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Abstract

Keywords:

In this chapter, we shortly describe some outranking methods other than ELEC-
TRE and PROMETHEE. All these methods (QUALIFLEX, REGIME, ORESTE,
ARGUS, EVAMIX, TACTIC and MELCHIOR) propose definitions and compu-
tations of particular binary relations, more or less linked to the basic idea of the
original ELECTRE methods. Beside them, we will also describe other outrank-
ing methods (MAPPAC, PRAGMA, IDRA and PACMAN) that have been devel-
oped in the framework of the Pairwise Criterion Comparison Approach (PCCA)
methodology, whose peculiar feature is to split the binary relations construction
phase in two steps: in the first one, each pair of actions is compared with respect
to two criteria a time; in the second step, all these partial preference indices are
aggregated in order to obtain the final binary relations. Finally, one outranking
method for stochastic data (the Martel and Zaras’ method) is presented, based on
the use of stochastic dominance relations between each pair of alternatives.

Multiple criteria decision analysis, outranking methods, pairwise criteria com-
parison approach.
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1. Introduction
The outranking methods constitute one of the most fruitful approach in MCDA.
They main feature is to compare all feasible alternatives or actions by pair
building up some binary relations, crisp or fuzzy, and then to exploit in an ap-
propriate way these relations in order to obtain final recommendations. In this
approach, the ELECTRE family and PROMETHEE methods (see Chapters 4
and 5 in this book) are very well known and have been applied in a lot of
real life problems. But beside them, there are also other outranking methods,
interesting both from theoretical and operational points of view. All these meth-
ods propose definitions and computations of particular binary relations, more
or less linked to the basic idea of the original ELECTRE methods, i.e. taking
explicitly into account the reasons in favor and against an outranking relation
(concordance-discordance analysis using appropriate veto thresholds). Some
of these methods, moreover, present also a peculiar way to build up final rec-
ommendations, by exploiting the relations obtained in the previous step. In this
chapter, we shortly describe some outranking methods other than ELECTRE
and PROMETHEE. In Section 2 we present some outranking methods deal-
ing with different kind of data (QUALIFLEX, REGIME, ORESTE, ARGUS,
EVAMIX, TACTIC and MELCHIOR). Some of these methods are based on
concordance-discordance analysis between the rankings of alternatives accord-
ing to the considered criteria and the comprehensive ranking of them; others
on direct comparison of each pair of alternatives, more or less strictly linked to
the concordance-discordance analysis of ELECTRE type methods. In Section
3 some outranking methods (MAPPAC, PRAGMA, IDRA and PACMAN) are
described. They have been developed in the framework of the Pairwise Criterion
Comparison Approach (PCCA) methodology. Its peculiar feature is to split the
binary relations construction phase in two steps: in the first one, each pair of
actions is compared with respect to two criteria a time, among those considered
in the problem, and partial preference indices are built up. In the second step,
all these partial preference indices are aggregated in order to obtain the global
indices and binary relations. An appropriated exploitation of these indices gives
us the final recommendations. Finally, in Section 4 one outranking method for
stochastic data (the Martel and Zaras’ method) is presented. The main feature
of this method is that the concordance-discordance analysis is based on the use
of stochastic dominance relations on the set of feasible alternatives, compar-
ing their cumulative distribution functions associated with each criterion. Some
short conclusions are sketched in final Section.

2. Other Outranking Methods

The available information is not always of cardinal level; some times the evalua-
tions of alternatives are ordinal scales, especially in social sciences. These eval-



Other Outranking Approaches 199

uations may take the form of preorders. Several methods were been developed
to aggregate this type of local evaluation in order to obtain a comprehensive
comparison of alternatives. For example, we can mention Borda, Condorcet,
Copeland, Blin, Bowmam and Colantoni, Kemeny and Snell, etc. (see [31]).
Some methods that we will present in this Section drawn inspiration by some
of them.

We present some outranking methods consistent with ordinal data, since they
do not need to convert ordinal information to cardinal values, as it is the case,
for example, in [15]. We will present some methods frequently mentioned in
the literature on MCDA, where the general idea of outranking is globally im-
plemented: QUALIFLEX, REGIME, ORESTE, ARGUS, EVAMIX, TACTIC
and MELCHIOR, these methods are not too complex and do not introduce the
mathematical programming within their algorithm as it is the case, for example,
in [3]. We present also EVAMIX even if it was been developed for ordinal and
cardinal evaluations.

2.1 QUALIFLEX

The starting point of QUALIFLEX [28, 27] was a generalization of Jacquet-
Lagrèze’s permutation method [8].

It is a metric procedure and it is based on the evaluation of all possible
rankings (permutations) of alternatives under consideration. Its mechanism of
aggregation is based on Kemeny and Snell’s rule.

This method is based on the comparison among the comprehensive ranking
of the alternatives and the evaluations of alternatives according to each criterion
from family F (impact matrix). These evaluations are ordinal and take the form
of preorders. For each permutation, one computes a concordance/discordance
index for each couple of alternatives, that reflects the concordance and the dis-
cordance of their ranks and their evaluation preorders from the impact matrix.
This index is firstly computed at the level of single criterion, after at a com-
prehensive level with respect to all possible rankings. One tries to identify the
permutation that maximizes the value of this index, i.e. the permutation whose
ranking best reflects (the best compromise between) the preorders according to
each criterion from F and the multi-criteria evaluation table.

The information concerning the coefficients of relative importance (weights)
of criteria may be explicitly known or expressed as a ranking (for example a
preorder). In this case, [27] has show that one can circumscribe the exploration
to extreme points (the vertex) of polyhedron formed by the feasible weights.

Given the set of alternatives A, the concordance/discordance index for each
couple of alternatives at the level of preorder according to the
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criterion and the ranking corresponding to the permutation is:

There is concordance (discordance) if and are ranked (not ranked) in
the same order within the two preorders, and ex aequo if they have the same
rank. The concordance/discordance index between the pre-order according to
the criterion and the ranking corresponding to the permutation is:

The comprehensive concordance/discordance index for the permutation
is:

where is the weight of criterion The number of permu-
tations is where The best compromise corresponds to
the permutation that maximize If are not explicitly known, but expressed
by a ranking, then the best compromise is the permutation that:

where is the set of feasible weights

EXAMPLE 6 Given 3 alternatives criteria and
the evaluation table (see Table 6.1 where a rank number 1 indicates the best
outcome, while a rank 3 is assigned to the worst outcome with respect to each
criterion), there are 3! possible permutations:

One index is computed for each pair that, for our example,
give a total of 18 concordance/discordance indices. For example for the pair

we have for the criterion and for
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the that gives +1 for the couple
+1 for the couple and 0 for the couple Thus, the value of the
index is equal to 2.

The concordance/discordance indices are given in the Table 6.2.
Concerning the weights, for example:

1

2

If the three criteria have the same importance, i.e. then
we obtain that the maximum value of the index is for the permutations

and

If we know that and for all j, then
(see Figure 6.1).

Then, to obtain the permutation that maximizes the index we must check
for the three vertices (1, 0), and The maximum value of the index
is equal to 2 for the permutations and for the weights (1,0,0).

The result of this method is a ranking of alternatives under consideration.
QUALIFLEX is based on pairwise criterion comparison of alternatives, but no
outranking relation is constructed. An important limitation of this method con-
cerns the fact that the number of permutations increases tremendously with the
number of alternatives. This problem may be solved. Ancot [1] formulated this
problem as a particular case of Quadratic Assignment Problem; this algorithm
is implemented in the software MICROQUALIFLEX.
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Figure 6.1. Set of feasible weights.

2.2 REGIME

The REGIME method [9, 10] can be viewed as an ordinal generalization of
pairwise comparison methods such as concordance analysis. The starting point
of this method is the concordance defined in the following way:

where is the concordance set, i.e. the set of criteria for which is at least
as good as and and is the weight of criterion The focus
of this method is on the sign of for each pair of alternatives. If this
sign is positive, alternative is preferred to and the reverse if the sign is
negative.

The first step of the REGIME method is the construction of the so-called
regime matrix. The regime matrix is formed by pairwise comparison of alterna-
tives in the multi-criteria evaluation table. Given and for every criterion
we check whether has a better rank than then on the corresponding place
in the regime matrix the number +1 is noted, while if is a better position than

the number – 1 is the result.
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More explicitly, for each criterion we can defined an
indicator for each pair of alternatives

where is the rank of the alternative according to criterion
When two alternatives are compared on all criteria, it is possible to form a vector

that is called a regime and the regime matrix is formed of these regimes. These
regimes will be used to determine rank order of alternatives.

The concordance index, in favor of the alternative is given by:

If the are explicitly known, we can obtain a concordance matrix
with zero on the main diagonal (Table 6.3).

One half of this matrix can be ignored, since
In general the available information concerning the weights is not explicit

(not quantitative) and then it is not possible to compute the matrix C. If the
available information concerning the weights is ordinal, the sign of may
be determined with certainty only for some regimes [30]. For others regimes
a such unambiguous result can not be obtained; such regime is called critical
regime.

EXAMPLE 7 We can illustrated this method on the basis of multi-criteria eval-
uation table with 3 alternatives and 4 criteria (Table 6.4, [10]).
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For this example, the regime matrix is presented in the Table 6.5.

If we make the hypothesis that we find
and Thus is preferred to

but we can not conclude between and and If we know for example
that:

then we find that in all cases, which means that,
on the basis of a pairwise comparison, is preferred to In a similar way it
can be shown that, given the same information on the weights, is preferred
to and that is preferred to Thus we arrive at a transitive rank order of
alternatives.

