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INTRODUCTION

Mathematical demography is a specialization in demography concerned with the ar-

ticulation, analysis, and empirical application of theoretical models or representations

of populations and demographic processes via the use of mathematics, including math-

ematical statistics. It has its roots in actuarial science, biology, mathematics, and

statistics, fields with which it retains strong ties today (see, e.g., Jordan 1975; Keyfitz

1977a, 1977b; Lotka 1924[1956]; Smith and Keyfitz 1977).

The topics that can be covered in a survey of mathematical demography are

numerous and diverse. Therefore, any survey of the field in the confines of a chapter

in this Handbook must be selective. After some introductory materials on the theory of

models and the nature of demographic phenomena and data, this chapter reviews the

essential concepts and mathematics of the two basic classic population models that

constitute the core of mathematical demography, namely, the life table/stationary

population model and the stable population model. Recent contributions that extend

these models are also reviewed in various ways. The third major topic reviewed is model

schedules or age-specific rates of demographic events such as births and deaths, sum-

mary demographic indices, such as the total fertility rate and life expectancy, and recent

developments in tempo adjustment formulas based thereon. Space limitations do not

permit a detailed exposition of recent contributions to mathematical demography that

generalize and extend the classic life table/stationary and stable population theories.

After laying out the basics of these models, however, many recent contributions are

cited, and the ways in which they build upon the classic models are described.
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Models in Science and in Demography

This chapter first reviews some elements of the modern theory of models (Casti 1992a,

1992b;Land1971, 2001).This theorydefines formalmodels in generic termsand shows the

universality of the uses of formal modeling systems across the sciences. The objective is to

position the models studied in mathematical demography within this general framework.

Following Casti (1992b), a general definition of models is that they are tools by

which individuals order and organize experiences and observations.

An implication of this definition is that many of the verbal characterizations of

population phenomena that are used in demography are indeed models. They have

stimulated research over the years and will continue to do so. As an example, Notes-

tein’s (1945) verbally stated demographic transition model stimulated demographers to

focus attention on trends in birth and death rates and their relationship to economic

development and improvements in health and longevity.

If models are tools for ordering experiences, what are ‘‘formal models’’? Formal

models encapsulate some slice of experiences and observations within the relationships

constituting a formal system such as formal logic, mathematics, or statistics (cf., Casti

1992a). A formal demographic model thus is a way of representing aspects of demo-

graphic phenomena using a formal apparatus that provides a means for exploring the

properties of the demographic phenomena mirrored in the model. Demographers

construct formal models to assist in bringing a more clearly articulated order to their

experiences and observations, as well as to make more precise predictions about certain

aspects of the populations. Since most of the remaining discussion pertains to formal

demographic models, the adjective ‘‘formal’’ will no longer be used with ‘‘models.’’

Some notation is useful. Consider a particular subset D of demographic phenom-

ena and suppose that D can exist in a set of distinct abstract states V ¼ {v1, v2, . . . }.
The set V defines the state space of D. Whether or not a demographer can determine the

state of D in a particular moment of study depends on the experiences, observations, or

measurements (observables) at the demographer’s disposal. As a simple example, sup-

pose D is a human population in which two sexes are distinguished. Then a reasonable

set of abstract states that distinguishes a two-sex population might be

V ¼ {v1 ¼ male, v2 ¼ female}:

Next, consider the concept of an observable. An observable of D is a rule f associating a

real number to each v in the state space V, i.e., an observable is a measuring instrument.

More formally, an observable is a map f: V ! R, where R denotes the set of real

numbers. Using the example of a two-sex population and the usual ‘‘dummy variable’’

coding rule, one could define

f (v1) ¼ 0 and f (v2) ¼ 1

as observables.

Generally, a full accounting of the complexities of population phenomena would

require an infinite number of observables fa: V ! R, where the subscript a ranges over

a possibly uncountable index set. Thus, a complete accounting of demographic and

related population phenomena D would be described by a large set V and the possibly

infinite set of observables F ¼ { fa}. But it is usually not necessary in demography to deal

with such a large set of observables in order to build useful demographic models.
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In brief, in building demographic models, demographers throw away most of the

possible observables that could affect demographic phenomena and focus attention on a

proper subset A of F, which may or may not capture the full complexity and nuances of

demographic phenomena.

A demographic model D* may now be characterized as an abstract state–space V
together with a finite set of observables fi:V ! R, i ¼ 1, 2, . . . , n. Symbolically,

D� ¼ {V, f1, f2, . . . , fn}:

But there is more to the notion of a demographic model than just the list of observables

by which it is characterized. The essential ‘‘systemness’’ of D* is contained in relation-

ships that link the observables. These relationships are termed the equations of state for

D*. Formally, the equations of state can be written as

Fi( f1, f2, . . . , fn) ¼ 0, i ¼ 1, 2, . . . , m,

where the Fi (.) are mathematical relationships expressing the dependency relations

among the observables. This can be more compactly written as

F( f ) ¼ 0: (1)

There are two forms in which the equations of state that define demographic models are

used. The first is to state relationships among observables that produce a descriptive

model or definition of a demographic index or rate. Many demographic models, from

population life tables used to estimate the years of life expected to be lived in a

population to a formula for calculating the total fertility rate, are used in this descriptive

or definitional sense. A second way in which the equations of state are used in demog-

raphy is to state causal relationships among observables that produce an explanatory

model in which variations across time or demographic space in certain observables are

explained by variations in other observables.

To represent explanatory demographic models, Eq. (1) must be further developed.

Suppose that the last m observables fn�mþ1, . . . , fm, called endogenous (i.e., determined

within the system under consideration), are functions of the remaining observables

f1, f2, . . . , fn�m, which are exogenous (i.e., determined outside the system under consid-

eration). In other words, suppose that m functional relations are defined, with some

finite number r of numerical parameters, b1, b2, . . . , br, for determining values of

the endogenous observables as a function of the exogenous observables. Here the

notation

b � (b1, b2, . . . , br)

will denote the vector of parameters and the notation

x � ( f1, f2, . . . , fn�m)

and

y � ( fn�mþ1, fn�mþ2, . . . , fn)

will denote vectors of the exogenous and endogenous observables, henceforth variables,

respectively. The equations of state become
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y ¼ Fb (x): (2)

This last expression, perhaps formulated with stochastic/random components, is in a

form that encompasses many explanatory demographic models.

As an example of the application of these formal notations to the definition of a

common demographic index, consider the mathematical model that underlies the def-

inition of a common measure of fertility used in demography, the total fertility rate

(TFR), a period fertility rate used more often than any other. The TFR is defined as the

average number of births a woman would have if she were to live through her repro-

ductive years (usually ages 15 to 49) and bear children at each age at the rates observed

in a particular year or period. The actual childbearing of cohorts of women is given by

the completed or cohort fertility rate (CFR), which measures the average number of

births 50-year-old women had during their reproductive years.

Formally, let fp(t, a) denote the age-specific fertility rates for women aged a at time

t, and let fc(t, a) represent the age-specific fertility rates at age a for cohorts of women

born at time t. Then the equation of state (1) for the period total fertility rate for time t is

TFR(t) ¼
Z

fp(t, a)da (3)

and the equation for the cohort fertility rate for the cohort born at time T is

CFR(t) ¼
Z

fc(t, a)da: (4)

In applications, the integrals are replaced by finite summations and the sums are taken

over the reproductive ages.

One question has been avoided to this point: What differentiates models from

theories? These terms sometimes are distinguished and sometimes are used interchange-

ably. Usually, scientific theories are regarded as more general than scientific models. A

theory is a family of related models, and a model is a formal manifestation of a particular

theory (cf., Casti 1992b). In the presentation later of the life table/stationary population

model, this distinction will be illustrated.

What Good are Models?

Consider next some uses of models in demography. What good are they? One list of the

benefits of models was presented by the mathematical demographer Nathan Keyfitz

over three decades ago (Keyfitz 1971a). Keyfitz noted that the development of demog-

raphy had been greatly influenced by the demand for the prediction of future popula-

tion; this stimulated the development of demographic models such as the life table and

stable population models. He then identified the following benefits of models: Models

focus research by identifying theoretical and practical issues. Models help in assembling

and explaining data. Models permit the design of experiments, simulations, and other

research studies out of which causal knowledge can be obtained. Models systematize

comparative study across space and time. Models reveal formal analogies between

problems that on their surface are quite different. And models help in the making of

predictions. To the list provided by Keyfitz, the following benefits of models can be

added: Models provide a ‘‘lens’’ through which patterns can be detected in demographic
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data that otherwise cannot be perceived. Models help to improve demographic meas-

urement. And, in particular, models provide a locus for defining, developing, and

interpreting summary measures of demographic events and phenomena.

The Nature of Demographic Phenomena and Data

In their discussion of the evolution of demography into a cumulative and integrated

science, Morgan and Lynch (2001) identified four factors intrinsic or internal to the

discipline that have facilitated this evolution. They are summarized here because they

may be viewed as the basis on which the extraordinary development and application of

mathematical models in demography has proceeded.

The first is the fact that demographic phenomena are relatively easily measured.

Births and deaths, the core events studied by demography, are biologically based and

thus are anchored in an unmistakable and universal reality. While the meaning of these

events is socially constructed by the individuals involved and the cultures in which they

participate, their actual occurrence is universally recognized. The same may be said for

sex and age (or other dimensions of time), which are key variables in the study of human

populations. That is, their social significance may vary, but the fact that there are

objective sexes in a population or age (or duration since some event) is unchallenged.

(See chapter 1, ‘‘Age and Sex,’’ in this Handbook for more discussion.) Morgan and

Lynch (2001) note that another topic studied by demographers, migration, may be less

well developed due to the greater difficulty in defining migration. (See chapter 11,

‘‘Internal Migration,’’ in this Handbook.)

A second key feature is that demographic phenomena are inherently quantifiable.

This is due to the fact that births and deaths are categorical (in fact, they are dichot-

omous) and thus easily counted. Intermediate instances of birth and death are few and

rare. The consequence is that repeated measurement and intersubjective agreement

among observers would likely be high. This is not to say that demographic measurement

is easy for a large population—only that it is relatively straightforward.

Third, the presence of accounting identities has facilitated the successful develop-

ment of demography as a science. Traditional demography focuses on the description of

the composition of human populations by age, sex, and other characteristics and the

study of change therein (dynamics). The basic methods of demography are centered on

the well-known population accounting or balancing equation:

Pt � Pt�1 þ Bt�1, t �Dt�1, t þNMt�1, t: (5)

where Pt denotes the size of a population at accounting time (e.g., year) t, and

Bt�1, t, Dt�1, t, and NMt�1,t denote, respectively, the flows into or out of the population

from time t� 1 to t by births, deaths, and net migration. Land and Schneider (1987)

note that this identity is an instance of the general law of conservation of mass in

physics. It also is an example of the equations of state (1), a functional relationship

linking the observables of a demographic model of a population. Using identity (5),

demographers can perform quality checks on their data and engage in indirect estima-

tion when only fragments of data are available.

The fourth factor is the presence of structural features or relationships among key

concepts. Not only can births and deaths be unambiguously identified and counted in

human populations, and not only can the counts be related to each other via the basic
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demographic accounting equation (5), they also can be used to define populations at

risk of one event or another and the corresponding dynamics or rates of occurrence of

the events. These, in turn, can be used to build life table/stationary population models,

stable population models, and related models to describe and/or explain the correspond-

ing population processes. This chapter now turns to an exposition of some of the basics

of these models.

LIFE TABLE/STATIONARY POPULATION

THEORY AND EXTENDED MODELS

Classic Single-Decrement Population Life Table Theory/Models

Classic single-decrement population life table theory is a simple descriptive mathemat-

ical theory that demographers use to represent the age-specific mortality patterns to

which a population is subject and to summarize those patterns in the form of estimates

of years of life expected to be lived on average in a population. It also is the simplest

mathematical theory of the age structure of a population, called a stationary popula-

tion, subjected to certain patterns of fertility and mortality. The following detailed

statement of the basic concepts and mathematics of this theory builds on expositions

by Jordan (1975), Keyfitz (1977b), Preston, Heuveline, and Guillot (2001), and Schoen

(1988). The theory consists of an interrelated set of mathematical functions that apply to

entire families of functions. Thus, in keeping with the distinction between mathematical

theories and mathematical models made earlier, the life table/stationary population

theory is first presented. For purposes of empirical estimation of a life table for a

particular population, the mathematical functions of the theory must be given specific

algebraic expressions, as will be described later. These specific algebraic expressions

transform life table theory into specific life table models that then can be estimated by

corresponding methods. In the exposition that follows, however, the terms theory and

models will not always be distinguished. Instead, conventional terminology will be

adopted and the term model will be used in most places.

THE SURVIVAL FUNCTION. The normal mortality pattern observed among human

lives, illustrated graphically in Figure 22.1, is familiar to demographers. The elimination

1

s(x)

0 25 50 100
 Age x

FIGURE 22.1. Graphic representation of the human survival function.
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of lives by death is rapid in infancy, slows down during childhood, then increases

throughout adolescence and middle life, accelerating as the end of the life span is

approached. The life table is a mathematical model for expressing these facts. One

approach to developing the life table model is via the survival function.

Definition: The probability that a new life, aged 0, will survive to attain age x will be

regarded as a function of x and referred to as the survival function, s(x).

Properties of s(x): On the basis of general knowledge of the normal mortality

pattern described above, the following three properties may be postulated for s(x):

1. s(x) is a decreasing function as x increases, since the probability of surviving to

age x is greater than the probability of surviving to age xþ t, t > 0;

2. Since the focus here is on normal patterns of human mortality, it is convenient

and reasonable to assume that s(x) is a continuous function of x.

3. At x ¼ 0, s(x) ¼ 1 and at the upper end of the life span, denoted v (omega),

s(x) ¼ 0.1

THE LIFE TABLE. The main device for exhibiting mortality data in demography is the

life table or the mortality table. The lx and dx functions of the life table have the

following definitions:

lx ¼ l(0) � s(x) (6)

¼ l0 � s(x), where l(0) ¼ l0 is a positive constant,

dx ¼ lx � lxþ1: (7)

The value of l0 is called the radix of the table, usually taken to be some large round

number like 105 ¼ 100,000; dx is the annual decrement of the table.

The interpretation of lx as a ‘‘number living’’ or ‘‘number surviving’’ and of dx as a

‘‘number dying’’ is a convenient aid in visualizing many of the relations that follow. But

it should be remembered that neither lx nor dx has any absolute meaning; the sizes of

both depend on the value of the radix chosen to construct the table. Note also that lx,

from property (2), is a continuous function of x, although tabulated values appear in life

tables only for integral values of x.

The approach taken here to the definition of the life table is classic in the sense that

it does not derive the survival function from the definition of a stochastic process

governing the sample paths (life histories) of the individual members of a birth cohort.

Rather, it begins by postulating properties of the survival function and supposes that

the probabilities applying to the birth cohort group-as-a-whole will be exactly applic-

able to each individual in the cohort, so that one only needs to compute the expected

values of the various life table functions. In this sense, it often is called a deterministic

model. Generally, this deterministic approach to the concepts and functional relation-

ships that define life table theory applies when the population base on which mortality

events are defined and recorded is sufficiently large so that there are few irregularities in

1 The designation of a terminal age v is merely a convenient simplifying device. No empirical fact supports the

assumption that a life can survive for n years but not for n years and one second. Thus, it would be more

realistic to say that the values of s(x) are negligible for x$v. However, the more precise condition s(v) ¼ 0 is

retained because of its convenience in the subsequent mathematical analysis.
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the data due to random or stochastic fluctuations. How large is ‘‘sufficiently large?’’

Opinions on this topic vary, but most demographers are comfortable with application

of the deterministic model of the life table to the full human age range from birth to the

end of life to a population base of at least 10,000 person-years of exposure per year, or

an average of about 10,000 persons observed per year. For populations or longitudinal

panels of individuals followed over time that are smaller, most demographers would

recommend the use of a statistically based survival model approach to the definition and

estimation of a life table model, as described later.

It is evident that the intensity of mortality varies at each moment of age, and it is

important to have some way of measuring this instantaneous variation. The slope of the

empirical s(x) described above is related to the number of deaths at that point [since

lx ¼ l0� s(x), the s(x) graph may be thought of as an lx curve with a change in the

vertical scale], for the steeper the curve the greater the number of deaths. Since the slope

is measured by the derivative, it is natural to turn next to the derivative of lx.

THE FORCEOFMORTALITY. The mortality index just described is known as the force of

mortality/hazard function and is denoted by the symbol mx. Its definition is

mx ¼ �Dlx

lx
¼ � 1

lx

d

dx
lx ¼ � d

dx
ln lx: (8)

Properties of mx:

1. mx is a measure of mortality at the precise moment of attaining age x.

2. mx expresses this mortality in the form of an annual rate; this is because the

derivative of lx is

Dlx ¼ lim
h!0

lxþh � lx

h
,

so mx from (8), may be written

mx ¼ lim
h!0

lx � lxþh

h � lx ¼ lim
h!0

h qx

h
, (9)

where qx denotes the (conditional) probability that (x) will die within 1 year. The

expression hqx=h may be regarded as an annual rate of mortality based on the mortality

during the age interval x to xþ h.

3. The value of mx normally exceeds 1 at both ends of the life-span2.

Empirical Force Function: Corresponding to the typical empirical bathtub-shaped

survival curve, the empirical force of mortality typically looks like that shown in

Figure 22.2.

Derivation of Life Table Functions from mx: From a mathematical point of view,

mx is the most basic life table function in the sense that once given its values (functional

2 Consider the first 24 hours of life, for example, the value of 1=365q0 may exceed 1/365 so that the ratio hq0=h

exceeds 1. Since there are no survivors at age v, we may write v�xqx ¼ 1, which is true for all x. But if x is an

age such that v� x is less than 1, it follows that
v�xqx

v�x
> 1, and hence values of mx exceeding 1 will occur in the

year of age v� 1 to v.
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form), all other life table values may be derived. The values of the force of mortality

itself are independent of the life table radix, which implies that there is only one

instantaneous rate of mortality. To demonstrate these derivations, recall that

mx ¼ �D ln lx:

Replace x by y and integrate both sides between the limits 0 and x:ðx
0

mydy ¼ �
ðx
0

D ln lydy

¼ � ln lyjx0 ¼ � ln
lx

l0
,

so that the survival function can be written:

lx ¼ l0e
�
Ð x

0
mydy: (10)

There is a similar expression for the (conditional) probability that (x) will survive to

age xþ n

npx ¼ lxþn

lx
¼ l0e

�
Ð xþn

0
mydy

l0e
�
Ð x

0
mydy

¼ e
�
Ð xþn

x
mydy: (11)

The probability nqx may then be expressed as

nqx ¼ 1� e
�
Ð n

0
mxþ1dt: (12)

Alternatively, noting that

lymy ¼ �Dly,

integrating between the limits of x and xþ n yieldsðxþn

x

lymydy ¼ �
ðxþn

x

Dlydy

¼ �lyjxþn
x ¼ lx � lxþn ¼ndx (13)

mx

1

10 20
Age x

FIGURE 22.2. Graphic representation of the human force of mortality function.
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which defines the annual decrement when n ¼ 1. Letting y ¼ xþ t, 0 � t � n, and

integrating from 0 to n, this last expression becomes

ndx ¼ lx � lxþn ¼
ðn
0

lxþtmxþtdt: (14)

Dividing by lx gives the following expression for nqx:

nqx ¼ ndx

lx
¼ lx � lxþn

lx

¼ 1

lx

ðn
0

lxþtmxþtdt ¼
ðn
0
tpxmxþtdt: (15)

The relationship between the central death rate and the force of mortality can be seen by

writing out the integral expressions for the numerator and denominator

mx ¼
Ð 1
0
lxþt � mxþtdtÐ 1
0
lxþtdt

(16)

From this, it is apparent that mx is the weighted mean value of the force of mortality

over the year of age x to xþ 1 where the weights are the number of lives attaining each

age xþ t in the interval. Depending on the specific functional form of the force

function, mxþ1=2 is a more or less appropriate estimate for this average value.

