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In this chapter we survey several approaches to derive a recommendation from
some preference models for multiple criteria decision aid. Depending on the
specificities of the decision problem, the recommendation can be a selection of
the best alternatives, aranking of these alternatives or a sorting. We detail a sorting
procedure for the assignment of alternatives to graded classes when the available
information is given by interacting points of view and a subset of prototypic
alternatives whose assignment is given beforehand. A software dedicated to that
approach (Tomaso) is briefly presented. Finally we define the concepts of good
and bad choices based on dominant and absorbant kernels in the valued digraph
that corresponds to an ordinal valued outranking relation.
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1. Introduction

Let A= {...,z,¥,...} be a finite set of potential alternatives, and J be a
set of n points of view. The Multiple Criteria Decision Problem can often be
formulated as comparing and/or discriminating between the alternatives on the
basis of several points of view.

As clearly stated by B.Roy in his book on Multicriteria Methodology [27]
, Multiple Criteria Decision Aid is an activity that creates models to provide
the decision maker (DM) with guidelines with respect to his decision problem.
Three basic problems are usually put forward:

m  the choice problem that aims to select a subset of potential alternatives,
as restricted as possible, containing the “satisfactory” actions,

a the sorting problem that corresponds to the assignment of each alternative
into pre-defined categories. These categories correspond to a set M of
classes. If M is just a set of labels we talk about a classification problem.
If the labels of M can be ordered, we are dealing with an ordered sorting,

® the ordering problem that aims at ranking the alternatives by decreasing
order of preference. The prescription may be given in terms of a partial
or a complete order.

A first step in the Decision Aiding Process consists in the evaluation of the alter-
natives on each of the points of view and is possibly followed by the definition
of a valued preference relation 2; on A for each dimension j € J.

A second step consists in either determining a global ranking on the alter-
natives, a sorting into different classes, or a choice function which results in
a subset of alternatives of A. Two different procedures can be used: the pre-
ranking methods and the pre-aggregation methods.

The pre-ranking methods first determine a score S(z, R;) = Sj(z) for
each alternative £ € A and each point of view j € J. An aggregation rule
M, then transforms those partial scores into a global score S(z; R, ..., Ry),
where v represents weights linked to the points of view.v is either a vector
(v(1),...,v(n)) or a monotone set function v : 27 — [0, 1] fulfilling v(@) = 0
and v(J) = 1. This procedure will be used in the TOMASO method which
deals with ordinal data and interacting points of view. An ordered sorting is
obtained and all alternatives are comparable.

The pre-aggregation methods first determine a global binary relation R on A
using an aggregation rule M, : R = M,(Ry, ..., R,). Comparisons of partial
evaluations are performed dimension by dimension and their results are then
aggregated. Usually this relation is constructed so as to reflect the majoritarian
preference among the set of points of view. This approach allows a fine and
flexible description of preferences without forcing arbitrarily alternatives to
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be comparable and allows to take into account not only concordance between
pairs of alternatives but also discordance. A global score S’ (z, R) transformsthe
global information on each pair of alternatives into a global rating related to each
alternative. However a global partial order on the alternatives might be obtained
if top-down or bottom-up procedures are considered (as the combination of in
and out-flows in PROMETHEE [3] and the intersection of direct and inverse
complete preorders in ELECTRE II [28]).

This chapter is built around three main subjects. First of all, a general de-
scription of the different ways to deal with a multiple criteria decision prob-
lem is proposed. In Section 2 we describe the different types of data one may
encounter. Section 3 presents the concepts of valued preference relation and
outranking relation. Section 4 describes the two possibilities for aggregation:
pre-aggregation and pre-scoring. Section 5 deals with the particular multiple
criteria decision aiding problematic called the sorting. This is done in view of
Section 6. There we focus on a particular sorting procedure called TOMASO.
It is a multiple criteria sorting procedure for the assignment of alternatives to
ordered classes based on a pre-ranking method. The alternatives are evaluated
on different interacting points of view using performance levels (scores). The
objective is to aggregate these partial evaluations by the Choquet integral. The
basic technique we present is due to Roubens [23]. An evolution to this method
is explicited, in case the basic procedure has no solution. The fuzzy measures
associated to the Choquet integral can be learnt from a subset of alternatives
(called prototypes) which are assigned beforehand to the classes by the DM. This
leads in a first stage to solving a linear constraint satisfaction problem whose
unknown variables are the coefficients of the fuzzy measure. If a fuzzy measure
is found, the boundaries of the classes are calculated, and the alternatives are
classified. If no solution is found to this problem, an alternate way is suggested,
which can lead to ambiguous assignments of the prototypes.

Both results can be analysed by means of the importance indexes and the
interaction indexes of the assessed fuzzy measure. These two parameters give
the following indications on the fuzzy measure:

» the importance indexes make it possible to appraise the overall importance
of each point of view and each combination of points of view;

m the interaction indexes measure the extent to which the points of view
interact (positively or negatively).

Finally, in Section 7, we focus on a choice procedure for the selection of a set
of “good” alternatives that includes a fuzzy approach based on a pre-aggregation
method. It can be considered as a substitute to the ELECTRE IS [17, 30] method
or a complement to its prescriptions. The chapter finishes on some conclusions
and perspectives.
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2. The Data Set

Without any loss of generality, we will suppose hereafter that the higher an
evaluation of an alternative on a point of view, the better the alternative is in the
eyes of the decision maker.

For each point of view j € J, the evaluation related to each alternative is
possibly given under one of the following forms:

®  An ordinal value g; defined on a s;-point performance scale, that is a

totally ordered set X; := {g{ <= g§]} It usually corresponds to
linguistic ordered data.

® A fuzzy ordinal value, i.e. a membership function p;(u) € (0,1], Vu €
X;. The degree of membership can be interpreted as the degree of com-
patibility of the evaluation with u. The fuzzy set is supposed to be nor-
mal (sup,, f;(u) = 1) and convex (Vu,v,w € Xj;,v € [u,w], uj(v) <
min{;(u), 4 (w)}).

® A cardinal value g; that associates the alternative with a real number
indicating its performance. This is the most conventional way of building
a preference model and in that case we are talking about a true-criterion.

m A fuzzy interval, i.e. a membership function p;(u) € (0, 1], Vu € R that
is supposed to be normal and convex. Every A-cut is a closed interval
I} = {u: pj(u) > A},

A particular example of a fuzzy interval corresponds to a trapezoidal
fuzzy number defined by the parameters (gj_, gj, as, U;F):
g9y % .o - -
1_—_10?— lfgj —0']- SuSQJ
py(u) = q 1 ifg; <u<gt
+

e T + 4 ot

1 —U—J_pl— 1fgj Sung + 0

This may correspond to imprecise information on the evaluation ofa given

alternative: it lies possibly in the support (gj" —0; Su < gj + a;')

and belongs certainly to the kernel (gJ_ <u X g;")

A symmetric trapezoidal fuzzy number is such that o, = o} and may
translate the indifferences and preferences that might exist between values
that are assessed to an alternative. In that situation we call

g;-L —g; = g (indifference threshold)

g;f + crj+ - (g]“ — aj_) = p; (preference threshold)
g ity _
3 =9
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These definitions are interesting as a help to understand the concepts of
indifference and preference thresholds. All the values between g; — %qj
and g; + %qj are considered as indifferent. Values greater than g; + %pj
are better than g; and those lower than g; — % p; are worse than g;. Evenin
the case of complete and precise information, a small positive difference
does not always justify the preference.