It is not possible to arrive at such definite conclusions for all rankings of the
weights. If we assume that:

it is easy to see that from the first regime may result both positive and negative
values of For example if whereas
for Therefore, the corresponding regime is
called a critical regime. The main idea of regime analysis is to circumvent these
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difficulties by partitioning the set of feasible weights so that for each region a
final conclusion can be drawn about the sign of

Let the ordinal information available about the weights be:

The set of weights satisfying this information will be denoted as T. We have to
check, for all regimes if may assume both positive and negative values,
given that is an element of T. The total number of regimes to be examined is

For our example, the number of critical regimes is equal to four:

The number of critical regimes is even, since we known that if is a critical
regime then is critical. The subsets of T can be characterized by
means of the structure of the critical regimes. The four critical regimes of our
example give two critical equations:

The following subsets of T can be distinguished by means of these equations:

An examination of reveals that is empty, so that ultimately
three relevant subsets remain. The subsets and are convex polyhedra,
as it is the case for the set T. The extreme points of these polyhedra can be
determined graphically in the case of four criteria. The extreme points for T
are:
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In addition to these four points, the extreme points

are needed to characterize and The characterization of and
by means of the extreme points are for A, B, E, F; for B, D, E, F and
for B, C, D, E.

Once the partitioning of the weight set has been achieved, for each subset
of T it is possible to indicate unambiguously the sign of for each pair of
alternatives. Let be defined as follows:

Then a pairwise comparison matrix V can be constructed consisting of el-
ements equal to +1 or -1, and zeros on the main diagonal. A final ranking of
alternatives can be achieved on the basis of V.

For example, take an interior point of subset (e.g. the centroid computed as
the mean of the extreme points). Determine the sign of for all regimes occur-
ring in the regime matrix (Table 6.5). Thus we find for the pairwise comparison
matrix

On the basis of we may conclude that is preferred to which in turn
is preferred to For the two other subsets of weights we find:

The second pairwise comparison matrix does not give a definitive ranking of
alternatives, but on the basis of we may conclude that is preferred to
which is again preferred to

The relative size of subsets and are not equal. If we assume that
the weights are uniformly distributed in T, the relative size of the subsets of
T can be interpreted as the probability that alternative is preferred to
Probabilities are aggregated to produce an overall ranking of alternatives. The
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relative sizes of the subsets can also be estimated using a random generator.
This is recommended if there are seven criteria or more, since the number of
subsets increases exponentially with the number of criteria [30].

The relevant subsets given an arbitrary number of criteria can be found in
[10]. The REGIME method can be applied to mixed evaluations (ordinal and
cardinal criteria) without losing the information contained in the quantitative
evaluation. This requires a standardization of the quantitative evaluation. Israels
and Keller [12] has been proposed a variant of REGIME method where the
incomparability is accepted. The REGIME method is implemented in a system
to support Decision on a finite set of alternatives: DEFINITE [13].

2.3 ORESTE

ORESTE (see [32, 33]) has been developed to deal with the situation where the
alternatives are ranked according to each criterion and the criteria themselves
are ranked according to their importance. In fact the ORESTE method can deal
with the following multi-criteria problem. Let A be a finite set of alternatives

The consequences of the alternatives are analysed by a family
F of criteria. The relative importance of the criteria is given by a preference
structure on the set of criteria F, which can be defined by a complete preorder
S (the relation is strongly complete and transitive, the indifference
I is symmetric and the preference P is asymmetric). For each criterion

we consider a preference structure on the set A, defined by a
complete preorder. The objective of the method is to find a global preference
structure on A which reflects the evaluation of alternatives on each criterion
and the preference structure among the criteria.

The ORESTE method operates in three distinct phases:

First phase. Projection of the position-matrix.

Second phase. Ranking the projections.

Third phase. Aggregation of the global ranks.

We start from complete preorders of the alternatives from A related to the
criteria, (for each alternative is given a rank with respect to each criterion).

Also for each criterion is given a rank related to its position in the complete
preorder among the criteria. The mean rank discussed by Besson [2] is used.
For example, if the following preorder is given for the criteria
then and where is the Besson-rank of criterion

idem for the alternatives, is the average (Besson) rank of alternative
with respect to the criterion Given ORESTE tries to build a

preference structure O = {I, P, R} on A such as:

if is comprehensively preferred to
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if is indifferent to

if and are comprehensively incomparable

Projection. Considering an arbitrary origin 0, a distance is defined
with the use of such that if where

is the evaluation of alternative with respect to criterion When ties
occur, an additional property is: if and then

For the author, the “city-block” distance is adequate:

where stands for a substitution rate The projection may be
performed in different ways [29, 33].

EXAMPLE 8 Given the following example with 3 alternatives and 3 criteria
(without ties). The complete preorders of alternatives are:
and and for the criteria: This example may be visualized
by a position matrix (Table 6.6).

Being the city-block distance for this example is
given in Table 6.7.
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Ranking. Since it is the relative position of projections that is important
and not the exact value of the projections will be ranked. To rank the
projections a mean rank is assigned to a pair such that

if These ranks are called comprehensive ranks and
are in the closed interval For our example since

Aggregation. For each alternative one computes the summation of their
comprehensive ranks over the set of criteria. For an alternative this yields the
final aggregation

For our example, if we obtain:

In the ORESTE method, the following index is also computed:

It is easily shown that Moreover, the maxi-
mum value of equals

For our example with we obtain: and
Thus, we may obtain the preference structure O = {I, P, R} in

such way that if then or or where stands for an
indifference level and for an incomparability level (see Figure 6.2).

For our example with we have

and Thus, if and we obtain
and

These thresholds are interpreted in [29]. When the outranking rela-
tion is a semi-order which becomes a weak order if

The global preference relation P built by ORESTE is transitive [29]. The
axiom known as the Pareto principle or citizen’s sovereignty holds if

but the axiom of independence of irrelevant alternatives is generally
violated [33].



210 MULTIPLE CRITERIA DECISION ANALYSIS

Figure 6.2. ORESTE flow chart.

2.4 ARGUS

The ARGUS method [14] uses qualitative values for representing the intensity
of preference on an ordinal scale. They express this intensity of preference
between two alternatives by selecting one of the following qualitative
relations: indifference, small, moderate, strong or very strong preference. All
evaluation on the criteria are treated as evaluations on an ordinal scale, but the
evaluations of each alternative with respect to each criterion can be quantitative
(interval or ratio scale) or qualitative (ordinal scale).

The way of obtaining the required information from the decision maker (DM)
to model his/her preference structure, depends on the scale of measurement of
each criterion. If the scale is ordinal, we may use the following possible values:
very poor, poor, average, good, very good. To model the preference structure
of the DM on this criterion, the DM must indicate his/her preference for each
pair of values. He must construct a preference matrix (Table 6.8).

In fact the DM must fill only the lower triangle of this matrix. The number
of rows and columns of this matrix depends on the number of different values
the ordinal criterion can have. The preference of the DM on an interval scale
criterion will depend on while his/her preference on a
ratio scale criterion will depend either on only or on and
For example, if his/her preference depends on only, this means that only
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the absolute difference determines his/her preference. The preference structure
of the DM for an interval scale criterion can be modeled by determining for
which absolute difference the DM is indifferent, for which he/she has a
moderate preference, for which he/she has a strong and for which he has a
very strong preference. For a ratio scale criterion, he/she can also consider the
relative difference (see Table 6.9). We must indicate if the criterion must be
MIN or MAX.

The following ordinal scale may be used to reflect the importance of a crite-
rion: not important, small, moderately, very and extremely important. The DM
must indicate for each criterion, by selecting a value from this ordinal scale,
how important one criterion is for him/her.

When the preference structure of the DM for each criterion is known as well
as the importance of each criterion, the comparison of two alternatives and
with respect to the criterion leads to a two-dimensional table (Table 6.10).

In a cell, stands for the number of criteria of a certain importance for which
a certain preference between the alternatives and occurs,

In order to get one overall appreciation of the comparison between the alter-
natives and the DM must rank all cells of Table 6.10 where
A ranking in eight classes is proposed to DM. Through this ranking a one di-
mensional ordinal variable is created. In fact there is a combined preference
with respect to difference on evaluations and importance of weights where

and where (see Table 6.11).
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The decision maker can alter this ranking (by moving a cell from one class to
another, by considering more or less classes) until it matches his/her personal
conception. Based on those two variables an outranking (S), indifference (I) or
incomparability (R) relation between two alternatives is constructed:
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in all other cases
According to the basic idea of outranking, if alternative is much better

than alternative on one (or more) criteria and is much better than on other
criteria, there can be discordance between alternative and alternative and
will not outranking The DM must explicitely indicate for each criterion when
there is discordance between two evaluations on that particular criterion. For
an ordinal criterion he/she can indicate in the upper triangle of the preference
matrix (Table 6.8) when discordance occurs. For an interval or ratio criterion,
the DM must indicate from which difference (absolute or relative), between the
evaluations of two alternatives on that criterion, there is discordance.

EXAMPLE 9 We have 4 alternatives, 4 criteria and the evaluation table (Table
6.12). In this example, the criteria are ordinal scales, and criterion

is a ratio scale to be minimized.

The following dominance relation can be observed from the data: so
that after deleting the set of alternatives is It is necessary
to make this pre-processing step.

The preference modeling of alternatives with respect to the criteria are given
in Tables 6.13, 6.14, and 6.15.

The preference structure of weights of the criteria is given in Table 6.16.
Suppose that the ranking in eight classes of the combined preference with

weight of two alternatives presented in Table 6.11 is approved. Table 6.17 gives
an example of a pairwise comparison between and
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The pairwise comparison of all pair of alternatives from A permits to con-
struct the following binary relations: and (see Figure
6.3).
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Figure 6.3. Outranking graph.

The ARGUS method demands a relatively great effort from the DM to model
his/her preferences.

2.5 EVAMIX

The EVAMIX method [30, 39, 40] is a generalization of concordance analysis
in the case of mixed information on the evaluation of alternatives on the judg-
ment criteria. Thus a pairwise comparison is made for all pairs of alternatives
to determine the so called concordance and discordance indices. The difference
with standard concordance analysis is that separate indices are constructed for
the qualitative and quantitative criteria. The comprehensive ranking of alterna-
tives is the result of a combination of the concordance and discordance indices
for the qualitative and quantitative criteria.