The Person-Years Function: Two life table functions then can be defined:

nLx ¼
ðxþn

x

lydy ¼
ðn
0

lxþtdt (17)

and

Tx ¼
ð1
x

lydy ¼
ða
0

lxþtdt

¼
Xa
y¼x

Ly ¼
Xa
t¼0

Lxþt

(18)

where if n ¼ 1

1Lx ¼ Lx:

As a consequence of the definitions, note that

dLx

dx
¼ lxþ1 � lx ¼ �dx

and

dTx

dx
¼ �lx:

Considering that lx represents the mortality experience of a birth cohort as it ages, the

integral nLx is the person-years lived by that cohort between ages x and xþ n. Similarly,

Tx represents the total person-years in prospect for the group numbering lx who have
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attained age x on the radix l0. Note that the upper bounds in the two integrals defining

Tx could be replaced by v and v� x, respectively, if an upper bound on the life table

has been set beyond which no one survives.

The Life Expectation Function: The complete expectation of life at age x is defined

as:

ex ¼ Tx

lx
¼ 1

lx

ð1
0

lxþtdt ¼
ð1
0

tpxdt (19)

The life expectation function may be interpreted as representing the expected average

future lifetime remaining at age x.

THE STATIONARYPOPULATION. There are two ways of viewing the functions of the life

table. The first, as just reviewed, is to view the table as tracking the survival of a birth

cohort. This is the cohort life table view. An alternative perspective leads to a view of the

life table as a model of the age structure of a population subject to certain conditions. In

particular, following Jordan (1975), suppose that a population produces l0 annual

births, l0 being the radix of a given life table, and suppose that these births are uniformly

distributed over each calendar year. Let the deaths among the population occur in

accordance with the given life table, and let there be no migration into or out of the

population. Then, after the birth and death process has continued for a period of years

at least equal to the terminal age of the life table, the total population and its age

distribution remain constant (stationary).

To see the validity of this proposition, consider first the consequences of the

assumption that the l0 annual births are uniformly distributed over each calendar

year. Clearly, this means that there will be l0 births uniformly distributed over any

year of time, and that in any fraction of a year h, however small, there will be h l0 births.

It follows that there will be lx lives attaining age x in any year and h l0 lives attaining age

x in any time interval h, as survivors of the births which occurred in the corresponding

periods of time x years ago.

Consider next the incidence of deaths. Each of the h ly lives attaining age x in any

interval h is subject to the force of mortality my, and hence the differential expression

h ly mydy represents the number of lives dying at exact age y in that interval. Then the

number dying between ages x and xþ 1 in any interval h will be given byÐ xþ1

x
hlymydy ¼ hdx. Twoconsequences are: (1) letting h equal 1, thenumberdyingbetween

ages x and xþ 1 in any year of time will be dx; (2) since the number dying between ages x

and xþ 1 in any fraction of a year h is proportional to h, it is clear that the deaths between

ages x and xþ 1, and hence all deaths, occurring in any period of time are uniformly

distributed over that period.

It may now be seen that such a population is indeed stationary. For the total of the

deaths at all ages in any interval h is
Ð v
0
hlymydy ¼ hl0, which is the same as the number

of births occurring in the interval. Since the interval h is an arbitrarily small period of

time, it may be concluded that each life which leaves the population by death is

simultaneously replaced by a new birth.

Furthermore, the distribution of the total population by ages is stationary. Con-

sider the lives which are aged x last birthday at any time. These are the lives which have

attained integral age x but not age xþ 1. In any interval h, the number of lives which

leave this group by attaining age xþ 1 is hlxþ1, and the number which leave the group
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by death is hdx, making a total decrement of hlxþ1 þ hdx ¼ hlxþ1 þ h(lx � lxþ1) ¼ hlx.

Thus, the total decrement is exactly equal to the number entering the group during the

interval by attaining age x. In other words, when a life leaves this age group, either by

death or by attaining age xþ 1, its place is simultaneously taken by a life entering from

the next lower age group. Under these circumstances, the number living at a given age

last birthday is always constant.

Now 1
r
lxþm=r represents the number of lives attaining exact age xþm=r in any

interval of time 1=r and therefore approximates the number of lives between exact ages

xþm=r and xþ (mþ 1)=r at any moment of time. Hence the number of lives between

exact ages x and xþ 1 at any moment of time is

lim
r!1

Xr�1

m¼0

1

r
lxþm

r
¼

ð1
0

lxþtdt ¼ Lx:

Thus, Lx is the constant number of lives between exact ages x and xþ 1 at any moment

of time. Similarly, Tx is the number of lives aged x and over at any moment of time.

SUMMARY OF PROPERTIES OF THE STATIONARY POPULATION. This conception of the

life table may be compared with the cohort-survivorship group interpretation. In

particular, the following interpretations and relationships characterize the stationary

population:

1. lx represents the number of lives attaining age x in any year of time;

2. dx represents the number of deaths between ages x and xþ 1 in any year of time;

3. l0 ¼ number of births per year ¼ P
x5 dx ¼ total deaths per year;

4. nLx ¼ number of persons living in the population between ages x and xþ n at

any moment in time;

5. Tx ¼ number of lives aged x and over at any moment in time;

6. T0 ¼ total size of the population;

7. nLx=T0 ¼ proportion of the population ages x to xþ n at any moment in time;

8. Tx=T0 ¼ proportion of the population aged x or older at any moment in time;

9. L0=T0 ¼ 1=e0 ¼ birth rate ¼ death rate

10. nmx ¼ ratio of the number of deaths between ages x and xþ n in any year of

time to the number living between those ages at any moment in time.

Although the stationary population model is admittedly artificial, the theory is

applicable when the stationary conditions are approximately realized. In addition, more

realistic mathematical models of human populations, such as the stable and piecewise-

stable population models described below, are generalizations of the stationary popu-

lation model.

Estimation of Complete and Abridged Population Life Tables

It is difficult to find a mathematical expression, involving a small number of parameters,

which will fit the force of mortality function for human populations closely over its

entire range (see, however, the section below on model schedules). For this reason,

traditional methods of estimation of population life tables have been dominated by

three considerations.
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First, the data available to demographers to use in the estimation of population

life tables are limited and aggregated. Demographers typically do not have access to

complete life history information giving details on birth dates, death dates, and

populations exposed to risk at every point in some historical period. Rather, the

usually available data consist of age-specific estimates of populations exposed to risk

from censuses and age-specific enumerations of deaths from a vital statistics register.

As explained in the next section, these are used to construct occurrence/exposure death

rates from which demographers estimate life tables. Indeed, as noted by Preston and

colleagues (2001), all of the various model specifications and estimation methods

for constructing population life tables that have been developed can be viewed as

devices for transforming occurrence/exposure data on death rates into age-specific

probabilities of dying (i.e., the qx’s), from which the other life table functions can be

calculated.

Second, there is no simple, universally accepted family of parametric mortality

force functions (or survival functions) that can be used to estimate the life table over the

entire age range of human life. Thus, one cannot simply conjoin the death rates with a

parametric force function in say, a least squares curve-fitting procedure and obtain an

accurate fit to the death rates throughout the age range.

Third, the preeminent interest of demographers in population life table estimation

is the accurate estimation of the expectation of life function. For this, demographers

place a high premium on the preservation of local irregularities in the death rates,

provided they are based on population-level data and considered to be accurate.

DATAAVAILABLE FOR THE ESTIMATIONOF POPULATION LIFE TABLES. Given complete,

continuous-time observations on all births and deaths for all persons in a population

exposed to the risk of mortality, it is possible to produce direct estimates of the life table

survival function, lx, and/or the central mortality rates, mx (see Elandt-Johnson and

Johonson 1980). However, the aggregate, population-level data available to demo-

graphers usually fall far short of this ideal situation. The more typical circumstance is

that vital statistics and census agencies provide data for the computation of occurrence/

exposure rates for a sequence of age intervals [x0, x0 þ n), . . . , [xi, xi þ n), . . . , [xi, xv).
By occurrence/exposure rates is meant rates of the form

nMx ¼ nDx

nKx

(20)

where nDx denotes the number of deaths occurring (enumerated) to members of

the population who are aged x to xþ n at last birthday during the period of obser-

vation, and nKx denotes the average number of persons living in the population

during the observation period and thus exposed to the risk of mortality. In this

definition, n typically is 1 or 5 years, except for the first and last age intervals, where

it may be shorter or longer respectively. In period data, rates of the form of Eq. (20)

are computed for each age interval from, say, calendar-year deaths in the numerator

and an estimate of the midyear population size (the average population exposed to

the risk of mortality during the year) in the denominator. In cohort data, rates of

the form of Eq. (20) are computed each year or each five years from estimates of the

numerator and denominator as an initial one-year or five-year birth cohort ages

through time.
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ESTIMATION OF COMPLETE (UNABRIDGED) LIFE TABLES. A complete or unabridged life

table is a table in which single-years-of-age define the estimation-age-intervals, i.e.,

the age intervals over which the table is estimated, except for an open-ended interval

at the upper end of the table that may begin at age 85 or 95 or 100, depending on the

availability of accurate data at the oldest ages.

Complete life tables usually are estimated for national populations, for example the

United States population, by using census counts of the population in decennial census

years and averages of death enumerations for three years surrounding the census year,

e.g., 1979 to 1981, 1989 to 1991, 1999 to 2001. In the calculation of such tables, major

empirical questions usually pertain to the accuracy of the age information in the census

enumeration. Such information is subject to problems of age heaping, digit preference,

and other inconsistencies. (See chapter 1 in this Handbook for more discussion.) Con-

sequently, much of the methodology involved in the construction of these life tables

involves methods of data adjustment to remove obvious inconsistencies. After adjust-

ment, the death and population enumerations are usually combined into the conven-

tional five-year age groups (5 to 9, 10 to 14, 15 to 19, . . . , 80 to 84) for the nonextreme

ages. After grouping, the death and census enumerations typically are interpolated back

to single years of age by one of a variety of osculatory interpolation methods (see

Keyfitz 1977b; Keyfitz and Flieger 1971).

The product of this sequence of (1) data adjustment, (2) grouping into five-year age

groups, and (3) interpolation is a series of single-year-of-age death counts and a corre-

sponding series of single-year-of-age population estimates that are ‘‘smoother’’ than the

observed series. These, in turn, will produce mortality rates that are smoother than those

calculated from observed deaths and population counts. The ultimate justification is the

assumption in the life table model that the survival curve is continuous.

Based on these considerations, assume in this section that the available data

constitute a smooth series of deaths by single years of age at last birthday:

D0, D1, D2, . . . , Dx, . . . , D84

and a smoothed series of single age population estimates:

K0, K1, K2, . . . , Kx, . . . , K84

from which we obtain a corresponding smoothed series of occurrence/exposure death

rates:

M0, M1, M2, . . . , Mx, . . . , M84:

With these data, there are two well-known life table models/methods for converting

the occurrence/exposure rates to life table mortality probabilities. Each could be de-

scribed as a ‘‘local’’ method of life table estimation, since each approximates the

mortality force function (equivalently, the survival function) by functions that are

continuous within age intervals but piecewise discontinuous between age intervals.

This produces a life table that is faithful to the ‘‘local behavior’’ of the death rates

and that yields an accurate estimate of the expectation of life function.

Method 1: Piecewise-Constant Force of Mortality (Equivalently, Piecewise-Exponential

Survival Function) Model. At the level of the force of mortality function, this model

begins by assuming that mxþt is constant within single ages:
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mxþt ¼ mx (0 # t < 1) (21)

This amounts to approximating the force function by a function that is constant within

single ages but that differs between ages—called a piecewise-constant force function—as

shown in Figure 22.3.

An immediate consequence of this assumption is that the definition of the life-table

central mortality rate (16) simplifies to

mx ¼
Ð 1
0
lxþt � mxdtÐ 1
0
lxþtdt

¼ mx

Ð 1
0
lxþtdtÐ 1

0
lxþtdt

¼ mx (22)

Following the general estimation algorithm format of Schoen (1975), Schoen and

Land (1979), and Land and Schoen (1982), the results may be summarized as the

following estimation algorithm:

Data-Model Orientation Equation:

Mx ¼ mx ¼ mx (23)

Flow Equation:

lxþ1 ¼ lxe
�Mx : (24)

Person-Years Equation:

Lx ¼ [lx � lxþ1]=Mx ¼ [lx � lxþ1]M
�1
x (25)

Note that all of the columns of a complete life table can be calculated from these three

equations.

Method 2: Piecewise-Hyperbolic Force Function (Equivalently, Piecwise-Linear Survival

Function) Model. In one of the first attempts to describe algebraically the mortality

experience of human lives, the 18th-century mathematician Abraham de Moivre (1725)

proposed that the survivorship curve (lx) of a life table could be represented by a single

straight line. His hypothesis, that from an arbitrary number of births equal numbers

would die each year until the entire cohort had expired, is of course unrealistic for any

extended segment of the human age range. Nonetheless, a spin-off is in wide use today,

that is, the assumption that between any two ages which are one unit apart, deaths tend

to occur uniformly.

mx

1.0

Age x

FIGURE 22.3. Piecewise-constant force of mortality.
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A mathematical statement of the ‘‘uniform distribution of deaths’’ hypothesis is

that the survival function decreases linearly with time (t) into an interval:

lxþt ¼ lx þ bt, (0 # t < 1) (26)

with b < 0 (since lxþt is a decreasing function). Because Eq. (26) is equivalent (after

rearranging) to

lxþt � lx ¼ bt, (27)

it can in fact be seen that b ¼ �dx ¼ �(lx � lxþ1) by setting t ¼ 1. Thus, Eq. (27) can be

rewritten as

lxþt ¼ lx � t � dx, (0 # t < 1) (28)

and, since it is not required that the annual decrement be equal across single ages x, it

follows that this is a piecewise-linear survival function specification. To derive the

underlying mortality force function to which this survival curve applies, the definitional

equation (8) given earlier may be applied:

mxþt ¼
�1

lxþt

d

dt
lxþt ¼ �1

lx � t � dx
d

dt
[lx � t � dx]

¼ �1

lx � t � dx [0� 1 � dx] ¼ dx

lx � t � dx , (0 # t < 1)

(29)

Algebraically, this function is of the form a=(bþ ct), for a, b, and c constants, i.e., this

life table model specifies a piecewise-hyperbolic force of mortality function.

Again, this model leads to the following estimation algorithm:

Data-Model Orientation Equation:

Mx ¼ mx (30)

Flow Equation:

lxþ1 ¼ pxlx ¼ 1� 1
2
Mx

1þ 1
2
Mx

" #
lx (31)

Person-Years Equation:

Lx ¼ 1

2
(lx þ lxþ1): (32)

INITIATING AND TERMINATING THE COMPLETE LIFE TABLE. A final topic is how to

initiate the life table at the early ages and terminate it at the last ages. When occurrence/

exposure rates are available and accurate for ages 0 to 5 (i.e., M0, M1, M2, M3, M4),

one converts these to life-table survival and/or death probabilities via Eqs. (23), (24) or

(30), (31). However, the force of mortality usually is considered to be changing so

rapidly in these early years of life as to require more elaborate procedures, especially

for q0 (equivalently p0).

For this reason, and because standard occurrence/exposure mortality rates for age

0 mix deaths and/or population estimates for two calendar years of birthdays, a variety

of separation factors have been developed to produce accurate estimates of q0 from
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which to initiate the life table; see Keyfitz (1977b), Shryock and Siegel (1975), and

Preston et al. (2001) for details.

For the oldest ages in the open-ended interval, the usual orientation equation is

applied:

1Mx ¼1 mx: (33)

This avoids the necessity of defining the oldest age to which a person can live. Inaccur-

acies in age reports for older people discourage further refinement. Furthermore, death

registrations contain different error structures (in the numerator of 1Mx) from those in

census counts (in the denominator of 1Mx).

Combining Eq. (33) with the definition mx ¼ (lx � l1)=1Lx and the fact that

l1 ¼ 0, it follows that 1Mx ¼ lx=1Lx, and thus

1Lx ¼ lx

1Mx

, (34)

where x is the start of the terminal age. With l1 ¼ 0, we obtain 1qx ¼ 1. Also, the

expectation of life at age x becomes

ex ¼ 1Lx

lx
¼ 1

1Mx

, (35)

so that the expectation of life is the reciprocal of the terminal death rate.

THE ESTIMATION OF ABRIDGED POPULATION LIFE TABLES. For most demographic

research purposes, it is not necessary to calculate a complete life table. Rather, an

abridged life table, that is, a life table defined on estimation age intervals larger than 1

year, say 5 or 10 years, provides sufficient accuracy for most purposes and is less

cumbersome. Assume that the available data are in the form of a sequence of occur-

rence/exposure rates

1M0, 4M1, nM5, � � � ,nMx, � � � , 1M85

where n is 5 or 10 years. Note that the only single age treated separately is age 0; then

ages 1 to 4 are grouped; then the 5 or 10 age groupings; and finally the open-ended last

age interval.

To estimate an abridged population life table, one could apply either of the

piecewise exponential or linear survival function models/methods described above for

complete tables. However, whereas both of these piecewise methods are accurate for the

estimation of complete tables, they lose accuracy when applied to the estimation of

abridged tables. Therefore, demographers have developed several additional methods

for the estimation of abridged tables. These methods may be viewed as ‘‘adjustments’’

or ‘‘corrections’’ to the basic piecewise-exponential and piecewise-linear survival func-

tion models for the construction of complete life tables.3 Several of these adjusted

methods are now described.

3 The assumption of the data-model orientation equation in the estimation algorithms for complete life tables

(e.g., Eq. [30]) is referred to as a sectional stationarity assumption. For abridged life table estimation, this

assumption may be relaxed to a sectional stability assumption. For more details, see Keyfitz (1968, 1970).

Mathematical Demography 675



Three adjustment methods may be viewed as modifications of the piecewise-expo-

nential life table model. This is due to the fact that the empirical tenability of the basic

assumption of the exponential model (that the force of mortality is constant within age

intervals) is less adequate as the estimation age intervals of the life table increase beyond

single ages. Thus, each of these three methods modifies this assumption. The modifica-

tion then produces correction factors for the flow and person-years equations of the

piecewise-exponential algorithm stated earlier (Keyfitz and Frauenthal 1975; Greville

1943; and Reed and Merrell 1939). In fact, the Keyfitz-Frauenthal method can be

viewed as a generalization of the Greville method, which in turn is a generalization of

the Reed-Merrell method. Since the correction factor introduced by the Keyfitz-

Frauenthal method allows for the most variability from age interval to age interval, it

also is the most computationally intensive and, of the three methods, generally provides

the most accurate abridged table estimates.

