k(y, d)-Ih,ii^, b) = 1-1=0. 
3) If b<v<a, that is, a/v>l>b/v, then D(y) = l-6/v>0, and l-b/v is a non-

decreasing function of v. 
4) If b<a<v, that is, l>a/v>b/v, then D(v) = alv-blv =^{a-b)lv, and 

{a-b)lv is a non-increasing function of v. 
Due to the above analyses, Ih,k{^, y) do not satisfy the principle. 
4. Suppose that me(-co^ 4-oo), n—>0, namely, he[0, 1], ^=0. So Ih,k{^,y) is 

Goguen implication operator RGO- Due to the above analyses, h.ki?^, y) do not 
satisfy the principle. 
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5. Suppose that me(0, +00), «-^+00, that is, AG(0 , 0.75), k=l. So Ih.kQc, y) 
is a variant of the Standard Sharp implication R{x,y)=ite{y \x=l; 1}. 

D(v) = 4Kv, a) -4^(v, 6) = ite{a \ v=l; 1}-/Y^{ö | v=l ; 1}. 
1) If v^ l , then D(v)==4,(v,a) -4; t(v,ö)=l-l= 0. 
2) If v=l, then £)(v)= 4^(v, a) -4;t(v, 6 ) - a-ö>0. 
Based on the above analyses, Ih,k{^,y) satisfy the principle. 
6. Suppose that m—>+oo, A?G(0, +00), that is, /?=0, /:e(0, 1 ] . So hA^^ y) is 

a variant of the Standard Sharp implication. Based on the above analyses, 
h,k{^^ y) satisfy the principle. 

7. Suppose that mE(-oo, 0), ^ G ( 0 , +00), namely, A G ( 0 . 7 5 , 1), ke{0, 1). 
According to Def. 1, we have 

1) If v<Z?<a, \hQnD{v)=Ih,k{v, a)-Ih,k{v, b)= 1-1=0. 
2) If Z? = 0, then v>0 and a>0. 
i) If v<a, then D(y)=Ihkiv, a) -h.dv, 6)= 1-0= 1. 
ii) If v>a, then D(v)=r^[(l-v""+0'^^""^] -0= r^[(l-v""+0'^^""^]. Due 

to the property ll,D{v) is non-increasing. 
So, if A G ( 0 . 7 5 , 1) and ke{0, 1), then the first-order universal implication 

operators do not satisfy the principle. 
8. Suppose that me{0, +00), ne(0, +00), that is, /ze(0, 0.75), ^6(0, 1). 

According to Def, 1, we have 
1) lfv<b<a, then D{v) = // , /v, a)-Ih,iiv, Z?) = 1-1=0. 
2) If Z?<v<a, then D(v)=l-r^[(l-v"'^+Z?"")^^^'""^] >0. Due to the property II, 

D{v) is a non-decreasing function of v, which take its maximum at v=a\ 

Z ) , ( v ) = l - ( l - a " " + 0 ' ' ^ " ' ^ (6) 
3) lfb<a<v, then Ä""<^'""<v"'^ and Z?"", a"", V""G[0, 1], So we have 
/ , ,(v, a) = r^[(l-v""-i-0*^^""^]== (l-v""+0^/(^"> (7) 
/,,,(v, 0) = r ' [( l-v""+0'^^""^]= (l-v'^+O''^"^"^ (8) 
According to Eq.{l) and Eq.(S), we have: 
D(v) =/,,,(v, a)-//,,;t(v, Z,)=(l-v""+a'"")^/("">-(l-v""+r")^/("'^^ (9) 
that is, 
a[:(v)/a^=y'̂ [(i-v'" + r )''̂ ""̂  -{i-r +d'"f""^] (1 Q) 
) Suppose that ne{l, +00), that is, l/ne{0, 1), Ä:G(0.5, 1), fuzzy 

propositions have positive measuring errors for their membership grades, 
and we have 