The set of criteria in the multi-criteria evaluation table is divided into a set of
qualitative (ordinal) criteria O and a set of quantitative (cardinal) criteria C. It
is assumed that the differences between alternatives can be expressed by means
of two dominance measures: a dominance score for the ordinal criteria,
and a dominance score for the cardinal criteria. These scores represent the
degree to which alternative dominates alternative They have the following
structure:
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where represents the evaluation of alternative on the criterion and
the importance weight associated to this criterion. These scores can be defined
as follows:

where

The symbol denotes an arbitrary scaling parameter, for which any positive
odd value may be chosen, In a similar manner, the quantitative
dominance measure can be made explicit:

In order to be consistent, the same value for the scaling parameter should
be used as in formula for It is assumed that the quantitative employed
evaluation have been standardized Evidently, all standardized
scores should have the same direction, i.e., a ‘higher’ score should (for instance)
imply a ‘larger’ preference. It should be noted that the rankings of
the qualitative criteria also have to represent ‘the higher, the better’. Since
and will have different measurement units, a standardization into the same
unit is necessary. The standardized dominance measures can be written as:

where represents a standardization function.
Let us assume that weights have quantitative properties. The overall dom-

inance measure for each pair of alternatives is:

where and This overall dominance score reflects
the degree to which alternative dominates alternative for the given set of
criteria and the weights. The last step is to determine an appraisal score for
each alternative. In general the measure may be considered as function
of the constituent appraisal scores, or:
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This expression represents a well-known pairwise comparison problem. De-
pending on the way function is made explicit, the appraisal scores can be
calculated. The most important assumptions behind the EVAMIX method con-
cern the definition of the various functions. It is shown in [40], that at least
three different techniques can be distinguished which are based on different
definitions of and The most straightforward standardization is
probably the additive interval technique. The overall dominance measure
is defined as:

which implies that To arrive at such overall dominance measures
with this additivity characteristic, the following standardization is used:

where is the lowest (highest) qualitative dominance score of any pair of
alternatives and is the lowest (highest) quantitative dominance
score of any pair of alternatives The resulting appraisal score is:

This expression means that the appraisal scores add up to unity,
In the previous elaboration, quantitative weights were

assumed. In some circumstances, only qualitative priority expressions can be
given. If only ordinal information is given, at least two different approaches may
be followed: an expected value approach (see [30, Appendix 4.I]) or a random
weight approach. The random weight approach implies that quantitative weights
are created by a random selection out an area defined by the extreme weight
sets. These random weights have to fulfill the following
conditions:

1 for each

2

where denotes a ranking number expressing a qualitative weight with “lower”
means “better”. For each set of metric weights generated
during one run of the random number generator, a set of appraisal scores can
be determined. By repeating this procedure many times a frequency matrix can
be constructed. Its element represents the number of times, alternative
was placed in the position in the final ranking. A probability matrix with
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element can be constructed, where:

So, represents the probability that will receive an position. We
can make a comprehensive ranking of the alternatives in the following way:

and so forth.
The EVAMIX method is based on important assumptions: 1) the definition

of the various functions and 2) the definition of the weights of the sets
O and C and 3) the additive relationship of the overall dominance measure.

2.6 TACTIC

In the TACTIC method, proposed by Vansnick (see [37]), the family of criteria
F is composed of true-criteria or quasi-criteria (criteria with an indifference
threshold q > 0) and the preference structures correspondent
are (P, I) or (P, I, R), where R is the incomparability relation, if no veto-
threshold is considered or at least one is introduced respectively.

To each criterion an importance weight is associated, as in
the ELECTRE methods (see chapter 4 in this book). To model the preferences,
the following subset of is defined,

where is the marginal indifference threshold as a function of the worst
evaluation between and and therefore in this case we have

If in the set F only true criteria are considered, the statement is true if
and only if the following concordance condition is satisfied:

where the coefficient is called required concordance level (usually,

and the two summations represent the absolute importance of
the coalition of criteria in favor of or respectively.

If also some quasi-criterion is in the set F, in the preference structure
(P, I, R) is true if and only if both concordance condition 6.1 and the
following non-veto condition are satisfied:
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where is the marginal veto threshold.
If the condition (6.2) is not satisfied by at least one criterion from F, we have

On the other hand, we have if and only if both pairs and
do not satisfy condition (6.1) and no veto situation arises.

We remark that if the condition (6.1) is equivalent

to the complete absence of criteria against the statement i.e.
(and therefore in this case, (6.2) automatically holds). If for each criterion

the relation P is transitive for When is decreasing from level
we can have two types of intransitivity:

(or

If in equation (6.1) we obtain the basic concordance-discordance
procedure of Rochat type:

for structures (P, I) (see [35]),

for structures (P, I, R),

The main difference between the ELECTRE I and TACTIC preference mod-
eling is that the latter method is based on the binary relation while the
former aims to build up the outranking relation Moreover, the
validation of the preference relation is now based on a sufficiently large ratio
between the importance of criteria in favor and against the statement Roy
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and Bouyssou [35] show that this second difference is actually just a formal
one. They also remark that, as a consequence of the peculiar characterization
of the statement in TACTIC method is difficult to split indifference and
incomparability situations. No particular exploitation procedure is suggested in
TACTIC method.

2.7 MELCHIOR

In the MELCHIOR method [16] the basic information is a family F of pseudo-
criteria, i.e. criteria with an indifference threshold and a preference thresh-
old such that, and

is strictly preferred to with respect to iff

is weakly preferred to with respect to iff

and are indifferent iff there is no strict or weak preference
between them.

No importance weights are attached to criteria, but a binary relation M is
defined on F such that means “criterion is as least as important
as criterion In order to state the comprehensive outranking relation
the Author proposes to “match” in a particular way the criteria in favor and
the criteria against the latter relation (concordance analysis) and to verify that
no discordance situation exists, i.e. no criterion from F exists such that

where is a suitable veto-threshold for criterion (absence
of discordance). In this method, a criterion is said to be in favor of the
outranking relation if one of the following situations is verified:

(marginal strict preference of over (1st condition)

or (marginal strict or weak preference of a over b) (2nd con-
dition)

(3rd condition).

A criterion is said to be against the outranking relation if one of
the following situations is verified:

(marginal strict preference of over (1st condition)

or (marginal strict or weak preference of over (2nd con-
dition)

(3rd condition).
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The concordance analysis with respect to the outranking relation
A, is made by checking if the family of criteria G in favor of this relation “hides”
the family of criteria H that are against relation These subsets of criteria
are compared just using the binary relation M on F. A subset G of criteria
is said to “hide” a subset H of criteria if, for each
criterion from H, there exists a criterion from G such that

(1st condition) or

or not (2nd condition),

where the same criterion from G is allowed to hide at most one criterion
from H.

By choosing two suitable combinations (see [16]) of the above conditions,
the first stricter than the other, and verifying the concordance and the absence
of discordance, a strong and a weak comprehensive outranking relation can be
respectively built up. Then these relations are in turn exploited as in ELECTRE
IV method (see chapter 4 in this book). We remark that the latter in fact coincides
with MELCHIOR if the same importance is assigned to each criterion.

We finally observe that in both TACTIC and MELCHIOR methods no pos-
sibility of interaction among criteria (see Chapter 14 in this book) is taken into
consideration, since the first one considers additive weights for the importance
of each coalitions of criteria and the last one just “matches” one to one criteria
in favor and against the comprehensive outranking relation

3. Pairwise Criterion Comparison Approach
In this approach, after the evaluations of potential alternatives with respect to
different criteria, the phase of building up the outranking relations is split in
two different steps, making comparisons at first level (partial aggregation) with
respect to each subset of criteria

and then aggregating at the second level these partial results
(global aggregation).

With respect to weighting, this way of aggregating preferences allows to
take into consideration the marginal substitution rate (trade-off) of each crite-
rion from subset at the first step and the importance of each coalition of
criteria at the second step, with the possibility to explicitly modeling the
different meaning of these “weights” and the eventual interaction among crite-
ria from each (see chapter 14 in this book). Moreover, peculiar preference
attitudes with respect to compensation, indifference and veto relations may be
usefully introduced at each step of preference aggregation process; therefore,
these particular options may be modelled at “local” and global level, when the
partial and aggregated preferences indices respectively are built up.
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For (i.e. when two criteria a time are considered in the first phase of
aggregation), we speak of Pairwise Criterion Comparison Approach (PCCA),
that is therefore a methodology in which first all the feasible actions are com-
pared with respect to pairs of criteria from F, and then all the partial information
so obtained are suitably aggregated.

Given in the Multiple Attribute Utility Theory ( see chapter 7
in this book) the partial utility functions are aggregated in
different ways to obtain the global utility of each alternative and then the
final recommendation.

In the outranking ELECTRE and PROMETHEE (see Chapter 4 in this book)
families methods, from the evaluations of each action with respect to each
criterion some (crisp or fuzzy) marginal outranking or preference
relations are built up as elementary indices, or relations, with respect
each criterion and each (ordered) pair of actions then, using
these marginal relations and other inter-criteria information, a comprehensive
outranking relation or index is obtained. In PCCA, in the first stage for
each pair of actions a fuzzy binary preference index
is built up as elementary index taking into consideration two different criteria
a time; then, by suitable aggregation of these partial indices, a global index

is obtained, expressing the comprehensive fuzzy preference of over
As in all the other outranking methods, the exploitation of the indices ex-

pressing the comprehensive relation allows to obtain the recommendation for
the decision problem at hand.

The main reasons that suggest this two levels aggregation procedure are the
following:

limited capacity of the human mind to compare a large number of ele-
ments at the same time, taking into consideration numerous and often
conflicting evaluations simultaneously;

limited ability of the DM for assessing a lot of parameters concerning
subjective evaluations of general validity and considering all available
information together.

