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Abstract Many MCDA models are based on essentially deterministic evaluations of the
consequences of each action in terms of each criterion, possibly subjecting final
results and recommendations to a degree of sensitivity analysis. In many situa-
tions, such an approach may be justified when the primary source of complexity
in decision making relates to the multicriteria nature of the problem rather than
to the stochastic nature of individual consequences. Nevertheless, situations do
arise, especially in strategic planning problems, when risks and uncertainties are
as critical as the issue of conflicting management goals. In such situations, more
formal modelling of these uncertainties become necessary.

In this paper, we start by reviewing the meaning and origin of risk and uncer-
tainty. We recognize both internal uncertainties (related to decision maker values
and judgements) and external uncertainties (related to imperfect knowledge con-
cerning consequences of action), but for this paper focus on the latter. Four broad
approaches to dealing with external uncertainties are discussed. These are mul-
tiattribute utility theory and some extensions; stochastic dominance concepts,
primarily in the context of pairwise comparisons of alternatives; the use of surro-
gate risk measures as additional decision criteria; and the integration of MCDA
and scenario planning. To a large extent, the concepts carry through to all schools
of MCDA. A number of potential areas for research are identified, while some
suggestions for practice are included in the final section.

Keywords: Multicriteria analysis, multiobjective programming, uncertainty, risk, utility the-
ory.



446 MULTIPLE CRITERIA DECISION ANALYSIS

1. What is Uncertainty?
The term uncertainty can have many different meanings. The Chambers Dic-
tionary (1998 edition) defines “uncertain” as not definitely known or decided;
subject to doubt or question. Klir and Folger [30] quote six different defini-
tions for “uncertainty” from Webster’s Dictionary. In the context of practical
applications in multicriteria decision analysis, however, the definition given
by Zimmermann [59] would appear to be particularly appropriate. With minor
editing, this is as follows:

Uncertainty implies that in a certain situation a person does not possess the
information which quantitatively and qualitatively is appropriate to describe, pre-
scribe or predict deterministically and numerically a system, its behaviour or other
characteristics.

At a most fundamental level, uncertainty relates to a state of the human mind,
i.e. lack of complete knowledge about something. Many writers also use the
term “risk”, although the definition of the term varies widely. Some earlier work
tended to apply the term “risk” to situations in which probabilities on outcomes
are (to a large extent) known objectively (cf. Goicoechea et al. [16], p. 389,
and Millet and Wedley [37] for some reference to this view). More recently, the
concept of risk has come to refer primarily to the desirability or otherwise of
uncertain outcomes, in addition to simple lack of knowledge. Thus, for example,
Fishburn [13] refers to risk as “a chance of something bad happening”, and in
fact separates uncertainty (alternatives with several possible outcome values)
from the fundamental concept of risk as a bad outcome. Sarin and Weber [45]
state that “judgements about riskiness depend on both the probability and the
magnitude of adverse effects”  (my emphasis), while Jia and Dyer [25] also
discuss the psychological aspects of establishing a preference order on risks.

For the most part in this chapter, we shall make use of the value-neutral term
“uncertainty”, referring to “risk” only when direct preference orderings of the
uncertainty per se are relevant (for example, in Section 4). It is interesting to note
in passing that while the thrust of the present discussion is to give consideration
to the effects of uncertainty on MCDA, there has also been work on applying
multicriteria concepts to the measurement of risk for other purposes, as for
example in credit risk assessment (Dimitras et al. [12], who make use of a
rough sets approach).

A number of authors (e.g. French [14], Zimmermann [59]) have attempted
to categorize types or sources of uncertainty in the context of decision making.
French [14], for example, identifies no less than 10 different sources of uncer-
tainty which may arise in model building for decision aid, which he classifies
into three groups referring broadly to uncertainties in the modelling (or problem
structuring) process, in the use of models for exploring trends and options, and
in interpreting results. The common theme underlying such categorizations, as
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well as those of other authors, such as Friend [15] and Levary and Wan [34], is
the need at very least distinguish between internal uncertainty, relating to the
process of problem structuring and analysis, and external uncertainty, regard-
ing the nature of the environment and thereby the consequences of a particular
course of action which may be outside of the control of the decision maker. Let
us briefly examine each of these broad categories of uncertainty.