3. Valued Preference Relation and Outranking Relation

Now that we have described the different possible evaluations in Section 2 the
goal of this section is to recall the concepts of valued preference relation and
outranking relation. We define the degree to which an alternative z is not worse
than y for point of view j. Let R;(x,y) be this degree, for each ordered pair
(z,y) of alternatives. We use the same notations as in Section 2 for the different
possible evaluations.

Similarly to the different possibilities described in Section 2, the degree
R;(z,y) has different definitions and properties:

® For an ordinal or cardinal value g;:

Rj(z,y) = {1 if gj(z) > g;(y)

0 otherwise.

This crisp binary relation is a linear quasiorder.

» For afuzzy ordinal value, Rj(x,y) defines the degree of the preference
of x over y and is considered as the possibility that z is not worse than y:

Rj(z,y) =;(z > y) = maxyy, min(uj(u), uf(v)),u,v € X;
= max, min(uf(u), pf (u)) u € Xj.

II; is a valued binary relation such that max(IL;(z,y),I1;(y, z)) =
1,Vz,y € A. Roubens and Vincke [24] have proved that II; is a fuzzy
interval order and every A-cut is a crisp interval order.

s For fuzzy intervals, R;(z,y) is also defined as the possibility that Z is not
worse than y:

Ri(z,y) =j(z 2 y) = ma.xmln(uJ (w), 15 Y(v)),u,v € R.

If the kernel of yi7 is located to the right of the kernel of ,ug, then IT;(z >
y) = land Ilj(y > ) equals the height of the intersection of 4 and p,g,

h; (z,y) (see Figure 12.1). This valued binary relation presents the same
properties as the fuzzy ordinal value.
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Figure 12.1.  Comparing two fuzzy intervals.

Starting from the credibility of the preference of x over y it is possible to
define [6, 7]:

— the degree of strict preference of  over ¢ as the necessity that x is
strictly better than y:

— the degree of indifference between x and y as:

Ij(x: y) = min(Rj(ac, y): Rj(ya z))

m  For of a symmetric trapezoidal number:
PP W) i fo (1) — aa(g). PAEFRIW)
Rj(z,y) = ——2 {9i() — gj(=), =51}

Pz‘(i)';l)z‘(y) _ min{gj(y) — g;(x), qz-(m)-;qi(y)}

where % should be taken as 0.

If p; and g; are linear functions of g;, then R; is a fuzzy semiorder and
every A-cut is a crisp semiorder [6, 7).

If p; = gj, then we obtain a crisp interval order. Let us define g} (x)
g5(x) — gléi). We then have:

— for the strict preference:

tPyy <= Rj(z,y)=1R;(y,z)=0
= gi(z) - g;(¥) > ¢;(v)

— for the indifference:

-'Dij — Rj(.’l),’y) = Rj(yvx) =1
< |gj(=) — g;(¥)| < min(g;(z),q;(y))
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An extra condition of local consistency should be added [27]:

9;(x) > g;(¥) = g;(2) + ¢;(z) = g;(¥) + ¢;(v)

The criterion function g;- and the threshold function ¢; define a semi-
criterion and the structure (P}, I;) is a semiorder.

The classical procedures ELECTRE III [26] and PROMETHEE [3] are using
this approach based on the intersection of fuzzy sets.

According to Perny [22], the degree of preference of  over y may be con-
sidered in very general terms as

Ri(z,y) = filg;(x), Ng;(y)]

where f; is a non-decreasing function of both arguments, NV is a strong negation
and Rj(x,x) = 1.Perny proved that such a valued preference relation is a fuzzy
semiorder and every A-Cut constitutes a crisp semiorder [22]. As a particular
case, we have the concordance index defined by Roy [26]:

(@) = mind 1.m 9i(2) — 9;(y) + p;(g;(<))
Bsw) ‘{1’ ‘”‘{0’ 2(6,@) — 05 }}

where p; and ¢; are non-decreasing functions of g; and correspond respectively
to a preference threshold and an indifference threshold. For consistency rea-
sons, p;(g;(x)) > ¢;(gj(x}). The concordance index R; is meaningful (i.e. is
invariant under admissible transformations of g;) if g; is defined on an interval
scale (admissible transformations are hj =r-g;+ 8,7 > 0). g; corresponds to
a constant or a proportion of g; and p; is expressed as a proportion of g; [26].
Similarly, according to Perny, we may also define a degree of discredit as

Dj(z,y) = hjlgi(y), Ng;(z)]

where h; is a non decreasing function of both arguments, Dj(z,z) = Oand
min{R;(z,y), Dj(z,y)} = 0. Under these conditions, Dj is a fuzzy partial
order and every A-cut represents a crisp partial order. As previously, we can
consider the particular case of the discordance index defined by Roy [26]:

(2. v) = min 9i(W) — 9i(z) — pi(g;(=))
Ds(e9) {1’““”‘{0’ (G (@) — 23 (6;(@)) }}

where v corresponds to a veto threshold which expresses the existence of a
discordant point of view that prohibits to accept the idea that x is globally
preferred to y.
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4. Aggregation Procedures
4.1 Pre-aggregation Methods

Let us first consider the methods that propose to merge the marginal information
about each pair of alternatives (z,y) in terms of concordance (and possibly
discordance) indexes into a global relation that expresses the overall importance
of the consensus on the fact that “z is globally not worse than y”.

Roy [27] introduces an outranking relation Q(z, ) that corresponds to the
“agreement versus discordance” measure linked to the proposition that z is
globaly not worse than y. It indicates the importance of the coalition of the
points of view that agree with the proposition by taking also into account the
discordance.

In general, if v; represents the relative importance of each point of view 7,
(4 € J,|T| = n), we may consider two aggregation operators My and Mp
such that

R= MR(RI’“';RIL;UIV"’UTL)
D= MD(DI, ce ,Dn;vl,. . ,Un).

Mg is amonotonic function of the first arguments such that Mg(0, ...,0; vy,
.oyun) = 0and Mg(1,...,1;v1,...,v,) = 1. Mp is amonotonic function
of the first arguments that should satisfy:

(34,5 € T : Dj(x,y) = 1) = D(z,y) = 1

stating that if at least one point of view is totally discordant with the proposition
that z is not worse than y, the global discordance should be maximal for that
specific pair of alternatives.

We could consider the following approach:

® for R the compensative idempotent operator (weighted sum)
R(z,y) = Z viR(z,y), Z vj=1
JjeJg JjeJ
® for 1 — D the non-discordance index (geometric mean)

1 - D(z,y) = Wjeg (1 — Dj(x,y))™.

R measures the overall importance of the agreement and D allows to give a bad
rating as soon as one important partial evaluation of the discordance is achieved.

Finally the outranking relation is obtained as a combination of concordant
and discordant aspects as:

O(z,y) = R(z,y) - [1 = D(z,y)]-
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Roy on his side considered in ELECTRE III:
® for R the compensative weighted sum operator

a for the outranking degree

O(z,y) = R(z,y) iij(z,yz SDR(m,y) forallj € J,
x

= Rz, ) jer( ) T_—Ti%(z,_:)l otherwise,

where J(z,y) corresponds to the subset of points of view for which

In this case, the outranking degree is thus equal to the concordance index if no
point of view is discordant, or if no veto is used and is lowered if the level of
discordance (1 — Dj) increases above a threshold value.