Of course, this approach requires a larger number of computations and pref-
erence information, but:

it actually helps in understanding and it supports the entire decision mak-
ing process itself;

it allows DM to use in an appropriate way all own preference information,
requiring weaker coherence conditions, and to obtain further information
about partial comparisons;
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it compares actions with respect to two criteria a time and, then it is easier
to set appropriate parameters reflecting the partial comparison at hand;

it offers greater flexibility in the preference modeling, allowing explicitly
the representation of specific preference framework and information DM
wants to use each time in the considered comparison;

it allows useful extensions of some well-known basic concepts, like
weighting, compensation, dominance, indifference, incomparability, etc.

it actually allows to model interaction between each couple of criteria,
possibly the most important and really workable in an effective way.

Therefore, in our opinion the PCCA satisfies the following principles, rel-
evant in any decision process, to build up realistic preference models and to
obtain actual recommendations:

transparency, making some light in any phase of the “black box” process
(about the aggregation procedure in itself, the meaning of each parameter
and index, their exploitation, etc.);

faithfulness, respecting accurately the DM’s preferences, without impos-
ing too axiomatic constraints;

flexibility, accepting and using any kind of information the DM wants
and is able to give, neither more, nor less.

This means that DM will not be forced to “consistency” or “rationality”. In
other words, not too “external conditions” will be imposed to DM in expressing
his/her preferences, but all actual information will be used. So, for example, not
transitive trade-offs, (different from where is the trade-off
between criteria and and or not complete importance weights (to some
criterion no weight is associated) and also aggregated information (i.e., pooled
importance weights, reflecting the interaction among criteria of each coalition)
will be accepted as input.

Roughly speaking, the PCCA aggregation procedure can be applied to a lot
of well-known compensatory or noncompensatory aggregation procedures re-
sulting in binary preference indices. For each let be an interval
scale of measurement (i.e., unique up to a positive linear transformation) and

be a suitable scale constant, called trade-off weight or constant
substitution rate, reflecting (in a compensatory aggregation procedure) the in-
crease on criterion value necessary to compensate a unitary decrease on other
criterion from F in terms of global preference. In other words, is used to
transform the scale for normalizing and weighting the criteria values in order
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to compare units on different criterion scales, for each Often this nor-
malization is made introducing two parameters and
usually fixed a priori by DM according to the specific decision problem at hand
and related with the discrimination power of the criterion scales. These param-
eters represent, in the DM’s view, respectively two suitable “levels” on criterion

to normalize its evaluations of feasible actions. For example, and can
be respectively the “neutral” and the “excellent” level or the minimum and max-
imum value that can be assumed on criterion currently,
and Therefore we can write where repre-

sent the marginal weight (“importance”) of criterion after normalization of
its scale.

Let consider the following subsets of

In this way, each doubleton determines a partition of (possible an
improper one, since some of the three subsets may be empty), whose elements
are the subsets of criteria for which there is preference of over indifference
of and preference of over respectively.

Moreover, let be

i.e. the subset of criteria for which there is a weak preference of over
Let us remember, for example, the following elementary indices:

where is the importance weight associated with criterion and

where and all criteria are interval scales.
If we consider the subset of criteria indicating by any

one of the above indices, computed with respect to G, it is possible to derive
thence a new binary preference index defined as follows:
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The following properties hold,

both being partial dominance relations defined with respect to the considered
couple of criteria

Therefore, the general index obtained by the PCCA partial aggre-
gation procedure, indicates the credibility of the dominance of over with
respect to criteria and

Let now be the normalized weight used in a noncompensatory
aggregation procedure, called importance weight, associated with criterion

indicating the intrinsic importance of each criterion, independently by its
evaluation scale. Then, we can aggregate the partial indices computed
with respect to all the pairs of different criteria and from F according to
the PCCA logic, considering also the normalized importance weight (i.e.

of the coalition (couple) of criteria and
We obtain the following aggregated index:

If there is no interaction between these criteria, additive weights can be used
in equation (6.4), i.e. The following properties hold,
(see Section 3.1):

Therefore, the particular meanings (credibility of dominance) of the partial
and global indices and respectively are results essentially linked
to the peculiar aggregation procedure of PCCA and not to the specific bicriteria
index considered each time.

In the framework of the PCCA methodology, different methods have been
proposed: MAPPAC, PRAGMA, IDRA, PACMAN, each one with its own fea-
tures to build up the correspondent outranking relations and indices.

3.1 MAPPAC
We recall that dominates with respect criteria from F if
is at least as good as for the considered criteria and is strictly preferred to
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for at least one criterion:

We say that weakly dominates if is at least as good as for all the
criteria from F:

We say that strictly dominates iff where
at most only one equality is valid. The binary relation is a partial pre-
order (reflexive and transitive), while D (and is a partial order (irreflexive,
asymmetric and transitive); the correspondent preference structures are partial
order and strict partial order respectively. Of course,

and
In PCCA, where a subset of criteria is considered at the

first level of aggregation, we say that partially dominates if the
relation of dominance is defined on G. We say that is partially preferred or is
partially indifferent to and respectively) if these relations hold
with respect to the set of criteria

We observe that

if all criteria from F are true criteria.
In the MAPPAC method [25] the basic (or partial) indices can be

interpreted as credibility indices of the partial dominance indicating
also the fuzzy degree of preference of over the global index can be
interpreted as the credibility index of strict dominance i.e. as the fuzzy
degree of comprehensive preference of over

If all criteria from F are interval scales, recalling that
for each and is the trade-off weight and the

(normalized) importance weight of criterion the axiomatic system
of MAPPAC partial indices can be summarized as follows (see Table 6.18) for
each

The basic indices are functions only of the signs of the differ-
ences in evaluations of and with respect to criteria and in case
of concordant evaluations, i.e. iff In this case,

and
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and then and in the first case, and
and in the second case.

The basic indices are functions of the values of the differ-
ences in evaluations of and with respect to criteria and and
of trade-off weights and in case of discordant evaluations, i.e. iff

In this case, the indices and will
be of a compensatory type, lying in the interval ]0,1[, and they will indi-
cate the fuzzy degree of preference of over and of over respectively;
if

The global indices are functions of all the basic indices
and of the importance weights of all coalitions of criteria. If
there is no interaction between criteria and we have
In case of strict dominance or and or

and respectively. Otherwise, and
will lie in the interval ]0, 1[ and they will indicate the fuzzy degree of
comprehensive preference of over and of over respectively.

Preference Indices. We recall that
is the normalized weighted difference of evaluations of actions and

with respect to criterion
If we assume in the equation (6.3)

we obtain the partial index of MAPPAC,
This index can also be explicitly written as shown in Table 6.19.

It is invariant to the admissible transformation of any i.e. all the affine
transformations of the type with and being
the criteria interval scales. It is the image of a valued binary relation, strictly
complete, transitive and ipsodual (i.e. that constitutes
a complete preorder on A, and it indicates the fuzzy partial preference intensity
of over



228 MULTIPLE CRITERIA DECISION ANALYSIS

The basic preference index may be immediately interpreted geo-
metrically by considering the partial profiles of the actions and with respect
to criteria and (see Fig. 6.4).

Figure 6.4. Geometrical interpretation of preferences indices.
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Let us consider the following subsets of F:

Of course, and
Since (see [26])

we can split all the basic preference indices as follows:

Thus, if and only if and (i.e.,
for each with at most only one equality), if and only
if and and for
each if and only if (i.e., for each

The global preference index is the sum of all the basic
preference indices weighted each time by the normalized importance
weights of the considered couple of criteria

where
If there is no interaction between each couple of criteria, we have

where is the normalized importance weight of criterion
and therefore:
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Therefore, in this case we can write as:

where:

Let We can write:

and, recalling equation (6.6),

We observe that:

a)

b)

c)

d)

e)

if or

if

the index is a linear combination of the crisp concordance in-
dex of the ELECTRE methods (see Chapter 4 in this book) and
the opposite of semi-sum of the importance weights of criteria from set

their coefficients are respectively given by the ratios between
the number of criteria belonging to the corresponding classes and the total
number of criteria up to one unit (i.e., the number of significant criteria
for a comparisons by means of pairs of criteria);

if and
1 if and only if (but does not imply

if and only if and if
and only if (but does not imply
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f)

g)

the compensatory component of (see equation (6.6))
may be methodologically linked to the MAUT approach, in particular
to the weighted sum with constant marginal substitution rates (trade-off
weights);

if the number o of the criteria from F for which changes
without modification in the sum of the relative importance weights of
coalitions and the value of the aggregate
preference index may vary, as a consequence of changing of its
component value. More precisely:

and increases with o, i.e.

and decreases with o, i.e.

since

if the relative importance of and are equal, the
relation is stable with respect to o;

stable with respect to o,

if there is a perfect compensation between the normalized weighted
differences in evaluations of opposite signs (i.e. neutral behav-
ior of

i.e. if and only if

the aggregate preference index is an increasing function of
if

Following the same principle of PCCA, it is possible to build up other partial
and global preference indices, based on a logic of noncompensatory aggregation
[24]. The common feature of all these indices is that they are based on bicriteria
and global indices, measuring respectively the credibility of partial dominance
and of strict dominance of over So, for example, if no 2-level
interaction occurs among considered criteria, let us consider the following two
aggregated indices:
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We can observe that index is totally noncompensatory and it is anal-
ogous to the concordance indices of ELECTRE I and II methods. On the other
hand, index is PCCA-totally noncompensatory (see [24]), depending
on the “coalition strength” of the subsets (couples of criteria) of such that

or Both these indices, like index are also functions of

Taking into account the above properties and the peculiar features of the
basic preference indices with respect to the dominance and compensation,
MAPPAC and – more generally – PCCA may be considered as an “interme-
diate” MCDA methodology between the outranking (particularly ELECTRE)
and MAUT methods.

Indifference Modelling. Since the evaluations of actions and with re-
spect to the couple of criteria from F are compared each time to build up
index and recalling that means by definition
active or passive partial dominance of over (and then or 0
respectively), it is useful to confine the dominance relation only if well founded
situations will occur. Therefore, in order to take into account the inevitable inac-
curacies and approximations in the actions evaluations, and in order to prevent
small differences between these evaluations from creating partial dominance
relations or preference intensities close to the maximum or minimum values, it
is advisable to introduce suitable indifference areas on the plane
in the neighborhood of point see Fig. 6.5.

