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In this chapter, we provide a broad overview of the most representative multi-
criteria location problems as well as of the most relevant achievements in this
field, indicating the relationship between them whenever possible. We consider a
large number of references which have been classified in three sections depending
on the type of decision space where the analyzed models are stated. Therefore,
we distinguish between continuous, network, and discrete multicriteria location
problems.
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Locational Analysis has become a very active field of research in the last
decades. Since the seminal papers by Hakimi [68] and Witzgall [156] in the early
sixties the number of researchers and publications have grown and Locational
Analysis has become very popular among both practitioners and academia. The
interested reader can find excellent surveys in the literature providing reviews
of location references (among others [15, 42, 44, 63, 64, 93, 123]).

In this chapter, we present a survey of the most representative multicriteria
location problems. Our goal is to give a broad overview of the different models
and resolution procedures used in this field as well as to indicate how they
relate to one another. Although we have not been exhaustive, we have tried to
cover the most fruitful lines of research of Multicriteria Locational Analysis.
Our hope is that this chapter will provide the readers with a helpful tool: the
location analysts may complete their knowledge about the state of the art of their
research field while the rest of the readers can find a comprehensive overview
to introduce them to the main streams of this area.

Since our study focuses on multicriteria location problems, we proceed by
giving a general formulation of this type of problems. To do so, we consider
a family of possibly conflicting objective functions with These
functions represent different criteria to locate one or several new facilities and
depend on the distances from these facilities to the set of fixed or demand
facilities, usually called A. There are at least two natural ways of deriving the
different First, a decision about a new facility to be located is typically a
group decision and each decision maker will have his own preferences, which
my be expressed by Secondly, the functions may represent different
quality criteria for the new facility to be located, like cost, reachability, risk,
etc. The general formulation is given by
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1. Introduction

where stands for vector minimization, X is the decision space, is
the finite set of service facilities, its cardinality, and S is the feasible region
(see [51] for a survey of multicriteria optimization). The reader may note that
the classical median and center problem in the literature of Locational Analysis
are just particular aggregation procedures of the multiple criteria formulation
in (19.1).

Problem (19.1) is a valid formulation for the general multifacility multicri-
teria problem. Nevertheless, a majority of the results published in the literature
refers to the single facility case, Therefore, in this chapter, the results will
be generally referred to single facility models, unless the multifacility character
is stated explicitly.
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Formulation (19.1) corresponds to a multicriteria problem. Therefore, it is
common to propose as solution concept different sets of feasible points that
correspond to different levels of exigency regarding the ordering relationship
between vectors. The most classical solution sets used in the literature are
included in the following definition (for more details see for instance [50]).

DEFINITION 74 Let and denote sets with cardinality

i)

ii)

iii)

iv)

is a weakly efficient solution for Problem (19.1) if there is no
such that for all

is an efficient or Pareto solution for Problem (19.1) if there is
such thatno for all and it holds

for somethat

is a strictly efficient solution for Problem (19.1) if there is no
such that for all

is a properly efficient solution for Problem (19.1) if it is an
efficient solution and if there is a number such that for all
and satisfying there exist such
that and moreover

Specific choices of solutions among the solution sets defined above have been
suggested in the literature of Location Analysis. In the following definition we
recall two of them that will be used later.

DEFINITION 75 Let and denote sets with cardinality

i) is a lexicographic solution (or lex-optimal) if there exists a
permutation of the set I such that

for all where is the cardinality of the set I and

ii) is a max-ordering solution if

Our chapter is organized in five sections. After the introduction we present
the standard models of location theory and describe their inherent multicriteria
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nature. The third, fourth and fifth sections are devoted to analyze the main
models and results of continuous, network and discrete multicriteria location
analysis, respectively. The chapter ends with the list of references cited in the
text.

2. Location Problems

In order to establish a classification of the different problems of Locational
Analysis, it is assumed that they can be divided into three branches: continu-
ous, network and discrete location problems. Within each of these branches a
further distinction can be made with respect to the number of new facilities, the
distances used and pecularities such as forbidden regions. For more advanced
classification schemes the reader is referred to [73].

An important characteristic of location models is their intrinsic multicriteria
behavior. In any location problem with attractive criteria, every user wants to
have the service as close as possible. Therefore, this behavior gives rise to a
trade-off among users that leads to a multicritera formulation:

being X the decision space,     the finite set of service facilities,      its
cardinality, the set of demand facilities, the
function used to measure the distances and

The formulation in (19.2) represents a new general trend in Operations Research.
Considering more than one objective reflects better the actual world where
usually several objectives, some of them in conflict, must be considered to model
a problem. The reader can find excellent arguments justifying the multicriteria
character of Locational Analysis and a detailed presentation of several aspects
in [39].

In location theory many criteria have been used to locate one or several new
facilities. However, median and center problems have attracted special atten-
tion of researchers for many years. The median problem has received different
names in these years, as for instance, Fermat-Weber, Weber, Steiner or min-
isum problem, among others (see for instance [154] or Chapter 1 in [44]). This
model uses as criterion to locate a new service the minimization of the average
distances to all the users. The formulation of this problem, with the notation of
Problem (19.2), is given by
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where is the weight associated to The median objective function is used
in real world situations to locate a new facility minimizing the transportation
costs. In a practical setting, the demand facilities represent customers or de-
mands, the new facilities denote the unknown location of the servers, and the
weighted distances are cost components associated with the interactions of flows
between each new facility and its customers. For this model, we can find many
applications cited in the literature involving communication network design,
distribution centers, location and routing of robots, or the optimal location of
utility and manufacturing plants, among others.

The center problem, which is also called the minimax problem or the problem
of minimizing the eccentricity, uses as criterion to locate the new facilities the
minimization of the largest distance supported by the users (see for instance
[55]). Therefore, with the conventions of Problem (19.2), the center problem
can be stated as

where is the weight associated to The minimax models may correspond
to the social oriented notion of justice.