Internal uncertainty. This refers to both the structure of the model adopted
and the judgmental inputs required by those models, and can take on many
forms, some of which are resolvable and others which are not. Resolvable
uncertainties relate to imprecision or ambiguity of meaning – for example,
what exactly may be meant by a criterion such as “quality of life“? Less easily
resolvable problems may arise when different stakeholders generate different
sets of criteria which are not easily reconciled; or perceive alternatives in such
different ways that they differ fundamentally on how they contribute to the same
criterion.

Imprecisions in human judgments, whether these relate to specifications of
preferences or values (for example importance weights in many models), or
to assessments of consequences of actions, have under certain circumstances
been modelled by fuzzy set (see, for example, Chapters 4 and 5 of Klir and
Folger [30]) and related approaches (such as the use of rough sets as described
by Greco et al. [20, 19, 21]. From the point of view of practical decision aid,
such models of imprecision add complexity to an already complex process, and
the result may often be a loss of transparency to the decision maker, contrary
to the ethos of MCDA. For this reason, the view espoused here is that internal
uncertainties should ideally be resolved as far as is possible by better structuring
of the problem (cf. Belton and Stewart [6], Chapter 3) and/or by appropriate
sensitivity and robustness analysis where not resolvable.

External uncertainty. This refers to lack of knowledge about the conse-
quences of a particular choice. Friend [15] and French [14] both recognize a
further distinction between uncertainty about the environment and uncertainty
about related decision areas, as described below.

Uncertainty about the environment represents concern about issues out-
side the control of the decision maker. Such uncertainty may be a con-
sequence of a lack of understanding or knowledge (in this sense it is
similar to uncertainty about related decision areas) or it may derive from
the randomness inherent in processes (for example the chance of equip-
ment failure, or the level of the stock market). For example, the success
of an investment in new production facilities may rest on the size of the
potential market, which may depend in part on the price at which the
good will be sold, which itself depends on factors such as the cost of raw
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materials and labour costs. A decision about whether or not to invest in
the new facilities must take all of these factors into account. This kind of
uncertainty may be best handled by responses of a technical nature such
as market research, or forecasting.

Uncertainty about related decision areas reflects concern about how the
decision under consideration relates to other, interconnected decisions.
For example, suppose a company which supplies components to com-
puter manufacturers is looking to invest in a management information
system. They would like their system to be able to communicate directly
with that of their principal customers; however, at least one of these cus-
tomers may be planning to install a new system in the near future. This
customer’s decision could preclude certain of the options open to the sup-
plier and would certainly have an impact on the attractiveness of options.
The appropriate response to uncertainty of this kind may be to expand
the decision area to incorporate interconnected decisions, or possibly to
collaborate or negotiate with other decision makers.

Under many circumstances, both internal and external uncertainties can be
treated in much the same manner, for example by appropriate sensitivity anal-
yses post hoc. In other words, the approach might be to make use of a crisp
deterministic MCDA methodology, and to subject the results and conclusions
to extensive sensitivity studies. Indeed, we would assert that such sensitivity
studies should routinely be part of any MCDA application.

Where uncertainties are of sufficient magnitude and importance to be mod-
elled explicitly as part of the MCDA methodology, however, the modelling
approaches for internal and external uncertainties may often become qualita-
tively different in nature. It seems, therefore, that the treatment of the two types
of uncertainty should preferably be discussed in separate papers or chapters. In
order to provide focus for the present paper, our attention will be focussed pri-
marily on consideration of the external uncertainties as defined above. Without
in any way minimizing the importance of dealing with internal uncertainties,
our choice of the problem of external uncertainties as the theme for this chap-
ter is in part due to the present author’s practical experience, which suggests
that it is the external uncertainties which are often of sufficient magnitude and
importance to require more explicit modelling.