Most of the existing proposals linked to pre-aggregation methods simply
merge the marginal information related to the agreement on the proposal that z
is globally not worse than y. They are thus directly linked to the concordance
measures R (z,y). The subjectivity of the decision maker with respect to the
importance of each of the points of view can be used in different ways to obtain
a global compromise. We consider here three of these approaches.

s the weighted sum (good items compensate bad ones with respect to dif-

ferent points of view):
R= Zijj,Z’Uj =1
jeJ jeg

m  the weighted minimum (the outranking value is high if the partial evalu-
ations are favorable on each of the points of view)

R = minmax(1 —v,;, R;),maxv; =1
min ( 35 J)’jEJ y]

s the weighted maximum (the outranking value is high if at least one of the
points of view presents a good evaluation)

R = maxmin(v;, R;), maxv; = 1.
s (v3, J):jGJ j

Weighted maximum and minimum can be interpreted as weighted medians
(see [5]). The interested reader can refer to [6, 11] and [7] for a more elaborate
list of aggregators.

In the case of a choice problem the outranking relations O (initially with crisp
outranking relations and later with A-cuts of the valued outranking relations)
were exploited by Roy using the kernel concept (internally stable and dominat-
ing subset of A) in ELECTRE I [17, 25] and later in ELECTRE IS [17, 30]. The
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idea is to track the maximal circuits to transform them into indifference cliques
or suppress these circuits by eliminating the less credible outrankings.

Another approach was proposed by Orlovski [22]. He considers the fuzzy
set of non dominated elements over A as

ND{(z) = min -P(y,x), Vz € A,
(=) ,Sin (y,z)

where P(y,z) corresponds to the degree of strict preference associated to
R(y, x) (see [6, 7, 20]). The rational choice corresponds to these alternatives
giving the maximal value of ND:

AND . {z € A : maxND(z)}.
z€A

Under certain sufficient conditions (transitivity of R) this subset corresponds
to maximal values equal to one; such good alternatives are called unfuzzy
non dominated alternatives (UND-alternatives) and the corresponding ratio-
nal choice is

AUND . {zx€eA: P(y,z) =0 Vye A}

In Section 7 we consider the case where the valued relations R are ordinal
values defined on a discrete finite set L (L-valued binary relations) and we
determine the choice set as a kernel with a maximum degree of credibility.

In the case of a sorting problem the outranking relations O are used in
procedures where a decision tree is used or by filtering as in ELECTRE TRI
[17, 29]. These procedures use a cutting procedure that transforms the fuzzy
outranking relations into a sequence of crisp and nested outranking relations.

In the case of an ordering problem the outranking relations O are used to
construct two complete pre-orders, one arising from a ascending distillation
procedure and another constructed from a descending distillation procedure.
Another prescription consists in the intersection of the two previous pre-orders.
These exploitation procedures are described in ELECTRE III [17, 26].

4.2 Pre-scoring Methods

In this type of approach, the implicit assumption that there exists a complete and
transitive comparability of the alternatives is made. The most typical example
of such methods corresponds to an ordering or a sorting that is based on the
weighted sum of some partial scores S;(x) (x € A). The additive representa-
tion of the utilities (expressed in terms of the partial scores) however implies
preferential independance of the utilities.

One way to avoid this independance condition is to use the Choquet inte-
gral [4] as an aggregator.
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Let us consider analternative  which is described by its partial scores vector
S(z) = (S1(x),...,Sn(x)). The Choquet integral of x is then defined by:

n
Co(8(x)) 1= Sy (@)[v(Agy)) — v(Agitny)]
i=1
where v represents a fuzzy measure on 7, that is a monotone set function
v: 27 — [0,1] fulfilling v(#) = 0 and v(J) = 1. This fuzzy measure merely
expresses the importance of each subset of points of view. The parentheses used
for indexes represent a permutation on J such that

S’(l)(m) <...Z S(n)(.’ll),

and Ay represents the subset {(3),.. ., (n)}.

We note that for additive measures (v(S U T) = v(S) + v(T'), whenever
SN T = @) the Choquet integral coincides with the usual discrete Lebesgue
integral and the set function v is simply determined by the importance of each
point of view: v(1), ..., v(n). In this particular case

n
Co(S(a)) = D" o(0)Si(z) (@ € 4),
i=1
which is the natural extension of the Borda score as defined in voting theory if
alternatives play the role of candidates and points of view represent voters.

If points of view cannot be considered as being independent, the importance
of the combinations S C 7, namely v(S) has to be taken into account.

Some combinations of points of view might present a positive interaction
or synergy. Although the importance of some points of view, members of a
combination S, might be low, the importance of a pair, a triple, ..., might be
substantially larger and v(S) > ;e v(4).

In other situations, points of view might exhibit negative interaction or re-
dundancy. The union of some points of view do not have much impact on the
decision and for such combinations S, v(S) < ;g v(%).

The Choquet integral presents standard properties for aggregation [13, 15,
35]: it is continuous, non decreasing, located between min and max.

The major advantage linked to the use of the Choquet integral derives from
the large number of parameters (2™ — 2) associated with a fuzzy measure. On
the other hand, this flexibility can also be considered as a serious drawback
when assessing real values to the importance of all possible combinations. We
will come back to this important question in Section 6.

Let us present an equivalent definition of the Choquet integral. Let » be a
fuzzy measure on J. The Mobius transform of v is a setfunction m : 27 — R
defined by

m(S) = 3 (~1)-Tu(T) (5 € 7).
TCS
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This transformation is invertible and thus constitutes an equivalent form of
a fuzzy measure and v can be recovered from m by using

v(8) =Y m(T) (SC N).
TCS

This transformation can be used to redefine the Choquet integral without
reordering the partial scores:

Co(S(@)) = Y m(T) \ Si(z).
TCT i€T

A fuzzy measure is k-additive [8] ifits Mobius transform m satisfies m(.S) =
0 for S such that | S| > k and there exists at least one subest S such that [S| = k
and m(S) # 0. Thus, k-additive fuzzy measures can be represented by at most
Ef':l () coefficients.

For a k-additive fuzzy measure,

Co(S(=) = Y. m(T) A Sj).
TS i<k Jer

In order to assure boundary and monotonicity conditions imposed on v, the
Mobius transform of a k-additive fuzzy measure must satisfy:

m®) =0, Y m(T)=1

rcg
A ITI<k
Y mT)z0, VSCJ,YjeS
T:i€TCS
ITi<k

In Section 6 we present a sorting method using the Choquet integral and based
on supervised learning. But first let us introduce some general considerations
on the problematic of sorting alternatives.

S. The Sorting Problem

Let A be a set of g potential alternatives which are to be assigned to disjoint
ordered classes. Let F' = {g1,..., gn } be a set of points of view. For each index
of point of view j € J = {1,...,n}, the alternatives are evaluated according
to a s;-point ordinal performance scale represented by a totally ordered set

X = {g{ <j ... =% ng}.

Therefore, analternative € A can be identified with its corresponding profile

n
(®1,...,2n) € HXJ- =: X,
i=1
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where forany j € J, x; is the partial evaluation of z on point of view j.

Let us consider a partition of X into 7 nonempty increasingly ordered classes
{Cl;}{%, . This means that forany 7, s € {1,...,m}, with 7 > s, the elements
of Cl, are considered as better than the elements of Cl,.

The sorting problem we are dealing with consists in partitioning the alterna-
tives of A into the classes {Cl¢}7%;.

In Greco et al. [10], a very general theorem states that, under a simple con-
dition of monotonicity, a discriminant function can be found which strictly
separates the classes {Clt};';l by thresholds. In Roubens [23] a restriction to
the class of n-place Choquet integrals and normalised scores as criteria func-
tions is made. Hereafter we present the sorting procedure derived from this
particular case.