Figure 6.5. Indifference areas.
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These areas may be defined in various way, as functions of correspondent in-
difference thresholds, one for each criterion considered (see [22]). The marginal
indifference threshold for criterion denoted by is not negative and unique
for every couple of distinct actions

and it is a function of the evaluations of these actions according to the
criterion considered:

The first parameter is expressed in the same scale of values as the criterion
and is a linear function of the arithmetical mean of the evaluations of the

considered actions, being the constant of proportionality. Then, if or
equation (6.7) supplies constant indifference thresholds, in absolute or

relative value respectively. It is therefore possible to define an indifference area
for each pair of actions and criteria as a function of the

marginal indifference thresholds (6.7). This area may assume various shapes,
for example:

rectangular, if
(see Fig. 6.6);

Figure 6.6. Indifference areas: rectangular.

rhomboidal, if (see Fig.
6.7);

elliptical, if (see Fig.

6.8).
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Figure 6.7. Indifference areas: rhomboidal.

Figure 6.8. Indifference areas: elliptical.

It also possible to introduce semi-rectangular, semi-rhomboidal and semi-
elliptical indifference areas, corresponding to the shadowed areas in Figures
6.6, 6.7, 6.8 respectively, with the specific aim of eliminating the effect of
partial dominance only, adding each time the further conditions:

Finally, it is also possible to consider mixed indifference areas, as a suitable
combination of two or more of the cases considered above for each quadrant
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centered in point I. We can then modeling indifference in a flexible way, by
setting different thresholds and/or shapes for each couple of criteria, according
to the DM’s preferential information.

Therefore, two separate indifference relations are obtained: strict indiffer-
ence, denoted by as a result of Table 6.19; large indiffer-
ence, denoted by iff a vector is introduced,
and some of the corresponding above indifference area conditions are satisfied,
and thus is assumed.

Note that is an equivalence relation, whereas the relation is not
necessarily transitive.

Preference Structures. Using the basic and global preference indices
and it is possible to immediately define the following correspondent
binary relations of partial and comprehensive indifference and preference rela-
tions respectively, with the particular cases of dominance recalled above:

Partial relations

Comprehensive relations

Both these structures constitute a complete preorder on A. We observe that,
if no indifference areas are introduced, will be for
each and and therefore also

Of course, by means of the same indices, we can also build up some other
particular complete valued preference structures. For example, we may consider
the structure of semiorder, obtained by introducing a real parameter
which emphasizes the partial or global indifference relations (see Figure 6.9).

In this case, the indifference relations are reflexive, symmetric and not transi-
tive, while the preference relations are transitive, non reflexive and asymmetric.
We note that if we obtain again a complete preorder with “punctual”
indifference, i.e. only for while if the binary
preference relation is empty. Alternatively, by introducing two real parameters
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Figure 6.9. Aggregated semiorder structure.

and it is possible to build a complete two-valued preference
structure, assuming that there are two preference intensity levels, represented
by the preference relations (strict preference) and (weak preference)
(see Figure 6.10).

Figure 6.10. Aggregated pseudo-order structure.

In this case the relations of indifference and of weak preference are not
transitive and the preference model presents the properties of the well-known
pseudo-order structure (see [38]).

Conflict Analysis. Besides the concept of discordant criterion and veto
threshold often used for building outranking relations, another interesting fea-
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ture of PCCA approach is the possibility to consider a peculiar conflict analysis,
taking into consideration the differences in evaluations of two actions with re-
spect to each couple of criteria. The main aims of this analysis are the following:

to explicitly define binary incomparability relations in presence of eval-
uations of two actions and in strong contrast on two criteria and

in the preference modeling phase (refusal to make a decision)

to allow compensation only if differences in the conflicting evaluations
are not too large; otherwise, to use non compensatory basic indices (func-
tions only of importance weights), obtaining a partially compensatory
approach (reduction of compensation) (see [24]).

These aims can be reached by defining a suitable partial discordance in-
dex as a function of conflicting evaluations and
entropy of information, and comparing this one with correspondent incompa-
rability threshold given by DM (see [22]). If we note by the partial
incomparability relation with respect the couple of criteria and we have:

Then, considering all the possible couples of distinct criteria from F,
we have:

This global incomparability relation R, symmetric but neither reflexive nor
transitive, arise if at least one partial incomparability relation holds with respect
to actions and

The symmetric discordance index is defined as follows
[21].

It lies in and reaches its maximum value only in case of max-
imum effective discordance of evaluations of and with respect to and

and or viceversa)
and (equal normalized trade-off weights). Moreover,
if or in case of partial dominance (evaluation con-
cordance). Therefore, it is possible to set the incomparability thresholds
according to the real preferential information of DM about the different level
of compensation for each couple of criteria and
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The concepts introduced above therefore permit also a modelling by means
of the four binary relations I,P,Q,R, defined on A, which are exhaustive and
mutually exclusive and constitute a fundamental relational preference system.

Exploitation Phase. The results of the relational model in the form of fuzzy
binary relations obtained can be presented in the form of suitable bicriteria

(i.e. square matrices: one for each couple
of criteria from F, containing the partial preference indices, and one
aggregated matrix with the comprehensive preference indices,

The peculiar preference modeling flexibility of PCCA allows to respect accu-
rately the DM’s preference, without imposing too strong axiomatic constraints,
and accepting and using any kind of information the DM is able to give. There-
fore, DM is not forced to be “consistent”, “rational” or “complete”, but all
information given by DM is accepted and used, neither more, nor less. Con-
sequently, with respect to two criteria trade-offs it is possible to
use as input not transitive (i.e. or not complete
(some not given by DM) trade-offs for some pairs of criteria (and therefore
the component of index correspondent to these criteria will be
absent); and, with reference to importance weights the DM may
assign non additive weights to some couple of criteria, modelling thus their
interaction (i.e. weighting some index with a weight different from

In all these cases, the aggregate index will be computed taking
into account the peculiar information actually used as input.

The indices of preference intensity contained in the aggregated matrix may,
among other things, permit in the exploitation phase the building of specific
partial or complete rankings of feasible actions as final prescription.

A first possible technique to build rankings can be based on the concept of
qualification of a feasible action, introduced by Roy (see [34]). But, in order
to take into consideration the most complete preference information given by
the fuzzy relations, we can sum the global preference indices referred to each
feasible action in comparison with others, obtaining its comprehensive prefer-
ence index, aiming to build up the partition of A into S equivalence classes

(complete preorder), by means of a descending proce-
dure (from the best action to the worst) or by an ascending procedure (from the
worst to the best).

In either case, the peculiar feature of these techniques is that at every step they
select the action(s) assigned to a certain position in the ranking considered and
then repeat the procedure with respect to the subset of the remaining actions,
eliminating at each iteration the action, selected in the preceding one. Here is a
brief example of one of the possible techniques.
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Computation of the comprehensive preference index,

This will be:

In particular we obtain:

if and only if  strictly dominates, or is strictly dominated by, respectively, all the
remaining feasible actions. We then select the action(s) with the highest index

This action, or these actions, will occupy the first place in the decreasing
ranking, forming class Then, given we repeat the procedure
with reference to the actions from this new subset, obtaining the indices:

This iteration will make it possible to form class and so on (descending
procedure).

The increasing solution may be obtained by calculating for each action the
comprehensive index

and placing in the last class the action(s) which present the highest value for
this index. We then proceed with the calculation of the indices related
to the subset and so on.

This way to build the rankings is suggested in order to reduce the risk that an
action dominating or dominated by one or more feasible actions may assume a
discriminatory role over these. A dominated action has a distorting effect during
the descending procedure, while a dominating action produces the same effect
during the ascending procedure.

A useful geometrical interpretation on omometric axes of the complete pre-
orders related to the actions considered each time in the iteration may
efficaciously express the different rankings with the corresponding comprehen-
sive intensities of preference (see[22]). If the broken lines connecting the points
representing the comprehensive preferences of each action at all different iter-
ations prove to be more or less parallel, the relative comprehensive preferences
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tend to remain constant. On the other hand, if these broken lines intersect one an-
other, the ranking will present inversion in terms of comprehensive preferences
at the considered iterations.

Of course, in the building of all complete preorders it is possible to introduce
suitable indifferent thresholds, to prevent small differences in the comprehen-
sive indices considered at every iteration from assuming a discriminating role
(see [22]).

The building of preorders allows also to solve the choice problem. But it is
also possible to directly use the information about strict dominance (given by
the comprehensive preference) indices to support DM in choice problem.

Let that is
where means Lukasiewicz t-norm. Choice is usually based on

the following scoring functions:

non domination degree

where means “dual”of

non dominance degree

Let (i.e. the subset of non-
dominated actions from A) and (i.e. the
subset of non-dominating actions from A). Clearly, best action(s) will belong
to set and worst action(s) to set We observe that, if relation

is transitive, and are non empty.

3.2 PRAGMA

The Preference RAnking Global frequencies in Multicriteria Analysis (PRAG-
MA) [23] method is based on the peculiar PCCA aggregation logic (that is firstly
on pairwise comparisons by means of couples of distinct criteria, and then on the
aggregation of these partial results), and use the same data input and preferential
information of MAPPAC, of which it constitutes a useful complement and
presents the same flexibility in preference modeling. Moreover, it instrumentally
uses the MAPPAC basic preferences indices to compute its specific information
to support DM in his/her decision problem at hand. From the methodological
point of view, PRAGMA is neither a classical outranking neither a MAUT
method. In fact, the output of this approach are not binary outranking relations
or scores. But, following the aggregation procedure of PCCA, in the first and in
the second phase partial and global ranking frequencies are respectively built,
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one for each feasible action, and these frequencies are then exploited to give DM
a useful recommendation (partial or complete preorders are the final output).