Admittedly, the boundary between external uncertainty and imprecision is,
well, fuzzy! To this extent, at least some of the material in this chapter may well
be appropriate to internal uncertainties as well, while some methods formulated
to deal with human imprecision might equally well be useful in dealing with
external uncertainties. We leave it to the reader to decide where this may be true.
We do not attempt here a comprehensive review of literature related primarily
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to internal uncertainties, but the interested reader may wish to consult some of
the following references:

Fuzzy set approaches: Klir and Folger [30]; Chang et al. [9, 8]; Yeh et al.
[57]; (Some of these do partially relate to external uncertainties as well.)

Rough set approaches: Greco et al. [20, 19, 21, 22].

Identifying potentially optimal solutions amongst uncertainty ranges:
Cook and Kress [10]; Lahdelma and Salminen [32]; Lahdelma et al.
[33].

Our approach will also be pragmatic, motivated by practical needs of real-
world decision analysis. In particular, the fundamental philosophical point of
departure is a belief in the over-riding need for transparency in any MCDA:
it is vitally and critically important that any approaches to MCDA are fully
understandable to all participants in the process. Elegant mathematical models
which are inaccessible to such participants are of very little practical value.

Within the context of the opening discussion, let us now define a notational
framework within which to consider MCDA under uncertainty (primarily “ex-
ternal uncertainty” as defined earlier). Let X be the set of actions or decision
alternatives. When there is no uncertainty about the outcomes, there exists a
one-to-one correspondence between elements of X and consequences in terms
of the criteria, and X may written as the product space where is
the set of evaluations with respect to criterion In other words, any
may be viewed as an vector with elements          where
represents the evaluation of with respect to the criterion

Under uncertainty, however, the one-to-one correspondence between actions
and evaluations or consequences breaks down. It may be possible to postulate
or to conceptualize an ultimate set of consequences
corresponding to each of the criteria, but at decision time there will still exist
many possible values for each For ease of notation, we shall use
to indicate the vector of values.

In some cases, it may be possible and useful to structure (or
in the form (or where fully characterizes the external
conditions, sometimes termed the “states of nature”, and represents the set
of all possible states of nature. The assumption is then that once (the state
of nature) is established or revealed, then the consequences in terms of each
criterion will also be known. We observe, however, that even might not be fully
known or understood at decision time, and that could possibly depend upon
the action (although, for ease of notation, we shall not show this explicitly).

The question to be addressed in this chapter is that of constructing some
form of (possibly partial) preference ordering on X, when the consequences
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are incompletely known or understood in the sense described in the previous
paragraph.

As indicated earlier, one approach may be initially to ignore the uncertainty,
and to conduct the analysis on the basis of a nominal set of consequences

chosen to be representative of the possible followed by
extensive sensitivity analysis which takes into account the range of uncertainty
in each Under many circumstances this may be adequate. Care needs to
be exercised in undertaking sensitivity analyses, however, as simple “one-at-
a-time” variations in unknown parameter values may fail to identify effects of
higher order interactions. Some of the complications inherent in undertaking
properly validated sensitivity analyses, and suggestions as to how these may
be addressed, are discussed by Rios Insua [41], Parnell et al. [39] and Saltelli
et al. [44]. In the remainder of this chapter, our focus will be on situations in
which the ranges of uncertainty are simply too large to be handled purely by
such sensitivity analysis.

In Section 2 we discuss the use of probability models to represent the uncer-
tainties, emphasizing particularly the comprehensively axiomatized approach
of multiattribute utility theory. The potential for relaxing the needs to specify
complete utility functions are addressed in Section 3, which leads naturally to
the use of pairwise comparison models for MCDA. In many practical situations,
decision maker preferences for various types of risk (magnitude and impact of
the uncertainties) may be modelled by defining explicit risk-avoidance criteria,
and these are discussed in Section 4. Finally, links between MCDA and sce-
nario planning for dealing with uncertainties are presented in Section 5, before
concluding with some general implications for practice.