6. The TOMASO Method

The ToMASO method (Technique for Ordinal Multiattribute Sorting and Or-
dering) is mainly based on two techniques (which can lead to the same results
under certain conditions). The original method has first been described in [23].
In the following Subsection, we present its basics. In Subsection 6.2 we show
how it is possible to deal with a larger set of problems.

6.1 The Classical Way

The different stages of the original TOMASO are listed below:
1 Modification of the criteria evaluations into scores;
2 Use of a Choquet integral as a discriminant function;

3 Assessment of fuzzy measures by questionning the DM and by solving a
linear constraint satisfaction problem;

4 Calculation of the borders of the classes and assignment of the alternatives
to the classes;

5 Analysis of the results (interaction, importance, leave one out, visualisa-
tion).

In this Section we roughly present these different elements.

One of the most difficult tasks is to modify the original ordinal evaluations of
the alternatives on the criteria into some “scores” which can be aggregated by
means of a Choquet integral. For example, two ordinal scales X; and X}, can
have a distinct number of evaluation levels and very different intrinsic meanings.
The transformations of the scales should take into account these possible char-
acteristics in order to obtain comparable evaluations. Two natural possibilities
appear: the scores are built on basis of the data which are to be analysed or the
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scores are constructed completely out of the context of the problem. In the first
case, the scores are solely based on the information which is contained in the set
of alternatives which are considered. In the second case, the scales Xj,3 € J
are modified in a general way, without taking into account the particular struc-
ture of the analysed set of data. At the present stage of our research, we suggest
three possible alternatives for the building of these evaluation scores. In each of
the cases, the DM must be aware of the consequences of his choice. Therefore,
a deep analysis of the problem is important for its complete understanding.

First of all, in case the problem can be resumed to the set A of potential
alternatives and if the DM is a single person, then one possible way to build the
scores is to consider pairwise comparisons of the alternatives on each of the
points of view. For each point of view § € 7, the order on X; (X;) can be
caracterised by a valuation R; : A x A — {0,1} definedby R;(z,y) = 1if
z; > Y4, 0 otherwise. Starting from this valuation we define a partial net score
Sj: A— Rby

Si(z) = Y [Rj(z,y) — Rj(y,2)] (z€4,j€JT). (12.1)
YyEA

The interpretation of the integer S;(x) is natural: it represents the number of
times that z is preferred to any other alternative of A minus the number of times
that any other alternative of A is preferred to = for point of view j. One can
show that the partial net scores identify the corresponding partial evaluations.
We furthermore normalise these scores so that they range in the unit interval.
The highest partial net score which can be obtained corresponds to the following
general case:

® one single alternative Zmax € A has ord;(zmax) = %
® 1o alternative z € A has ord;(z) > i;
» the remaining alternatives z € A\{Zmax} have ord;(z) < i.

Therefore, the highest possible partial net score is Sjmax(2) = ¢ — 1. Sim-
ilarly, the lowest possible partial net score is Sjmin(z) = —(¢ — 1). We can
therefore write the normalised partial net scores S;V asfollows:

Si(z) +(g—1)

57/(@) = 2(¢—1)

F €[0,1] Vje J,Vre A (12.2)
On contrary of the original ordinal partial evaluations, the partial net scores
(and the normalised partial net scores) are commensurable. During the whole
chapter we will use the notation SM(z) := (SN (z), ..., SN (x)).

Two important questions now arise: how can this choice be motivated, and
how can it be interpreted? First of all, the DM must understand that the selection
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of the set of potential alternatives A will have an influence on the final result.
Therefore this choice must be made with much care. Then, his way of thinking
must be a comparison of the alternatives on each of the points of view. Let
us consider a short example which clearly illustrates this way of obtaining the
scores. Suppose that we have to deal with a sorting problem with two qualitative
ordinal criteria on a set of cars. The first point of view C expresses the degree
of comfort of the alternatives and is evaluated on a 3-point ordinal scale X; =
{Bad~<;Medium~;Good}. The second one Cg expresses the fuel consumption
of the cars on a 3-point ordinal scale X2 = {High<yNormal<;Low}. The set
of potential alternatives consists in 6 cars. The DM is aware that the results will
depend on these 6 alternatives, but he considers that they have been chosen in
aright way (for example, they are the only possible cars that he can afford with
his tight budget). One can then assume that the absolute value of an alternative
on a point of view is not informative, unless considered in relation with the
other elements of A. We summarise this short example in Table 12.1. It shows
the distribution of the alternatives among the different evaluation levels of the
two points of view.

Table 12.1. Number of alternatives per evaluation level.

C_'L CQ
Good 4 Low 2
Medium 1 Normal 2
Bad 1 High 2

If one reasons according to the comparison philosophy, it appears clearly
that it is less exceptional to be “Good” than to be “Low”. In fact, there are many
good cars, but fewer cars with a low fuel consumption. Similarly, being “Bad”
is worse than being “High”. This means that having a high fuel consumption is
less exceptional than being an uncomfortable car. The scores, as defined earlier,
reflect these properties. They are given in Table 12.2.

Table 12.2. Score of each of the evaluation levels.

C 1 C2
Good 710 Low 9/10
Medium 2/10 Normal 5/10
Bad 0/10 High 1/10

This example shows that it is not senseless to modelise the DM’s way of
thinking by these scores. Three conditions should be satisfied: the decisions
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must be taken by a single DM, the set of potential alternatives must be chosen
carefully and the DM should evaluate the alternatives by comparisons.

Secondly, let us consider the cases where multiple DMs intervene or where
the decisions are not taken according to the previously described comparison
philosophy. Here, the scoring functions are built “out of the context”. This
means that the values given to each of the evaluation levels of the ordinal scales
don’t depend on the set A. If the DM cannot help us with the building of such
scores, we can approximate these discrete utility functions by the following
formula:

_ordj(z) —1

N .
SJ (.’l‘) Sj—l

€1[0,1] VjeJ,Vxe A,
where ord; : A — {1,...,s;} is a mapping defined by ord;(z) = r <=
z; = gr. SJN (z) does not represent a real utility and probably does not cor-
respond to the utility me DM has in mind. We therefore continue to call it a
score.

Finally, we would like to point out a particular situation, where the DM con-
siders that any possible alternative which can be built out of the evaluation
scales is a potential alternative. In this case, A equals the set of all possible

alternatives which can be built from the sets X;,j € J,1ie. A = H;n'zl X;.
The partial net score formula (12.1) then becomes

2ord;(z) -1 )
Sj(z) = Q(——éf)— ~-1) (zeX,je). (12.3)
J
These partial net scores are normalised according to the formula (12.2).
We now come to the crucial part of the aggregation of the normalised partial
net scores of a given alternative by means of a Choquet integral [4]. The
advantage of this aggregator is mainly that it allows to deal with interacting

(depending) points of view. According to what has been said in Section 4:
n
Co(SN(@)) =Y Sy (@) w(Ag)) — v(Agan)),
j:l

where v is a fuzzy measure on J ; that is a monotone set function v : 27 — [0,1]
fulfilling v() = 0 and v(J) == 1. The parentheses used for indexes stand for
a permutation on J such that

S0y (@) < ... < 8 (@),

and forany j € J, A(j) represents the subset {(5),...,(n)}. The characteri-
sation of the Choquet integral by Marichal [12, 13] clearly justifies the way the
partial scores are aggregated, points of view.
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The next step of this method is to assess the fuzzy measures in order to
classify the alternatives of A. One can easily understand that it is impossible to
ask the DM to give values for the 2" — 2 free parameters of the fuzzy measure v.
Practically, the assessment of the fuzzy measures is done by asking the DM to
provide a set of prototypes P C A and their assignments to the given classes;
that is a partition of P into prototypic classes {P;}{; where P, := PN Cl,
fort € {1,...,m}. The values of the fuzzy measure are then derived from this
information as described hereafter.