Figure 6.11. Partial profile of action

Partial and Global Frequencies. Let the segment (see Fig 6.11)
be the partial profile of action where the points and have
as ordinates the weighted normalized evaluations of action with respect to
criteria and respectively,

Considering all couples of criteria, it is possible to obtain distinct partial
profiles of and we call global profile of the set of these partial profiles.

We define as partial broken or partial broken line of level of
the set of consecutive segments of its partial profiles, to which

correspond, for each point, partial profiles (distinct or coinciding) of
greater ordinate. If, for example, it is we obtain the partial
profiles and partial broken lines represented in Figure 6.12.

We observe that the partial broken coincides with
the partial profiles of if and only if is partially dominated by
actions and dominates the remaining ones and/or if couples
of actions from exist such that, for each
couple, their partial profiles come from opposite sides with respect to profile of

and they intersect this profile at the same point.



242 MULTIPLE CRITERIA DECISION ANALYSIS

Figure 6.12. Partial profiles and partial broken lines of

Further, we define as global broken or global broken lines of level
the set of partial broken obtained by considering

all the couples of distinct criteria The global broken coincides
with the global profiles of if and only if all the partial broken lines of level

obtained by considering each of the couples of criteria, coincide with
the corresponding partial profiles of

We define as the partial frequency of level of with
reference to the criteria and the value of the orthogonal projection on the
straight line (given of the intersection of the partial profile
of with the corresponding partial broken line of level If we indicate this
frequency as it will be for all
Thus, for example, from the graphics in Figure 6.13.
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Figure 6.13. Partial frequencies of

The partial frequencies may be represented in matrix form, obtaining
square matrices which is the matrix of the partial ranking frequencies:

The elements of the line of matrix (6.8) indicate in order the fractions of
the interval unitary for which the action is in the position

while the elements of the column of the same matrix indicate
those fractions for which the position (in the partial preference ranking
considered) is assigned to the actions respectively. Obviously:

If for all and the partial profiles
of all the actions will be non-coinciding, and there will be no inversions with
respect to the preference relation in the two complete preference preorders with
respect to the criteria and i.e. all actions from A partially dominate one
another.

If  partial profiles are coinciding, the corresponding partial
broken must be built taking distinctly into account the coinciding profiles

times (see [23]).



244 MULTIPLE CRITERIA DECISION ANALYSIS

Let us then define global frequency of level of as the
weighted arithmetic mean of all the partial frequencies of level of
obtained by considering all the couples of distinct criteria and Therefore,
designating this frequency by we obtain, if no interaction between
criteria is considered (see Section 3.1):

The linear combination of the matrices (6.8) with weights will there-

fore give the square matrix
called the global ranking frequency matrix. Its generic element

indicates the relative frequency with which is present in the
position in the particular ranking obtained by considering
all the criteria and the global profiles of all the feasible actions. It will
therefore be:

It is possible to calculate the partial frequencies by means of an algo-
rithm which uses the indices of the MAPPAC method (see [23]).
It is therefore possible to consider marginal indifference thresholds and suit-
able indifference areas also when the PRAGMA method is implemented. In
other words, the indices here instrumentally introduced, may be
calculated in advance by using all the techniques adopted with reference to the
MAPPAC method (see Section 3.1).

Apart from these calculations, it is useful in any case to remember among
others some particular features of the ranking frequencies obtained by the
PRAGMA method:

1

2

The partial frequencies (and therefore also the global ones) of are
functions of the value of the normalized weighted differences between the
evaluations of and those of the remaining feasible actions with respect
to the criteria considered. The values of these weighted differences may be
overlooked only in the case of partial dominance (for partial frequencies)
or strict dominance (for global frequencies), active or passive, of the
action

If partially dominates actions and it is partially dominated by
the remaining actions, the result is
whatever the values and
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3

4

If strictly dominates actions and is strictly dominated by the
remaining actions, the result is
whatever the values of the weights

If the action occupies the position,
in every monocriterion ranking and is preceded and followed by the
same subset of actions in these rankings.

Therefore, the information obtained by means of analysis of the global fre-
quencies is more complete and more accurate than that obtained from
an examination of all the distinct monocriterion rankings of the feasible actions,
or from a mixture of these.

Exploitation and Recommendation. In order to support DM in the decision
problem at hand, it is often sufficient to analyze the elements of matrices
and/or F. For example, a straightforward reading of the global frequencies of
matrix F could indicate which action(s) will finally be chosen. But the concise
and accurate information regarding the frequencies of ranks each action may
occupy can be extremely useful to build up final rankings.

If we want to obtain complete or partial rankings of the feasible actions
in order to build up comprehensive evaluations and recommendations, it is
possible, for example, to proceed in this way. Calculate for each action
the accumulated frequencies of order  summing the first
elements of the row of matrix F, that is:

Then establish the order of the frequencies which are
considered relevant to the building of the ranking, that is indicate to what order

we intend to take into consideration the accumulated frequencies for
this purpose. The following comprehensive index is then built:

This gives the measure of the “strength” with which occupies the first
positions in the aggregated ranking. This in practice will be

which regards the first positions in the ranking; the coefficients indicate the
relative importance (not increasing with of accumulated frequence of order

In the first class of the decreasing ranking will be placed the action(s)
to which the maximum value of corresponds. In order to avoid ex
aequo rankings, we proceed by selecting whichever actions have obtained an
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equal value of on the basis of the values of the indices and, in the
case of further equality, on those of the indices and so on. In this case
ex aequo actions would be accepted only if their corresponding indices
proved equal for If, on the other hand, we desire to prevent
small differences in the indices from having a discriminatory role in the
building of the rankings, it is possible to consider global indifference thresholds
(see [22]).

If we place for all in 6.9, we do not emphasize the greater
importance of the global ranking frequencies of the first positions. On the other
hand, if we accept we take into account only the global frequencies of
the first position for the purpose of building the rankings.

After building class with reference to the subset of the remaining ac-
tions we calculate again the partial, global and accumulated
frequencies and the index 6.9, proceeding as above in order to build class
and so on. We observe that at each iteration the order on the basis of the
which the index 6.9 is to be calculated, must be restated so that it is a
non increasing whole number and, taking into account the number of
actions of the evaluation set, so that at each iteration the ratio is as near

as possible to the ratio of the first iteration (see [23]). In general, the rankings
obtained are a function of the value of the order originally selected (see [22]).

If at each useful iteration for all and
for some or if for all

and for some it is possible to speak of
first degree or second degree frequency dominance, respectively, of over
In both cases, if will precede in any of the rankings
obtained, whatever value may be chosen for the other

Besides the partition of the actions of A into equivalence classes (complete
preorder) obtained with the descending procedure (or procedure from above)
described, it is also possible to build another complete preorder in the same
way using the ascending procedure (or procedure from below), that is selecting
the action(s) to be placed in the last, next to last, . . .  and finally in the first
equivalence class.

In conclusion, it is possible to build a final ranking (partial preorder) of
the feasible actions, as the intersections of the two decreasing and increasing
rankings obtained by means of two separate procedures described. Using the
PRAGMA method for the building of rankings, it is possible not only to establish
any implicit incomparability deriving from the inversion of preferences in the
preorders obtained by means of the two separate procedures, but also in this
case it is possible to consider an explicit incomparability, obtained if the relative
tests give a positive result, during the preference modeling phase. Since, as we
have said, the PRAGMA method makes instrumental use of the basic preference
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indices, it is possible to use once again the same discordance indices already
introduced in the MAPPAC method (see Section 3.1).

Besides these, moreover, it is also possible to consider other analogous dis-
cordance indices peculiar to the PRAGMA method, that is using the partial and
global ranking frequencies. Thus, for example, with respect to a couple or all
criteria simultaneously, a strengthening of the ranking frequencies of an action

respectively partial or global, corresponding to the first and last positions in
the ranking, can reveal strongly discordant evaluations of by means of those
criteria. Therefore this kind of situation, suitably analyzed, could lead the DM
to reconsider the nature of therefore, in the building phase of the rankings,
this situation may lead to a rapid choice of both in the descending and in
the ascending procedure, resulting in situations of conflictuality and implicit
incomparability.

Software. M&P (MAPPAC and PRAGMA) is a software to rank alternatives
using the methods previously described. It presents a lot of options in order to
be very flexible in the preference modeling, according to the PCCA philosophy.
After loading or writing a file concerning the decisional problem at hand, in
the Edit menu it is possible to set all the parameters required to compute the
basic and global preference indices or ranking frequencies, i.e. trade-off and
importance weights etc.. Some classical statistical analyses on the alternatives
evaluations are also allowed (average values, standard deviations, correlations
between criteria). The indifference areas can be performed in the Calculation
menu. For each couple of criteria, suitable indifference thresholds and shapes
can be defined. This option results in some non punctual indifference relations,
that can also be seen on useful graphics, showing the indifference area and
each pair of alternatives in the chosen plane It is also pos-
sible to graphically represent the partial and global profiles and levels of the
considered alternatives. Going to Solutions menu, after setting other optional
parameters, we can firstly obtaining the (partial and global) preference matri-
ces (MAPPAC) and frequencies matrices (PRAGMA); then, exploiting these
data, the descending and ascending complete preorders and the final (partial)
preorder (as their intersection) can be built up, respectively for MAPPAC and
PRAGMA methods. On interesting geometrical interpretation on omometric
axes of the complete preorders computation procedure, expresses with respect
to each iteration the different rankings with the corresponding global preference
intensities of the alternatives considered each time. This representation shows
eventual inversion of preferences (as intersection of the corresponding straight
lines) due to the presence of some strong dominance effect. Finally, it is pos-
sible to perform a suitable Conflict analysis among the alternatives, by setting
the parameters needed to compute the bicriteria discordance indices and the
incomparability relations, each time according to the corresponding compensa-
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tion level established by the DM. The indifference and incomparability relations
are also suitably presented in a geometrical way in the bicriteria planes
for each where the pairs of action are represented using different
colours for different binary relation.