Two additional abridged life table estimation methods can be viewed as modifica-

tions of the piecewise-linear survival function model. The description of these methods

requires one to define the concept of the average number of years lived in the interval x to

x þ n by those dying in the interval, denoted nax. This concept was introduced by Chiang

(1960, 1968, 1972) in a reformulation of the classic linear survival function model. It is

an application of the expectation of life function to the age interval x to xþ n and thus

has the definition

nax ¼
R n

0
tlxþtmxþtdtR n

0
lxþtmxþtdt

: (36)

Note that the piecewise-linear lx (uniform distribution of deaths) specification

leads to

nax ¼ nLx � n � lxþn

ndx
¼

n
2
(lx þ lxþn)� n � lxþn

lx � lxþn

¼ n

2
, (37a)

i.e., under the linear survival function specification the average number of years lived in

the x to xþ n interval by those who die in the interval is n/2. But, in general, Eq. (37a)

does not hold. Indeed, there is a general formula for transforming the central mortality

rates, nmx, of the life table to the age-specific probabilities of dying, nqx that uses

Chiang’s nax (see Preston et al. 2001):

nqx ¼ n �n mx

1þ (n�n ax)nmx

(37b)

For the piecewise-linear lx model, with nax ¼ n=2, Eq. (37b) implies:

nqx ¼ n �n mx

1þ n
2 nmx

¼ 2n �nmx

2þ n �nmx

, (37c)

which is equivalent to:

npx ¼ 1� n
2 nmx

1þ n
2 nmx

: (37d)

Using the data-model orientation equations of the piecewise-linear lx model (Eq. (30),

one then can use either Eq. (37b) or Eq. (37c) to transform the observed nMx into

estimates of the survival function.
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Again, however, these equations hold only for the piecewise-linear lx model, and, in

general, if one wants to use Eq. (36) in the construction of an abridged life table, one

must either (1) borrow estimates of nax from another population that one assumes is

applicable (see, e.g., Elandt-Johnson and Johnson 1980; Preston et al. 2001) or (2)

estimate the nax empirically. Each of these methods has limitations. For instance,

when estimates of nax are borrowed from another population, e.g., by using nax’s

from an unabridged life table that is calculated for data surrounding decennial census

years (when age-specific population estimates are most accurate) together with data

on observed nMx’s and Eq. (37b) to calculate an abridged life table for an intercensal

year, the implicit assumption is that there has been no change in the survival curve in

the intervening years. This may be more accurate than the direct application of the

piecewise-linear lx model via Eqs. (37c) or (37d). But it nonetheless is an approximation.

As noted, an alternative approach is to estimate the nax empirically. Two methods that

have been proposed for this purpose are the piecewise-quadratic survival function

method of Schoen (1978) and Land and Schoen (1982) and the iterative method of

Keyfitz (1968, 1970) that is based on the model specification that lxþt is a cubic function

over the interval x to xþ n.

INITIATING THE ABRIDGED TABLE. An innovation in abridged life table estimation

introduced by Keyfitz (1970) is a short-cut method for treating the youngest ages in

the life table. This consists of assuming, for each of the three age intervals 0, 1 to 4, 5 to

9, a value for nax. For age 0, Keyfitz estimated the empirical regression

a0 ¼ 0:07þ 1:7M0 (38)

from data on a number of countries in which day, month, and year of birth were

available. For ages 1 to 4, he found that 4a1 may be set equal to 1.5 years without

much loss in accuracy; for ages 5 to 9, 5a5 can be set to 2.5 years. Under the (sectional

stationarity) data-model orientation equations specified earlier, this yields two equa-

tions in each of the first three age intervals

lxþn ¼ lx �n Mx �n Lx (39)

nLx ¼ (lx � lxþn)nax þ nlxþn (40)

which can be solved simultaneously for the unknown nLx and lxþn. Coale and Demeny

(1983) have conducted similar empirical studies across many populations; an adaptation

of their findings is given by Preston and associates (2001).

Example: Abridged Life Tables for U.S. Males, 1994. Table 22.1 displays abridged

period life tables for U.S. males in 1994 based on the Vital Statistics of the United States

1994 released by the National Center for Health Statistics (NCHS). Panel A is

constructed under the piecewise-linear survival function model using the methods for

the 0 to 1 and 85þ age intervals described above. Panel B is constructed under the

Schoen-Land Piecewise-Quadratic Survival Function Model using the same procedures

for the first and last age intervals.

For Panel A, the columns are the following:

nmx: n Mx ¼ nDx

nKx
, where nDx and nKx were obtained from the life table of the Vital

Statistics of the United States, and nMx ¼nmx (Orientation Equation);
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TABLE 22.1. Abridged Life Tables for United States Males, 1994

Panel A Piecewise-Linear Survival Function Model: U.S. Males, 1994

Age x nmx nax nqx npx lx ndx nLx Tx ex

0 0.008857 0.085057 0.008786 0.991214 100,000 879 99,196 7,232,035 72.320347

1 0.000467 1.500000 0.001867 0.998133 99,121 185 396,023 7,132,839 71.960615

5 0.000229 2.500000 0.001142 0.998858 98,936 113 494,400 6,736,815 68.092357

10 0.000308 2.500000 0.001538 0.998462 98,823 152 493,737 6,242,416 63.167363

15 0.001262 2.500000 0.006292 0.993708 98,671 621 491,805 5,748,678 58.260800

20 0.001645 2.500000 0.008189 0.991811 98,051 803 488,246 5,256,873 53.613845

25 0.001781 2.500000 0.008864 0.991136 97,248 862 484,084 4,768,627 49.035870

30 0.002361 2.500000 0.011733 0.988267 96,386 1,131 479,101 4,284,544 44.452075

35 0.002956 2.500000 0.014671 0.985329 95,255 1,397 472,780 3,805,442 39.950159

40 0.003790 2.500000 0.018772 0.981228 93,857 1,762 464,882 3,332,662 35.507775

45 0.004911 2.500000 0.024258 0.975742 92,095 2,234 454,892 2,867,781 31.139248

50 0.007354 2.500000 0.036105 0.963895 89,861 3,244 441,196 2,412,889 26.851247

55 0.011202 2.500000 0.054483 0.945517 86,617 4,719 421,287 1,971,693 22.763376

60 0.018080 2.500000 0.086491 0.913509 81,898 7,083 391,780 1,550,407 18.931010

65 0.027170 2.500000 0.127208 0.872792 74,814 9,517 350,279 1,158,627 15.486701

70 0.040832 2.500000 0.185250 0.814750 65,297 12,096 296,246 808,348 12.379492

75 0.061032 2.500000 0.264762 0.735238 53,201 14,086 230,791 512,102 9.625796

80 0.098104 2.500000 0.393908 0.606092 39,115 15,408 157,057 281,311 7.191826

85þ 0.190799 5.241114 1.000000 0.000000 23,708 23,708 124,254 124,254 5.241114

Panel B Piecewise-Quadratic Survival Function Model: U.S. Males, 1994

Age x nmx nax nqx npx lx ndx nLx Tx ex

0 0.008857 0.085057 0.008786 0.991214 100,000 879 99,196 7,224,020 72.240196

1 0.000467 1.500000 0.001866 0.998134 99,121 185 396,023 7,124,823 71.879753

5 0.000229 2.500000 0.001142 0.998858 98,936 113 494,400 6,728,800 68.011345

10 0.000308 3.493513 0.001538 0.998462 98,823 152 493,888 6,234,401 63.086259

15 0.001262 2.669589 0.006293 0.993707 98,671 621 491,910 5,740,513 58.178069

20 0.001645 2.546252 0.008190 0.991810 98,050 803 488,282 5,248,602 53.529591

25 0.001781 2.605065 0.008866 0.991134 97,247 862 484,173 4,760,320 48.950572

30 0.002361 2.598266 0.011736 0.988264 96,385 1,131 479,210 4,276,148 44.365152

35 0.002956 2.601436 0.014675 0.985325 95,254 1,398 472,918 3,796,938 39.861153

40 0.003790 2.605368 0.018779 0.981221 93,856 1,763 465,060 3,324,021 35.416101

45 0.004911 2.664741 0.024277 0.975723 92,094 2,236 455,247 2,858,960 31.044057

50 0.007354 2.675823 0.036151 0.963849 89,858 3,248 441,739 2,403,713 26.750173

55 0.011202 2.692393 0.054598 0.945402 86,609 4,729 422,135 1,961,974 22.653119

60 0.018080 2.643413 0.086706 0.913294 81,881 7,100 392,673 1,539,839 18.805870

65 0.027170 2.614451 0.127580 0.872420 74,781 9,541 351,146 1,147,166 15.340300

70 0.040832 2.577242 0.185782 0.814218 65,241 12,121 296,838 796,019 12.201282

75 0.061032 2.555457 0.265542 0.734458 53,120 14,106 231,119 499,181 9.397217

80 0.098104 3.249195 0.329092 0.670908 39,014 12,839 130,876 268,062 6.870844

85þ 0.190799 5.241114 1.000000 0.000000 26,175 26,175 137,187 137,187 5.241114

U ¼ 0.002112

V ¼ 0.161284

W ¼ 0.003270

X ¼ 0.029572

Y ¼ 0.341311

Z ¼ 0.037550

Data source: U.S. Vital Statistics, 1994.
Note: See Chart 1 of Schoen (1978) for details of the calculation of survival function, lx, using the weights U to Z.
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nax: for age 0, a0 ¼ 0:07þ 1:7M0, (Eq. (38));

for ages 1---4, 4a1 ¼ 1:5;

for ages 5---9, 5a5 ¼ 2:5;

for ages 10---84, 5ax ¼ n

2
¼ 5

2
¼ 2:5, (Eq:(37) );

for ages 85 and above, 1a85 ¼ e85;

lx: for ages 0, 1 to 4, and 5 to 9, the simultaneous equations (39) and (40) are solved, i.e.,

lxþn ¼ lx �nMx �nLx, where

nLx ¼ n � lx
1þ (n�nax)nMx

;

for instance, if age ¼ 0,

1L0 ¼ 1 � l0
1þ (1� a0)1M0

¼ 100000

1þ (1� :085):009
¼ 99,196;

l1 ¼ l0 �1M0 �1 L0 ¼ 100000� :009�99196 ¼ 99,121;

similar procedures apply for l5, 4L1, and 5L5, with q0 computed by application of

Eq. (37b) and p0 ¼ 1---q0;

for other age categories, the Piecewise-Linear Flow Equation gives:

lxþn ¼n px � lx ¼ [
1�n

2n
Mx

1þn
2n
Mx

]lx;

nLx: for the first three age categories, see calculations shown above;

for ages 10 to 84, use the Piecewise-Linear Person-Year Equation:

nLx ¼ n
2
(lx þ lxþn);

for ages 85þ, use Eq. (34): 1Lx ¼ lx
1Mx

;

ndx: n dx ¼ lx � lxþn;

npx: for ages under 85, npx ¼ 1�n
2n
Mx

1þn
2n
Mx

, (Flow Equation);

for ages 85þ , 1p85 ¼ 0;

nqx: for ages under 85, nqx ¼ 1�npx;

for ages 85þ , 1q85 ¼ 1;

nTx: Tx ¼
X1
t¼0

Lxþ1;

e0x: for ages under 85, ex ¼ Tx

lx
;

for ages 85þ , ex ¼ 1Lx

lx
¼ 1

1Mx
.

In Panel B the assumption of the piecewise-linear survival function model is

modified by the piecewise-quadratic survival function: lxþt ¼ lx þ btþ ct2 (Land and

Schoen 1982: 301–309). Several columns are calculated differently as follows:

nax: the same with Panel A for the first three and the last age categories;

for ages 10 to 84,
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nax ¼ n2

240
[
lx(nMxþn þ 38nMx þn Mx�n)þ lxþn(14nMxþn þ 72nMx � 6nMx�n)

lx � lxþn

]

lx and nLx: the above expression for nax yields corresponding expressions for flow and

person-years equations that are given in Chart 1 of Schoen (1978)4.

nqx: for age under 85, nqx ¼ ndx
lx
;

for age 85þ , 1q85 ¼ 1;

npx: for age under 85, npx ¼ 1�n qx;

for age 85þ ,
85
¼ 0.

Substantively, it can be seen that the assumption of the piecewise-linear lx model

that deaths within an age interval occur, on average, halfway through the interval

results in an underestimation of the ax for many age intervals. This, in turn, translates

into slightly underestimated qx’s throughout much of the age range from childhood to

the end of life (see Eqs. (37a–d))—which leads to a slightly larger e0 estimated from the

piecewise-linear survival function model in Panel A than from the piecewise-quadratic

survival function model in Panel B. For these data, however, both models yield quite

accurate estimates of e0.

Multiple-Decrement Life Tables

The life table models just described may be extended and generalized in various ways.

This section describes three extensions and generalizations to processes by which an

individual can exit the life table in two or more ways, to processes that allow for

entrances or increments into living states as well as exits or decrements from those

states, and to situations in which only sample-level data are available with which to

estimate the life table, rather than population-level data, and for which we therefore

need to make a more careful use of statistical methods of estimation and inference. The

exposition here is limited to a general sketch of the basic ideas of these additional life

table models.

A first extension is to multiple-decrement life tables, which incorporate the simul-

taneous operation of several causes of decrement or exit to a particular body of lives.

For example, one may be concerned with an insurance coverage in which disability and

mortality are distinct causes of claim and the interacting effects of exposure to both

causes of decrement must be analyzed. Or one may wish to study a mortality experience

in terms of its component causes of death, such as cancer, heart disease, or accidents,

treating each cause of death as a separate decrement.

To model such multiple-decrement processes, the state-space of the single-decre-

ment life table model must be elaborated to incorporate the multiple modes of exit from

the key defined state of the life table, being alive at age x. This is shown in Figure 22.4.

Panel (a) of Figure 22.4 illustrates the state-space of the single-decrement life table,

which consists of two states, namely, being alive at age x and being dead. To connect

these two states, Panel (a) has a single arrow directed from the alive state to the dead

state, which represents the operation of the age-specific force of mortality or decrement

4 Schoen (1978) has demonstrated empirically that an abridged life table estimated according to the quadratic

survival function is more accurate than those estimated by several other abridged table methods, including the

Keyfitz-Frauenthal method.
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of the life table at each age x. Because the force of mortality varies with age, the

underlying mathematical model of this single-decrement process is that of a time

(age)-inhomogeneous stochastic process (Land and Schoen 1982:278). This model spe-

cifies a simple, single-element state-space, consisting simply of being alive at age x, for

those individuals in the life table model who have not yet exited or died. The only other

state of this model is what is termed an absorbing state (because no returns to the living

state are possible), which consists of having exited the table to the dead state.

By comparison, Panel (b) of Figure 22.4 shows a graphic representation of the

state-space and forces of mortality for a multiple-decrement life table that has n possible

forms of exit from the table. It can be seen that the major changes in the graphic

representation of the life table model from Panel (a) to Panel (b) are that the absorbing

(a)

(b)

(c)

Alive at Age x Dead

Alive at Age x

Dead from cause 1

Dead from cause 2

Dead from cause n

Alive at Age x in
State 1

Dead

Alive at Age x in
State 2

mx

m12
x m21

x

m1d
x

m1
x

m2
x

mn
x

m2d
x

...

FIGURE 22.4. State space of the multiple decrement life table models.
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or dead state now has been refined or disaggregated into n subcategories, and the single

force of decrement of Panel (a) now is correspondingly disaggregated to allow for an

instantaneous risk of decrement from the alive state to each of the absorbing or cause-

specific death states. Detailed expositions of the mathematics of population multiple-

decrement life tables and corresponding methods of estimation from occurrence/

exposure rates can be found in Preston, Keyfitz, and Schoen (1972); Jordan (1975);

Elandt-Johnson and Johnson (1980); Schoen (1988); and Preston et al. (2001).

Multistate Life Table and Projection Models

Panel (c) of Figure 22.4 is a graphic representation of a second generalization of the

single-decrement life table, namely, to a multistate or increment-decrement life table.

Rather than decomposing the dead or exit state of the life table into multiple causes or

types of exit, the multistate life table disaggregates the single alive-at-age-x of the life

table into multiple possible states that may be occupied by individuals alive. The

multistate life table represented in Panel (c) of Figure 22.4 is for a simple two-living-

state table. The two living states could take the form, for example, of two regions

between which migration is possible in a biregional migration table, or the states of

currently married or currently divorced in a nuptiality table, or the states of being in or

out of the labor force in a labor force participation table, or the states of active or

disabled in an active/disabled table. And, of course, the state-space could be refined to

incorporate more than two living states at each age x. It can be seen that the major

changes in the graphic representation of the life table model from Panel (a) to Panel (c)

are the following: The alive at age x state now has been refined or disaggregated into

two subcategories, and the single force of decrement from the alive state of Panel (a)

now is correspondingly disaggregated to allow for an instantaneous risk of decrement

from each alive state to the other alive state at each age x, with decrements to the

receiving state referred to as increments to that state. At the same time, individuals alive

in either state of the table are subjected at each age x to the risk of exit from the table to

the dead state. A key property of multistate life tables is that, within the time period of

the age intervals that define the table, they permit individuals alive in the table to exit or

decrement from the state they occupied at the beginning of the age interval to another

state and then to increment or return back to the original state. For life table models of

demographic processes in which individuals may make multiple transitions within age

intervals such as from nonmarried to married and back to nonmarried again, this is an

indispensable property.

The multistate life table model has roots in mathematics, biostatistics, and actuarial

science that date back to Du Pasquier (1912), Fix and Neyman (1951), and Sverdrup

(1965). But its development and extensive empirical application by demographers

mainly began in the 1970s. The generalization of the single-decrement population life

table was initiated in the 1970s for applications to population-level (i.e., census and vital

statistics) data on multiregional migration (Rogers 1975) and nuptiality on marriage

and divorce (Schoen 1975; Schoen and Land 1979).

Hoem and Fong (1976) introduced an application to working life tables that used

large-sample survey data rather than population-level data. Even for large-sample

surveys, however, sample sizes for the estimation of age-specific transition probabilities

may become small. The result is more age-to-age variability in the estimated transition
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probabilities. Accordingly, Hoem and Fong introduced a method of smoothing the age-

specific estimates of transition probabilities by moving averages across the age intervals.

Moving average and related methods of graduation or smoothing estimates of transi-

tion probabilities across age intervals subsequently has been used extensively for the

estimation of labor force participation life tables by Schoen and Woodrow (1980),

voting in U.S. presidential elections by Land, Hough, and McMillen (1986), and tables

of school life by Land and Hough (1989).

A particularly active area of methodological development and empirical applica-

tion of multistate life tables has been the estimation of years of active/disability-free/

health life as contrasted to inactivity/disability/unhealthy years among the elderly

population. The initial definition of active life expectancy in terms of a lack of limita-

tions in activities of daily living was given by Katz and colleagues (1983). The standard

life table method for estimating active life expectancy used by these authors is a

prevalence-rate-based life table method of decomposing the nLx column of a population

life table into years lived in an active state and years lived in an inactive or disabled

state, a method presented by Sullivan (1971; for a recent exposition, see Molla, Wage-

ner, and Madans 2001). Due to its minimal data requirements (the existence of a

population life table appropriate for the particular population for which estimates are

desired and a set of age-specific prevalence rates or proportions of persons identified as

either in the active or inactive states), the Sullivan method has been widely applied and

remains useful today (see Crimmins, Saito, and Ingegneri 1997; Cambois, Robine, and

Hayward 2001).

However, Rogers, Rogers, and Branch (1989) noted that one critical assumption of

prevalence-rate-based life table methods is that transitions can only occur in one

direction among the living statuses, specifically, from the active to the inactive state in

active life expectancy tables. Using data on age-specific transition rates among the

active and inactive statuses from longitudinal panel surveys of the elderly, they applied

multistate life table methods to the estimation of active life expectancy. Subsequent

research (Crimmins, Saito, and Hayward 1993) indicates that the Sullivan method for

estimating active life expectancy generally yields estimates that do not differ greatly

from those obtained by multistate models. Nonetheless, when data on transitions

among living states are available, the methodological and empirical research accumu-

lated over the past two decades suggests that multistate life table models should be

applied.