The median and center are the most frequently used criteria to locate new
facilities.However, manyreal-world situations cannot be exactly modelled with
one of these criteria. Indeed, since the median approach is based on averaging,
it often provides solutions in which remote low-population density areas are
discriminated in terms of accessibility. In the same sense, the center approach
provides solutions where there may exist high population density areas with
central locations, which have not been taken into account when locating the
new facilities. However, to locate, for instance, a fire station, one goal may be
to locate the station as close as possible to the farthest potential customer, while
another goal would be to locate the station as close as possible to a majority
of customers. Therefore, a possible approach to study this kind of situations
is the cent-dian problem problem which consists of minimizing the convex
combination of median and center objective functions, i.e.,

with
Notice that depending on the choice of we are considering criteria more

similar to the median objective function or to the center one, i.e., for close to
1 we are giving more importance to the averaged distances while for close to
0 we are giving more importance to the largest distance. Once more, we find
in the cent-dian problem the intrinsic multicriteria nature of location problems.
The analysis of the optimal solutions for varying coincides with the trade-off
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analysis between the minisum and minimax solutions: the multicriteria analysis
of the problem.

Although, many other different models have been considered in the literature,
we have only described some of them because our purpose is to provide the
reader a general overview that illustrates the use of different criteria to locate
new facilities. For readers interested in location software a possibility is the
public domain software LoLA (Library of Location Algorithms) [72]. LoLA
contains several algorithms for multicriteria location problems in the plane and
on networks.

We have summarized in Table 19.1 the references reviewed in this chapter.

3. Continuous Multicriteria Location Problems

In this section we give an annotated exposition of the literature on continuous
multicriteria location problems. Before dealing with the references of this area,
we recall the concept of a gauge which is a general function used to measure
distances in continuous models. A gauge is a function defined with respect to a
compact, convex set B containing the origin in its interior as:

For instance, when B is the unit disk (ball) centered at 0, we have that
(the Euclidean norm) or when B is a square of side two and

centered at 0, we have that (the Tchebychev norm). We say that
is: 1) a polyhedral or block gauge if B is a polytope, 2) a strictly convex

gauge if B is a strictly convex set, 3) a norm if B is symmetric with respect to
0 and 4) a round norm if B is in addition a smooth set. Moreover, we denote by
co(A) to the convex hull of the set A, by its topological closure and by ri(A)
its relative interior.

The models analyzed in this section are organized in three subsections. The
first one is devoted to study the point-objective location problem. The second
subsection analyzes continuous bicriteria location problems and the last one
considers multicriteria problems with more than two objective functions.

3.1 Point-objective Location Problems

The problem of locating one or several facilities to serve a certain number of
demand facilities depends strongly on the criteria used to place such services. In
order to obtain a general approach to this problem independently of the criterion,
and having in mind that each demand facility wants to have the service as close
as possible, the location problem is stated as follows:



768 MULTIPLE CRITERIA DECISION ANALYSIS

where S is the feasible region, A is the set of demand facilities and is the
gauge associated to the demand facility

In location theory, Problem (19.6) is called Point-Objective location prob-
lem. This problem may be considered the first multicriteria model in location
theory. The demand facilities may be communities that have to be served by
some other facilities (fire houses, schools, hospitals, etc.) which have to be as
close as possible. The distance to each demand facility is measured by its
corresponding gauge

Because of the multiple objective nature of this problem, we are interested
in the solution sets introduced in Definition 74. The final location is usually
chosen from these sets in conjunction with other non-quantifiable criteria that
the decision maker may have.

In this case, the different sets of efficient solutions of Definition 74 correspond
to different level of exigency regarding the proximity to each demand facility.
For Problem (19.6), the weakly efficient, efficient, strictly efficient and properly
efficient sets are denoted by WE(A, S), E(A, S), SE(A, S) and PE(A, S)
respectively. In the unconstrained case, i.e., S = X, these sets are denoted by
WE(A), E(A), SE(A) and PE(A) respectively.

It is worth noting that the different solution sets, in addition of being con-
sidered as solution of the point-objective location problem, can be regarded
as a global sensitivity analysis onto the weights of the solution set of the me-
dian problems with the same demand set. Hence, the first references that we
overview do no state properly the formulation of the point-objective prob-
lem but the parametric analysis of weighted minisum problems. This fact
is due to the scalarization results that establishes the relationship between
the solution sets of a multicriteria problem and the set of minimizers of the
weighted sum of their corresponding functions. In particular, if we denote by

the set of minimizers of the function
we have (see [65] for the second statement)

In two dimensional space [49, 151] prove that which
implies that there exists at least one weakly efficient solution in the convex hull
of If a single block norm is used, [140] obtains that

where IP is the set of intersection points
defined by the fundamental directions of the unit ball associated to the block
norm starting at each demand point. In the case of mixed (different
norms associated to each demand point), [79] obtains that the octogonal hull of
the demand points has nonempty intersection with Later, [122] shows
that this result fails for general norms as soon as the dimension of the space is
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at least three. [121] obtains that for: 1) any norm on the line,
2) any round norm on the plane and 3) any norm derived from inner product
in spaces with finite dimension greater than two. [43] obtains that the smallest
set which includes at least one point of is for
with and for or this set is

Compared with location problems in the plane, location problems on the
sphere have received little attention in the literature. However, to model situa-
tions where the distances between the demand facilities and their corresponding
servers are too long, it is necessary to take into account the spherical surface of
the Earth. [2] extends the results of [151] to location problems on the surface
of a sphere. In fact, they show that we can restrict ourselves to the spherically
convex hull of the demand points to search a solution of the single facility me-
dian problem on the sphere if the demand points are not located entirely on a
great circle arc. In addition, [41] obtains that if the demand points are located
on a great circle arc, then the optimal solution is in this arc and some demand
point is optimal.

For the multifacility case in a two dimensional space (with interaction),
whatever the norm is, it holds that the optimal locations for all the new facilities
can be found in WE(A), [101], and they belong to the convex hull of the
existing facilities when are used, [62, 86].