We would like the Choquet integral to strictly separate the classes Cl;. There-
fore, the following necessary condition is imposed

Cuo(SN(z)) — Co(SN () > € (12.4)

for each ordered pair (z,2') € P, X P~y andeach t € {2,...,m}, where ¢ is
a given strictly positive thershold.

Due to the increasing monotonicity of the Choquet integral, the number of
separation constraints (12.4) can be reduced significantly. Thus, it is enough
to consider border elements of the classes. To formalise this concept, we first
define a dominance relation D (partial order) on X by

Dy <= z; =; y;, forallj € 7.

As upper border of the prototypic class P; we use the set of non-dominated
alternatives of P; definedby

ND, :={z € P,such that Az’ € P,\ {z} : ' Dx}.

Similarly, the lower border of the prototypic class is given by the set of
non-dominating alternatives of P; which is defined by

Nd; := {x € Pysuch that Az’ € B\ {z} : zDz'}.

The separation conditions restricted to the prototypes of the subsets N.D; U
Nd;, t € {1,...,m} put together with the monotonicity constraints on the
fuzzy measure, form a linear program [16] whose unknowns are the capacities
v(S), S C J and where € is a non-negative variable to be maximised in order
to deliver well separated classes.

We use the principle of parsimony for the resolution of this problem. If there
exists a k-additive fuzzy measure v*, k being kept as low as possible, then we
determine the boundaries of the classes as follows:

= lower boundary of Cly: 2(t) := mingeng, Cor (SN (x));
= upper boundary of Cly: Z(t) := maxzenp, Co+ (SN (z))-

At this point, any alternative € A can be classified in the following way:
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m 7 is assigned to class Cly if 2 < Cr (SN (z)) < Zy;
» 2 is assigned to class Cly U Cli_y if Zy_1 < Cype (SN (2)) < 2.

A final step of the classical TOMASO method concerns the evaluation of the
results and the interpretation of the behavior of the Choquet integral. The mean-
ing of the values v(T') is not clear to the DM. They don’t immediatly indicate
the global importance of the points of view, nor their degree of interaction. It
is possible to derive some indexes from the fuzzy measure which are helpful to
interpret its behavior. Among them, the TOMASO method proposes to have a
closer look at the importance indexes [32] and the interaction indexes [19]. We
present the calculation of these indexes in Section 6.3.

6.2 An Alternate Way

It may happen that the linear program described in Subsection 6.1 has no so-
lution. This occurs when the prototypic elements violate the axioms that are
imposed to produce a discriminant function of Choquet type [13, 35], in partic-
ular the triple cancellation axiom.

In such a case, and in order to present a solution to the DM, we suggest to
find a fuzzy measure by solving the following quadratic program

min Z [Cv(SN(m)) —y(x)]z’

z€Upe (1 m}{NDiUNDg}

.....

where the unkowns are
® the capacities v(.S) which determine the fuzzy measure;
= some global evaluations y(x) for each & € Uyeqy, . .m){INDy U Ndy}.

The capacities (.S} are constrained by the monotonicity conditions (as previ-
ously shown in Section 6.1). The global evaluations y(z) must verify the clas-
sification imposed by the DM. In other words, for every ordered pair (z,z’) €
Ndy x NDy_q,t € {2,...,m} the condition y(z) — y(z') > €', & > 0 must
be satisfied.

Intuitively, for a given alternative z € A, its Choquet integral C,(S™ ()
should be as close as possible to the global evaluation y(z), withoutbeing con-
strained by monotonicity conditions which might violate the triple cancellation
axiom for example. On the other hand, the evaluation y(z) is constrained by
the these conditions derived from the original classification given by the DM on
the prototypes.

Unlike the method described in Section 6, in this case, &' plays the role
of a parameter, which needs to be fixed by the DM. As previously, we use the
principle of parsimony when searching for a solution (keep & as low as possible;
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at worst k equals the number of points of view). A correct choice of &' remains
one of the main challenges of our future research. It is clear that €’ has to be
chosen in ]0, 1/n|.

As in the classical method, the next step is to determine the structure of the
classes. We determine an assignment for every alternative of X in terms of
intervals of contiguous classes on the basis of the information provided by the
Choquet integrals related to the prototypes of P C A.

First of all, let us suppose that S¥(z~) := (0,...,0) is classified to the
worst class, Cly and that SV (z%) := (1,...,1) is classified to the best class,
Clp.

To each assignment I(x) correspond a lower class label I(z) and an upper
class label I(z), I,I € J. We say that the alternative x € X is precisely
assigned to Clyzy if for the assignment I(x) we have I(z) = l(z) =: I().
Else, the alternative z is said to be ambiguously assigned to the interval of
labels I(z) = [l(x),l(x)]. The degree of the assignment corresponds to the
number of contiguous classes contained in I(z), d(z) = I(z) — I(z) + L.

The assignments are done according to the procedure described hereafter.
Starting from the prototypes z € P, their Choquetintegrals C,(S™ (x)) and
their original classification label Cl(z) (according to the DM’s choice), we
define forevery u € [0, 1],

m(u) = max Cl(z), and
zEP:Cy(SN (2))<u
M(u) = min Cl(z).
2€P:Cy (SN (z))>u

m (resp. M) is aright (resp. left) continuous stepwise function of argument u
with values belonging to the discrete finite set J.
We now define for each u € [0, 1] an interval of contiguous classes I(u) =
(L(u), I(u)] where
U(u) = min{m(u), M(u), }

I(u) = max{m(u), M (u)}.

Obviously {(u) < I(u)and due to monotonicity of mand M we have: l(u) <
L(v),l(u) < l(v),Vu,v € [0,1] withu < .
The interval [0, 1] is partitioned into (closed, semi-open or open) intervals

I,,s=1,...,8, and each of those intervals of [0, 1] receives an assignment
of the type [I(s),1(s)] (or semi-open or open) in such a way that: if u,v €
[0,1],u < v and if w is assigned to I, := [I(r),I(r)] and v is assigned to

Lo = [I(r"),1(r")] then i(r) < I(+') and I(r) < I(r").
Moreover ifu = Cy(SN (z)),z € Pthen L(u) < Cl(z) < I(u). This means
that each prototype is correctly classified, possibly with ambiguity if d(z) > 1.
The assignment of a prototype a to the intervals of classes leads now to two
scenarios:
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w g is assigned to a single class (interval of length 0) which corresponds to
the original class decided by the DM

®m g is assigned to an interval of classes and the original class decided by
the DM belongs to this interval.

The quality of a model (classifier) depends on different ratios. A good model
has the following natural properties:

® a simple model according to parsimony (low k);
® 2 high number of precise assignments of the elements of P;

® a low number of ambiguous assignments of the elements of P (and the
lower the degree of the assignment, the better the model)

For a given €', the DM has to select a model (k) which seems the best compro-
mise to him in terms of the previously described assignments. The simplest ad-
ditive model (k = 1) can in certain situations be this ideal compromise between
simplicity and quality. But in more complex problems, k has to be increased in
order to obtain a satisfying number of precisely assigned prototypes.