Research by Zeng, Gu, and Land (2004) demonstrates that the disabled life

expectancies based on conventional multistate life table methods are significantly

underestimated due to an assumption of no functional status changes between the

ages of individuals in a longitudinal panel at the date of the last wave in which they

were interviewed and their subsequent death. Zeng and colleagues (2004) present a new

method to correct the bias and apply it to 1998 and 2000 longitudinal survey data of

about 9,000 oldest old Chinese aged 80 to 105. The results show that estimates of active

life expectancy can be improved if data on the disability status of the elderly in the

month or so prior to death are available. These data permit a more accurate estimation

of individuals’ functional status in the time period between a last wave of panel

interviews and death. Zeng and associates (2004) also applied and extended methods

developed by Molla and associates (2001) (based on Chiang 1960 and Keyfitz 1977b) to

estimate standard errors of status-based active life expectancy (i.e., active life expect-

ancy for persons with different functional status at initial age).
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Benefiting from methodological advances in multidimensional demography

(Rogers 1975; Willekens et al. 1982; Land and Rogers 1982; Schoen 1988), Bongaarts

(1987) developed a multistate nuclear-family-status life table model. Zeng extended

Bongaarts’s nuclear-family-status life table model into a general multistate family

household simulation macro model that includes both nuclear and three-generation

family households (Zeng 1986, 1988, 1991). The multistate life table macro models

developed by Bongaarts and Zeng are female-dominant one-sex models and assume

that input rates are constant.

Based on Bongaarts’ and Zeng’s one-sex life table models, Zeng, Vaupel, andWang

(1997, 1998) developed a two-sex multistate dynamic macro projection model known as

‘‘ProFamy’’ that permits demographic schedules to change over time and uses as inputs

only conventional data that are available from ordinary surveys, vital statistics, and

censuses. Zeng, Land, Wang, and Gu (2005) extended the ProFamy model by adding

cohabitation and race dimensions to all computation and estimation procedures. In

addition to statuses defined by the number of coresiding children and parents and

parity, the extended ProFamy family household projection model includes seven mari-

tal/union statuses: (1) never-married and not cohabiting, (2) married, (3) widowed and

not cohabiting, (4) divorced and not cohabiting, (5) never married and cohabiting, (6)

widowed and cohabiting, and (7) divorced and cohabiting. The ProFamy model has

been used to generate U.S. household projections by race (Zeng et al. 2005), household

automobile consumption forecasts in Austria (Prskawetz, Jiang, and O’Neill 2002);

German households and living arrangement projections (Hullen 2000, 2003), and family

household projections in smaller areas (e.g., Hullen 2001; Heigl 2001; Jiang and Kuij-

sten 1999a, 1999b; Yang and Zeng 2000).

The classic headship-rate method for projections of households is not linked to

demographic rates, projects a few household types without size, and does not deal with

household members other than heads. By comparison, the multistate ProFamy new

method uses demographic rates as input and projects more detailed household types,

sizes, and living arrangements for all members of the population. Projections using

ProFamy and observed U.S. demographic rates in the 1990s show that the discrepancies

between the projections and 2000 census observations are reasonably small, thus valid-

ating the new method.

Hazard Regression Models and Survival Curves from Longitudinal Studies

This section extends and generalizes the classic single-decrement population life table

model by taking its basic survival process ideas and applying statistical methods of

parameter estimation and hypothesis testing to them. While there are prior roots in the

use of life tablemodels for the estimationof survival curves followingmedical treatment in

biostatistics (Berkson andGage 1952) and in the application of panel regressionmodels in

sociology (Coleman 1964), the major paper that initiated this extension of life table/

survival model ideas is the classic article on the intersection of regression models with

life table concepts by Cox (1972). This article presented the use of regression models to

control for multiple covariates simultaneously in the estimation of life tables and intro-

duced the proportional hazards regression model and the partial likelihood method for its

estimation from sample data. These developments are so associatedwithCox’s article that

proportional hazards regression models are now known as Cox regression models.
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Cox’s paperhas generateda voluminous literatureon survivalmodels andmethods in

biostatistics and related disciplines over the past three decades, as shown in the works of

Allison (1995), Hosmer and Lemeshow (1999), Ibrahim, Chen, and Sinha (2001), Kalb-

fleisch and Prentice (2002), Klein and Moeschberger (1997), Lawless (2003), Therneau

and Grambsch (2000), and Yamaguchi (1991). In addition to providing a procedure for

bringing statistical methods of inference to bear on the use of sample data to estimate the

life tablemodel, a key feature of thesemodels is that they provide ameans to transform the

life table as a primarily descriptive model, as in equation (1) above, and into an explana-

tory model, as in equation (2), in which heterogeneity in variations among individuals

in survival times are explained, at least in part, in terms of certain exogenous variables

or regression covariates. Regarding terminology, when a regression model for survival

data is applied to a nonrepeatable process, such as time of survival to death, it is termed a

hazard regression model; when the regression model is applied to a process that allows for

multiple occurrences like entries into, and exits from, the labor force over the adult life

course, it is termed an event history model. The event history terminology was introduced

by Tuma, Hannan, andGroeneveld (1979). A recent account of event history models and

statistical methods of estimation and inference is given in Singer andWillet (2003).

The proportional hazard regression model approach, and, more generally, the stat-

istical approach to the estimation of single-decrement life tables from sample data, was

introduced to demographers by Menken et al. (1981) and Trussell and Hammerslough

(1983). Extensions to multistate hazard regression models and multistate life tables and

associated empirical applications by demographers followed. Hoem and Funck-Jensen

(1982) laid out the probability theoretical foundations of multistate life tables and indi-

cated how regressionmodels could be used to account for population heterogeneity in this

context. Hayward and Grady (1990) applied regression models to longitudinal sample

data on processes of work and retirement among a cohort of older men to estimate a

multistate hazard/life table model. Land, Guralnik, and Blazer (1994) combined panel

regression models to estimate hazards and expected transition probabilities to use in a

multistate estimation of disability processes and active life expectancy among the elderly.

A related approach using longitudinal panel data and hazard regression models for

the estimation of multistate life tables builds on the random walk model of human

mortality and aging of Woodbury and Manton (1983) and the generalized latent-class

model known as the grades-of-membership (GoM) model (Woodbury and Clive 1974;

Manton, Stallard, and Singer 1994; Manton, Woodbury, and Tolley 1994). Applications

of this combined random walk/GoMmodel to longitudinal panel data for the estimation

of the interaction of mortality and disability dynamics and of active life expectancy have

been made by Manton, Stallard, and Corder (1997) and Manton and Land (2000).

STABLE POPULATION THEORY

AND ITS EXTENSIONS

Classic Stable Population Theory

Deterministic models of population growth exist in two forms: (1) those that use a

continuous time variable and a continuous age scale (Lotka 1907; Sharpe and Lotka

1911) and (2) those using a discrete time variable and a discrete age scale (Bernadelli

1941; Lewis 1941; and Leslie 1945; Sykes 1969). Both have advantages. The discrete
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formulation is closer to demographic practice in population projections. But the con-

tinuous formulation is closer to continuous life table/stationary population theory.

Thus, the classic single-sex stable continuous-time population theory is now presented.

Recall that the continuous-time formulation of the stationary population model

requires that the number of births equal the number of deaths over any finite time

interval. When it is not required that births equal deaths, but instead that each is

assumed to occur according to rates that are forever fixed, the more interesting con-

tinuous-time model of a stable population is obtained, due to the work of Lotka (1907)

and Sharpe and Lotka (1911). In this model, the births of a current generation are

associated with those of the preceding generation to define several important constants

that describe the ultimate growth and composition of such a population.

THE RENEWAL EQUATION AND STABLE GROWTH. The continuous single-sex model of

population dynamics is expressed as an integral equation. To obtain B(t), the number of

female births at time t, women aged x to xþ dx at time t ‘‘at risk’’ of childbirth are the

survivors of those born x years ago. Denote the number of females born x years ago by

B(t� x) and the life table survival probability (for surviving from birth to age x) by p(x).

Then this quantity is B(t� x)p(x)dx, where x � t. At time t, these women give birth to

B(t� x)p(x)m(x)dx (41)

female children per year, where m(x) dx is the annual rate of female childbearing

among women aged x to xþ dx.

Integrating Eq. (41) over all ages x and adding G(t) to include births to women

already alive at an initial time point (time zero) yields the Lotka integral equation:

B(t) ¼ G(t)þ
ðt
0

B(t� x)p(x)m(x)dx, (42)

where (Keyfitz 1977b):

G(t) ¼
ðb�t

a�t

K(xþ t)m(xþ t)dx

¼
ðb�t

a�t

k(x)
p(xþ t)

p(x)
m(xþ t)dx, (43)

a and b being, respectively, the lower and upper bounds of the childbearing ages, and

k(x)dx denoting the number of women aged x to xþ dx at time zero. For t � b, G(t) is
zero; hence Eq. (42) reduces to

B(t) ¼
ðt
0

B(t� x)p(x)m(x)dx, for t $ b: (44)

Because Eqs. (42) and (43) show how a population of individuals born t� x years ago

gives rise to a new cohort of individuals at time t, this often is called Lotka’s renewal

equation.

On replacing B(t) and B(t� x) by Qert and Qer(t�x), respectively, and noting that

m(x) is nonzero only in the childbearing ages a � x � b, the characteristic equation is

obtained:
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C(r) ¼
ðb
a

e�rxp(x)m(x)dx ¼
ðb
a

e�rxF(x)dx ¼ 1, (45)

where the product p(x) m(x), denoted by F(x), is called the net maternity function. To

solve the integral equation in (45), the value of r for which C(r) is unity needs to be

determined.

The terms inside the integral in Eq. (43) are always nonnegative, and e�rx is a

decreasing function of r, which guarantees the existence of a real root, i.e., a quantity

that is a real number and for which C(r) ¼ 1. Differentiating C(r) with respect to r, the

first derivative is always negative for all real values of r. Hence C(r) is a monotonically

decreasing function. Thus, the curve ofC(r) can cross the horizontal line of unity height

only once, i.e., these can be only on real root of Eq. (45), as illustrated in Figure 22.5.

In addition to the real root, the characteristic equation (45) can be satisfied by

complex values of r. These complex roots occur in complex conjugate pairs. To see this,

suppose the complex number uþ iv is a root, where i ¼ ffiffiffiffiffiffiffi�1
p

. Euler’s theorem indicates

that the exponential of a complex number can be written

erx ¼ euxþivx ¼ eux[ cos (vx)þ isun(vx)],

and hence (45) is

C(r) ¼
ðb
a

e�ux[ cos (vx)� i sin (vx)]F(x)dx ¼ 1: (46)

Since there is no imaginary portion of the right-hand side, that on the left must vanish,

i.e.

ðb
a

e�ux sin (vx)dx ¼ 0: (47)

Thus, since the sin function is a symmetric function for which sin (vx) ¼ sin (� vx), it

follows that u� ivmust also be a root of (45). It can be demonstrated that the real root r

must be larger than the value of u in any complex root u	 iv, that is, r1 > u (Lotka 1998).

For any rk that is a root of (45),

B(t) ¼ Qke
rkt, (48)

ψ (r )

2

1

r

FIGURE 22.5. Graphic representation of the solution of the renewal equation for its real root.
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is a solution, and, assuming the roots are distinct, they may be summed to give the

general solution

B(t) ¼
X1
k¼1

Qke
rkt

¼ Q1e
r1t þ

X1
k¼2

Qke
ukt[ cos (vkt)þ i sin (vkt)]:

(49)

Since each complex root is accompanied by its complex conjugate, which is multiplied

by the conjugate coefficient, the imaginary terms in the series on the right of Eq. (49)

will cancel out, and a real trigonometric series remains. This is necessary for the solution

to make sense, because the representation of counts of a real population of births could

hardly include imaginary terms.

Consider next the problem of evaluating the Qk to fit a given initial condition

defined by G(t). One begins by taking Laplace transforms of both sides of Eq. (46),

often denoting p(x)m(x) by F(x) the net maternity function:

B�(r) ¼ G�(r)þ B�(r)F�(r), (50)

where

B�(r) ¼
ð1
0

e�rtB(t)dt,

G�(r) ¼
ð1
0

e�rtG(t)dt,

and

F�(r) ¼
ð1
0

e�rtF(t)dt:

It follows that (50) may be reexpressed as

B�(r) ¼ G�(r)
1�F�(r)

: (51)

When the integrals defining the Laplace transforms on the right-hand side of Eq. (51)

exist (i.e., equal some definite finite real number), then their inverse transforms also

exist, and B(t), the inverse of B�(r) on the left-hand side of Eq. (51), is the solution to

the integral equation Eq. (42). Feller (1941) showed that this solution is unique on the

condition that B�(r) can be expressed in partial fractions

B�(r) ¼ G�(r)
1�F�(r)

¼ Q1

r� r1
þ Q2

r� r2
þ . . .þ Qk

r� rk
þ . . . (52)

and that
P

Qk converges absolutely, the rk being the roots (finite or infinite in number)

of F�(r) ¼ 1, which is identical with the characteristic equation C(r) ¼ 1 of Eq. (45).

Inverting the terms of the expansion of Eq. (52) results in Eq. (49) once again. To

determine the coefficients of the partial fractions in Eq. (52), one takes the derivatives:
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Qk ¼ lim
r!rk

(r� rk)G
�(r)

1�F�(r)
¼ G�(r)

�dF�(r)=dr
jr¼rk

,

which yields the following solution for the constants

Qk ¼
Ð b
0
e�rktG(t)dtÐ b

0
xe�rkxp(x)m(x)dx

: (53)

For the maximal root, this relationship may be expressed more meaningfully as

Q ¼ V

A
, (54)

where

V ¼
ðb
0

e�rtG(t)dt (55)

is called the called the total reproductive value of a (single-sex) population and

A ¼
Ð b
a xe�rxp(x)m(x)dxÐ b
a e�rxp(x)m(x)dx

¼
ðb
a

xe�rxp(x)m(x)dx (56)

is the mean age of childbearing in the stable population.

This completes the specification of the components of solution (57) for B(t). For

sufficiently large values of t, all terms beyond the first become negligibly small relative

to the first, because r1 > uk for all k > 1. Hence, ultimately

B(t) ffi Qerit: (57)

Thus, after a sufficiently long period of time the ‘‘waves’’ corresponding to the complex

terms of Eq. (49)—if any—will ‘‘wear off,’’ and the birth trajectory will be purely

exponential, as in Figure 22.6.

In brief, the birth trajectory in the continuous-time stable population model is an

exponentially damped sinusoidal curve in which the sinusoidal waves, caused by

‘‘echoes’’ of past fluctuations in births that have left their imprint on the age structure

of the initial (t ¼ 0) population, gradually decline to insignificance and the exponential

B(t )

B ( t=0)

t=0 t

FIGURE 22.6. Illustration of the wearing off of population waves.
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growth (at rate r) becomes dominant. This is the ultimate stable growth birth trajectory

implied by the stable population model. Its defining parameter, r, is called the intrinsic

rate of growth of the stable population, i.e., it is the rate at which the population

ultimately will grow after the sinusoidal waves of its initial age structure wear off.

This tendency for the effect of the initial age structure of a population to wear off

after a sufficiently long period of time is the basis for the well-known ergodic theorems of

stable population theory (Arthur 1982; Cohen 1979; Keyfitz 1977b; Lopez 1961;

McFarland 1969; Sykes 1969; Parlett 1970).

NUMERICAL SOLUTION OF THE CHARACTERISTIC EQUATION. The solution of the char-

acteristic equation developed in the preceding section is theoretical. To apply it in

practice, the integral

ð5
0

e�r(xþt)p(xþ t)m(xþ t)dt, x ¼ a, . . . , b� 5

usually is evaluated as the product of e�r(xþ2:5), L(x)=l(0), and F(x), where F(x) is the

observed birthrate among women aged x to xþ 4 at last birthday. Thus, C(r) is

approximated by

Xb�5

x¼a

e�r(xþ2:5) L(x)

l(0)
F (x), (58)

with the summation taken over childbearing ages x, which are multiples of 5. Conse-

quently, assuming that the childbearing ages lie between a ¼ 10 and b ¼ 50, Eq. (45)

may be solved numerically by determining that value of r for which

e�12:5r L(10)

l(0)
F (10)þ e�17:5r L(15)

l(0)
F (15)þ . . .þ e�47:5r L(45)

l(0)
F (45) ¼ 1: (59)

Several iterative methods have been proposed to find the r that satisfies (59). Of these,

the method of functional iteration described by Keyfitz (1977b) is one of the most

efficient. To apply that method, one begins by multiplying both sides of Eq. (59) by

e�27:5r and chooses an arbitrary initial value for r, with which the resulting expression on

the left-hand side of the equation is evaluated. Taking 1/27.5 of the natural logarithm of

this quantity, an improved approximation of r may be obtained with which the same

expression is evaluated; this continues until two consecutive approximations differ by

less than a small prescribed amount.

To illustrate, applying the method of functional iteration to the 1995 life table for

U.S. females and the fertility data in Table 22.2, results in r ¼ �0:00846. The same

computations carried out with comparable 1968 data by Keyfitz (1977b) yield an r of

0.005715, indicating a considerable decline in fertility, since mortality experienced a

decline during the two decades [e00 ¼ 74:0 in 1968; e00 ¼ 78:9 in 1995]. Given a numerical

approximation of r, one may apply the following expression to evaluate the mean age of

childbearing in the stable population model:

A ¼
X

(xþ 2:5)e�r(xþ2:5) L(x)

l(0)
F (x) (60)
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Table 22.2 reports numerical values of r and A for 1995 together with several other

quantities defined in the next two subsections.5

THE NET MATERNITY FUNCTION. Net maternity functions of various countries at

different points in time show a regularity that demographers have tried to capture by

means of curve fitting. Lotka proposed a normal probability function, and Keyfitz

(1977b) compared the fits of the normal curve with those provided by alternative

probability functions (see also Hoem et al. 1981). Such a view of the net maternity

function leads naturally to an examination of its moments:

5 For exemplary applications of life tables/stationary population and stable population models to the

comparative study of the population dynamics of many national populations with a focus on population

growth and aging, see Keyfitz and Flieger (1990).

TABLE 22.2. Stable Population Parameters and Indices for United States Females, 1995

Stationary

population Birth rate

Net maternity

function

Moments of net maternity

function

Age L(x) F(x) F (x) First Second

10 495,268 0.00059 0.00291 0.03634 0.45425

15 494,466 0.02163 0.10697 1.87205 32.76090

20 493,251 0.04394 0.21674 4.87673 109.72646

25 491,839 0.04515 0.22208 6.10709 167.94502

30 489,978 0.03350 0.16414 5.33461 173.37496

35 487,380 0.01410 0.06873 2.57736 96.65110

40 483,739 0.00273 0.01320 0.56114 23.84831

45 478,577 0.00013 0.00062 0.02950 1.40143

Total 0.16178 0.79540 21.39483 606.16245

Reproduction rates

Net reproduction rate NRR/R (0) ¼ 0:79540

Gross reproduction rate GRR ¼ 0:80888

Stationary population

Mean age of childbearing m ¼ 26:90

Variance of age of childbearing s2 ¼ 38:48

Stable population

Intrinsic rate of growth r ¼ �0:00846

Intrinsic birth rate b ¼ 0:00870

Intrinsic death rate d ¼ 0:01715

Mean age of childbearing A ¼ 27:32

Mean age a ¼ 46:50

Mean length of generation T ¼ 27:06

Comparison of age composition

1995 stable

0–14 0.2076 0.1380

15–64 0.6447 0.5890

65þ 0.1476 0.2729

1.0000 1.0000

Data source: U.S. Census Bureau and Vital Statistics.
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R(n) ¼
ðb
a

xnF(x)dx, n ¼ 0, 1, 2, . . . :

The first three moments are of principal interest because they define the following

demographic parameters:

Net Reproduction Rate:

NRR ¼ R(0) ¼
ðb
a

x0p(x)m(x) ¼
ðb
a

x0F(x)dx

¼
ðb
a

e�0�xF(x)dx ¼ C(0);

(61)

Mean Age of Childbearing in the Stationary Population:

m ¼
Ð b
a xp(x)m(x)dxÐ b
a p(x)m(x)dx

¼
Ð b
a xF(x)dxÐ b
a F(x)dx

¼ R(1)

R(0)
;

(62)

Variance of Age at Childbearing in the Stationary Population:

s2 ¼
Ð b
a (x� m)2p(x)m(x)dxÐ b

a p(x)m(x)dx

¼
Ð b
a (x� m)2F(x)dxÐ b

a F(x)dx

¼ R(2)

R(0)
� m2

(63)

The net reproduction rate gives the number of (female) children expected to be born to a

(female) baby now born if the current schedule of fertility and mortality is maintained.