In addition to the weighted sum approach, an alternative procedure to deal
with the point-objective location problem and, in general, with a multicrite-
ria problem is the method. Probably, this is among the most
well-known techniques to solve multicriteria problems and it consists of the
minimization of one of the original objective functions while the others are
transformed to constraints, representing security or satisfaction levels that must
be fulfilled by these criteria. For Problem (19.1), [84] studies properties of the
optimal solutions for this kind of constrained problems involving generaliza-
tions of the median objective function.

Concerning the relationship between the different solution sets previously de-
fined, we have that in general it holds that
In what follows we analyze these relationships for the unconstrained case and
latter we will study the constrained one. In the case of a single gauge, that is,

it holds that when
is: 1) a round norm, [140]; 2) generated by a scalar product, [48]; or 3) strictly
convex norm in a two dimensional real space with A being a bounded set, [48].
Besides, when is a strictly convex norm in a general real space, [48] proves
that In addition, when A is finite
in [95] proves that In the case of the Euclidean
norm, [155] obtains that and for the that
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Problem (19.6) also has some limit properties under particular hypotheses.
In particular, when and where is a sequence of
block norms approaching a round norm, we have that and

(the corresponding sets using approach the convex hull of the
demand facilities, [140].

Concerning topological properties, if A is bounded then WE(A), E(A) and
SE(A) are bounded. Moreover, and but
not necessarily If A is compact then SE(A) is closed.
It holds that WE(A), SE(A) and E(A) are weakly compact when X is an
infinite dimensional, reflexive and strictly convex normed space with A being
a compact set, [48].

Concerning geometrical characterizations, [48] gives a description of WE
(A), E(A) and SE(A) for A being compact, using recession cones in any
arbitrary normed space. If we impose further A to be finite, in the rectilinear
case the set of efficient solutions is a region enclosed by a boundary defined by
horizontal and vertical lines throug each demand point, [37, 152, 153]. In
and mixed gauges (different gauges associated to each demand point) the set
WE(A) is characterized as the region enclosed by WE(B), [149],
a similar result for the planar case is obtained in [132]. In finite dimension and
mixed [26, 27] show that the efficient set is a subset of the octogonal
hull defined by the demand points (this result was also proved by [79] using
a different methodology). In addition, they prove that under certain conditions
these sets coincide. [28] obtains a similar result to those above for problems
with polyhedral mixed norms. In fact, they propose a procedure to obtain a set
containing the efficient solution set with certain properties of minimality, called
pseudoefficient set.

Apart from the unconstrained case (S = X), there are also some results for
the constrained models. The following references correspond to those models
where the location decisions are restricted to a given set S. We assume in the
following unless stated otherwise that S is convex and closed. This model is
usually called constrained point-objective location problem. In this case, it holds
that being A compact and
the projection operator using onto S, whenever is: 1) strictly convex
in a two dimensional space, [29]; 2) the Euclidean norm in and A finite,
[20]; or 3) generated by a scalar product in a two dimensional space, [105].
We can also find geometrical characterizations of constrained solution sets,
using recession cones, in [105]; and a theoretical characterization of WE(A, S)
using the convex hull of subdifferentials in [29]. In addition,

when a Euclidean norm in is used and A is finite,
[20]. The case where S is not necessarily convex but can be decomposed into a
finite number of polyhedra was studied by [22]. On the plane with mixed gauges
(different gauges associated to each demand point) one can find a complete
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geometrical description of the weakly efficient and efficient solution sets in
[130, 131].

In addition to the theoretical results already presented there also exist sev-
eral algorithms to compute some of these sets. In general the problem is very
difficult and in many cases of enumerative nature. When total polyhedrality
is given through block norms and linear constraints, the problem reduces to a
multicriteria linear problem. Notice that even in this very easy case the general
problem is already NP-hard. However, there are some particular cases where
efficient algorithms exist. The set of efficient solutions using in two
dimensional spaces was obtained by [152] with an algorithm based on gener-
ating the boundary of the set of efficient solutions. [34] presents a simple row
algorithm based entirely on a geometrical analysis, that constructs all efficient
solutions with complexity They also prove that no alternative
algorithm can be of a lower order. [150] considers a simple schematic algorithm
for characterizing the efficient solution set for the one-infinity norm. [117, 118]
propose a polynomial algorithm for the case of polyhedral norms in the plane.
Finally, for the case of polyhedral norms in [47] presents a general method
for determining, in a finite number of steps, the set of all efficient solutions.
Besides, he states a geometrical characterization of properly efficient points
which later is proved by [61] that only works on dimension one and two.

A different line of research is concerned with the use of majority rules in
Locational Analysis. The relationship between Simpson decisions (those pre-
ferred by a majority of voters) and Pareto solutions is well-known among the
researchers in voting theory. The application of these concepts to Locational
Analysis was first given by [6, 46] for problems without locational constraints
and later extended by [23, 24] to the constrained case. It is worth noting that this
line of research offers interesting open problems, some of them already solved
in [19].

3.2 Bicriteria Problems

For many practical situations it is sufficient to deal with two criteria. This allows
to obtain a better knowledge of different solution sets and their properties. Most
of the references dealing with this type of problems consider the median and the
center or some modification of them as objective functions. Using the notation
of Problem (19.2), this type of problems can be formulated as

where and are the weights associated with the demand facility by
the median and center criteria, respectively. Therefore, the first part of this
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subsection is devoted to analyze this kind of problems and the last part considers
other bicriteria location problems.

In order to study Problem (19.7), we first notice that these two functions are
convex, so by [65] the properly efficient solution set coincides with the set of
minimizers of the convex combination of these two criteria, that is, the cent-
dian problem, see (19.5). [21] proposes an axiomatic characterization of this
criterion, which leads to an interpretation of the parameter as a marginal
rate of compensation.

The first reference we found that considers the bicriteria problem with median
and center objectives is [81]. In this paper, the access cost of users is defined
by a non-decreasing, continuous function of the distances which are measured
by For determining the set of efficient points, it provides a simple
and practical approach based on the Big Square-Small Square method. Later,
[3] shows that all the efficient solutions for Problem (19.7) can be obtained
by solving constrained problems. These problems consist of minimizing the
weighted sum of the distances so that the minimax function satisfies a varying
upper bound. This result has the advantage that solving a constrained median
problem is simpler than solving directly a cent-dian problem. In the plane, [115]
studies the unweighted case with squared Euclidean distances and proposes a
polynomial time algorithm to find the set of Pareto optimal locations based on
the use of the farthest point Voronoi diagram.