2. Probabilistic Models and Expected Utility

The most thoroughly axiomatized mathematical treatment of uncertainty is that
of probability theory. The application of probability concepts would require
the specification of a (multivariate) probability distribution on for each
action so that in effect the decision requires a comparison of probability
distributions (sometimes called “lotteries” in this context). Let (z) denote
the probability distribution function on i.e.:

Define as the corresponding marginal probability distribution function
for

Where uncertainties are structured in terms of “states of nature”, the proba-
bility distributions may be defined on the (rather than on the directly).
In some situations, the probability distribution on may be independent of the
action which would make the application of probability models much more
tractable, but this will not necessarily always be the case.
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A possibility at this stage is to construct a deterministic MCDA model based
only on expectations, and to subject the results to some form of (possibly in-
teractive) sensitivity analysis guided by the broader distributional properties.
Examples of this are in the PROTRADE method described by Goicoechea et al.
[16], Chapter 7, dealing with an interactive method for multiobjective mathe-
matical programming problems, and in the stochastic extensions to outranking
proposed by Mareschal [35].

Simple expectation models do not, however, take full account of the ranges
of outcome which may occur. Multiattribute utility theory (MAUT) extends the
concept of expectation to include explicit modelling of risk preferences, i.e. of
the magnitudes of dispersion that may occur. MAUT is discussed by Dyer in
Chapter 7 of this volume, and also more comprehensively in the now classic
text of Keeney and Raiffa [27] and by von Winterfeldt and Edwards [53]. In
essence, MAUT seeks to construct a “utility function” U (Z), such that for any
two actions and in X, if and only if
where expectations are taken with respect to the probability distributions on

and on respectively.
Practically, the construction of the global utility function U (Z) starts with

the construction of partial or marginal utility functions individually for each
attribute, say satisfying the expected utility hypothesis for variations in

only. The axioms underlying the existence of such marginal utility functions
and the methods for their construction are well-known from univariate decision
analysis (see, for example, Chapter 7, or Goodwin and Wright[17], Chapter
5). It is well-established that these axioms are not descriptively valid, in the
sense that decision makers do systematically violate them (see, for example,
the various paradoxes described by Kahnemann and Tversky [26], or in the
text of Bazerman [4]). Attempts have been made to extend the utility models to
account for observed behaviour (see, for example, Miyamoto and Wakker [38]
for a review of such extensions in the multicriteria context). Nevertheless, as we
have argued elsewhere (e.g., Belton and Stewart [6], Section 4.3.1), descriptive
failures do not lessen the value of the simpler axiomatically based theory of
MAUT as a coherent discipline within which to construct preferences in a
simple, transparent and yet defensible manner.

The real challenge relates to the aggregation of the into a U (Z) still
satisfying the expected utility hypothesis for the multivariate outcomes. The two
simplest forms of aggregation are the additive and multiplicative, which we shall
now briefly review (although a full description can be found in Chapter 7).

Additive aggregation. In this case, we define:
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This model is only justifiable if the criteria are additive independent,
i.e. if preferences between the multivariate lotteries depend only on the
marginal probability distributions. That this is not an entirely trivial as-
sumption may be seen by considering two-dimensional lotteries
in which there are only two possible outcomes on each criterion, denoted
by and for Suppose that Then without loss
of generality, the partial utility functions can be standardized such that

and Consider then a choice
between two lotteries defined as follows:

The lottery giving equal chances on and and

The lottery giving equal chances on and

We note that both lotteries give the same marginal distributions on each
i.e. equal chances on each of and on for each It is easilyverified

that with additive aggregation defined by (11.1), both of these lotteries
yield an expected utility of The additive model thus suggests
that the decision maker should always be indifferent between these two
lotteries. There seems, however, to be no compelling axiomatic reason for
forcing indifference between the above two options. Where there is some
measure of compensation between the criteria (in the sense that good
performance on one can compensate for poorer outcomes on the other),
the second option may be preferred as it ensures that one always gets
some benefit (a form of multivariate risk aversion). On the other hand,
if there is need to ensure equity between the criteria (if they represent
benefits to conflicting social groups, for example), then the first lottery
(in which loss or gain is always shared equally) may be preferred.

Multiplicative aggregation. Now we define U (Z) such that:

where the multivariate risk aversion parameter satisfies:

Use of the multiplicative model requires that the condition of mutual util-
ity independence be satisfied. A subset of criteria, say
is set to be utility independent of its complement
if preferences for lotteries involving only for for fixed values of

for are independent of these fixed values. The criteria are said
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to be mutually utility independent if every subset of the criteria is utility
independent of its complement.