A related measure, which does not consider the effects of mortality, is the gross

reproduction rate:

GRR ¼
ðb
a

m(x)dx: (64)

Example: As another example, Table 22.2 presents the net maternity function for

United States females in 1996. Observe that the related parameters may be computed as

follows:

NRR ¼ R(0) ¼
X45
x¼10

L(x)

l(0)
F (x) ¼ 0:7954;

GRR ¼ 5
X45
x¼10

F (x) ¼ 0:8089
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m ¼
P45

x¼10 (xþ 2:5)L(x)F (x)P45
x¼10 L(x)F (x)

¼ 21:3948

0:7954
¼ 26:90;

s2 ¼ 606:1625

0:7954
� (26:90)2 ¼ 38:48

Lotka showed how these three parameters may be used to obtain a numerical approxi-

mation of r, the intrinsic rate of growth using an iterative solution. This is referred to as

the method of normal fit by Keyfitz and Flieger (1971). Its application to the data in

Table 22.2 yields the same r of �0:00846.

RELATIONS UNDER STABILITY. The age composition of a population that is undis-

turbed by migration is determined by the regime of fertility and mortality to which it has

been subjected (Keyfitz 1969). If this regime has remained unchanged for a sufficiently

long time period, the initial age composition of the population is ‘‘forgotten’’ in that its

influence on the current age composition disappears entirely. Such a stable population is

characterized by (1) a proportionally fixed age composition and (2) increases at a

constant intrinsic rate of growth r.

Let c(x, t) denote the proportional age composition of a female population at time

r. The number at age x at time t, denoted k(x, t), are survivors of B(t� x) births x years

ago, i.e.,

k(x,t) ¼ B(t� x)p(x):

Integrating this quantity over all ages of life, the total female population is obtained.

Thus, the proportion of this population which is at age x at time t is of density

c(x,t) ¼ k(x,t)R v

0
k(x,t)dx

¼ B(t� x)p(x)R v

0
B(t� x)p(x)dx

: (65)

If c(x, t)dx is the proportion of females aged x to xþ dx at time t, the crude death rate

at time t of this population is

d(t) ¼
Z v

0

c(x,t)m(x)dx; (66)

and the crude birth rate at time t is

b(t) ¼
Z b

a

c(x,t)m(x)dx; (67)

which also may be found by setting x ¼ 0 in the numerator of Eq. (64):

b(t) ¼ c(0,t) ¼ B(t)R v

0
B(t� x)p(x)dx

: (68)

Definitions (65) through (68) apply to any population, stable or not. However, in a

stable population, they yield simplified analytic expressions. To see this, recall that at

stability B(t) ¼ Qert. Substituting this into Eqs. (65) and (68) results in a stable popu-

lation with the proportional age composition
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c(x,t) ¼ Qer(t�x)p(x)R v

0
Qer(t�x)p(x)dx

¼ e�rxp(x)R v

0
e�rxp(x)dx

¼ c(x), (69)

and birthrate

b(t) ¼ QertR v

0
Qer(t�x)p(x)dx

¼ 1R v

0
e�rxp(x)dx

¼ b, (70)

from which is obtained

c(x) ¼ be�rxp(x): (71)

Since under stability t has disappeared from the expressions for c(x, t) and b(t), these

quantities are independent of time and may be denoted simply as c(x) and b, respect-

ively. Usually, c(x) is called the stable age composition and b the intrinsic birth rate. The

intrinsic death rate, d, may be found by subtracting the intrinsic rate of growth from the

intrinsic birth rate:

d ¼ b� r: (72)

Since the net reproduction rate R(0) is a measure of the level of intergenerational

increase, it is concluded that

erT ¼ R(0), (73)

where T is the mean length of a generation. Taking natural logarithms of both sides and

simplifying results in

T ¼ 1

r
lnR(0): (74)

The mean age of the stable population is

a ¼
R n

0
xe�rxp(x)dxR v

0
xe�rxp(x)dx

¼
Z v

0

xc(x)dx: (75)

To illustrate, consider the numerical application of these concepts to the data of Table

22.2. When r ¼ �0:00846

b ¼ 1P85
x¼0 e

�r(xþ2:5)L(x)=l(0)
¼ 0:0087,

d ¼ b� r ¼ 0:0172,

T ¼ 1

r
ln (0:7954) ¼ 27:06,

a ¼
P85

x¼0 (xþ 2:5)e�r(xþ2:5)L(x)P85
x¼0 e

�r(xþ2:5)L(x)
¼ 46:50,

To obtain the proportions of the stable population that are in various age groups, one

defines
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C(x) ¼
Z xþ5

x

c(a)da ¼ b

Z xþ5

x

e�rap(a)da, (76)

and evaluates it numerically for each 5-year age group as

C(x) ¼ be�r(xþ2:5) L(x)

l(0)

¼ e�r(xþ2:5)L(x)P85
x¼0 e

�r(xþ2:5)L(x)
:

After grouping into three age intervals, these proportions are given at the bottom of

Table 22.2 in comparison with the age structure of the 1995 population. The stable-

equivalent population exhibits an older and smoother6 age distribution than that of the

stationary population.

Nonstable Population and Variable-r Extensions of Stable Population Theory

The classic stable population model described above is a generalization of the stationary

population model, which permits age-specific growth rates to be nonzero. The assump-

tion of constancy of age-specific growth rates under stable population theory can be

further relaxed to accommodate growth rates that vary with age. This generalizes to the

nonstable population model, which is applicable to any population. Since the demo-

graphic relations in this general model are associated with varying growth rates by age,

they are termed as variable-r relations (Preston et al. 2001). The most important

development of the nonstable population model and variable-r method for demo-

graphic estimation dates back to the 1980s. Preston and Coale (1982) derived various

extensions of the relations connecting major demographic parameters in stationary and

stable populations to more general conditions. Much of their work is based on the

following relation first shown by Bennett and Horiuchi (1981):

k(x,t) ¼ B(t)e
�
Ð x

0
r(a,t)da

p(x,t) (77)

where k(x, t) is the number of persons age x at time t; B(t) is the number of births at

time t; p(x, t) is the life table survival probability from age 0 to age x at time t and

p(x,t) ¼ e
�
Ð x

0
m(a,t)da

with m(x,t) being the force of mortality function at time t. Preston

and Coale expanded this equation to include migration by adding the term, e(x, t), or

the net out-migration function, to r(x, t). Thus, the formulation has been generalized

from a closed population to an open population. For the convenience of exposition, t is

dropped for the following equations, and all functions pertain to the time t.

The establishment of Equation (77) immediately leads to the following relations,

which bear a remarkable resemblance to three fundamental formulas that characterize

a stable population. Substituting Eq. (77) in Eq. (68), the crude birth rate of the

population becomes

6 The smoothness is observed for five-year age grouping from 0 to 85þ.
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b ¼ BÐ v
0
k(x)dx

¼ BÐ1
0

Be
�
Ð x

0
r(a)da

p(x)dx
¼ 1Ð1

0
e
�
Ð x

0
r(a)da

p(x)dx
: (78)

In a similar fashion, Eq. (77) and (78) may be substituted in Eq. (69) to obtain the age

composition of the population:

c(x) ¼ k(x)Ð1
0

k(x)dx
¼ Be

�
Ð x

0
r(a)da

Ð1
0

Be
�
Ð x

0
r(a)da

p(x)dx
¼ be

�
Ð x

0
r(a)da

p(x) (79)

Substituting Eq. (79) into Eq. (67) yields the characteristic equation for any population:

1 ¼
ðb
a

e
�
Ð x

0
r(a)da

p(x)m(x)dx (80)

It is easy to demonstrate the connection of this formulation with that in the stable

population model. If all age-specific growth rates are constant, that is, r(a) ¼ r at all a,

then e
�
Ð x

0
r(a)da ¼ e�rx. Eqs. (78) and (79) then become precisely the corresponding

functions in the stable population expressed in Eqs. (70) and (71), and Eq. (80) becomes

the characteristic equation expressed in Eq. (45) for the stable population model. Table

22.3 shows a brief comparison of these major demographic relations for the stationary

population, the stable population, and any nonstable population. As noted before, the

variable r or r(x) function is the age-specific growth rate plus the age-specific rate of

out-migration, wherever applicable.

The basic relations shown above give rise to other variable-r relations that go

beyond the analogs of the classic stable population relations (Preston and Coale 1982;

Preston et al. 2001). They connect all major demographic functions to one another

through the set of age-specific growth rates that are readily observable and can be

utilized as a growth correction which allows all of the relationships of a stationary

population to be reestablished. Therefore, variable-r extensions of the basic classic

stable population relations find many useful applications in demographic estimation.

Space limitations allow only a brief discussion of several such applications in studies of

birth rates and fertility, mortality, multiple decrements, and estimation using discrete

demographic data. More detailed expositions are available in Preston and Coale (1982)

and Preston et al. (2001).

First, the birth rate can be estimated straightforwardly using Eq. (78) and given

intercensal growth rates and a life table prevailing for the corresponding time period.

TABLE 22.3. Demographic Relations in Stationary, Stable, and Any Population

Stationary population Stable population Any population

Crude birth rate b ¼ 1Ð1
0

p(x)dx

b ¼ 1Ð1
0

p(x)e�rxdx

b ¼ 1Ð1
0

p(x)e�
Ðx
0

r(a)dadx

Proportionate age distribution c(x) ¼ bp(x) c(x) ¼ be�rxp(x) c(x) ¼ be�
Ðx
0

r(a)dap(x)

Characteristic equation 1 ¼ Ðb
a

p(x)m(x)dx 1 ¼ Ðb
a

e�rxp(x)m(x)dx 1 ¼ Ðb
a

e
�
Ð x

0
r(a)da

p(x)m(x)dx
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This offers an advantage of estimating the birth rate based on imperfect demographic

data because it does not require a reported age distribution and therefore minimizes the

bias introduced by a highly distorted age distribution at young ages in some populations

(Preston and Coale 1982). Preston and Coale (1982) also observed that the period net

reproduction rate can be estimated directly from the set of r(x)’s and the proportionate

distribution of mothers’ age at childbirth, v(x) ¼ B(x)=B:

NRR ¼
ðb
a

p(x)m(x)dx ¼
ðb
a

n(x)e

Ðx
0

r(a)da

dx (81)

Illustrative applications of this method to 1976 Swedish data (Preston and Coale 1982)

and 1995 to 2000 Japanese data (Preston et al. 2001) show results that are nearly

identical with those produced by the traditional method when single-age intervals are

used or the person-years function used in the traditional method is the same as that

computed by the intercensal survivorship ratios. Note that it is assumed that the

population is closed to migration and the age-specific rates of net emigration have

been added to growth rates before Eq. (81) is applied.

Intercensal mortality conditions for a closed population also can be inferred using

Eq. (77) from two census age distributions. Preston and Bennett (1983) show that such

estimates produce good results for high-quality census data. By multiplying both sides

of Eq. (77) by the death rate at age x, m(x) and integrating over the entire age range,

Preston et al. (2001) connect the number of deaths with the number of births in any

population:

B ¼
ð1
0

D(x)e

Ðx
0

r(a)da

dx, (82)

where the number of deaths, D(x), is growth-corrected by the variable r function. This

expands to yet another expression where the population at any age y is written as a

function of the number of decrements above age y:

N(y) ¼
ð1
y

D(x)e

Ðy
x

r(a)da

dx (83)

Bennett and Horiuchi (1981) show the utility of this system of equations in checking the

completeness of death registration in some populations. If the census count at age y

implied by the number of deaths above age y and age-specific growth rates is too low,

this suggests either that deaths above age y are underregistered or that the population

count is inflated, the latter of which is less likely. Preston and associates (1996) further

demonstrate, in their estimation of African-American mortality rates at older ages, that

the incompleteness of death records does not disturb the reconstruction of life table

functions using variable-r relations. The key insight here is that the observed number of

deaths by age can be applied with a growth correction using the variable-r method and

then used to infer the age distribution of deaths in the life table. And the remaining

columns of the life table follow. This approach, which uses only the set of age-specific

growth rates, is also useful if deaths are based on a sample of the population or if
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population data are subject to large distortions due to persistent age misreporting. An

example is Merli’s (1998) estimation of intersensal mortality in Vietnam from 1979 to

1989.

Another application of variable-r relations arises from the generalization of Eq. (77)

tomultiple-decrement situations by introducing the rate of decrement from cause i, mi(x),

to adjust the growth rate r(x) (Preston and Coale 1982). After some simple transform-

ations using mi(x), two basic elements of a multiple-decrement life table are obtained: the

observed number of decrements from cause i, Di(x) and the probability of a newborn

succumbing to cause i, li0=l0, which are linked through the following equation:

li0
l0
¼

Ð1
0

Di(x)e

Ð x

0
r(a)da

dx

B
, (84)

where theprobability of succumbing to cause i canbe calculated fromDi(x)with variable-r

correction, which is divided by the number of births. The advantage of this correction is

displayed in an application to the estimation of the ‘‘case-fatality ratio’’ in epidemiology

(Preston 1987a). If the actual population is stationary (that is, r(x) ¼ 0), the case-fatality

ratio is simply estimated as the ratio of annual deaths from the cause of interest to annual

diagnoses. In a growing population (that is, when r(x) > 0 at all x); however, this ratiowill

underestimate the true case-fatality ratio, which is directly inferred from Eq. (84). There-

fore, the estimation procedure using the growth correction displaces the one without (see

Preston et al. 2001: 180). Other applications have beenmade tomake estimates of marital

survival (Preston and Coale 1982; Preston et al. 2001).

The above demographic relations have been presented mainly in continuous form

and must be adapted to discrete time intervals for empirical applications because

demographic data normally come in age intervals with lengths of multiples of 5 or 10.

Preston and associates (2001) show that the geometric mean of population counts at

both ends of the interval and the mean growth rate over the interval provide good

approximations when the growth rate function is relatively regular during the period. A

second approximation using five-year age intervals, introduced by Preston (1987a),

equals the midpoint of an interval with the sum of counts in the five-year interval

divided by five. Applications of this method have mainly occurred in single decrement

survival processes and include the estimation of intercensal survival of a population

(Preston and Bennett 1983; United Nations 1983), survival (Preston 1987a), and marital

survival from multiple decrements (Preston 1987b). Using an intercensal approach,

Preston and Strong (1986) also investigate survival from a single decrement in a

multiple-decrement process.

Applications of variable-r methods also extend to the use of modeling age patterns

of mortality and the iterative intracohort interpolation procedure for estimating inter-

censal age distributions as a refinement of the basic variable-r procedure (Coale 1984);

see Preston et al. (2001) for details on these developments.

Population Momentum and Family Household Momentum

Extensions and applications of the stable population model/theory not only pertain to

age composition and age-specific growth rates but also involve the effect of changes in

these on changes in population size. Characterizing and modeling the momentum of
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population growth is another valuable application of the stable population model.

Population momentum generally refers to the phenomenon by which an existing popula-

tion age structure that is a legacy of past fertility and mortality conditions future

population growth. Keyfitz (1971b) first articulated this notion by applying stable popu-

lation theory to study relations between population size and age composition. He showed

that even if the fertility rates of a growing stable population were immediately reduced to

replacement level (i.e., NRR ¼ 1:0) and maintained thereafter until the new equilibrium

of a stationary population of fixed size and age composition is attained, the population

would continue to grow, often by sizable amounts if it was a population with a young age

structure. And any such population has a built-in growth potential in its age structure.

Note that Preston and Coale’s (1982) derivation of the variable-r method shows

how age-specific growth rates are linked to population momentum through the net

reproduction rate. Eq. (81) indicates that if the NRR ¼ 1:0, it is necessary that the mean

of e

Ð x

0
r(a)da

weighted by n(x) (mothers’ ages at childbirths) be 1.0 for a 2 [a,b], which is

achieved when the sum of r(x) over the childbearing interval is 0.0. That is, the

imposition of the replacement-level fertility results in the sum of age-specific growth

rates approximating zero on average throughout the childbearing years.

Since its introduction by Keyfitz (1971b), population momentum has evolved into
an influential demographic concept that bears critical policy implications for controlling

population growth in many parts of the world that are undergoing the demographic

transition from high to low rates of birth and death. Several structural efforts have been

made to refine his original formulation. Keyfitz (1985) himself developed a basis for a

more general expression by finding the exact form of the annual number of births in the

eventual stationary population. Following this path, Preston and Guillot (1997) gave

the formula for the momentum factor by relating the age structure of the eventual

population with that of the initial population. Links between population momentum

and aging have also been specified. Kim and Schoen (1997) articulate how population

momentum coincides with population aging. Meanwhile, the age above which all of the

population growth occurs has been identified to be near the middle of the reproductive

life span (Kim, Schoem, and Sarma 1991; Kim and Schoen 1993; Preston 1986).

Empirically, analyses show the value of the population momentum factor for the

major regions of the world (Preston and Guillot 1997), and that momentum may

account for most of the future growth in the world’s population (Bongaarts and Bulatao

1999; National Research Council 2000).

The assumptions on which Keyfitz’s (1971b) formulation of the momentum factor

is based are hypothetical and therefore have limited usage in actual population projec-

tions. Some of the assumptions are modified by recent improvements (a complete

exposition is given by Schoen and Jonsson 2003). In Keyfitz’s framework, replace-

ment-level fertility is achieved by a sudden decrease in fertility of the initial population

to the replacement level. As he acknowledges, few populations experience instantaneous

declines in fertility. Instead, the achievement of replacement-level reproduction takes

place gradually and often over a number of years or decades. Keyfitz also requires that

the fall in fertility be proportional at all ages by the factor 1/NRR with the scalar

multiple (NRR) pertaining to the before-decline value. This ignores changes in the age

pattern of fertility associated with changes in fertility levels. In addition, he does not

raise the possibility that fertility transition can also be nonlinear. Historical time

patterns of fertility changes show examples of both linear and exponential declines for

a number of countries (United Nations 2000).
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Attempts to generalize Keyfitz’s initial contribution have proven fruitful in accom-

modating a gradual transition to replacement-level fertility. Schoen and Kim (1998)

model momentum by imposing a gradual instead of a sudden decline in growth rates of

births. There are also techniques to approximate long-term birth trajectories under

declining fertility. A general way for determining the birth trajectory produced by a

flexible pattern of decline in vital rates is provided by Li and Tuljapurkar (1999, 2000).

Goldstein (2002) generalizes the expressions given by Keyfitz (1971b) and Frauenthal

(1975) to a simpler result that focuses on the initial level of fertility and the speed of the

decline. Goldstein and Stecklov (2002) used the Li-Tuljapurkar relationship to replace

traditional population projections and got high correspondence between the two. These

analytical extensions produce approximations that perform well under relatively short

durations of population momentum (for up to 40 to 50 years), but tend to increasingly

deviate from ‘‘true’’ (projected) trends in both hypothetical and actual populations as

the duration of fertility decline lengthens (Schoen and Jonsson 2003). Furthermore, they

cannot be applied to more general transition regimes that result in constant (stable) but

nonzero growth.

In an effort to directly model changing vital rates and the gradual decline in

fertility, Schoen and Kim (1994) and Kim and Schoen (1996) developed an analytical

framework of a ‘‘quadratic hyperstable’’ (QH) model, wherein a population is generated

by monotonic transitions (either increasing or decreasing) of the set of age-specific birth

rates and grows by a quadratic exponential function. An age composition that changes

over time is also specified. This dynamic model generalizes the stable population model

by allowing fertility rates to change over time, accommodates stable-to-stable fertility

transitions, and provides significantly more precise estimates of momentum of any

length.