The bicriteria problem with median and center objective functions in the
presence of forbidden regions was considered in [129]. They use a direct search
procedure based on Hooke and Jeeves algorithm to solve the rectangular norm
planar location problem with forbidden regions, which is interesting because
of its simplicity and versatility. A bicriteria location problem with a line barrier
is considered in [88]. Their solution approach is based on [74].

The multifacility planar case (with interaction), using is studied by
[10]. They present a fuzzy goal programming model for locating new facilities
in a region bounded by a convex polygon. Later, [11] proposes an interactive
method to solve the problem above. In order to obtain a satisfactory solution
for the Decision Maker (D-M), this procedure requires the D-M to know how
much he/she can concede from the most satisfactory fuzzy goals at each current
solution to improve the degree of satisfaction of other objectives.

Now that we have analyzed the bicriteria problems with median and center
objective functions, we will start with the second part of this section where we
study bicriteria problems where at least one the objective functions is none of
them. [107] considers the bicriteria 2-Facility median problem using
with interaction in and gives a polynomial algorithm for determining all
efficient locations. This algorithm is based on a discretization of the original
continuous problem using geometrical and combinatorial arguments.
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In a variety of practical settings the new facility to be located cannot be
classified as being either purely desirable or obnoxious. These facilities falling
somewhere between these two extremes are called semidesirable. As an illus-
trative example, consider the problem of locating a new chemical factory. For
public safety, air pollution, and other reasons, such a facility should not be sit-
uated too close to populations centers. On the other hand, there are decreasing
marginal benefits from locating the factory further away, because transportation
cost for the users is steadily increasing. [25] presents a critical overview of the
mathematical methods commonly used in semi-obnoxious facility location.

A common method to solve this kind of problems is to consider a bicrite-
ria problem where each one of these objectives represents an attractive and a
repulsive criterion respectively. [16] considers a bicriteria semidesirable loca-
tion problem where the objective functions are the median criterion and the
minimization of the weighted sum of Euclidean distances raised to a negative
power. To solve the problem, they develop a heuristic method based on the
computation of a trajectory determined by combining the first order necessary
condition with the truncated Taylor series of the convex combination of these
two criteria. Notice that this trajectory may not represent the complete set of
efficient solutions. [30] considers a semi-obnoxious location problem where
the objectives are the transportation and environmental costs. Since the usual
solution set has, in general, infinite cardinality, they propose as solution a finite
feasible set representing the best compromise solutions using the concept of

Other applications of global optimization techniques to semi-
obnoxious bicriteria location problems can be found in [31, 14]. On the other
hand, [116] considers a semidesirable location problem using a bicriteria model
with the center and anti-center (minimax) objective functions. He presents a ge-
ometrical characterization of the efficient set as well as the trade-off curve and
develops a polynomial time algorithm for finding them. Finally, [134] consid-
ers planar bicriteria semi-obnoxious location problems where the importance
of the obnoxious criterion with respect to the cost objective is not determined
in advance.

3.3 Multicriteria Problems
As it was announced, the third subsection is devoted to the general case of
multicriteria location problems where more than two objective functions are
considered.

We start by mentioning the paper by [17]. It presents an axiomatic foundation
of objective functions employed in multicriteria location theory that allows to
characterize single objective reductions of these multicriteria problems. This
procedure also simplifies the search of the Decision-Maker for suitable objective
functions on the basis of desirable properties.
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The first references that we consider in this section deal with the multicrite-
ria median problem, that is, a multicriteria location problem where each of the
involved objective functions is of the median type. This problem can be consid-
ered as the first actual multicriteria problem (more than two criteria not being
distance functions) in continuous location. The formulation of this problem is
as follows:

where is the weight associated to the demand facility by the criterion.
[33] studies this problem when the is used and develops a graphic-
type algorithm that generates the set of all efficient solutions. [76] extends
the analysis of this problem for the case of In [106] the multicriteria
median problem with polyhedral gauges is investigated. In addition, both papers
also deal with the multicriteria center problem, that is, all the involved objective
functions are of the center type. This problem can be formulated as

where is the weight associated to the demandfacility by the criterion. For
these two problems [76] analyzes the set of lexicographic locations, the set of
Pareto locations and the set of max-ordering locations. A relationship between
these three sets is established; and they develop efficient algorithms to compute
the lexicographic location set for these two kinds of problems. Moreover, using
the convex hull of their optimal solutions, they give a geometrical description
of the set of efficient and properly efficient solutions for the case of median
objectives with squared Euclidean norm. Finally, they develop an algorithm,
based on a combinatorial approach, to compute efficient solution sets for the
multicriteria median problem with and

The multicriteria median problem with a general norm is studied in [125]
which introduces the null vector condition for characterizing the set of properly
efficient solutions. This condition is based on the computation of the cone
generated by the subdifferentials of the functions considered in the multicriteria
problem. They also analyze the relationship between the set of properly efficient
solutions of this problem and the set of properly efficient solutions of the point-
objective location problem defined by the demand points of the considered
median objective functions. In the polyhedral case, they develop an algorithm
to compute the set of efficient solutions with polynomial complexity. For the
case of only one strict norm and assuming that the demand points are not
collinear, [124] proves that the set of efficient solutions can be obtained as the
limit of the set of weakly efficient solutions with a polyhedral gauge converging
to the original strict norm.
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A mixed version of the multicriteria median and center problem is analyzed
by [52] which considers a multicriteria problem where all the objectives are
either median or center ones. In particular, they characterize the set of max-
ordering locations using the lexicographic and Pareto location sets. Three dif-
ferent strategies are proposed to find efficiently this set based on: 1) a direct
approach, 2) the decision space approach, and 3) the objective space approach.
Finally, they introduce the lexicographic max-ordering locations as a further
specialization of max-ordering locations, which can be found efficiently.