In principle, however, there are no good reasons why criteria should neces-
sarily be mutually utility independent, and in fact it can be difficult in practice
to verify that the condition holds. Good problem structuring for MCDA would
seek to ensure preferential independence of some form between criteria (for
example, such that trade-offs between pairs of criteria are independent of out-
comes on other criteria), but mutual utility independence is a much stronger
assumption and a more elusive concept than this.

Models based on weaker preference assumptions have been developed, such
as the multilinear model given by:

The large number of parameters which have to fitted to decision maker pref-
erences is prohibitive in most real world applications. Even the multiplicative
model is far from trivial to apply in practice. Its construction involves the fol-
lowing steps:

Assessment of the partial utilities by standard single attribute lot-
tery procedures.

Parameter estimation: The multiplicative model includes parame-
ters which have in principle to be estimated. In the light of (11.3), how-
ever, only independent parameters need estimation. Estimates thus re-
quire at least preference statements concerning hypothetical choices to
be made by the decision maker. Some of these can be based on determin-
istic trade-off assessments, but at least one of the hypothetical choices
must involve consideration of preferences between multivariate lotteries.

In exploring the literature, it is difficult to find many reported applications
even of the multiplicative model, let alone the multilinear model. Some of the
practical complications of properly implementing these models are illustrated
by Rosqvist [42] and Yilmaz [58].

Such difficulties of implementation raise the question as to how sensitive the
results of analysis may be to the use of the additive model (11.1) instead of
the more theoretically justifiable aggregation models given by (11.2) or (11.4).
We have seen earlier that situations can be constructed in which the additive
model may generate misleading results. But how serious is this in practice?
Construction of the additive model requires much less demanding inputs from
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the decision maker, and it may be that the resultant robustness or stability of the
model will compensate for biases introduced by use of the simpler model. In
Stewart [46] a number of simulation studies are reported in which the effects are
studied of using the additive aggregation model when “true preferences” follow
a multiplicative aggregation model. Details may be found in the cited reference,
but in essence it appeared that the errors introduced by using the additive model
were generally extremely small for realistic ranges of problem settings. The
errors were in any case substantially smaller than those introduced by incor-
rect modelling of the partial utility functions (such as by over-linearization of
the partial functions which appears to be a frequent but erroneous simplifica-
tion). Related work (Stewart [47]) has also demonstrated that more fundamental
violations of preferential independence may also introduce substantial errors.

Concerns about the validity of the axiomatic foundations of utility theory
have led other writers to formulate alternative models to circumvent these.
Miyamoto and Wakker [38] review generalizations to utility theory, while oth-
ers (e.g. Beynon et al. [7] and Yang [56]) relax the demands of probability theory
by invoking concepts from Dempster-Shafer theory of evidence. Unfortunately,
these generalizations tend often to make the models even more complex and
thus less transparent to decision makers, further aggravating difficulties of im-
plementation.

Our overall conclusion is thus that in the practical application of expected
utility theory to decision making under uncertainty, the use of the additive aggre-
gation model is likely to be more than adequate in the vast majority of settings.
The imprecisions and uncertainties involved in constructing the partial utilities,
which need in any case to be addressed by careful sensitivity analysis, are likely
to far outweigh any distinctions between the additive and multiplicative models.
In fact, given that marginal utility functions based on preferences between hy-
pothetical lotteries may generally not differ markedly from deterministic value
functions based on relative strengths of preference (e.g. von Winterfeldt and
Edwards [53], Chapter 10), we conjecture that even the first step of the model
construction could be based on the latter (e.g. by use of the SMART methodol-
ogy, von Winterfeldt and Edwards [53], Section 8.2).