Schoen and Jonsson (2003) further extend the quadratic hyperstable population

model to a new form which associates exponentially changing fertility to the resultant

exponential quadratic birth sequence. Since the new QH model can be used to analyze

long-term effects of monotonic transitions between any two sets of constant vital rates,

it is a significant generalization of the stable population model. The Schoen-Jonsson

QH model is a special case of the QH model, with new procedures to capture monotonic

transitions between any levels of fertility. Schoen and Jonsson begin by specifying the

QH model in a discrete form using a sequence of Leslie projection matrices that are

generated by monotonically increasing/decreasing net maternity functions. This gives

the birth trajectory whose structure resembles that of the Coale-Trussell Model Fertility

Schedules (Coale and Trussell 1974). The advantage of this approach is that it offers a

flexible pattern of change that not only applies to the proportional distribution of births

by age of the mother required by early models, but also allows fertility to change

monotonically in a specified fashion. They derive an exponentiated quadratic birth

trajectory of the QH population in closed form.

Schoen and Jonsson apply the QH model to solve for the momentum associated

with gradual transitions in fertility to replacement level. They consider both the tran-

sition to stationarity and any stable-stable transition. They first use the equation of an

exponentiated quadratic birth trajectory to determine the cumulative change in the size

and structure of the QH population over the period of fertility decline. Then they hold

fertility constant at replacement level to find the ultimate stationary population. By

doing so, they find two factors that determine the relative size of the eventual birth

cohort. The first factor is essentially the same factor presented in different ways in
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previous works by Li and Tuljapurhar (1999), Goldstein (2002), and Schoen and Kim

(1998), that is, a continuation of the initial stable growth for half the period of decline.

The second is an offsetting factor previously overlooked. It takes into account the

changing age composition of the population experiencing the declining fertility rate

that is no longer stable. Therefore, it is a factor that reflects the interaction between the

changing age composition, age pattern of fertility, and the level of fertility. Considering

this factor reduces the growth in the number of births. Using the same approach, they

model the transition from an initial stable population to another stable population and

provide explicit expressions to bridge between any two stable rates.

Schoen and Jonsson apply the theoretical model to populations with high fertility

(Singapore 1957) and moderate fertility (Mexico 1983). They compare the effects of

both linear declines and exponential declines in NRR on population momentum using

the Li-Tuljapurhar (1999) method, the Goldstein (2002) models, and the new QH

model. The results indicate that both the Li-Tuljapurhar and Goldstein approximations

lose accuracy for declines longer than 50 or so years, and they tend to overestimate the

growth because they do not reflect the offsetting growth factor mentioned above. The

QH model, on the other hand, proves successful for estimating momentum values over

any length of the transition regardless of the beginning fertility level because it re-

inforces the role of the interaction between the two factors in moderating the growth.

Keyfitz’s original concept of population momentum has also led to the discovery of

a new type of momentum—the momentum of family/household types. Using data from

national surveys and vital statistics, census micro files, and the ‘‘ProFamy’’ multistate

household family projection method (discussed above), Zeng and associates (2005)

prepared projections of U.S. elderly (ages 65 and over) households from 2000 to 2050.

Medium projections, smaller and larger family scenarios with corresponding combin-

ations of assumptions of marriage/union formation and dissolution, fertility, mortality,

and international migration were performed to analyze future trends of U.S. households

and their possible higher and lower bounds, as well as the enormous racial differentials.

Under a constant scenario with everything (marriage union formation and dissol-

ution, fertility, mortality, migration, and so forth) after 2000 assumed to remain the

same as in 2000, they found that the proportional distributions of household types/size

and living arrangements of the elderly change considerably until 2020 or so and remain

more or less stable afterward (except the percent of the oldest-old (ages 85 and over)

living alone continues to increase substantially after 2020). Why would distributions of

households and elderly living arrangements change considerably from 2000 to 2020

while the demographic parameters remain constant in the same period? The answer of

Zeng and associates (2004) is that family/household momentum plays an important role.

The cohorts who were younger in 2000 experienced and will experience stabilized

(or constant) higher rates of marriage/union disruption and lower marriage/union

formation than the cohorts who were older in 2000 and had already completed most

of their family life course. The profiles of households and elderly living arrangements in

2000 represent the mixed cumulative life course experiences of younger and older

cohorts in the past few decades. Although the marriage/union formation and dissol-

ution rates are assumed to remain constant during the period of 2000 to 2050, the

distributions of households and elderly living arrangements would change considerably

because the older cohorts, who had more traditional family patterns, will be replaced by

the younger cohorts with modern family patterns. Family household momentum is

similar to the population momentum concept of Keyfitz (1971b), in which population
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size could continue to increase after the fertility is equal to or even below the replace-

ment level. The ProFamy method/program and the family household projections pro-

vide empirical evidence for the first time to numerically illustrate the concept of family

household momentum.

MODEL SCHEDULES, SUMMARY INDICES,

AND QUANTUM/TEMPO ADJUSTMENTS

Modeling Demographic Schedules

In almost all models of mathematical demography such as the single-decrement, mul-

tiple-decrement, multiple increment-decrement life tables, multistate population and

family household simulation and projection models, and the stable population model

and its extensions, age-sex-specific demographic rates are needed. The age-sex-specific

demographic rates, ordered across the full age range from birth to death, are termed

demographic schedules. The classic examples of demographic schedules are age-sex-

specific mortality rates, age-specific fertility rates, age-sex-specific marriage and divorce

rates, and age-sex-specific migration rates.

The most commonly used demographic schedules of age-specific rates of fertility

and marriage are defined as the number of events occurring in an age interval divided by

the total number of persons of the same age. Without transformation, however, these

age-specific rates often cannot be used for computing status transitions for constructing

life tables and family household simulations and projections, because their denomin-

ators do not distinguish the at-risk and not-at-risk populations for experiencing the

events; they may be biased in measuring the period quantum and changes in period

tempo (to be discussed below). Thus, more sophisticated age-specific occurrence/expos-

ure rates, which are defined as the number of events occurred in the age interval divided

by the person-years lived at risk of experiencing the event within the age interval, are

required (see Eq. (22) for the case of mortality).

For many years, statisticians and demographers tried to establish analytical for-

mulas for describing the patterns of human mortality, fertility, marriage, divorce, and

migration. Examples of such efforts in modeling mortality schedules are the Gompertz,

Logistic, Weibull, Heligman & Pollard, Quadratic, and Kannisto models (Thatcher,

Kannisto, Vaupel 1998; Zeng and Vaupel 2003). Rogers (1986) proposes parametric

models to describe the demographic schedules of migration, mortality, and nuptiality.

Coale and McNeil (1972) develop a double-exponential first-marriage model, including

age-specific model standard schedules of frequency distribution of first marriage and

three parameters: the proportion eventually ever married, the lowest age at first mar-

riage, and the average age at first marriage. Coale and Trussell (1974) propose a fertility

double-exponential model, including model standard schedules of age-specific natural

fertility and age-specific deviation from natural fertility due to birth control and

parameters of total natural fertility level and level of birth control; a statistical version

of the Coale-Trussell model was developed by Brostrom (1985), Trussell (1985), and Xie

and Pimentel (1992).

As an illustrative example in modeling demographic schedules, this section summar-

izes the relational Gompertz fertility model originally proposed by Brass (1968, 1974,

1975, 1978; see also Booth 1984; Paget and Timaeus 1994) and its extension by Zeng et al.
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(2000). Define H(x) as the cumulated fertility rate up to exact age x. Define the total

fertility rate (TFR) as in Eq. (3), that is, as the sum of age-specific fertility rates over all

ages. The model then assumes that H(x)/TFR follows the Gompertz distribution:

H(x)=TFR ¼ exp (A exp (Bx)) (85)

where A and B are constants. Using the complementary log-log transformation

� ln (� ln (H(x)=TFR) ) ¼ � ln (� A)� B x

Y(H(x)=TFR) ¼ � ln (� A)� B x
(86)

where Y stands for the complementary log-log transformation of H(x)/TFR.

Observed data from various populations show that the linear relationship ex-

pressed in equation (86) yields a reasonably good fit, except at extreme ages (Pollard

and Volkovics 1992). To improve the fit, Brass introduces the standard fertility schedule

and derives the following Relational Gompertz Fertility Model, which substantially

improves the empirical fittings, including those at extreme ages, as compared to the

original Gompertz fertility model expressed in Eq. (86):

Y(H(x)=TFR) ¼ aþ b Ys(Hs(x)=TFRs) (87)

where Hs (x) is the cumulated fertility rate up to exact age x in the standard fertility

schedule and TFRs is the total fertility rate of the standard schedule. As and Bs are

constants.

Equation (87) establishes that the Y transformation of an observed schedule is a

linear function of theY transformation of the Standard Schedule, and the two parameters

a and b can be estimated using Ordinary Least Squares (OLS) regression or other

estimation procedures. The TFR summary index can be estimated directly or indirectly

from the empirical fertility data. Its standard schedule can be easily established by using

the observed rates in the population under study or, if the data are poor in the population

under study, by using rates from another demographically similar population.

Studies by Brass and others produce clear statistical meanings for the parameters a
and b. The a parameter determines the age location (i.e., early or late) of the fertility

distribution, and the b parameter determines the spread or degree of concentration of

the distribution. More specifically, the smaller the a, the later the process, and when a is

equal to 0, the age location of the schedule is identical to the standard. The smaller the

b, the more dispersed the curve of the schedule, and when b is equal to one, the spread

or the degree of the concentration of the schedule is identical to the standard (United

Nations 1983). Despite their clear statistical meanings, however, it is remarkably

difficult to estimate or project a and b directly for purposes of projecting or simulating

demographic rates for the future years for four main reasons. First, there are no

observed values of a and b from demographic data resources (such as vital statistics,

surveys, or censuses) for past years that can be used as a basis for future trend

extrapolation. Second, estimates of a and b are not compatible across time and regions

(Zeng et al. 2000). Third, it is difficult to connect changes in the values of a and b with

the quantity of changes in timing and concentration of the demographic process. For

example, if one tells policy makers or the public that a will decrease by 0.2 and b will

decrease by 0.1 in the fertility schedule in 10 years, few understand the demographic

meaning of the terms. Fourth, linking a and b with socioeconomic and human behavior
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variables, such as changes in women’s education and labor force participation, for

future trends extrapolation is even more implausible. In sum, a and b are demograph-

ically unmeasurable, uninterpretable, incompatible across time and regions, and unpre-

dictable. It is, therefore, important to find a way to link a and b with variables that are

demographically measurable, interpretable, and predictable. The simple method pro-

posed and tested by Zeng and associates (2000) is intended to solve this problem. This

research is what Rogers (1986: 60) anticipated in his statement ‘‘[a]lthough the model

schedule parameters are not always demographically interpretable, future research is

likely to link them to variables that are.’’

Define M as the median age, i.e., the exact age at which 50% of the events have

occurred, andNandOas first and third quartiles, i.e., the exact age atwhich 25%and 75%

of the events have occurred, respectively. Define MS, NS, and OS as the median age, the

first, and the third quartiles of the standard schedule. Zeng and associates (2000) then

propose the following estimator to link the parameter b with the interquartile range:

b ¼ (OS �NS)=(O�N), (88)

where (OS �NS) is the interquartile range of the standard schedule that is known and

may be denoted as IS. Let (O – N), the interquartile range of the schedule to be

estimated or projected, be denoted by I. Now only the value of I needs to be estimated,

rather than both the O and N values. Then an analytical formula for estimating b can be

expressed as follows:

b ¼ IS=I (89)

After b is estimated, the estimation of a is straightforward. Following equation

(87), and setting x equal to the median age (M) of the schedule to be estimated or

projected: Y(H(M)=TFR) ¼ aþ bYS(HS(M)=TFRS). Y(H(M)/TFR) is equal to

ln (� ln (0:5) ). YS(HS(M)=TFRS) can be obtained from the standard schedule by linear

interpolation if M is not an integer. Thus, a can be quickly estimated. Once a and b are

estimated, H(x) and f(x) can be computed based on equation (87) for H(x) and using

f(x) ¼ H(xþ 1)�H(x). The single-year age-specific rates f(x) can thus be derived using

the above proposed method based on the three parameters of total rate, median age,

interquartile range, and a standard schedule. The three parameters are all demograph-

ically interpretable, measurable, and predictable, and the standard schedule can be

easily established based on the proper data. The method has been successfully tested

on 180 reliable observed demographic schedules in various countries and periods and to

nearly 10,000 simulated schedules with various combinations of possible values (includ-

ing the extremes) of a and b (Zeng et al. 2000).

The method that uses median age and interquartile range instead of a and b as input

proposed by Zeng and associates (2000) relaxes the traditional unrealistic assumption in

population projections that the curve of the fertility schedulemoves to the right or left in a

parallel way. Instead, using this method, one assumes that the demographic events would

be delayed or advanced, while the curve becomes more spread or more concentrated or,

more specifically, that young people delay the events more than older persons, or vice

versa. It is also useful for formulating assumptions about future demographic trends for

purposes of policy analysis and planning. It can be used to indirectly estimate demo-

graphic schedules when the detailed age-specific data are not currently available, which is

useful for developing countries and subregion studies in developed countries.
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Model Standard Schedules and Summary Demographic Indices

Despite their remarkable success, model demographic schedules as discussed above have

not been fully satisfactory, especially for applications in many developing countries

where the empirical data needed to estimate the model parameters are not readily

available. Since the 1950s, population studies for developing countries have progressed

rapidly, and demographers have realized that it is extremely important to establish

reasonable models of mortality for such efforts because many developing countries do

not have reliable life tables. Given the fact that analytical formulas cannot describe well

the different age patterns of human mortality, demographers have tried to find a set of

model standard schedules of life tables to represent various mortality patterns and levels.

The result is model life tables. Empirically basedmodel life tables are identical to ordinary

real life tables in every way, except that they relate to no particular single place or time.

Since the 1950s, at least nine different sets of empirical model life tables have been

published. The two most widely used families of model life tables are discussed here.

The initial version of the Coale and Demeny (1966) regional model life tables was

derived from a set of 192 life tables by sex recorded for human populations that were

chosen from an original set of 326 life tables from Europe (206), Latin America (33),

Asia (32), Oceania (22), North America (18), and Africa (15). Coale-Demeny regional

model life tables are of four ‘‘families of regions’’ called ‘‘North,’’ ‘‘South,’’ ‘‘East,’’ and

‘‘West.’’ The North model table is based on nine life tables from Norway, Sweden, and

Iceland. It is characterized by relatively low infant and old age mortality but high adult

mortality caused by an unusually high incidence of tuberculosis. The South model table

is derived from 23 Mediterranean life tables from Portugal, Spain, Sicily, and southern

Italy. It has high mortality under age 5, particularly among infants, low adult mortality,

and high mortality over age 65. The East model table was generated from 31 primarily

Central European life tables from Austria, Germany, Bavaria, Prussia, north Italy,

Poland, and Czechoslovakia. It has high infant and high old-age mortality, relative to

childhood and adult rates. The West model table is regarded as describing an ‘‘average’’

mortality pattern and is by far the most frequently used. Coale and Demeny (1966; 1983)

recommend its use when no reliable information on the age pattern of mortality is

available. The West models are based on a diverse array of about 130 life tables which

were considered tobeaccuratebutwhichdidnot fit intoanyof theother threegroups.They

include life tables from the Netherlands, Finland, France, England and Wales, Japan,

Ireland, Israel, Australia, Canada, and South Africa. In 1985, a second version of the

model life tables was published by Coale andDemeny (1985). The upper boundary of the

life tables in the second version was raised to age 100 instead of age 80 in the 1966 version.

In 1982, the United Nations published a set of model life tables based entirely on

empirical life tables from developing countries. As many accurate life tables were

collected from developing countries as possible. After careful data quality evaluation,

36 male and 36 female life tables from 10 Latin American countries, 11 Asian countries

and 1 African country were selected. These life tables were then divided into five groups:

‘‘Latin American,’’ ‘‘Chilean,’’ ‘‘South Asian,’’ ‘‘Far Eastern,’’ and ‘‘General.’’ The

‘‘General’’ pattern was produced as an average of all the original empirical model life

tables. The different patterns have roughly the following characteristics:

1. Latin American: relatively high infant, child, and adult mortality and relatively

low old-age mortality
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2. Chilean: extremely high infant mortality

3. South Asian: high mortality under 15 and over 55, but relatively low mortality

at adult ages

4. Far Eastern: very high mortality at old ages

5. General: average mortality pattern

As discussed above, almost all of the internationally published fertility and nupti-

ality models (e.g., Coale and McNeil 1972; Coale and Trussell 1974; Brass 1968; Zeng

et al. 2000) aim to model age-specific rates of fertility and marriage, which are defined as

the number of events occurring in an age interval divided by the total number of persons

of the same age. These age-specific rates, however, cannot be used for computing status

transitions for constructing multistate life tables and family household projections

or simulation because their denominators do not distinguish between the at-risk and

not-at-risk populations experiencing the events. Furthermore, similar to the situation in

many developing countries a couple of decades ago, when reliable life tables were not

available, the age-sex-specific occurrence/exposures rates of marriage/union formation

and dissolution and age-parity-marital/union-status-s occurrence/exposures rates of

fertility, which are needed for family household projections or simulations, are not

readily available for many developing countries and some developed countries. These

occurrence/exposure rates at the national level can be estimated from national surveys

which collected fertility and marriage histories data but are usually not available for

local or small areas. Therefore, there is an imperative need to establish model standard

schedules of the age-sex-specific occurrence/exposure rates of marriage/union formation

and dissolution and age-parity-specific occurrence/exposure rates of marital and non-

marital fertility. The basic ideas and approach for establishing such model standard

schedules of marriage/union formation and dissolution and fertility may be similar to

those used for creating the model life tables, but intensive innovative investigations are

called for in future studies.

Model standard schedules of marriage/union formation and dissolution, fertility,

and mortality model life tables have three practically useful properties. First, they can

serve as a standard for smoothing the observed age-specific demographic rates with poor

quality. Second, they can be used to perform indirect estimation in case the directly

observed rates are not complete. Third, they can be used to project future age-sex-specific

demographic rates for population and family household projections or simulations.

Age-sex-specific demographic schedules are useful in analysis and modeling, but

they should be accompanied by summary indices, because the numerous age-sex-specific

numbers cannot concisely represent the quantum or level and tempo or timing (of the

rates by age) of demographic processes. Thus, summary demographic indices are neces-

sary in demographic studies. Furthermore, as Keyfitz (1972) points out, demographic

projections based on trend extrapolation of each age-sex-specific rate can result in an

excessive concession to flexibility and readily produce erratic results. Accordingly,

demographers focus on forecasts of the summary indices in population and family

household projections or simulations. Demographers define and estimate various sum-

mary indices depending on the purpose of their studies and data availability. Two of the

most commonly used summary indices are the period life expectancy and the period

Total Fertility Rate.

It has been noted earlier that the period life expectancy (mathematically defined in

Eq. [20]) is the average life span of a hypothetical cohort subjected to the observed
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period age-specific death rates. Similarly, demographers interpret the conventional

period TFR(t) (i.e., the observed period total fertility rate in year t, mathematically

defined in Eq. [3]) as the total number of births an average member of a hypothetical

female cohort would have during her reproductive life if the hypothetical cohort exactly

(with no changes in quantum, tempo, and shape of the schedule) experienced the

observed period age-specific fertility rates. This interpretation is equivalent to imagining

that the observed period age-specific fertility rates are constantly extended a sufficient

number of years into the future (e.g., 35 years), so that a hypothetical cohort would have

gone through the whole reproductive life span (e.g., ages 15 to 50). The observed period

TFR(t) is the total number of births an average member of the hypothetical cohort

would have during her whole reproductive life. A topic of recent interest among

mathematical demographers has been the development of formulas for adjustment of

standard period life expectancy and period TFR(t) for changes in quantum and tempo.