) me[ l,+oo), that is, /ZG(0, 0.5 ],propositions are restraining correlative. 
So, mn>\, that is, l/(m«)-l<0, and we have 

(l_^-+^-)i/(-)-i>(l_^m.^^.«y/W-i^ namely, dD{v)ldv >0. Thus, D(v) is a 

non-decreasing function of v, which take its minimum at v=a\ 
Z)2(v)=(l-a""+0'^^'""^ - (l-a""+Z?"")'^^"^"^=l- (l-a""+Ä^")^/(^") (11) 
According to Eq.{6) and £"^.(11), we have Di(v)=D2(v). 
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Thus, if ke(0.5, 1), he(0fi.5 ] , that is, propositions have positive 
measuring errors for their membership grades and are restraining correlative, 
then theßrst-order universal implication operators satisfy the principle. 

) me(l/n, 1), namely, propositions are rejecting correlative with /ze(0.5, 
(in+l)-{n^-nnfy2). 

So, mn>\, that is, l/(mw)-l<0. Similarly, Z)(v) is a non-decreasing 
function of v, which take its minimum at v=a, and D\{v)=D2{v). 

Thus, if propositions have positive measuring errors and are rejecting 
correlative with Ä G ( 0 . 5 , {{n-\-l)-{n^-n+\)^'^)l2), then the first-order 
universal implication operators satisfy the principle. 

) m=lln, that is, mn=\, and propositions are rejecting correlative with 
h={{n+\)-{n^-n+lf'^)l2. 

So, we have 
D(y) = h^v.a) -Ih,lv,b) = r^[(l-v""+0^'^" '^^]-r^[(l-v""+0' '^" '^] 

= (1-v+a) - {l-v+b)=a-b 
and D,(v) -l-(l-a""+6"")^^^""^=l-(l-a+ö)= a-b. 

Thus, if propositions have positive measuring errors and are rejecting 
correlative with h'='{{n+\)~{n^-n^l)^'^)l2 then the first-order universal 
implication operators satisfy the principle. 

) mG(0, lln), that is, propositions are rejecting correlative with 
he{{{n+\)-{n^-n+\)^^^)/2, 0.75). 

So, mn>l, that is, l/(mn)-l>0 and we have 
(l-v""+0''^""^"'<(l-v""+^"')' '^""^~\ namely, dD(v)/dv<0, Thus, D(v) is a 
decreasing fiinction of v. 

Thus, if propositions have positive measuring errors and are rejecting 
correlative with he(((n+l)-(n^-n+lfy2, 0.75), then the first-order 
universal implication operators do not satisfy the principle. 

) Suppose that ne(0, 1), that is, 1/;7G(1, +OO), ke{0, 0.5), fuzzy 
propositions have negative measuring errors for their membership grades, 
and we have 

) me{l/n, -i-oo), that is, propositions are restraining correlative with he{0, 
((n+l)-(n^-n+iyy2). 

So, mn>\, that is, \/{mn)-\<Q. Similarly, D{v) is a non-decreasing 
function of v, which take its minimum at v=a, and D\{v)=D2{v), 

Thus, if propositions have negative measuring errors and are 
restraining correlative with Ä € ( 0 , {(n+\)-irP'-n+Vf'^)l2), then XhQfirst-order 
universal implication operators satisfy the principle. 

) m=l/n, that is, mn=\, and propositions are restraining correlative with 
h={{n+\)-{n^-n-\-\)\l2)l2. 

Similarly, we have Z)(v)=öf-Z?=Z)i(v). 
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) m=l/n, that is, mn=l, and propositions are restraining correlative with 
h=((n+l)-(n^-n+l)l/2)/2. 

Similarly, we have D(v)=a-b=Di(v). 
Thus, if propositions have negative measuring errors and are restraining 

correlative with h=((n+l)-(n^-n-\-\y^^)/2, then the first-order universal 
implication operators satisfy the principle. 