3.3 IDRA

A new MCDA methodology in the framework of PCCA was presented by
Greco [7] in IDRA (Intercriteria Decision Rule Approach). Its main (and origi-
nal) features are: to use mixed utility function (i.e. in the decision process both
trade-off and importance intercriteria information are considered) and to allow
bounded consistency, i.e. no hard constraint is imposed to the satisfaction of
some axiomatic assumptions concerning intercriteria information obtained by
DM. With respect to the last point, in a MCDA perspective two different kinds
of coherence should be considered: the judgemental and the methodological.
The first one concerns the intercriteria information supplied by DM and there
is no room for technical judgement with respect to its internal coherence. The
second one is related to the exploitation of intercriteria information in order
to obtain the final recommendation and a coherence judgment based on some
MCDA principles and axioms is allowed. Therefore, according to the judge-
mental coherence principle, within the IDRA method DM is allowed to give
both trade-off and importance intercriteria information, without checking its
not requested coherence.

Let an interval scale of measurement; a normalized
value of can be obtained by introducing two suitable
parameters a minimum aspiration level, and a maximum aspiration
level, for each criterion with and
by defining

In IDRA, as above emphasized, the compensatory approach and the non-
compensatory approach are complementary, rather than alternative, aggregation
procedures, following the line coming out from some well known experiments
carried out by Slovic [36] and others. The basic idea within IDRA [7] is that
matching (i.e. comparing two actions by making the action that is superior on
one criterion to be so inferior in the other one that the previous advantage is
canceled) is not a decision problem: it is rather a questioning procedure for ob-
taining the intercriteria information called trade-off. On the contrary, choosing
among equated (by matching) packing of actions is a typical decision prob-
lems, as ranking and sorting. Therefore, if this assumption is accepted, in each
decision problem, like choice, there are two different types of intercriteria in-
formation: trade-off, which can be derived from a matching, and importance
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weights, linked to the intrinsic importance of each subset (also a singleton) of
criteria from F.

As a consequence, there is only one utility function called mixed (see
[7]), because both trade-off and importance weights are considered,

thus for each

The bounded consistency hypothesis

for trade-off weights, where, in general,
is the tradeoff between the criteria and

for importance-weights, given if is more important than
then if is more important than

then if and are equally important, then

Very often these requirements are not satisfied by the answers given by the
DM and the DM is said “incoherent”. But, as remarked by Greco [7], most of
these “inconsistencies” derive from the attempt to use information relative to
partial comparisons (i.e. with respect to only some criteria from F) for global
comparisons (i.e. where all the criteria from F are considered). In IDRA, the
hypothesis of bounded consistency means that the information obtained from
DM with respect to some criteria from F must be used only for comparisons with
respect to the same criteria, according to the principle of judgemental coher-
ence. Therefore, every above problem of intercriteria information consistency is
“dissolved” in its origin. In IDRA the framework of PCCA is used to implement
the bounded consistency hypothesis, considering therefore a couple of criteria
at a time. We observe that, in particular, no requirement of completeness of the
relations “more important than” and “equally important to” is assumed. As a
consequence, for any couple of distinct criteria one of the following
intercriteria information can be obtained by the DM:

1

2

3

4

both the trade-off and the judgement about the relative importance of the
criteria;

only the trade-off;

only the judgement about the relative importance of the criteria;

neither the trade-off nor the judgement about the relative importance of
the criteria.
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Using this information, a basic preference index can be suitably
defined (see [7]). The index is the image of a valued binary
relation, complete and ipsodual, and constitutes a complete valued preference
structure (complete preorder) on set A. The index can be interpreted
as the probability that a is preferred to b, with respect to a mixed utility function
in which the trade-off and importance weights are randomly chosen in the
set of intercriteria information furnished by the DM. In IDRA, each piece of
intercriteria information concerning the trade-off or the relative importance
of criteria can be considered a “decision rule” (tradeoff-rule or importance-
rule respectively), since it constitutes a basis for an argumentation about the
preferencebetween the potential actions. The DM is asked to give a non negative
credibility-weight to each decision rule, according to his/her judgment about
the relevance of the corresponding pairwise criterion comparisons in order to
establish a global preference [7]. Therefore, from the sum of the basic indices

with respect all the considered couple of criteria, weighted by the
correspondent credibility-weights for the tradeoff-rule or the importance-rule,
the aggregated index is obtained, for each These indices can
be then exploited using the same procedure proposed for MAPPAC in order
to obtain two complete preorders (decreasing and increasing solutions); the
intersection of these two rankings gives the final ranking (partial preorder).
The aggregated index of IDRA mainly differs from the analogous index of
MAPPAC in this point: in MAPPAC all (i.e. with respect to each couple of
criteria from F) basic indices are aggregated, while in IDRA only the elementary
indices corresponding to couples of criteria about which the DM has given
decision rules are aggregated (faithfulness principle). In IDRA there is a peculiar
characteristic: distinction between:

1

2

intercriteria information which is not supplied by the DM (i.e. the DM
does not says anything about the relative importance between and

intercriteria information by which the DM expresses his/her incapacity
to say what is the trade-off or the relative importance between and
(i.e. the DM says that he/she is not able to give this information).

In IDRA, in case 1. the comparison with respect to criteria and plays
no part; in case 2. the same comparison contributes to the aggregated index
by means of considering the corresponding basic index calculated taking into
account all the possible importance-weights as equally probable, according to
the “principle of insufficient reason” (so called Laplace criterion in the case of
decision making under uncertainty).
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3.4 PACMAN

A new DM-oriented approach to the concept of compensation in multicriteria
analysis was presented by Giarlotta [5, 6] in PACMAN (Passive and Active
Compensability Multicriteria ANalysis). The main feature of this approach is
that the notion of compensability is analyzed by taking into consideration two
criteria at a time and distinguishing the compensating (or active) criterion from
the compensated (or passive) one. Separating active and passive effects of com-
pensation allows one to point out a possible asymmetry of the notion of com-
pensability and to introduce a suitable valued binary relation of compensated
preference.

The concept of compensation has been analyzed in many papers [35, 37, 38].
The literature on this topic is mainly concentrated on the study of decision
methodologies, aggregation procedures and preference structures on the basis of
this concept. Therefore definition and usage of compensation have essentiality
been method-oriented, since this concept has been regarded as a theoretical
device of classification.

On the contrary, the notion of compensation examined in PACMAN, namely
compensability, is aimed at capturing the behavior of a decision maker towards
the possibility to compensate among criteria. In our approach, intercriteria com-
pensability remains somehow “the possibility that an advantage on one criterion
can offset a disadvantage on another one”, but as it is determined by a DM and
not by a method. Therefore, being more or less compensatory is not regarded
here as the characteristic of a multicriteria methodology or of an aggregation
procedure. Instead, it is an intrinsic feature of a DM. In this sense, we speak of
a DM-oriented usage of the concept of compensation.

There are three steps in PACMAN:

compensability analysis, the procedure aimed at modeling intercriteria
relations by means of compensability;

evaluation of the degree of active and passive preference of an alternative
over another one by the construction (at several levels of aggregation) of
binary indices;

determination of a binary relation of strict preference, weak preference,
indifference or incomparability for each couple of alternatives, on the
basis of two valued relations of compensated preference.

At each step of the procedure PACMAN requires a strict interaction between
the actors of the decision process. Therefore, also this approach allows appli-
cation of the principles of faithfulness (to the information provided by DM),
transparency (at each stage of the procedure) and flexibility (in preference mod-
elization).
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Compensability Analysis. Let be an interval scale of measure-
ment, representing the criterion according to a non decreasing preference.
For each let be the normalized difference function,
defined by where and
are respectively the minimum and the maximum value that can be assumed on

The aim of compensability analysis is to translate into numerical form the
definition of bicriteria compensability for each pair of criteria.This is done by
constructing, for each pair of criteria, the compensatory function
of over which evaluates the compensating effect of a positive normalized
difference on the passive criterion

Since a proper and complete estimation of the compensatory effect for every
possible active and passive difference is too demanding in terms of amount
and preciseness of the related information provided by the DM , we build

as a fuzzy function. This function associates to any pair of normalized
differences a number belonging to [0, 1] the degree
of confidence that the positive difference totally compensates the negative
differences Extending the function in frontier by continuity, we obtain a
fuzzy compensatory function    which satisfies
the following conditions:

Weak monotonicities

Continuity is continuous everywhere on [0, 1] × [–1, 0].

The reason for a fuzzy modelling is to minimize the amount of information
required from the DM, without losing too much in content. The two conditions
stated above are very helpful in this sense. In fact, in order to assess a compen-
satory function, the DM is asked to determine just the zones where the degree
of confidence expressed by is maximmum (usually equal to one) or min-
imum (usually equal to zero). Using monotonicity and continuity, it is possible
to extend by linearization its definition to the whole domain [0, 1] × [–1, 0],
without any further information. By definition, for each

The procedure for the construction of compensatory functions aims at sim-
plifying the task for the DM in providing meaningful information. On the other
hand, this procedure requires the DM to provide a large amount of information.
In fact, according to the PCCA philosophy, we estimate intercriteria compens-
ability for each couple of criteria. Moreover, we still distinguish their compen-
satory reaction within the couple, according to whether they effect or endure
compensation. This results in the necessity of assessing a compensatory func-
tion for each ordered pair of distinct criteria.
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However, the large amount of information required by PACMAN allows one
to model the relationships between each couple of criteria in a rather faithful and
flexible way, according to the PCCA philosophy. Usually, an important criterion
is relevant both actively (i.e., contributing to preference) and passively (i.e.,
opposing to preference). Therefore for each criterion we can treat separately
passive resistance and active contribution, concepts related to the notion of veto
thresholds and preference thresholds respectively in the outranking approach
[35]. For a detailed description of the procedure used to construct compensatory
functions see [6].

Preference Modeling. In PACMAN preferences are modelled on the basis
of compensability analysis. This is accomplished in steps (2) and (3) of the
procedure.