The next Section briefly presents some indexes (importance, interaction)
which give indications on the behaviour of the fuzzy measure.

6.3 Behavioral Analysis of Aggregation

Now that we have a sorting model for assigning alternatives to classes (based on
the linear program or the quadratic program), an important question arises: How
can we interpret the behavior of the Choquet integral or that of its associated
fuzzy measure? Of course the meaning of the values v(7'} is not always clear
for the DM. These values do not give immediately the global importance of the
points of view, nor the degree of interaction among them.

In fact, from a given fuzzy measure, it is possible to derive some indexes or
parameters that will enable us to interpret the behavior of the fuzzy measure.
These indexes constitute a kind of id card of the fuzzy measure. In this Section,
we present two types of indexes: importance and interaction. Other indexes, such
as tolerance and dispersion, were proposed and studied by Marichal [12, 14].

6.3.1 Importance Indexes.  The overall importance of a point of view
J € J in a decision problem is not solely determined by the value ofv({7}), but
also by all ¥(T") such that j € T'. Indeed, we may have v({j}) = 0, suggesting
a priori that element j is unimportant, but it may happen that for many subsets
T C J,v(TU{j}) is much greater than v(T'), suggesting that 7 is actually an
important element in the decision.

Shapley [32] proposed in 1953 a definition of a coefficient of importance,
based on a set of reasonable axioms. The importance index or Shapley value of
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point of view § with respect to v is defined by:

o gy = Y LTI UHTE

!
TCI\G) i

(TU{s}) —o(T). @25)

This index is a fundamental concept in game theory and it expresses a power
index. It can be interpreted as a weighted average value of the marginal contri-
butionv(T'U {5}) — v(T') of element j alone in all combinations. To make this
clearer, we rewrite the index as follows:

n—1
$orlil =5 Ny 3 WTUGH - uD)
TT|=:J

Thus, the average value of v(T' U {j}) — v(T') is computed first over the
subsets of same size t and then over all the possible sizes. Consequently, the
subsets containing about /2 points of view are the less important in the average,
since they are numerous and a same point of view j is very often involved into
them.

The use of the Shapley value in multicriteria decision making was proposed
in 1992 by Murofushi [19]. Itis worth noting that a basic property of the Shapley

valueis
n

> é(w, (Y =1.

j=1

Note also that, when v is additive, we clearly have v(T' U {j}) — v(T) =
v({j}) forall j € J andall T C J \ {j}, and hence

¢(v, {7} =v({s}), jeJ. (12.6)

If v is non-additive then some points of view are dependent and (12.6) gener-
ally does not hold anymore. This shows that it is useful to search for a coefficient
of overall importance for each point of view.

6.3.2 Interaction Indexes. A further interesting concept is that of inter-
action among points of view. We have seen that when the fuzzy measure is not
additive then some points of view interact. Of course, it would be interesting to
appraise the degree of interaction among any subset of points of view.

Consider first a pair {¢, 5} € J of points of view. It may happen that v({¢})
and v({j})are small and at the same time v({%, j})is large. The Shapley index
é(v, {7}) merely measures the average contribution that point of view j brings
to all possible combinations, but it gives no information on the phenomena of
interaction existing among points of view.
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Clearly, if the marginal contribution of j to every combination of points of
view that contains % is greater (resp. less) than the marginal contribution of 7 to
the same combination when ¢ is excluded, the expression

(T U{3,5}) —o(T U {s})] - [v(T U {5}) —o(T)]

is positive (resp. negative) forany T C J \ {4,7}. We then say that % and j
positively (resp. negatively) interact.

This latter expression is called the marginal interaction between % and j, con-
ditioned to the presence of elements of the combination T' C 7 \ {4, j}. Now,
an interaction index for {7, 7} is given by an average value of this marginal in-
teraction. Murofushi and Soneda [19] proposed in 1993 to calculate this average
value as for the Shapley value. Setting

(A 0)(T) = v(T U {5, 5}) —v(T U {i}) —v(T U {5} + (D),

the interaction index of points of view ¢ and j related to v is then defined by

Iw G = 3 (n—|T| = 27!

—1)!
remisy Y

(Aij ”U)(T) (127)

It should be mentioned that, historically, the interaction index (12.7) was first
introduced in 1972 by Owen (see Eq. (28) in [21]) in game theory to express a
degree of complementarity or competitiveness between elements % and j.

6.4 Interpretation of the Behaviour of the Fuzzy Measure

In this Section we briefly show the main advantage to use a Choquet integral
rather than the weighted sum as a discriminant function. We therefore take
the simple case of two points of view, which can be represented in a plane.
Figure 12.2 presents 5 possible ranges of values for the weights v and the cor-
responding structures of the limits of the classes. One can see that the main
difference between the classical weighted sum and the Choquet integral is the
greater flexibility of the borders of the classes. The Choquet integral creates
piecewise linear borders, which allows to build more precise classes. The dif-
ferent possibilities are summarised by the following list.

» [ o(l) + v(2) < v(12): synergy

I: »(1) + v(2) > v(12): redundancy
I v(1) 4+ v(2) = v(12) = 1: additivity

IV: v(1) = v(2) = 0: limit case; maximal synergy

V: (1) = v(2) = 1: limit case; maximal redundancy
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Figure 12.2. Interpretation of the discriminant functions.

In [9] the authors give an interpretation to the first two cases. In case of
synergy, although the importance of a single criterion for the decision is rather
low, the importance of the pair is large. The criteria are said to be complemen-
tary. In case of redundance, or negative synergy, the union of criteria does not
bring much, and the importance of the pair might be roughly the same as the
importance of a single criterion.

The limit case (IV) occurs for maximal synergy. In that case, the Choquet in-
tegral corresponds to the aggregation by the min function. Maximal redundancy
occurs for case (V), where the Choquet integral is the max function.

In case the number of points of view is larger than two, it becomes quite
hard to represent the problem. Nevertheless, the previous short example helps
to understand how the borders of the classes are built in such more general
examples.

6.5 The Software TOMASO

In this short part of the chapter we briefly present the key characteristics of the
software TOMASO. It can be downloaded on http://patrickmeyer.tripod.com. It
is an implementation of the algorithms which were presented previously. Its
name stands for “Tool for Ordinal MultiAttribute Sorting and Ordering”. It is
written in Visual Basic and uses two external solvers: a free linear program
solver (Ip_solve 3.0, ftp://ftp.ics. ele.tue.nl/pub/lp_solve/, released under the
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LGPL license), and a non free quadratic program solver (bpmpd, free trial
version at http://www.sztaki.hu/meszaros/bpmpd/).

It is still under development and many improvements are added on a regular
basis. The general steps of the software are outlined hereafter:

® Loading of the ordinal data;

m  Choice of a scoring method according to the problem’s specificities and
calculation of the normalised partial net scores;

= Definition of the prototypes by the DM;

m  Search for a fuzzy measure (either by the linear program, or the quadratic
program);

= Analysis of the results (classes, Shapley indexes, interaction indexes,
accuracies, ...).

A detailed description of the software can be obtained from the authors.

6.6 Testing the Method on Two Problems

In this Section, we apply the previously presented method on two particular
problems. The following part describes briefly the two problems. Then they are
analysed by the TOMASO method.