One of the most general approaches to locate new facilities is the so called
ordered median problem (see [108, 126]). Indeed, this criterion includes as
particular instances the median, the center and the cent-dian problems among
others. The multicriteria version of this problem with polyhedral gauges is
studied in [109]. In this paper, the authors give geometrical characterizations
of the set of efficient solutions and a polynomial time algorithm to compute it.

An alternative multicriteria location problem where neither center nor me-
dian objective functions are used, is proposed by [59]. In this paper, the authors
consider the multicriteria minmax regret which combines the robustness ap-
proach using the minmax regret criterion together with Pareto-optimality. Its
formulation is as follows:

where and is the optimal solution of
For the bicriteria case, the set of efficient locations is characterized as

a particular set of line segments. Using this result the authors also give an
algorithm for the general multicriteria case based on the solutions of bicriteria
problems.

The important issue of equity measurement in Locational Analysis has also
been modeled as a multiobjective problem. The interested reader can find a
good review and a framework for this problem in [99]. A more recent approach
as a multiobjective problem is given in [113]. For further details on this subject
the reader is referred to [8, 9, 56, 98, 102, 103].

Another fruitful area of research in this field deals with the so called vectorial
best approximation location problem. We are given two real linear spaces X,
Y and a convex cone We also consider a vectorial norm being a
mapping from X into C that satisfies for and

i) (the null element in Y) if and only if

ii)

iii)
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The vectorial best approximation problem is

where is the feasible (constrained) set.
It is clear that most of the problems considered in the above sections fall

into this very general formulation. In particular, the reader can check that con-

sidering, being
and we

get the so called point-objective problem.
Early references in the literature stating the relationships between multicrite-

ria location problems and this general vectorial best approximation optimization
problem can be found in [45, 142, 143, 144, 145].

The interested reader will find very important results scanning this line of
research. However, they are scattered in journals that are hardly considered by
location analysts (locators).

In [45] several topological properties as well as a geometrical description of
the set of vectorial best approximants is given. On the other hand, [144, 145]
emphasize more the conditions of the Kolmogorov type that characterize weakly
and properly efficient solutions of the vectorial approximation problem.

Another topic pursued by the authors in this field is the use of general duality
results characterizing the different notions of efficiency. In [142, 143, 148] the
reader can findcharacterizations using duality under different hypotheses, with
their corresponding applications to multicriteria location problems.

We also want to recall the concept of in vectorial approxima-
tion location problems. Without entering the details of this concept, we would
like to mention at least that powerful results are known. The results are based
on a generalization of Ekeland’s variational principle (see [54]) for vector ap-
proximation problems (see [138]) that has been later applied to get results in
approximating efficient solution sets [82, 147, 146]. The interested reader can
find all the details in the references above and those cited therein.

We finish this section by mentioning a different multicriteria location prob-
lem. The goal is to find efficient designs (shapes) for a given area provided
that disutilities for the users are known. [35, 36] study this problem and give
necessary and sufficient conditions for a design to be efficient.

4. Multicriteria Network Location Problems

In a general network location problem, one or several facilities are to be placed
in a graph optimizing a function of the distances between these facilities and the
set of demand facilities located in the graph. Therefore the main difference with
respect to the continuous problem is that the decision space is a network. This
fact provides many intrinsic peculiarities both in the theoretical and practical
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point of view. In particular, this kind of models adapt better to some specific
real world situations, as for instance road networks, power lines, etc. This justi-
fies that many efforts have been devoted to improve the performance of facility
systems to deal with network location problems. These problems can be clas-
sified depending on the graph structure (general graph, trees, etc.), the type of
objective function (center, median, etc.) or the number of objective functions
considered (single criterion or multicriteria problem).

We start introducing some basic notation to understand the formulation of
this type of problems. Let denote a network with underlying graph
G = (V, E), where the node set is V (demand points) and the edge set is
E. Therefore, we write the edge that joins the nodes and as

The length of an edge is denoted by and it represents
the cost of going once through the edge to satisfy the demand of one user. By

we denote the length of the shortest path between and measured
by

A point on an edge is determined by a value
which represents the length of the proportion of the edge between and the
point is then denoted by Hence, for instance in the
case of an undirected graph, the distance from this point to another node is:

Notice that the function for any is concave over each edge
of the graph, in fact, it is a concave piecewise linear function. Besides, if the
graph is a tree, this function is convex over paths what implies that the sum of
the distances from to each node is a convex function over each path of the
tree. This property allows to apply results of convex analysis to the resolution
of location problems stated on a tree graph.

The set of all the points of a network is denoted by P(G). It should
be noted that this set also contains the node set. Therefore, in order to locate

service facilities, we have to consider the distance from a node to a set of
points, as

In order to present the references considering networks multicriteria location
problems, analogously to the continuous case, we have divided this section in
two subsections. In the first one, we consider the case of two criteria, i.e.,
bicriteria problems and in the second one, we deal with the general case where
more than two objective functions are used.
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4.1 Bicriteria Problems

In this subsection we analyze bicriteria location problems on networks. The
most popular models are those with median and center objective functions.
Similar to the continuous case this problem is

where and are the weights associated to the demand facility by the
median and center criteria, respectively. We start with the analysis of these
problems.

A first method to handle this bicriteria problem is to transform it into a single
objective problem via scalarization. This can be mathematically expressed by
the minimization of different single objective functions as: cent-dian, gener-
alized center or medi-center, among others. The cent-dian objective function,
already defined in (19.5), was introduced by [69], who coined the term cent-dian
for the point of a graph that minimizes the convex combination of the center
and median functions. On the second hand, the generalized center objective,
introduced and studied by [78], minimizes the difference between the center
and the median functions,

This criterion allows to deal with distributional justice considerations in the
access to the facilities and corresponds to an aggregation procedure of semi-
obnoxious location problems (center, anti-median).

Finally, the medi-center problem, considered in [71], minimizes one criterion
subject to a restriction on the value of the other:

or



MCDM Location Problems 779

where and are upper bounds to the median and center objectives respec-
tively.