) mG [ 1, l/n), that is, that is, propositions are restraining correlative with 
he(((n+l)- {n^-n^lf'yi, 0.5]. 

So,mw<l, that is,l/(mw)-l>0. Similarly, D(y) is a decreasing 
function of V. 

Thus, if propositions have negative measuring errors and are restraining 
correlative with h^{{(n^X)-(r^-n-^Xf'^yi, 0.5 ] , then the first-order 
universal implication operators do not satisfy the principle. 

) me(0,l),that is,AG(0.5,0.75),and propositions are rejecting correlative. 
So, mn<l,that is, l/(mw)-l>0.Similarly ,Z)(v) is a decreasing function of v. 

Thus, propositions have negative measuring errors and are rejecting 
correlative, then the operators do not satisfy the principle. 

) Suppose that n=l, that is, ^ 0 . 5 , fuzzy propositions have no measuring 
errors for their membership grades. Then first-order universal implication 
changes into zero-order universal implication. 

So, we have the conclusion that when propositions are restraining 
correlative, that is, ÄG[0, 0.5], the universal implication operators satisfy the 
information boundedness principle^^^l 

Fig.1'2 shows Ih,k(^, ä), hA'^, b) and Diy) for several representative 
values of A, where «=0.6, 6=0.1, with 1<=Q.1 or 0.125, respectively. 
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Fig. 1 When measuring errors are positive, /(v, a), I(v, b) and Z)(v) for several different values of A 
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Fig.2 When measuring errors are negative, /(v, a), I(y, b) and D(v) for several different values of A 
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Based on the above analyses about information requirement of the first-
order universal implication operators, we can draw the conclusion as 
follows: 

When propositions are attracting correlative, namely, ÄG[0.75, 1], the 
first-order universal implication operators do not satisfy the information 
boundedness principle with propositions having positive or negative 
measuring errors; 

When propositions have positive measuring errors, if they are rejecting 
correlative with he({{n+l)-{n^-n+lfy2, 0.75), then the first-order 
universal implication operators do not satisfy the principle; and if they are 
rejecting correlative with he[0.5, {{n+l)-{n^~n+iy^^)/2] and restraining 
correlative with he[0, 0.5], then the operators satisfy the principle; 

When propositions have negative ones, if they are rejecting correlative 
with he ( 0.5, 0.75 ] and restraining correlative with 
he ( ((n-^l)-(n^-n-^iy^^)/2, 0.5], then the first-order universal implication 
operators do not satisfy the principle; and if they are restraining correlative 
with /?e[0, ({n+l)-(n^-n+iy^^)/2], then the operators satisfy the principle; 

When propositions have positive maximal measuring error, namely k=l, 
if they are rejecting or restraining correlative, then the first-order universal 
implication operators satisfy the principle; and when they have negative 
maximal one, namely k=0, all operators do not satisfy the principle. 

4. CONCLUSIONS 

Based on the definition of linear specificity measure, this paper has 
discussed detailedly the conditions on which the first-order universal 
implication operators satisfy the information boundedness principle in fuzzy 
reasoning, and get the conclusion: When propositions have positive 
measuring errors, if they are rejecting correlative with ÄG[0.5, 

({n+l)-{n^-n-^iy^^)/2] or restraining correlative with he[0, 0.5], then the 
first-order universal implication operators satisfy the principle; and when 
propositions have negative ones, if they are restraining correlative with he[0, 
({n+l)-{n^-n-^iy^^)/2], then the first-order universal implication operators 
satisfy the principle. This conclusion has important directive meaning for 
how to give the value of the general correlative coefficient h in practical 
control application. 

As far as other models or a general expression for families of measure of 
specificity based on t-norms of a fuzzy set ^^'^\ what is the information 
requirement of the first-order universal implication operators? Is there some 
restraining relation between the t-norms and the t-norms used to generate the 
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corresponding first-order universal implication operators? These problems 
will be further studied elsewhere. 
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