6.6.1 Description of the Problems.

The Students Problem This small example clearly illustrates the procedure
when no solution can be found to the linear program. We consider a set of
8 students evaluated on 2 courses (C1, C2). For each matter, the evaluation
scale has 10 ordered qualitative levels (1-10). In total, this makes 100 possible
different ratings. Besides, for each student, the DM has given a global evaluation
on a 6-levelled qualitative ordinal scale (the classes): (very good (6)> good (5)>
above average (4)> below average (3)> bad (2)> very bad(1)). A summary of
the problem is given in Table 12.3.

The Noise Annoyance Problem This real-life example concerns noise an-
noyance caused by different sources. Details on these data can be found in [2]
and [33]. It was obtained by a survey performed on 2661 persons (alternatives).
They were asked to give an estimation of their annoyance level (not at all an-
noyed (n) = slightly annoyed (s) < moderately annoyed (m) =< very annoyed
(v) = extremely annoyed(e)) on 21 different potential noise sources (points of
view) (noise annoyance caused by road traffic, by rail traffic,...). This ordering
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Table 12.3. Profiles of the students.

student profile class
A (7.5 2
B (6,6) 1
C amn 3
D (6,8) 4
A (10,7) 6
B’ (8,8) 5
c (10,5) 3
D’ (8,6) 4

Figure 12.3. Representation of the students problem.

and the exact wording of the questions is in accordance with international stan-
dards. Besides, the questionned persons had to give an overall noise annoyance
level on the same scale.

The original dataset contains 2661 alternatives and 21 points of view. But
unfortunately, its structure is not proper for the TOMASO method as it contains
a lot of inconsistencies (aDb but a is in a worse class than b). For the purpose
of this chapter, we restrict ourselves to a consistent subset of 155 alternatives
and 6 points of view (road traffic (cars, busses,...), air traffic, truck loading and
unloading, factories, dance halls, agricultural equipment).

The goal is therefore to find a Choquet integral as a discriminant function
which can reproduce the overall noise annoyance level by using the separate
noise annoyances as an input.
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Figure 12.4. Classesfore = 0.1,k = 1.

6.6.2 Solving the Students Problem.  For this problem, the scales on
the points of view are quite rich, but we only have a few alternatives. We
therefore suppose that information can be extracted from X. This means that
any possible student which can be built out of the evaluation scales on Cy and
C3 is a potential alternative. A representation of the 2-dimensional problem
is given on Figure 12.3. It helps to understand why the linear program has
no solution. If the triple cancellation property [35] is violated, there exists no
Choquet integral which satisfies the constraints imposed by the classification
of the prototypes. If triple cancellation was verified in this example, we would
have:

Crass(B) < Crass(A4)
&

CLass(D) > CLass(C) p = Crass(B') > Crass(4'),
&

Crass(D') > Crass(C’)

where CLASS(X) stands for the index of the class to which X belongs (the
higher the better). But in this particular example, we clearly have CLASS(D’) <
Crass(C’). Therefore, no solution can be found to the linear program. In other
words, this problem cannot be described by the classical TOMASO method by
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means of a Choquet integral. We therefore go over to the method based on the
quadratic probgram.

In this case, a solution can be found for different values of€ and k. Fork = 1,
the best solution is found with & = 0.01. 3 out of 8 alternatives are precisely
assigned to their classes. The other 5 elements are ambiguously assigned with
a degree 2.

Figure 124 explains how the assignment described in 6.2 to the intervals of
classes works for this particular simplest model (k = 1). The original classes,
which are shown by means of the 8 prototypes look somewhat chaotic. Both
functions m(u) and M (u) help to build the final ordered intervals of classes. It
shows that the alternatives A’, B’ and D are assigned precisely.

A better, but more complex model can be found for & = 2. A good solution
can be found for €’ = .10. 6 out of 8 alternatives are assigned precisely, whereas
2 out of 8 students (C” and D') are assigned ambiguously with degree 2. This
shows the better performance of a Choquet integral over the weighted sum
aggregator. A representation of the solution in this case (k = 2,6 = .10) is
given on Figure 12.5.

D4 f
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Figure 12.5. Classes fore = 0.1,k = 1.

We observe that the borders of the classes are piecewise linear, and that this
allows to cope with a larger set of problems. We can also observe the overlapping
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zone between classes 3 and 4, which induce the ambiguous assignments of C’
and D'.

To conclude this example, in Table 12.4 we present the importance indexes
for this example, in both models. We can see that the values are quite identical;
the order on the importance of the criteria is clearly respected.

Table 12.4. Importance indexes for the students problem.

Model Course 1 Course 2
k=1 414 586
k=2 325 675

6.6.3 Solving the Noise Annoyance Problem. Let us get back to the
second problem described in 6.6.1. The data set of 155 prototypes violates the
triple cancellation axiom. Therefore, as no solution can be found to the linear
program, we switch to the resolution of the quadratic program.

This problem is not adapted for the comparison philosophy for the scores.
This is clearly not a decision problem with a single DM. In fact, each of the 155
decisions has been taken by a separate person. One of these persons could not
compare his profile to the other ones, before giving a global noise annoyance
level. Furthermore, as we cannot ask these 155 people to give us hints on the
shape of the discrete utility functions linked to the evaluation scales, we have
no other option than considering formula (12.2).

Let us first start with the best possible solution that we can find, for k = 6,
which means a non-additive fuzzy measure. Quite similar solutions exist for
values of &’ between 0.05 and 0.18. We chose an average value of &’ = 0.1.

Table 12.5. Global accuracy.

precise ambiguous d = 2

46.45% 53.55%

We can also analyse the accuracy of this discriminant function for each class
separately. Table 12.6 shows its performance for each of the 5 ordered classes.
We can see that the class very annoyed is nearly unpredictable in a precise way
with this discriminant function. This is due to the fact that it overlaps strongly
with the classes extremely annoyed and moderately annoyed. This phenomenon
can be observed on Figure 12.6. It represents the assignments to the 5 ordered
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Table 12.6. Per class accuracy: Precise assignments.

€ =01k=6
extremely very moderately slightly not at all
45.83% 2.33% 66.67% 69.05% 71.43%
€ SOBC-H6 DOHBIOC M-
v mw_ ..............
L POCIOMOBC YOROUC

Figure 12.6. Visual representation of the classes, k = 6, " = 0.1.

classes. A cross can represent more than one alternative (if they have equal
Choquet integrals).

The assignments of the alternatives to the classes according to their Choquet
integral is shown in Table 12.7.

Table 12.7. Assignments of the elements to intervals of classes.

&€ =01k=6
Interval of Choquets Interval of classes

[0,0.0375( [1,1]
[0.0375, 0.1011] [1,2]
]0.1011, 0.1903] (2,2]
[0.1903,0.2182)] [2,3]
10.2182, 0.3139] 3,3
[0.3139, 0.3642] [3,4]
[0.3642, 0.3754] [4,4]
10.3754, 0.4565] [4,5]

10.4565, 1) (5,5]

The importance indexes of the 6 criteria are given in Table 12.8.
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Table 12.8. Importance indexes.

€ =01,k=6
street air truck factory dancing agriculture
.166 .158 164 .0938 272 .146

Taking into account our scoring method, we can state that the noise annoyance
caused by dancing halls is the most important, followed by street noises, truck
loading, air traffic disturbances, agricultural annoyances and finally factory
noises.