3. Pairwise Comparisons
As indicated in the previous section, the requirements of fitting a complete
utility function can be extremely demanding both for the decision maker (in
providing the necessary judgemental inputs) and for the analysts (in identifying
complete multivariate distributions). We have seen how the assumption of a
simple additive model may substantially reduce these demands without serious
penalty in many practical situations. Nevertheless, other attempts at avoiding
the construction of the full utility model have been made.
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Even for single criterion models, the construction and validation of the com-
plete utility model may be seen as too burdensome. Quite early work recognized,
however, that it may often not be necessary to construct the full utility func-
tion in order to confirm whether one alternative is preferred to another. The
conclusions may be derived from the concepts of stochastic dominance intro-
duced by Hadar and Russell [23], and extended (to include third order stochastic
dominance) by Whitmore [55].

For purposes of defining stochastic dominance, suppose for the moment that
there is only one criterion which we shall denote by (i.e. unsubscripted).
Then let be the (univariate) probability distribution function of i.e.:

With some abuse of notation, we shall use (with-
out argument) to denote the probability distribution described by the function

Suppose also that values for are bounded between and
Three degrees of stochastic dominance may then be defined as follows.

First degree stochastic dominance (FSD): stochastically dominates
in the first degree if and only for all (Hadar
and Russell [23]).

Second degree stochastic dominance (SSD): stochastically dominates
in the second degree if and only:

for all (Hadar and Russell [23]).

Third degree stochastic dominance (TSD): stochastically dominates
in the third degree if and only and:

for all (Whitmore [55]).

In this single-criterion case, the standard axioms of expected utility theory
imply the existence of a utility function such that if and only if:

Without having explicitly to identify the utility function, however, considera-
tions of stochastic dominance allow us to conclude the following (Bawa [3]):

If stochastically dominates in the first degree FSD then
provided that is an increasing function of (which can be

generally be assumed to be true in practical problems).

1
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If SSD then provided that is a concave increasing
function of (i.e. the decision maker is risk averse).

2

If TSD then provided that is a concave increasing
function of with positive third derivative (corresponding to a risk averse
decision maker exhibiting decreasing absolute risk aversion).

3

The potential importance of the above results lies in the claim that has been
made that in practice some form of stochastic dominance may hold between
many pairs of probability distributions. In other words, we may often be able
to make pairwise comparisons between alternatives according to a particular
criterion on the basis of stochastic dominance considerations, without needing
to establish the partial value function for comparison of lotteries. In fact, we
may often argue that FSD provides a strict pairwise preference, while SSD and
TSD provide weaker forms of pairwise preference. Only in the absence of any
stochastic dominance would we be unable to determine a preference without
obtaining much stronger preference information from the decision maker.

The existence of pairwise preferences at the level of a single criterion under
uncertainty suggests that some form of outranking approach may be appropri-
ate to aggregation across multiple criteria under uncertainty. D’Avignon and
Vincke [11] did in fact propose an outranking approach to dealing with uncer-
tainty, in which they started by comparing univariate probability distributions
for each criterion in order to obtain “preference indices” measuring degree of
preference for one lottery over another in terms of one criterion, which were
then aggregated according to an outranking philosophy. Their preference indices
may not be easily interpretable by many decision makers however, and perhaps
with this problem in mind, Martel and Zaras [36] (but see also Azondékon and
Martel [1]) suggested an alternative outranking approach in which preferences
according to individual criteria were established as far as possible by stochastic
dominance considerations.

Martel and Zaras found it useful to introduce two forms of concordance
index, which they term “explicable” and “non-explicable”. For the “explicable”
concordance, is judged at least as good as according to criterion if
stochastically dominates at first, second or third degrees. This is quite a
strong assumption, as it implies decreasing absolute risk aversion. The “non-
explicable” concordance arises if neither of or stochastically dominates
the other. The authors concede that in this case it is not certain that is at least
as good as but they do combine the two indices under certain conditions.
The discordance when comparing to is only non-zero in their model if

FSD
Although some of the implementation details are not clear from the paper,

the method of Martel and Zaras does appear to offer potential as an approach to
dealing with uncertainty in MCDA using quite minimal preference information
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from the decision maker. This might at least be valuable for a first-pass screening
of alternatives. Two problems may, however, limit wide applicability:

Strong independence assumptions are implicitly made: The approach is
based entirely on the marginal distributions of the elements of This
would only be valid if these elements (i.e. the criteria) were stochasti-
cally independent, or if the decision maker’s preferences were additively
independent in the sense of Keeney and Raiffa [27]. Either assumption
would need to be carefully justified.