Quantum/Tempo Adjustment Formulas

THE BONGAARTS-FEENEY QUANTUM ADJUSTMENT FORMULA. It is well known in

demography that the observed period TFR(t) is biased if cohort tempo is changing

(Ryder 1956, 1959, 1964, 1980, 1983; Keilman 1994; Keilman and Van Imhoff 1995).

The demographic literature on fertility measures includes many criticisms of and

alternatives to the period TFR(t), but there has been no agreement on its replacement.

An important recent development was initiated by Bongaarts and Feeney (1998), who

derive a simple and effective quantum adjustment formula7:

TFR�(t) ¼ TFR(t)=(1� r(t)) (90)

where TFR�(t) is the adjusted period order-specific total fertility rate that reduces bias

caused by changes in the timing of fertility, TFR(t) is the observed period order-specific

total fertility rate in year t, and r(t) denotes the observed annual changes in order-

specific period mean age at childbearing in year t.8 To simplify the notation, subscripts

for the order of births are suppressed, but it should be kept in mind that all of the

derivations and discussion refer to order-specific fertility.9 Similar to the conventional

interpretation of the classic period TFR(t), as stated above, Bongaarts and Feeney

(1998: 287–289) assume, in deriving their quantum adjustment formula, that the ob-

served period age-parity-specific fertility rates are extended a sufficient number of years

into the future (e.g., 35 years), with changing period tempo, but assuming a constant

quantum and an invariant shape of the schedule.

One important question, however, needs to be addressed: Does the Bongaarts-

Feeney (abbreviated as B-F hereafter) formula work when its underlying assumption of

7 Bongaarts and Feeney (1998: 287) refer to their formula as a ‘‘tempo adjustment formula.’’ A more complete

description is that it is a formula for adjusting the quantum for tempo effects. While this phrasing may seem

trivial, it is an important distinction in view of the tempo adjustment formula presented later in this Section.
8 The annual change r(t) is defined as the difference of the mean age at experiencing the event between two

successive years. The unit of r(t) is ‘‘years old/per year.’’
9 If one does not distinguish the orders of births, errors in the estimates may likely occur. For example, when

people reduce their fertility they do so primarily by reducing childbearing at higher birth orders. As a result,

the mean age at childbearing for all births without order specification declines even when the timing of

individual births does not change (Bongaarts and Feeney 1998; Bongaarts 1999).
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an invariant shape of the fertility schedule and its implied equal changes in timing of

births across reproductive ages do not hold, as is likely the case in the real world?

Bongaarts and Feeney (1998) present a successful test of their adjustment method by

comparing the completed fertility of true cohorts born from 1904 to 1941 in the United

States with the weighted averages of the adjusted period TFR�(t) over the years during
which the true cohorts were in the childbearing ages. But they do not perform a

sensitivity analysis directly targeting the underlying assumption about the invariant

shape of the schedule and its implied assumption about equal changes in timing of

births at all reproductive ages. Consequently, there are questions raised about the

sensitivity of the B-F formula to the likely violation of its assumption (Kim and Schoen

2000; Van Imhoff and Keilman 2000; Kohler and Philipov 2001). If the B-F method is

very sensitive to the likely violation of its underlying assumption, it should not be used

unless an appropriate correction is made.

Zeng and Land (2001) present a sensitivity analysis of the B-F method, based on

fertility data in the U.S. from 1918 to 1990 and in Taiwan from 1978 to 1993, and the

Brass Relational Gompertz fertility model and its extension (as discussed earlier). Zeng

and Land (2002) conclude that the adjusted TFR�(t) using the B-F formula, which

assumes an invariant shape of the fertility schedule, usually does not differ significantly

from an adjusted TFR�(t) that allows systematic changes (with constant rate) in the

shape of the fertility schedule. This finding is consistent with an analysis by Kohler and

Philipov (2001) in which they show that the biases in the B-F formula are quite small if a

constant rate of increase in the variance of the fertility schedule prevails over time. This

finding implies that the B-F method is usually not sensitive to its underlying assumption

on invariant shape of the fertility schedules and equal changes in timing across ages.

That is, it is generally robust for producing reasonable estimates of the adjusted period

TFR�(t) that reduce distortion caused by tempo changes, except in abnormal condi-

tions. The B-F method may be sensitive to substantial nonsystematic changes (i.e., large

and time-varying changes in the tempo and shape of the schedule). Another important

point is that the adjusted TFR�(t) using the B-F method neither represents actual cohort

experiences in the past nor forecasts any future trend. Rather, as compared to the

conventional TFR(t), it merely provides an improved reading of the period fertility

measure that reduces the tempo distortion, and it is a hypothetical cohort measure,

similar to the period life table measures in a general sense.

The word ‘‘improved’’ is used above to indicate that the adjusted TFR�(t) using the
B-F method is relatively more reasonable than the conventional TFR(t) in measuring

the period fertility level because it reduces the tempo distortion. But the observed period

TFR(t), whose denominator is the age-specific total number of women in the popula-

tion, also does not distinguish those who are at risk and those who are not at risk of

giving birth of the particular order (van Imhoff and Keilman 2000). This is one of the

reasons why the observed period TFR is distorted by changes in the timing of fertility

and needs to be adjusted. However, the adjusted TFR�(t) using the B-F method still is

not entirely free of distortion; it is not only based on certain simplifying assumptions,

but also on the restricted data of period fertility rates whose denominator does not

distinguish the at-risk and not-at-risk populations. For example, if a substantial number

of women postponed their first (or second) births a few years ago and now give birth in

the current year, the observed total fertility rate of first (or second) births would not be

low (say, 0.8). However, if other women delay births substantially and this resulted in a

large annual increase in mean age at childbearing of first (or second) birth (say, 0.3
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year), the adjusted TFR of first (or second) births using the B-F method in this case

could be unreasonably high (say, 1.14). The fact that the adjusted U.S. TFR of second

births by the B-F method in the year 1944 exceeded one (Zeng and Land 2001) might be

a concrete example of such cases.

Zeng and Land (2001) recommend the application of the B-F method to adjust the

observed parity-specific period TFR when the timing of fertility is changing under

normal conditions. However, the application of the B-F method under abnormal

conditions is problematic. In particular, when observed annual changes in the timing

of fertility exceed 0.25, and the annual changes in the interquartile range exceed 0.1 and

have large fluctuations, one must be cautious in applying the B-F method, since the

adjustments may be incorrect. Zeng and Land (2001) also recommend presentation of

both observed period TFR and the adjusted TFR using the B-F method. The observed

TFR reveals the implications of fertility for population growth (or decline), and the

adjusted TFR reflects a better reading of the period fertility level, reducing the distor-

tion caused by changes in tempo.

THE ZENG-LAND TEMPO ADJUSTMENT FORMULA. Zeng and Land (2002) show that,

under conditions of changing tempo, not only are observed period total fertility rates

biased, but also observed changes in the period tempo of fertility are biased. Zeng and

Land (2002) derive a tempo adjustment formula as follows for adjusting the bias in

observed changes in the period tempo of fertility, based on the same assumptions as

those imposed in the B-F method:

r�(t) ¼ r(t)=(1� r(t)): (91)

where r(t) are observed changes in the period tempo, and the r�(t) are adjusted changes

in the tempo in year t, reducing the bias caused by changes in the timing of child-

bearing.

Eq. (91) implies that, similar to the fact that the observed period quantum is distorted

by changing tempo, observed changes in period tempo are distorted also.10 The relative

error rate of the observed annual changes in period tempo can be computed as:

Relative bias ¼ [r(t)� r�(t)]=r�(t) ¼ �r(t): (92)

The relative bias of the observed annual change in period tempo as an estimate of the

actual change in tempo is of the same magnitude as the annual change itself with an

opposite sign. For example, if the observed annual change in the period tempo of

fertility is 0.1 years, it underestimates the actual value of the annual increase by 10%

(the actual value is 0.111). If the observed annual change in period tempo of fertility is

�0:09 years, it overestimates the actual value of the annual decrease by 9% (the actual

value is �0:0826). As compared to the conventionally observed TFR(t) and r(t), both

the B-F adjusted quantum (TFR�(t)) and Zeng-Land adjusted changes in tempo (r�(t))
do better; they adjust the bias in the observed quantum and changes in tempo due to

changes in fertility timing.

10 Even under conditions similar to scenario 4 of Bongaarts and Feeney (1998), which assumes that TFR(t)

changes over time, Eqs. (91) and (92) still are valid.
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AN EXTENSION OF RYDER’S TRANSLATIONAL EQUATION. In the process of deriving the

tempo adjustment formula, Zeng and Land (2002) also derive an alternative quantum

adjustment formula using r�(t) as input:

TFR�(t) ¼ TFR(t)(1þ r�(t)) (93)

Zeng and Land (2002) show analytically that the relationship between the adjusted

TFR�(t) and the observed period TFR(t), using r�(t) and r(t) as the input respectively

and the B-F formula, can be easily generalized to real cohorts (instead of only hypo-

thetical cohorts), provided the assumptions of constant quantum, constant changes in

tempo and invariant shape of the schedule hold for all real cohorts concerned. In this

generalized case, the mathematical proof of Eqs. (90), (91), (92), and (93), as well as the

general relationship expressed in these four equations, still hold, but the symbolic terms

need to be changed as:

CFR ¼ TFR(1þ rc) (94)

where CFR is the constant cohort complete fertility rate, TFR is the constant period

total fertility rate, and rc is the constant changes in cohort tempo, which are defined as

the difference of the mean age at childbearing between two successive cohorts. Eq. (94)

may be referred to as a period-cohort quantum equation.

CFR ¼ TFR=(1� rp) (95)

where rp denotes the constant annual changes in period tempo, defined as the difference

of the mean age at childbearing between two successive years.

Based on Eqs. (94) and (95), a relationship between rc and rp can be derived:

rc ¼ rp=(1� rp) (96)

Eq. (96) may be referred to as a period-cohort tempo equation.

The period-cohort quantum Eq. (94) and Eq. (95) can be regarded as alternatives to

Ryder’s basic translation equation. Using the notation defined in this chapter, Ryder’s

basic translation equation (Ryder 1956, 1964) can be expressed as: CFR ¼ TFR=
(1� rc), which differs from the period-cohort quantum equations expressed in Eqs.

(94) and (95). The discrepancy between Ryder’s basic translation equation and the

period-cohort quantum Eqs. (94) and (95) is due to different assumptions. Ryder

assumes that fertility rates at each age change according to its own polynomial, ignored

all moments of order higher than 1, and then approximated the age-specific polynomial

as a straight line (Ryder 1964). Zeng and Land assume that all cohorts postpone or

advance the births by an equal amount as compared with the immediate preceding

cohort and that the shape of the cohort age-specific schedules is assumed to be invari-

ant, but the curve shifts to the right or left when the timing changes. As tested by Zeng

and Land (2001), the assumptions of the invariant shape of the fertility schedule and

equal changes in cohort tempo usually are not sensitive to the estimates except in

abnormal conditions.

The numerical difference between using Ryder’s basic translation equation and the

period-cohort quantum Eqs. (94) and (95) is rather small if rc is small. However,

the period-cohort quantum equations, as expressed in Eqs. (94) and (95), have led to

a derivation of the period-cohort tempo Eq. (96). This is an extension of the Ryder’s
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basic translation equation and expands demographic knowledge to an analytical ex-

pression of the relationship between period and cohort changes in tempo. Furthermore,

the period-cohort quantum and period-cohort tempo equations are based on simpler

and more reasonable assumptions and are derived in a much easier way, as compared to

Ryder’s basic translation equation.

The Zeng-Land extension not only expands knowledge of relationships among

formulas in mathematical demography but is also useful in modeling the quantum-

tempo of periods and cohorts for population and family household projection or

simulation. For example, the period-cohort and quantum-tempo relationships ex-

pressed in Eqs. (94), (95), and (96) may be used in component population projections,

which begin with estimates of an initial age distribution and projections of age-specific

fertility, mortality and migration rates. Following trend extrapolation or expert opinion

approaches, one may first project (or assume) the future cohort TFR and changes in

mean age at childbearing. Using Eqs. (94), (95), and (96), one can then estimate the

future period TFR and changes in the period mean age at childbearing to formulate the

needed period projection matrices. Such estimates or projections of period TFR and

period age at childbearing based on understandings of the cohort trends and taking into

account the important effects of changes in cohort tempo on the period quantum and

period tempo certainly make more sense than just solely extrapolating the distorted

period rates.

Finally, the analytical formulas concerning the quantum/tempo adjustments and

relationships discussed in this chapter may be extended to other nonrepeatable demo-

graphic events, such as first marriage, order-specific divorce, and leaving the parental

home. The relationships of period, cohort (or hypothetical cohort) quantum, and tempo

changes analyzed here and other related studies may also turn out to be useful in

examining quite different topics, such as the effect of delayed retirement in a public

pension system on the system’s finance.

CONCLUSION

This chapter illustrates how mathematics is used by demographers to develop theories

and models of populations and has surveyed much of the literature of this specialty.

Specifically, this chapter reviews some of the essential concepts and mathematics of the

two basic classic population models that constitute the core of mathematical demog-

raphy—the life table/stationary population model and the stable population model.

Despite the fact that these core models have been quite thoroughly studied for decades,

both continue to be subjects of active research in mathematical demography. Extensions

of the classic single-decrement life table model to multistate and stochastic representa-

tions continue to be areas of methodological research and empirical application. In the

case of stable population theory, the topics of population momentum and related

generalizations of the classic model are foci of continued research interest. The third

major topic reviewed is model schedules or age-specific rates of demographic events

such as births and deaths, summary demographic indices, such as the total fertility rate

and life expectancy, and recent developments in tempo adjustment formulas based

thereon. The implications of quantum/tempo adjustment formulas for population

models and summary demographic indices also are subjects of current debate and

research interest.
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Even in a long chapter, however, there are many topics of importance in math-

ematical demography that cannot be included. A few of these are the following. First,

two-sex models: all of the models reviewed here are one-sex models. Especially for

the study of marriage and divorce (or more generally, union formation and dissolution)

processes, fertility, and long-range population projections, it is important to take

into account the interaction of the sexes; Schoen (1988) includes a review of the essential

concepts and models for interacting populations. Another topic not reviewed that is

receiving increasing attention is the cross-disciplinary integration of biological

and demographic models (Yashin and Iachine 1997). The incorporation of genetic

data into demographic surveys (Finch, Vaupel, and Kinsella 2001) and its use in

the study of the biodemography of aging and longevity (Wachter and Finch 1997)

will stimulate this cross-disciplinary fertilization and evolution of the models of

demography.

In brief, mathematical demography is indispensable to the development of formal

representations of the structure of populations and population processes. It will con-

tinue to evolve and generate new contributions, generalizations, and extensions.

REFERENCES

Allison, P. D. 1995. Survival analysis using the SAS system: A practical guide. Cary, N.C.: SAS Institute.

Arthur, W. B. 1982. The ergodic theorems of demography: A simple proof. Demography 19:439–445.

Bennett, N. G., and S. Horiuchi. 1981. Estimating the completeness of death registration in a closed

population. Population Index 42: 207–221.

Berkson, J., and R. P. Gage. 1952. Survival curve for cancer patients following treatment. Journal of the

American Statistical Association 47: 501–515.

Bernadelli, H. 1941. Population waves. Journal of the Burma Research Society 31: 1–18.

Bongaarts, J. 1987. The projection of family composition over the life course with family status life tables. In

Family demography: Methods and applications. Edited by J. Bongaarts, T. Burch, and K. W. Wachter.

Oxford: Clarendon Press.

Bongaarts, J. 1999. Completing the demographic transition. Population and Development Review 25: 515–529.

Bongaarts, J., and G. Feeney. 1998. On the quantum and tempo of fertility. Population and Development

Review 24: 271–291.

Booth, H. 1984. Transforming Gompertz’s function for fertility analysis: The development of a standard for

the relational Gompertz function. Population Studies, 38: 495–506.

Brass, W. 1968. Note on Brass method of fertility estimation. In The demography of tropical Africa. Edited by

W. Brass et al., Chapter 3, Appendix A. Princeton, N.J.: Princeton University Press.

Brass, W. 1974. Perspectives in population prediction: Illustrated by the statistics of England and Wales.

Journal of the Royal Statistical Society, 137, Series A: 532–583.

Brass, W. 1975. Methods of estimating fertility and mortality from limited and defective data. Chapel Hill,

N.C.: International Program for Population Statistics.

Brass, W. 1978. The relational Gompertz model of fertility by age of women (mimeographed). London:

London School of Hygiene and Tropical Medicine.

Brostrom, G. 1985. Practical aspects on the estimation of the parameters in Coale’s M Model for Marital

Fertility. Demography 22: 625–631.

Cambois, E., J.-M. Robine, and M. D. Hayward. 2001. Social inequalities in disability-free life expectancy in

the French male population. Demography 38: 513–524.

Casti, J. L. 1992a. Reality rules. I. Picturing the world in mathematics—the fundamentals. New York: Wiley-

Interscience.

Casti, J. L. 1992b. Reality rules. II. Picturing the world in mathematics—the frontier. New York: Wiley-

Interscience.

Chiang, C.-L. 1960. A stochastic study of the life table and its applications. II. Sample variance of the observed

expectations of life and other biometric functions. Human Biology 32: 221–238.

712 Kenneth C. Land, Yang Yang, and Zeng Yi



Chiang, C.-L. 1968. Introduction to stochastic processes in biostatistics. New York: Wiley.

Chiang, C.-L. 1972. On constructing current life tables. Journal of the American Statistical Association 67: 538–

541.

Coale, A. J. 1984. Life table construction on the basis of two enumerations of a closed population. Population

Index 50: 193–213.

Coale, A. J., and P. Demeny. 1966. Regional model life tables and stable populations. Princeton, N.J.: Princeton

University Press.

Coale, A. J., and P. Demeny. 1983. Regional model life tables and stable populations, 2d ed. New York:

Academic Press.

Coale, A. J., and D. R. McNeil. 1972. The distribution by age of the frequency of first marriage in a female

cohort. Journal of American Statistical Association, 67: 743–749.

Coale, A. J., and T. J. Trussell 1974. Model fertility schedules: Variations in the age structure of childbearing

in human populations. Population Index 40: 185–258.

Cohen, J. E. 1979. Ergodic theorems in demography. Bulletin (New Series) of the American Mathematical

Society 1: 275–295.

Coleman, J. S. 1964. Introduction to mathematical sociology. New York: Free Press.

Cox, D. R. 1972. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society B

34: 187–220.

Crimmins, E. M., Y. Saito, and M. D. Hayward. 1993. Sullivan and multistate methods of estimating active

life expectancy: Two methods, two answers. In Calculation of health expectancies: Harmonization,

consensus achieved and future perspectives. Edited by J. M. Robine, C. D. Mathers, M. R. Bone, and

I. Romieu, 155–160. Montrouge, France: John Libbey Eurotext.

Crimmins, E. M., Y. Saito, and D. Ingegneri. 1997. Trends in disability-free life expectancy in the United

States. Population and Development Review 23: 555–572.

de Moivre, A. 1725. Annuities on lives: Or, the valuation of annuities upon any number of lives; as also, of

reversions. London: Millar.

Du Pasquier, L. G. 1912. Mathematische Theorie der Invaliditats-Versicherung. Mitt. Ver. Schweitzer.

Versicherungsmath. 7:1–7.

Elandt-Johnson, R. C., and N. L. Johnson. 1980. Survival models and data analysis. New York: Wiley.

Feller, W. 1941. On the integral equation of renewal theory. Annals of Mathematical Statistics 12: 243–267.

Finch, C. E., J. W. Vaupel, and K. Kinsella, Eds. 2001. Cells and surveys. Washington, D.C.: National

Academies Press.