One should note that the global results of Table 12.5 are not too bad. They
should not be misinterpreted: there are no erroneous classifications, but only
ambiguous ones. In order to obtain a classification of the prototypes into single
classes, we suggest to use a [-nearest neighbourhood algorithm to force an
assignment. Each prototype @ € P and its Choquet integral is presented to
the remaining set P\{a} of elements and their Choquet integral. The ! closest
neighbours of @ in terms of the Choquet integral are then selected. Among these
[ elements, we search for the original class (as decides by the DM) which appears
most often. In case of identity, the class is chosen randomly among the equally
present classes.a is then assigned to this majority class. A global accuracy
and a weighted accuracy are then computed. The global accuracy is simply the
ratio of correctly assigned alternatives over the total number of alternatives. The
weighted accuracy is the average of the separate accuracies of each class.

Figure 12.7 shows these accuracies for different values of (let us notice here
that the axis for the separate class accuracies is on the left side of the figure,
and the axis for both the global and the weighted accuracies is on the right side
of the figure).

Let us make a few observations. Classes 1 (not at all annoyed) and 5 (ex-
tremely annoyed) only contain a few alternatives. A consequence is that if we
select ! too high, no alternative will be assigned to one of these two classes.
As a consequence, the weighted accuracy strongly depends on the right choice
of . On Figure 12.7 one can see this influence for both of these classes. As an
example, above a value of [ = 11, the accuracy of class 1 is equal to 0. The
choice of I remains a critical one on which the resulting accuracies strongly
depend, see Table 12.9

These results can be compared to those obtained by the methods described
in [33, 34] and [2]. On this same data set of 155 alternatives and 6 points
of view, with a genetic optimization of a Choquet integral with a possibility
measure (1-maxitive [18]), their performance is 76.77% for the global accuracy
and 80.57% for the weighted accuracy. Globally, the results are comparable.
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Figure 12.7. Results for the [-nearest neighbour algorithm, &’ = 0.1, k = 6.

Table 12.9. Global and weighted accuracy in %.

e =01,k=6
l Global Weighted
1 79.35 81.12
2 72.25 71.00
3 72.90 72.09
4 72.90 71.36
5 74.19 71.91
6 74.84 72.69
7 77.42 74.98
8 76.13 71.23
9 73.55 60.21
10 78.71 69.10
11 78.71 75.54
12 78.71 75.90
average 75.81 72.26

But unfortunately, we have worse results on the weighted accuracy. This is due
to the nonuniform distribution of the alternatives among the 5 ordered classes,
which is a big disadvantage for the use of the [-nearest neighbour method for
the forced classification.

We would like to point out that very similar results (accuracies, shapley
indexes) can be obtained with a 3-additive fuzzy measure (k = 3). For k < 3,
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the discriminating power of the Choquet integral is quite low for this particular
example. In particular, the number of precisely assigned alternatives (before the
{-NN procedure) becomes very low. This means that the classes overlap a lot.

7. The Choice Problem

In this Section we consider a way to select a subset of alternatives to consider
as a good choice.

Consider a binary relation R whose credibility is evaluated as follows:

R(x,y) = Cy[Ri(z,v),...,Ri(z,v), ..., Rn(z,y)] € [0,1], for all z,y €
A. In the sequel we will only use the ordering of R(x, ¥) and not their cardinality
and we will obtain a L-valued binary relation R (see [1]).

For all z,y € A, R(z,y) belongs to a finite set L = {cp = 0,¢1,...,Cm
=0.5,...,com = 1 that constitutes a (2m + 1)-element chain cy < ... < com.
R(x,y) may be understood as the credibility that “z is at least as good as y”.
The set L is built using the values of R taking into consideration an antitone
unary contradiction operator - such that ~¢; = ¢y, for [ =0, ..., 2m.

If R(z,y) is one of the elements of L, thenautomatically, ~R(z,y) belongs
to L. We call such a relation an L-valued binary relation.

We denote L™™ := {¢pm+1,. -+, Com} and L™ := {cg,...,Cm-1}.

If R(z,y) € L™™ we say that the proposition “(z,y) € R” is L-true. If
however R(z,y) € L™, we say that the proposition is L-false. If R(z,y) =
¢m, the median level (a fix point of the negation operator), then the proposition
“(z,y) € R”is L-undetermined.

In the classical case, where R is a crisp binary relation we define a digraph
G(A, R) with vertex set A and arc family R. A choice in G(A, R) is a non-empty
set Y of A.

A (dominant) kernel is a choice that is stable in G, ie. Ve #y € Y, (z,y) ¢
R and dominant, ie. Vz ¢ Y, 3y € Y such that (z,y) € R.

We now denote G* = GL(4, R) a digraph with vertices set A and a valued
arc family that corresponds to the L-valued binary relation R.

We define the level of stability qualification of subset Y of X as

ASta(Y) _Jom ifY is a singleton,
miny, maXgz,{"R(z,y)} otherwise;
and the level of dominance qualification of ¥ as
Adom(Y) _ C2Tn if Y =.A,
minggy maxyey R(z,y) otherwise.

Y is considered to be an L-good choice, i.e. L-stable and L-dominant, if
ASR(Y) e [-m Adom(Y) € L™™. Tts qualification corresponds to
QE°0d(L) = min{ASH(Y), AdOM(y)}.
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We denote C800d (G") the possibly empty set of L-good choices in G~.

The determination of this set in an NP-complete problem even if, following
a result of Kitainik [11], we do not have to enumerate the elements of the
power set of A, but only have to consider the kernels of the corresponding
crisp strict median-level cut relation R™™ associated to R, i.e. (z,y) € R™™
if R(z,y) € L™™.

As the kernel in G(X, R™™) is by definition a stable and dominant crisp
subset of A, we consider the possibly empty set of kernels of G™™ = G™™(A,
R™™) which we denote CgOOd(GH").

Kitiainik proved that

Cgood(GL) C Cgood (G>m) .

The determination of crisp kernels has been extensively described in the liter-
ature (see, for example [31]) and the definition of CgOOd(G’L) is reduced to
the enumeration of the elements of C'gOOd(G*m) and the calculation of their
qualification.

The decision maker might also be interested in bad choices. These choices
correspond to absorbent kernels with a qualification greater than ¢,,. In the
classical Boolean framework (see [31]) an (absorbent) kernel is a choice that is
stable and absorbent, i.e. Vz ¢ Y,Jy € Y suchthat (x,y) € R. As (z,y) € R
isequivalentto (y,z) € R?, where matrix R’ represents the transpose of matrix
R, all the results obtained for dominant kernels can be immediately transposed
for absorbent kernels and definitions like Abad and Qbad are obviously and
straightforwardly obtained from A8904 and Qeood,

Indeed the level of absorbance qualification of Y is defined as

Aabs(y) — C2m, if ¥ = A7
minggy maxyey R(y,z) otherwise.

In order to determine a unique rational choice (if any), we first compute dom-
inant kernels in G¥ (see [1,31]) and determine their qualification as not being
bad choices, i.e. ~QP2(Y") where QPd(Y) = min(AStA(Y), A2bS(Y)),

The selection is based on

max (Q8°0d (Y).
If more than one candidate remain, other discriminant functions may be
added as minimal absorbancy, lowest cardinality, ...
8. Conclusion

In this chapter we have presented a few approaches to multiple criteria de-
cision aiding. In particular, we have focussed on fuzzy methods for choice,
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sorting and ordering. We have also described in details the sorting procedure
TOMASO which can deal with interacting criteria. Some tests on examples (the-
oretical and real-life) have shown the interestingness of this method. Further
investigations have to be done on the validation of the models. We intend to
implement a cross-validation procedure to make stability tests on the data and
the method.
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