The first approach that we consider in order to deal with a bicriteria location
problem with center and median objective functions, is the parametric analysis
of the cent-dian problem. This parametric analysis is very informative in a
general network, however it does not provide a complete characterization of the
efficient solution set. It is due to the non-convexity of these objective functions
(recall that distances are concave). For the particular case oftree networks and
due to the convexity properties of this case, this parametric analysis gives the
whole set of efficient solutions, similarly to the continuous problems.

In any case, the solution set of the cent-dian problem for any parameter
defining the convex combination of the center and median objectives is included
in the set of efficient solutions of the bicriteria problem defined by these two
criteria. Thus, its characterization continues to be interesting from multicriteria
point of view. [69] shows that the cent-dian of a tree has the attractive property of
being located either at the center of a tree or at a vertex on the path connecting
the center and a median. Unfortunately, a cent-dian of a general graph does
not satisfy this property in general. [70] proposes a procedure based on the
computation of an upper bound to identify a cent-dian of an undirected graph;
and traces its location as it moves from a graph median to its center as the weight
of the latter objective is increased and of the former is decreased.

Since a one-to-one correspondence between cent-dian or generalized center
solutions and efficient solutions does not exist, [110] analyzes a different solu-
tion concept for this bicriteria problem that provides some compromise between
them. This is the Tchebychev cent-dian solution which is the set of lexicographic
solutions of a bicriteria problem with the cent-dian and the weighted Tcheby-
chev norm of the center and median criteria. This new solution concept allows to
identify all Pareto locations on any network by means of a parametric analysis.
Besides, he proposes an algorithm to generate the set of Tchebychev cent-dian
solutions.

The models above only consider the case of locating one facility, however we
can find situations where more than one facility is required. Hence, we analyze
the case, where the goal is to locate points on the network so that
the demand of the given facilities is covered by the closest new facility,

[119] studies the unweighted p-facility cent-dian network location problem.
They give a finite dominating set and also provide a solution method that solves
this problem based on an exhaustive search in the set of all combinations of
points within this finite dominating set. For the case, [120] provides a
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different algorithm based on an exhaustive search that solves the problem with
complexity

[136] considers the weighted problem on tree networks. The
authors identify a set of points of polynomial size which is guaranteed to contain
an optimal solution. Then, they exploit some convexity properties to develop a

time algorithm that solves this problem.
The generalized center problem is introduced in [78], which includes an al-

gorithm to solve this problem. Moreover, this paper provides a complete char-
acterization of the cent-dian problem in the case of a tree. For the case of a
general network, the authors present a new algorithm to find the set of cent-
dian solutions which is conceptually much simpler than that developed by [70],
although with the same computational complexity. This algorithm is based on
the computation of the lower envelope of the bottleneck points and local minima
of the median and maximum distance objective functions on the image space.

The third approach that we are looking at to study Problem (19.8) considers
the medi-center problems, see (19.9) and (19.10). [71] analyzes this bicriteria
location problem on general undirected graphs using the cent-dian problem and
two medi-center problems. Between these two medi-center problems, a duality
relation is stated, where solving one problem is equivalent to solving the other
one when the upper bounds defining the constraints correspond to each other
in a definite way. [71] presents a procedure for the identification of all efficient
solutions based on solving only one of the two constrained problems. Finally,
the author shows that the cent-dian problem is in some sense a special case
of these medi-center problems since its solutions correspond to the extreme
points of the solution set of a medi-center problem when the upper bounds in
the constraint vary. [77] considers a medi-center problem, which minimizes the
average travel time subject to the constraint that no individual response will
be more than a determined number of time units long. Efficient algorithms are
developed for locating a single facility on a tree. This efficiency is again due to
the fundamental convexity characteristic for the distance measures on trees.

Most of the models dealing with network location problems use points to
represent the facilities to be located. However, there are circumstances where
these facilities cannot be modelled by points on a network, as for instance the
problem of locating railroad lines, highways, transit routes, pipelines, etc. In
order to solve these situations, some models have been developed where the
goal is to locate an extensive facility (see [100] for a survey of this type of
problems). In particular, one can find some papers in the literature considering
multicriteria problems with path or tree shaped facilities.
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Locating a path using the cent-dian criterion can be formulated as:

where is the length of the path P and L its upper bound. The case of a tree
shaped facility can be formulated in a similar way by considering this shape
instead of a path. For the case of a path, [92] gives a complete characterization
of the cent-dian function for tree graphs. To solve this problem, [4] proposes an
efficient algorithm based on dynamic programming. For the case of a subtree,
[137] presents an algorithm to find an optimal solution based on two facts: 1) that
the point solution for the cent-dian problem belongs to an optimal subtree; and
2) the characterization of a finite set of breakpoints of the considered objective
function. Its overall complexity is

After the analysis of the references considering bicriteria location problems
with median and center objective functions we will study other bicriteria models
in the second part of this section.

[139] considers a biobjective multifacilily minimax location problem on a
tree network, which involves as objectives the maximum of the weighted dis-
tances between specified pairs of new and existing facilities, and the maximum
of the weighted distances between specified pairs of new facilities. They develop
an algorithm for constructing the efficient frontier and also provide a general
result which gives necessary and sufficient conditions for a location vector to
be efficient.

The problem of determining the absolute center of a network with two objec-
tive functions was studied by [128]. The authors consider a bicriteria problem
where the objective functions are two center criteria using independent lengths
on each edge. The problem is solved by a polynomial time algorithm based on
[87].

The minimization of the superior section in a graph consists of finding the
path, such that, the edge with the longest length is minimum. Applications
can be found for instance in transportation of hazardous materials, where the
weight associated to each edge is the risk of accident on that edge. [60] considers
the bicriteria location problem of locating a path on a tree with respect to the
minimization of the eccentricity or farthest distance and the superior section.
They propose an algorithm that obtains all the efficient paths with complexity

based on two results: 1) on paths, the superior section function is a
maximum function over the edge lengths and it may use a progressive reduction
of the original tree and 2) there exist linear time algorithms to find path centers
on trees. Moreover, they propose modifications of this algorithm that can be
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applied to a variety of bicriteria path problems on trees where one of the objective
functions is the superior section.