Strong risk aversion assumptions are made: As indicated above, the
method as proposed bases concordance measures on risk aversion and
on decreasing absolute risk aversion. Especially the latter assumption
may not always be easy to verify. The method can be weakened by bas-
ing concordance either only on FSD or on FSD and SSD, but this may
not generate such useful results.

There is clear scope for further research aimed at addressing the above prob-
lems.

4. Risk Measures as Surrogate Criteria

In this and the next sections, we move to more pragmatic approaches to dealing
with uncertainty in the multicriteria context.

One obvious modelling approach is to view avoidance of risks as decision
criteria in their own right. For example, the standard Markowitz portfolio theory
(cf. Jia and Dyer [25]) represents a risky single-criterion objective (monetary
reward) in terms of what are effectively two non-stochastic measures, namely
expectation and standard deviation of returns. In this sense a single criterion
decision problem under uncertainty is structured as a deterministic bi-criterion
decision problem. The extension to risk components for each of number of
fundamental criteria is obvious (see, for example, Millet and Wedley [37], p.
104, in the context of AHP).

There has, in fact, been a considerable literature on the topic of measuring
risk for purposes of decision analysis, much of it motivated by the descriptive
failures of expected utility theory. Papers by Sarin and Weber [45], and by
Jia and Dyer [25] contain many useful references. This literature is virtually
entirely devoted to the single criterion case (typically financial returns), but it is
worth recalling some of the key results with a view to extending the approaches
to the multicriteria case.

The common theme has been that of developing axiomatic foundations for
representation of psychological perceptions of risk (including consideration of
importance and impact in addition to simple uncertainty), often based on some
form of utility model. For example, Bell [5] considers situations in which, if a
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decision maker switches from preferring one (typically more risky) lottery to
another as his/her wealth increases, then he/she never switches back to prefer-
ence for the first as wealth further increases. This he terms the “one-switch” rule
for risk preferences, and demonstrates that if the decision maker is decreasingly
risk averse, obeys the one switch rule, and approaches risk neutrality as total
wealth tends to infinity, then the utility as a function of wealth must take on
the form for some positive parameters and Taking expectations
results in an additive aggregation of two criteria, namely:

The expectation of wealth (to be maximized); and

The expectation of (to be minimized), which can be viewed as a
measure of risk.

Sarin and Weber [45] and Jia and Dyer [25] provide arguments for general
moments of the distribution of returns (including but not restricted to variance)
and/or expectations of terms such as as measures of risk. While these
may be useful as descriptive measures of risk behaviour, from the point of
view of practical decision aid it is doubtful whether the decision maker would
be able to interpret anything but variance (or standard deviation) for purposes
of providing necessary preference information (to establish tradeoffs, relative
weights, goals, etc.).

Limited empirical and simulation work which we have undertaken in the
context of fisheries management (Stewart [48]) suggested that perceptions of
risk of fishery collapse might be modelled better by probabilities of achieving
one or more goals (in that case, periods of time before a collapse of the fish-
ery). One advantage of such measures is that they might be much more easily
interpreted by decision makers for purposes of expressing preferences or value
judgements.

Given the modelling success in representing preferences under uncertainty
by simple additive models of expected return and one or more risk measures,
there seems to be no reason why such results should not be extended to the
general multicriteria problem under uncertainty. In other words, each criterion
(not necessarily financial) for which there exists substantial uncertainties might
be restructured in terms of two separate criteria, viz. expected return and risk.
Many of the above results produce an axiomatic justification for an additive
aggregation of expected return and risk, so that these sub-criteria would be
preferentially independent under the same axiomatic assumptions.