Fix, E., and J. Neymann. 1951. A simple stochastic model of recovery, relapse, death and loss of patients.

Human Biology 23: 205–241.

Frauenthal, J. C. 1975. Birth trajectory under changing fertility conditions. Demography 12: 447–454.

Goldstein, J. R. 2002. Population momentum for gradual demographic transitions: An alternative approach.

Demography 39:6 5–73.

Goldstein, J. R., and G. Stecklov. 2002. Long-range population projections made simple. Population and

Development Review 28: 121–141.

Greville, T. N. E. 1943. Short methods of constructing abridged life tables. Record of the American Institute of

Actuaries 32 (Part I): 29–42.

Hayward, M. D., and W. R. Grady. 1990. Work and retirement among a cohort of older men in the United

States. Demography 27: 337–356.

Heigl, A. 2001. Demographic fact book. http://www.hypovereinsbank.de/media/pdf/rese_chan_defabo_Welt.pdf.

Hoem, J. M., and M. S. Fong. 1976. A Markov chain model of working life tables. Working Paper No. 2.

Copenhagew: Laboratory of Actuarial Mathematics, University of Copenhagen, Denmark.

Hoem, J. M., and U. Funck-Jensen. 1982. Multistate life table methodology: A probabilist critique. In

Multidimensional mathematical demography. Edited by K. C. Land and A. Rogers. New York: Academic

Press.

Hoem, J. M., D. Madsen, J. L. Nielsen, E.-M. Ohlsen, H. O. Hansen, and B. Rennermalm. 1981. Experiments

in modelling recent Danish fertility curves. Demography 18: 231–244.

Hosmer, D. W., and S. Lemeshow. 1999. Applied survival analysis: Regression modeling of time to event data.

New York: Wiley.

Hullen, G. 2000. Projections of living arrangement, household and family structures using ProFamy.

Warschau, Deutsch-polnisch-ungarisches Demographentreffen, October 2000.

Hullen, G. 2001. New macrosimulations of living arrangements and households in Germany. Paper presented

at Population Association of America, 2001 Annual Meeting, March 2001, pp. 7–31.

Mathematical Demography 713



Hullen, G. 2003. Living arrangements and households: Methods and results of demographic projection.

A book (reader) published by the German Federal Institute for Population Research (BIB), with

Foreword by Charlotte Hohn, Director of BIB. http://www.gert-hullen.privat.t-online.de/manuskripte/

materialien_hu_29072003.pdf.

Ibrahim, J. G., M.-H. Chen, and D. Sinha. 2001. Bayesian survival analysis. New York: Springer-Verlag.

Jiang, L., and A. Kuijsten. 1999a. Effects of changing households on environment—Case studies in two

regions of China. Paper presented at workshop Population and environment: Modeling and simulating

this complex interaction. Organized by Max Planck Institute for Demographic Research at Rostock,

Germany, August 12–13, 1999.

Jiang, L., and A. Kuijsten. 1999b. Household projections for two regions of China. Paper presented at the

European Population Conference, The Hague, The Netherlands, August 30–September 3, 1999.

Jordan, C. W., Jr. 1975. Life contingencies, 2d ed. Chicago: The Society of Actuaries.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data, 2d ed. New York:

Wiley.

Katz, S., L. G. Branch, M. H. Branson, J. A. Papsidero, J. C. Beck, and D. S. Greer. 1983. Active life

expectancy. New England Journal of Medicine 309: 1218–1224.

Keilman, N. 1994. Translation formulae for non-repeatable events. Population Studies 48: 341–357.

Keilman, N., and E. V. Imhoff. 1995. Cohort quantum as a function of time-dependent period quantum for

non-repeatable events. Population Studies 49: 347–352.

Keyfitz, N. 1968. A life table that agrees with the data. II. Journal of the American Statistical Association 63:

1253–1268.

Keyfitz, N. 1969. Age distribution and the stable equivalent. Demography 6: 261–269.

Keyfitz, N. 1970. Finding probabilities from observed rates, or how to make a life table. The American

Statistician 24: 28–33.

Keyfitz, N. 1971a. Models. Demography 8: 571–580.

Keyfitz, N. 1971b. On the momentum of population growth. Demography 8: 71–80.

Keyfitz, N. 1972. On future population. Journal of American Statistical Association, 67: 347–363.

Keyfitz, N. 1977a. Applied mathematical demography. New York: Wiley.

Keyfitz, N. 1977b. Introduction to the mathematics of population with revisions. Reading, Mass: Addsion-

Wesley.

Keyfitz, N. 1985. Applied mathematical demography, 2d ed. New York: Wiley.

Keyfitz, N., and W. Flieger. 1971. Population: Facts and methods of demography. San Francisco: Freeman.

Keyfitz, N., and W. Flieger. 1990. World population growth and aging. Chicago: The University of Chicago

Press.

Keyfitz, N., and J. Frauenthal. 1975. An improved life table method. Biometrics 21: 889–899.

Kim, Y. J., and R. Schoen. 1993. Crossovers that link populations with the same vital rates. Mathematical

Population Studies 4: 1–19.

Kim, Y. J., and R. Schoen. 1996. Populations with quadratic exponential growth. Mathematical Population

Studies 6: 19–33.

Kim, Y. J., and R. Schoen. 1997. Population momentum expresses population aging. Demography

34: 421–428.

Kim, Y. J., and R. Schoen. 2000. Changes in timing and the measurement of fertility. Population and

Development Review 26: 554–559.

Kim, Y. J., R. Schoen, and P. S. Sarma. 1991. Momentum and the growth-free segment of a population.

Demography 28: 159–176.

Kohler, H. P., and M. Philipov. 1999. Variance effects in the Bongaarts-Feeney formula. Demography 38 (1):

1–16.

Klein, J. P., and M. L. Moeschberger. 1997. Survival analysis: Techniques for censored and truncated data. New

York: Springer-Verlag.

Land, K. C. 1971. Formal theory. Sociological Methodology 1971: 175–220.

Land, K. C. 2001. Models and indicators. Social Forces 80: 381–410.

Land, K. C., J. M. Guralnik, and D. G. Blazer. 1994. Estimating increment-decrement life tables with multiple

covariates from panel data: The case of active life expectancy. Demography 31: 297–319.

Land, K. C., G. C. Hough, Jr., 1989. New methods for tables of school life, with applications to U.S. data

from recent school years. Journal of the American Statistical Association 84: 63–75.

Land, K. C., G. C. Hough, Jr., and M. M. McMillen. 1986. Voting status life tables for the United States,

1968–1980. Demography 23: 381–402.

714 Kenneth C. Land, Yang Yang, and Zeng Yi



Land,K.C., andA.Rogers, eds. 1982.Multidimensional mathematical demography. NewYork:Academic Press.

Land, K. C., and S. H. Schneider. 1987. Forecasting in the social and natural sciences: Some isomorphisms. In

Forecasting in the social and natural sciences. Edited by K. C. Land and S. H. Schneider, 7–31. Boston:

D. Reidel.

Land, K. C., and R. Schoen. 1982. Statistical methods for Markov-generated increment-decrement life tables

with polynomial gross flow functions. In Multidimensional mathematical demography. Edited by K. C.

Land and A. Rogers, 265–346. New York: Academic Press.

Lawless, J. F. 2003. Statistical models and methods for lifetime data, 2d ed. Hoboken, N.J.: Wiley.

Lewis, E. L. 1941. On the generation and growth of a population. Sankhya 6: 93–96.

Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183–212.

Li, N., and S. Tuljapurkar. 1999. Population momentum for gradual demographic transitions. Population

Studies 53: 255–262.

Li, N., and S. Tuljapurkar. 2000. The solution of time-dependent population models.Mathematical Population

Studies 7: 311–329.

Lopez, A. 1961. Problems in stable population theory. Princeton, N.J.: Office of Population Research.

Lotka, A. J. 1907. Relation between birth rates and death rates. Science 26: 21–22.

Lotka, A. J. 1924 [1956]. Elements of mathematical biology. New York: Dover. [Originally published as

Elements of physical biology by Williams and Wilkins, New York.]

Lotka, A. J. 1998. Analytical theory of biological populations. Translated and with an Introduction by

D. P. Smith and H. Rossert. New York: Plenum Press.

Manton, K. G., and K. C. Land. 2000. Active life expectancy estimates for the U. S. elderly population:

A multidimensional continuous-mixture model of functional change applied to completed cohorts, 1982–

1996. Demography 37: 253–265.

Manton, K. G., E. Stallard, and L. S. Corder. 1997. Changes in the age dependence of mortality and disability:

Cohort and other determinants. Demography 34: 135–157.

Manton, K. G., E. Stallard, and B. H. Singer. 1994. Methods for projecting the future size and health status of

the U.S. elderly population. In Studies of the economics of aging. Edited by D. Wise, 41–77. Chicago:

National Bureau of Economic Research and University of Chicago Press.

Manton, K. G., M. A. Woodbury, and H. D. Tolley. 1994. Statistical applications using fuzzy sets. New York:

Wiley.

McFarland, D. D. 1969. On the theory of stable population: A new and elementary proof of the theorems

under weaker assumptions. Demography 6: 301–322.

Menken, J., J. Trussell, D. Stempel, and O. Babakol. 1981. Proportional hazards life table models: An

illustrative analysis of socio-demographic influences on marriage dissolution in the United States.

Demography 18:181–200.

Merli, G. 1998. Mortality in Vietnam, 1979–1989. Demography 35: 345–360.

Molla, M. T., D. K. Wagener, and J. H. Madans. 2001. Summary measures of population health: Methods for

calculating healthy life expectancy. Atlanta: Centers for Disease Control and Prevention.

Morgan, S. P., and S. M. Lynch. 2001. Success and future of demography: The role of data and methods.

Special issue on population health and aging: Strengthening the dialogue between epidemiology and demog-

raphy. Annals of the New York Academy of Sciences 954: 35–51.

National Research Council. 2000. Beyond six billion: Forecasting the world’s population. Edited by J. a.

R. A. B. Bongaarts. Washington, D.C.: National Academies Press.

Notestein, F. 1945. Population—The long view. In Food for the world. Edited by Theodore W. Schultz, 36–57.

Chicago: The University of Chicago Press.

Paget, W. J., and I. M. Timaeus, 1994. A relational Gompertz model of male fertility: Development and

assessment. Population Studies 48: 333–340.

Parlett, B. 1970. Ergodic properties of population. I. The one-sex model. Theoretical Population Biology 1:

191–207.

Pollard J. H., and E. J. Volkovics. 1992. The Gompertz distribution and its applications. Genus 48 (3–4):

15–28.

Preston, S. H. 1986. The relation between actual and intrinsic growth rates. Population Studies 40: 343–351.

Preston, S. H. 1987a. Relations among standard epidemiologic measures in a population. American Journal of

Epidemiology 126: 336–345.

Preston, S. H. 1987b. Estimation of certain measures in family demography based upon generalized stable

population relations. In Family demography: Methods and their application. Edited by J. Bongaarts,

40–62. Cambridge: Cambridge University Press.

Mathematical Demography 715



Preston, S. H., and N. Bennett. 1983. A census-based method for estimating adult mortality. Population

Studies 37: 91–104.

Preston, S. H., and A. J. Coale. 1982. Age structure, growth, attrition and accession: A new synthesis.

Population Index 48: 217–259.

Preston, S. H., I. T. Elo, I. Rosenwaike, and M. Hill. 1996. African-American mortality at older ages: Results

of a matching study. Demography 35: 1–21.

Preston, S. H., and M. Guillot. 1997. Population dynamics in an age of declining fertility. Genus 53: 15–31.

Preston, S. H., P. Heuveline, andM. Guillot. 2001.Demography: Measuring and modeling population processes.

Malden, Mass.: Blackwell.

Preston, S. H., N. Keyfitz, and R. Schoen. 1972. Causes of death: Life tables for national populations. New

York: Seminar Press.

Preston, S. H., and M. Strong. 1986. Effects of mortality declines on marriage patterns in developing

countries. In Consequences of Mortality Trends and Differentials. United Nations Population Study,

No. 95, 88–100. New York: United Nations.

Prskawetz, A., L. Jiang, and B. C. O’Neill. 2002. Demographic composition and projections of car use in

Austria. Working Paper of Max Planck Institute for Demographic Research, Germany. http//www.

demogr.mpg.de/; click ‘‘Staff Publications’’ to search for author’s name.

Reed, L. G., andM.Merrell. 1939. A short method for constructing an abridged life table. American Journal of

Hygiene 30: 33–62.

Rogers, A. 1975. Introduction to multiregional mathematical demography. New York: Wiley.

Rogers, A. 1986. Parameterized multistate population dynamics and projections. Journal of American Statis-

tical Association, 81: 48–61.

Rogers, A., R. G. Rogers, and L. G. Branch. 1989. A multistate analysis of active life expectancy. Public

Health Reports 104: 222–225.

Ryder, N. B. 1956. Problems of trend determination during a translation in fertility. Milbank Memorial Fund

Quarterly 34(1): 5–21.

Ryder, N. B. 1959. An appraisal of fertility trends in the United States. In Thirty years of research in human

fertility: Retrospect and prospect, 1959, 38–49. New York: Milbank Memorial Fund.

Ryder, N. B. 1964. The process of demographic translation. Demography 1: 74–82.

Ryder, N. B. 1980. Components of temporal variations in American fertility. In Demographic patterns in

developed societies. Edited by R. W. Hiorns, 15–54. London: Taylor Francis.

Ryder, N. B. 1983. Cohort and period measures of changing fertility. In Determinants of fertility in developing

countries. Edited by R. A. Bulatao and R. D. Lee, with P. E. Hollerbach and J. Bongaarts, 737–756. New

York: Academic Press.

Schoen, R. 1975. Constructing increment-decrement life tables. Demography 13: 313–324.

Schoen, R. 1978. Calculating life tables by estimating Chiang’s a. Demography 15: 625–635.

Schoen, R. 1988. Modeling multigroup populations. New York: Plenum.

Schoen, R., and S. H. Jonsson. 2003. Modeling momentum in gradual demographic transitions. Demography

40: 621–635.

Schoen, R., and Y. J. Kim. 1994. Hyperstability. Paper presented at the annual meeting of the Population

Association of America, Miami, May 5–7.

Schoen, R., and Y. J. Kim. 1996. Stabilization, birth waves, and the surge in the elderly. Mathematical

Population Studies 6: 35–53.

Schoen, R., and Y. J. Kim. 1998. Momentum under a gradual approach to zero growth. Population Studies 52:

295–299.

Schoen, R., and K. C. Land. 1979. A general algorithm for estimating a Markov-generated increment-

decrement life table with applications to marital status patterns. Journal of the American Statistical

Association 74: 761–776.

Schoen, R., and K. Woodrow. 1980. Labor force status life tables for the United States, 1972. Demography 17:

297–322.

Sharpe, F.R., andA. J. Lotka. 1911.A problem in age-distribution.PhilosophicalMagazine, Ser. 6, 21: 435–438.

Shryock, H. S., and J. S. Siegel. 1975. The methods and materials of demography. 2 vols. Washington, D.C.:

U.S. Government Printing Office.

Singer, J. D., and J. B. Willet. 2003. Applied longitudinal data analysis: Modeling change and event occurrence.

New York: Oxford University Press.

Smith, D., and N. Keyfitz, eds. 1977.Mathematical demography: Selected papers. New York: Springer-Verlag.

Sullivan, D. F. 1971. A single index of mortality and morbidity. HSMHA Health Report 86: 347–354.

716 Kenneth C. Land, Yang Yang, and Zeng Yi



Sverdrup, E. 1965. Estimates and test procedures in connection with stochastic models for death, recoveries,

and transfers between different states of health. Skandinavisk Aktuarietidskrift 40: 184–211.

Sykes, Z. M. 1969. On discrete stable population theory. Biometrics 25: 285–293.

Thatcher, A. R., V. Kannisto, and J. W. Vaupel. 1998. The force of mortality at ages 80 to 120. Odense,

Denmark; Odense University Press. Online at http://www.demogr.mpg.de/Papers/Books/Monograph5/For-

Mort.htm.

Therneau, T. M., and P. M. Grambsch. 2000. Modeling survival data. New York: Springer.

Trussell, J. 1985. Mm (computer program). Princeton, N.J.: Office of Population Research.

Trussell, J., and C. Hammerslough. 1983. A hazards-model analysis of the covariates of infant and child

mortality in Sri Lanka. Demography 20: 1–26.

Tuma, N. B., M. T. Hannan, and L. P. Groeneveld. 1979. Analysis of event histories. American Journal of

Sociology 84: 820–854.

United Nations. 1983. Manual X: Indirect techniques for demographic estimation. New York: United Nations.

United Nations, Statistical Division. 2000. Demographic yearbook, historical supplement, March 17. New

York: United Nations.

Van Imhoff, E., and N. Keilman. 2000. On the quantum and tempo of fertility: Comment. Population and

Development Review 26: 549–553.

Wachter, K. W, and C. E. Finch, eds. 1997. Between Zeus and the salmon: The biodemography of longevity.

Washington, D.C.: National Academies Press.

Willekens, F. J., I. Shah, J. M. Shah, and P. Ramachandran. 1982. Multistate analysis of marital status life

tables: Theory and application. Population Studies 36: 129–144.

Woodbury, M. A., and J. Clive. 1974. Clinical pure types as a fuzzy partition. Journal of Cybernetics 73: 1073–

1080.

Woodbury, M. A., and K. G. Manton. 1983. A theoretical model of the physiological dynamics of circulatory

disease in human populations. Human Biology 55: 417–441.

Xie, Y., and E. E. Pimental. 1992. Age patterns of marital fertility: Revising the Coale-Trussell method.

Journal of the American Statistical Association 87: 977–994.

Yamaguchi, K. 1991. Event history analysis. London: Sage.

Yang, C., and Y. Zeng. 2000. Household projections for Taiwan. Taiwanese Journal of Sociology 24: 239–279.

Yashin, A. I., and I. I. Iachine. 1997. How frailty models can be used for evaluating longevity limits: Taking

advantage of an interdisciplinary approach. Demography 34: 31–48.

Zeng, Y. 1986. Changes in family structure in China: A simulation study. Population and Development Review

12: 675–703.

Zeng, Y. 1988. Changing demographic characteristics and the family status of Chinese women. Population

Studies 42: 183–203.

Zeng, Y. 1991. Family dynamics in China: A life table analysis. Madison: The University of Wisconsin Press.

Zeng, Y., D. Gu, and K. C. Land. 2004. A new method for correcting underestimation of disabled life

expectancy and application to Chinese oldest-old. Demography 41: 335–361.

Zeng, Y., and K. C. Land. 2001. A sensitivity analysis of the Bongaarts-Feeney new method for adjusting bias

in observed period total fertility rates. Demography 38: 17–28.

Zeng, Y., and K. C. Land. 2002. Adjusting period tempo changes—with an extension of Ryder’s basic

translation equation. Demography 39: 269–285.

Zeng, Y., K. C. Land, Z. Wang, and D. Gu. 2005. U. S. Family Household Dynamics and Momentum—

Extension of ProFamy Method and Application. Forthcoming in Population Research and Policy

Review, 24(4).

Zeng, Y., and J. W. Vaupel. 2003. Oldest old mortality in China. Demographic Research 8: 215–244.

Zeng, Y., J. W. Vaupel, and Z. Wang. 1997. A multidimensional model for projecting family households—

with an illustrative numerical application. Mathematical Population Studies 6: 187–216.

Zeng, Y., J. W. Vaupel, and Z. Wang. 1998. Household projection using conventional demographic data.

Population and Development Review, Supplementary Issue: Frontiers of Population Forecasting 24: 59–87.

Zeng, Y., Z. Wang, Z. Ma, and C. Chen. 2000. A simple method for estimating a and b: An extension of

Brass relational Gompertz fertility model. Population Research and Policy Review 19: 525–549.

Mathematical Demography 717