The balance criterion is an equity objective function defined as the difference
of the distance from the service facility to the farthest and to the nearest demand
point. This model is induced by the situation when e.g. according to a designed
schedule or by some equity reason, the distances to the facility are to be as
balanced as possible. [83] studies a bicriteria location problem with the center
and balance criterion. The set of efficient solutions for this problem is generated
by minimizing a constrained problem, namely the center objective function
subject to an upper bound on the balance objective.

At the beginning of this section we have considered the cent-dian objective
function as an approach to deal with bicriteria location problems with center and
median objectives. However, [38] considers two cent-dian objective functions
in a bicriteria location problem on a network, where one function minimizes
the distance and the other one minimizes the cost. The efficient solutions of
this problem are derived by a polynomial algorithm based on computational
geometry.

4.2 Multicriteria Problems
Considering more than two objective functions implies that several methods
very useful in bicriteria problems, as for instance those based on projections
onto the image space in order to find the efficient solution set, are useless.
Hence, different techniques are needed to deal with these problems.

The point-objective location problem in networks is considered in [80]. The
authors give a polynomial time algorithm for the set of efficient points on a
general network and a linear time algorithm for the problem on trees.

In the case of tree networks, [94] considers a more general multicriteria
location problem where each objective function is a continuous convex function
constrained to a compact set. He characterizes the set of efficient solutions as a
subtree delimited by the optimal solutions of each criteria. Besides, he provides
a procedure for determining such a set. Finally, extensions to the case of non-
convex feasible regions are analyzed.

The single facility multicriteria median problem on networks can be formu-
lated as follows:

where is the weight associated to the demand facility by the criterion.
Due to the non-convexity of this problem searching the efficient solutions is not
restricted to a specific part of the network but rather it should be extended to
all its edges, [127]. They develop a polynomial time algorithm to determine the
efficient solution set. The procedure, first, determines the distance function for
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each objective with their corresponding breakpoints and then removes edges
according to a simple rule.

Also for this problem, [74] develops a polynomial time algorithm to find
the lexicographic and efficient solutions. The complexity of the algorithm is
considerably improved for the case of tree graphs. The analysis in this case is
based heavily on the partition of the objective function into subedges. For the
case of lexicographical solutions, it reduces the search over a finite set of vectors.
For the Pareto locations case, a procedure based on two stages is developed.
In the first stage, the set of efficient points on an edge is obtained, while in the
second, these points are tested for global domination.

In multicriteria network location analysis, we can also find models consid-
ering the location of a semi-obnoxious facility. [75] presents different models
using criteria of median type with positive and negative weights. To solve these
problems, they propose efficient algorithms based on the methodology used by
[74]. These results are extended to models with maximin and minimax objec-
tives. Recently, also solutions to the semi-obnoxious location
problem have been discussed in [134].

5. Multicriteria Discrete Location Problems

Discrete location models consider the problem of determining where to locate
one or several facilities within a finite set of given potential places to cover the
demand of a region. Therefore, the mathematical formulations of these models
mainly rely on (mixed) integer programming. Thus, one of the most classical
models in this area, namely the can be formulated as:

where PL represents the finite set of potential locations for the service facilities.
It should be mentioned the narrow relationship between discrete and networks
location problems, especially when the latter is restricted to the vertex locations,
[96, 97]. Multicriteria discrete location problems add to the above models the
consideration of several criteria to be optimized simultaneously. The reader can
find an introduction to these models in Chapter 8 of [40]. Depending on the
different criteria used to locate the new facilities we can find a large variety of
models in this field of location theory. This fact makes a difference between
continuous or network multicriteria location problems and multicriteria discrete
ones. In the former, most of the papers deal with specific problems (median,
center, cent-dian,…) and focus on theoretical results. In the latter, the effort is
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put more on applications than on methodological results. As a consequence our
presentation in this section does not classify the papers by areas. To review this
material, we mainly follow a chronological scheme combined with a description
of the most used techniques.

A possible approach to solve this type of problems are the interactive algo-
rithms. These procedures help the D-M to explore and analyze his/her pref-
erences in conjunction with an exploration of the set of feasible solutions. In
other words, it combines what is desirable with a consideration of what is possi-
ble. [133] elaborates a specific interactive algorithm for a multicriteria location
problem involving public facilities. Besides they give arguments showing that
practical problems involving the location of public facilities are really multicri-
teria problems. [114] considers an interactive procedure which is an extension
of the classical reference point approach to solve various multicriteria transship-
ment problems with facility location. In this new approach, the decision maker
forms his/her requirements in terms of aspiration and reservation levels, i.e.,
he/she specifies acceptable and required values for the given objectives. [112]
develops an interactive process that generates the solutions belonging to the
symmetrically efficient set which is applied to discrete location problems. No-
tice that symmetric efficiency is a new solution concept based on the principle
of impartiality, i.e., on the assumption that any permutation of the achievement
vector is equally good as the original achievement vector.

A second approach to deal with multicriteria discrete location problems is
goal programming. It is a very valuable tool, since it gives the D-M the opportu-
nity to include many aspects of problems that usually are not included by other
methodologies (e.g. quality of life, compliance with states laws, etc.). In what
follows, we present four references that have used this procedure to solve mul-
ticriteria discrete location problems. [7] considers the location and size of day
nurseries within a town by means of a multicriteria discrete model and its solu-
tion consists of finding a compromise among three conflicting objectives which
represent educational needs, accessibility and budget considerations. [90] ap-
plies a branch and bound integer goal programming approach to a multicriteria
location-allocation problem. [5] describes a model for evaluating and deter-
mining locations of fire stations. The model considers multiple objectives that
incorporate both travel times and travel distances from stations to demand sites.
[66] considers the problem of locating disposal or treatment centres and routing
hazardous wastes through an underlying transportation network. The consid-
ered objectives are: minimization of total operating cost, minimization of total
perceived risk, minimization of maximum individual risk and minimization of
maximum individual disutility. In order to solve the problem, the author shows
how monotonically increasing penalty functions can be used to obtain more
satisfactory solutions. Location of waste disposals of several materials have
also been addressed using other multicriteria techniques as in [1, 67, 89].
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The third resolution method that we analyze are the enumeration procedures.
[13] develops an implicit enumeration algorithm to determine the set of efficient
points in zero-one multiple criteria problems. The algorithm is specialized on
the solution of a particular class of facility location problems. The procedure
is complemented with the use of the utility function of the decision maker to
identify a subset of efficient candidates for the final selection. [57] applies this
resolution method to a multicriteria model for locating one or more undesirable
facilities to service a region. The objectives are to minimize the total cost of
the facilities located, the total opposition to the facilities, and the maximun
disutility imposed on any individual. Opposition and disutility are assumed to
be nonlinearly decreasing functions of distances, and increasing functions of
facilities size.