(2): Let i.e., The positive difference
has a double effect.

active, because it gives some contribution to the (possible) overall pref-
erence of over (accept this global preference);

passive, because it states a resistance to the (possible) overall preference
of over (reject this global preference).

Active contribution and passive resistance of over are evaluated for each
computing the partial indices and respec-

tively. Successively, active and passive effects are separately aggregated, thus
obtaining an evaluation of the total strength of the arguments in favour of a pref-
erence of over and of those against a preference of over respectively.
Numerically, this is done by computing the two binary global indices
and Clearly, the same evaluations are done for the pair first
computing the partial indices and and then the global indices

and
The final output of this stage is a pair of global net indices and

for each couple of alternatives These indices express the degree of
compensated preference of over and over respectively. The index
is obtained from the values of the indices and similarly, the
index is obtained from the values of the indices and
A formalization of the whole procedure can be found in [5].

(3) The last step of PACMAN is the construction of a fundamental system
of preferences (P, Q, I, R). The relation between the alternatives and is
determined from the values of the two global net indices and

One of the main interesting features of PACMAN is that intercriteria com-
pensability can be modelled with respect to the real scenarios, treating each
pair of criteria in a peculiar way. Complexity and length of the related decision
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Figure 6.14. Determination of a relation between the two alternatives on the basis of
the values of global indices.

process is the price to pay for the attempt to satisfy the principles of faithfulness,
transparency and flexibility.

4. One Outranking Method for Stochastic Data

It frequently happens that we have to treat a decision context in which the per-
formance of the alternatives according to each criterion/attribute is subject to
various forms of imperfection of the available data. The form of imperfection
that interests us here concerns the uncertainty, in the sense of probability (statis-
tic or stochastic data). For example, frequently the decision maker calls upon
several experts in order to obtain judgements which then forms the basic data.
Since each alternative is not necessarily evaluated at the same level of antic-
ipated performance by all experts, each combination of ‘alternative-criterion’
leads to a distribution of expert’s evaluation. This type of distributional evalu-
ation is considered as stochastic data.

Even if the multi-criteria analysis with stochastic data has so far been treated
nearly exclusively in the theory of the multi-attributes utility framework, the
outranking synthesis approach can be constituted an appropriate alternative.
Some multi-criteria aggregation procedures belonging to this second approach
have been developed specially to treat stochastic data. For example, we can
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mention the works by [4, 19, 17, 18, 42, 20]. The majority of these methods
construct outranking relations as in ELECTRE or PROMETHEE. In this chapter
we have choose to present the Martel and Zaras’ method that makes a link
between the multi-attributes utility framework and the outranking approach.

4.1 Martel and Zaras’ Method

We consider a multi-criteria problem which can be represented by the (A. A.
E.) model (Alternatives, Attributes/Criteria, Evaluators). The elements of this
model are as follows:

representing the set of all potential alternatives;

representing the set of attributes/criteria, an at-
tribute defined in the interval where is the worst value ob-
tained with the attribute and is the best value;
the set of evaluators, an evaluator being a probability function as-
sociating to each alternative a non-empty set of (a random variable)
representing the evaluation of relative to the attribute

In this method, it is assume known the distributional evaluation of the alter-
natives according to each attribute and the weight of the attributes.

These attributes (criteria) are defined such that a larger value is preferred to
a small value and that the probability functions are known. It is also assume
that the attribute set F obeys the additive independence condition. Huang, Kira
and Vertinsky (see [11]) showed in the case of the probability independence
and the additive multi-attributes utility function, that the necessary condition
for the multi-attributes stochastic dominance is to verify stochastic dominance
on the level of each attribute. In practice, the essential characteristic of a multi-
attributes problem is that the attributes are conflicting. Consequently, the Multi-
attributes Stochastic Dominance relation results poor and useless to the DM.
It seems to be reasonable to weaken this unanimity condition and accept a
majority attribute condition.

Thus, Martel and Zaras’ method [20] use the stochastic dominance to com-
pare the alternatives two by two, on each attribute. These comparisons are in-
terpreted in terms of partial preferences. Next, the outranking approach is used
for constructing outranking relations based on a concordance index and eventu-
ally on a discordance index. With this approach, a majority attribute condition
(concordance test) replaces the unanimity condition of the classic dominance.
Finally, these outranking relations are used in order to construct the prescription
according to a specific problem statement.

Often, in order to conclude that alternative is preferred or is at least as good
as with respect to the attribute it is unnecessary to make completely
explicit all the decision-maker’s partial preferences. In fact, it can be possible
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to conclude on the basis of stochastic dominance conditions of first, second and
third order (i.e. FSD, SSD and TSD relations), for a class of concave utility
functions with decreasing absolute risk aversion (i.e. DARA utility functions
class). If the decision-maker’s (partial) preference for each attribute can be
related by the utility function then his preference for the
distribution associated with alternative for each attribute will be:

THEOREM 1 (HADAR AND RUSSEL, 1969)  : If FSD or
SSD or TSD and then

for all where and rep-
resent cumulative distribution functions associated with and respectively.

This theorem allows to conclude clearly that is preferred to with respect
to the attribute We refer the reader to Zaras (see [41]) to review the concept
of stochastic dominance.

In the MZ’s model, two situations are identified; clear situation where the
conditions imposed by the theorem are verified
situations), and unclear situation where none of the three stochastic dominance
is verified. The value of the concordance index can be decomposed into two
parts:

Explicable concordance, that corresponds to cases in which the expression
of the decision-maker’s preferences is trivial or clear.

where

and is the weight of attribute with and
Non-Explicable concordance that corresponds to the potential value of the

cases in which the expression of the decision-maker’s preferences is unclear.

where
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This second part of the concordance is only a potential value, as it is not
certain that for each of these attribute will be preferred to

In these cases, it may be useful to state a condition which tries to make
explicit the decision-maker’s value functions If the condition

where is the concordance threshold, is fulfilled, then the explication
of the unclear cases leads to a value of the concordance index such that the
concordance test is satisfied for the proposition that globally outranks
The objective is to reduce as far as possible, without increasing the risk of
erroneous conclusions, the number of time where the functions must be
to make explicit. It is notably in the case of unclear situation that [20] used the
probabilistic dominance, as a complementary tool to the stochastic dominance,
to build preference relationships.

A discordance index for each attribute may be eventually
defined as the ratio between of the difference of the means of the distributions
of and to the range of the scale (if it is justified by the scale level of
distributional evaluation):

The difference between the average values of two distributions gives a good
indication of the difference in performance of the two compared alternatives.
If this difference is large enough in relation to the range of the scale, and FSD
is fulfilled on attribute then the chances are large that is ‘dominated’ by

In this case, MZ assume a minimum level called a veto threshold, of the
discordance index giving to a discordant attribute the power of
withdrawing all credibility that globally outranks

The discordance test is related to veto threshold for each attribute. The
concordance and discordance relations for the potential alternatives from A are
formulated in a classical manner:

The outranking relations result from the intersection between the concor-
dance set and the complementary set of discordance set:

Therefore, like in ELECTRE I, we can conclude that globally outranks
if and only if and for all j. If we
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have no and no then and are incomparable, where S is a
crisp outranking relation. On the basis on the level of overlapping of the com-
pared distributions, Martel et al. [18] developed preference indices associated to
the three types of stochastic dominance and constructed the valued outranking
relations.

Depending on whether one is dealing with a choice or a ranking problem-
atic, either the core of the graph of outranking relations is determined or the
outranking relations are exploited as in ELECTRE II, for example.

EXAMPLE 10 Given 6 alternatives and 4 attributes
and and the stochastic dominance relation observed between each

pair of alternatives according to each attribute (Table 6.20).

It is assumed that the weights of the attributes are respectively .09, .55, .27
and .09. The explicable concordance indices was calculated and are presented
in Table 6.21. The discordance indices are not considered in this example.

On the basis of the explicable concordance indices, we can build up the
following outranking relations for a concordance threshold

and
It is possible to construct the following partial pre-order graph (Figure 6.15);
within this graph, the transitivity is respected.

In the Table 6.20 we observe that the relation between and according
to attribute is unclear since no SD and no SD

If the decision-maker can explicit and if is preferred to
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Figure 6.15. Partial preorder.

according to this attribute, then globally with a concordance thresholds
since (.82 in Table 6.21 +.09 (the weight of

5. Conclusions

In this chapter some outranking methods different from ELECTRE and PRO-
METHEE family have been presented, able to manage different type of data
(ordinal, cardinal and stochastic). Their description proved again the richness
and flexibility of the outranking approach in preference modelling and in sup-
porting DM in a lot of decisional problem at hand. Some properties of this
approach are common to all the outranking methods, others are peculiar fea-
tures of some of them. In the following we recall the main characteristics of the
considered methods.
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a) The input of these methods are alternative evaluations that can be given in
the form of qualitative (ordinal scale), numerical non-quantitative (with
the particular case of interval scales) or stochastic (probability distribu-
tion) data with respect to all considered criteria. Sometimes also some
technical parameters should be supplied by DM as infracriterion infor-
mation (indifference, preference, veto thresholds).

b) All these methods need as infracriterion information the importance
weights in numerical terms. In some of them, just a particular order of
criteria is explicitly requested, otherwise a random weight approach.

d) The outranking methods within the PCCA approach need the elicitation
of both importance and trade-off weights, but the information concerning
weights does not need to respect completeness (i.e. all pairwise trade-off
and/or importance weights given) and transitivity with respect to trade
off weights.

e) In their first step, all these methods (apart from PRAGMA) give as re-
sults some preference or outranking relations, crisp or fuzzy (preference
relations and/or indices).

f) The preference structures associated with these methods is usually P,
I, R, obtained at global level (comprehensive evaluation). In the PCCA
approach is also possible to obtain the same binary relations with respect
to each couple or pair of considered criteria

g) Usually the final recommendation (complete or partial preorder) is ob-
tained by the exploitation of the binary relations previously obtained. But
in some ordinal method the complete final preorder is directly obtained
as a result of the concordance-discordance analysis between different
rankings.
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