The point-objective location problem has also been considered in the discrete
case. [32] studies the discrete version of this model with rectilinear distances
and develops an enumerative algorithm that checks efficiency for each one of
the candidate sites.

There also exist results that establish the relationship between the efficient
solution set of a bicriteria (median-center) problem and the solution set of a
single criterion problem resulting from the combination of both objective func-
tions. In particular, the parametric analysis of the cent-dian problem only gives
a subset of the efficient solutions of the considered problem. However, a modi-
fication of the cent-dian problem allows to obtain a criterion whose parametric
analysis provides the whole set of efficient solutions, [18]. In addition, this
paper suggests a solution procedure for the cent-dian problem.

[157, 158] employ five newly developed multiple attribute decision making
methods for different versions of the manufacturing plant site selection problem.
They consider the single plant strategy with qualitative and quantitative data and
cover the multiplant strategy with budget constraints and relocation strategies.

An algorithm for generating an approximate representation of the efficient
solutions in biobjective problems which are modeled as mixed integer linear
programs is developed by [135]. A geometrical measure of the error is given
to assure that the deviation of the approximation from the exact solution set is
within a maximum allowable error. The author illustrates the algorithm with a
biobjective model which seeks to locate facilities in a set of potential facility
sites to maximize the objectives of single coverage and multiple coverage over
a set of demand points.

[91] proposes a facility site selection algorithm. Since in facility site selection
it is common to find imprecise assessments of alternatives versus criteria as well
as weighting factors, the conventional quantitative approaches may not be appli-
cable. The paper suggests the application of the hierarchical structure analysis to
aggregate the decision maker’s linguistic assessments about weighting factors
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and the suitability of facility sites. This procedure allows the decision-makers
to obtain the final ranking of the alternatives automatically.

A general approach to consider multicriteria problems is to apply weights to
the criteria to obtain overall scores for the purposes of simplifying the compar-
ison. DEA (Data Envelopment Analysis) is an interesting and non-subjective
method for obtaining weights. [141] presents an application of DEA called
“profiling” in order to assist in the choice of a location for a particular facility
when various criteria are considered. This application provides much greater
discrimination than conventional DEA which greatly eases the site selection
process.

The classical uncapacitated facility location has also been analyzed from a
multicriteria point of view. In particular, [104] considers a biobjective model for
this problem where one objective is to maximize the net profit and the other to
maximize the profitability of the investment. To solve the problem, they develop
a heuristic procedure to generate the efficient solutions which has computational
advantages over existing methods. On the other hand, [58] presents the mul-
ticriteria version of this problem (where each objective represents a different
scenario) and develops two approaches to obtain the set of efficient solutions
based on the decomposition of the problem into two nested subproblems and
the use of multicriteria dynamic programming.

[111] develops the concept of the lexicographic minimax solution (lexico-
graphic center) being a refinement of the standard minimax approach to location
problems. It is shown that the lexicographic minimax approach complies with
both the Pareto-optimality (efficient) principle (crucial in multiple criteria opti-
mization) and the principle of transfers (essential for equity measures) whereas
the standard approach may violate both these principles. Computational algo-
rithms are developed for the lexicographic minimax solution of discrete location
problems.

An application of multicriteria discrete location analysis consists of locating
regional service offices in the expanded operating territories of a large prop-
erty and liability insurer. These offices serve as first line administrative centers
for sales support and claims processing. For solving this real situation, [12]
proposes a zero-one linear multicriteria programming formulation where the
criteria and constraints of the model reflect investment and operating cost, bud-
get considerations and a measure of the service level provided. The reader can
also find another application of multiobjective integer programming to spatial
decision for housing mobility planning in [85]. In addition, [53] gives an analy-
sis of a part of the distribution system of the company BASF AG, which involves
the construction of warehouses at various locations. The authors evaluate 14
different scenarios and each one of these scenarios is evaluated with the minimal
cost solution obtained through linear programming and the resulting average
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delivery time at this particular solution. It is illustrated that a bicriteria analysis
is certainly superior to a decision based on the cost or the service criterion alone.

6. Conclusions

We have shown in this chapter that location problems are multicriteria by their
own nature. Location decisions are typically group decisions and different qual-
ity criteria have to be taken into account. The three main areas of location prob-
lems have been reviewed: continuous, network and discrete location problems.
When looking at the references discussed, one can easily see that still many in-
teresting open problems remain. In the continuous as well as the network cases
multifacility problems are not adequately treated yet. Also the development of
efficient algorithms is still in an early stage.

Moreover, the location of new facilities conditioned to the existence of other
facilities that have already been located (conditional problems) have attracted
the attention of researchers in Locational Analysis. Thus, this kind of prob-
lems opens a future avenue of research in the multicriteria case. Although some
references have dealt with nonconvex problems, they only consider particu-
lar situations. The study of general models is another open line of research.
Nonconvexities in the objective function may be modelled by the ordered me-
dian function that has been proven to be very useful in different problems of
Locational Analysis.

For discrete problems a more systematic treatment of the different problem
types is missing. For all three areas there is nearly no software available. Sum-
ming up, we can conclude that although an amazing number of publications
dealing with multicriteria location problems is around, a lot of work is still
waiting for the research community.
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