In spite of how obvious such multicriteria extensions might be, there seems to
be little reference in the literature to explicit multicriteria modelling of returns
and risks. It is this author’s experience, however, that various risk-avoidance
criteria arise almost naturally during the structuring phase of decision mod-
elling, so that in practice risk avoidance criteria may in fact be more common
than is apparent from the literature.
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Some of the few explicit references to multicriteria modelling in terms of
a risk-return decomposition appear in the context of goal programming. For
example, Ballestero [2] expresses a stochastic multicriteria problem in terms of
goals on combinations of risks and returns which are then solved by goal pro-
gramming, but he does not separate out the risk and return components which
may have led to a simpler model structure. Korhonen [31] develops a multicri-
teria model for financial management, in which a number of different financial
performance measures are used as criteria, some of which have a risk inter-
pretation. Details of the solution procedure are not given, but the formulation
clearly lends itself to a goal programming structure.

A somewhat earlier paper by Keown and Taylor [28] describes an integer
goal programming model for capital budgeting, which can be viewed (together
with the STRANGE method of Teghem et al. [50]) as an extension of chance-
constrained stochastic programming (see and Shapiro [43] for a
broad introduction to stochastic programming). Keown and Taylor define goals
in terms of desired probability levels, which may generically be expressed in
the form:

where is some performance function based on the unknown attribute val-
ues, the desired level of performance, and  a desired probability of achieving
such performance. By using normal approximations, however, Keown and Tay-
lor reduce the probability goal to one expressed in terms of a combination of
mean and standard deviation which is subsequently treated in a standard goal
programming manner. This suggests opportunity for research into investigation
of generalized goal programming models which deal directly with deviations
from both the desired performance levels above) and the desired probability
levels above).

Some work on fuzzy multiobjective programming (e.g. Chang et al. [9] and
Chang and Wang [8]) can be viewed in a similar manner, in the sense that a de-
gree of anticipated level of goal achievement, measured in a fuzzy membership
sense, may be interpreted as a risk measure.

More generally, the structuring of MCDA problems under uncertainty in
terms of expected value and risk sub-criteria for each main criterion does have
the advantage of being relatively simple and transparent to users. Such an ap-
proach appears to be easily integrated into any of the main MCDA methodolo-
gies, namely value measurement, outranking and goal programming/reference
point methods. As indicated earlier, however, a decidedly open research ques-
tion relates to the manner in which risk is most appropriately measured for this
purpose.

A further practical issue is the extent to which the necessary independence
properties can be be verified. In other words, to what extent can “risk” on one
criterion be measured and assessed without taking into consideration ranges
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of uncertainties on the other criteria. Once again, this offers much scope for
further research.

5. Scenario Planning and MCDA

Scenario planningscenario planning (van der Heijden [52]) was developed as
a technique for facilitating the process of identifying uncertain and uncontrol-
lable factors which may impact on the consequences of decisions in the strategic
management context. Scenario analysis has been widely accepted as an impor-
tant component of strategic planning, and it is thus somewhat surprising how
little appears to have been written concerning links between MCDA and sce-
nario planning. A discussion of the link between scenario planning and decision
making is provided by Harries [24], but does not place this in an MCDA frame-
work.

Scenario planning may be described as a process of organizational learn-
ing, distinguished by an emphasis on the explicit and ongoing consideration
of multiple futures. The scenarios themselves are constructed as stories which
describe the current and plausible, but challenging, future states of the organi-
zational environment. They provide alternative perspectives that will challenge
an organization in viewing the future and in evaluating its strategies and action
plans. The primary goal of scenario planning is in the first instance to pro-
vide a structured “conversation” to sensitize decision makers to external and
uncontrollable uncertainties, and to develop a shared understanding of such un-
certainties. The approach is, however, naturally extended to the more analytical
process of designing, evaluating and selecting courses of action on the basis of
robustness to these uncertainties, which suggests close parallels with MCDA
(as discussed, for example, by Goodwin and Wright [18]). We shall explore
these parallels shortly.

Scenarios are meant to represent fairly extreme futures than can still be
viewed as plausible. As to what constitutes sufficiently “extreme” would depend
on the facilitator, as in a very real sense, there will always be a possible future
more extreme (and thus with greater potential impact on the consequences of
decisions) than any which is incorporated into formal scenarios.

Van der Heijden suggests five principles which should guide scenario con-
struction:

At least two scenarios are required to reflect uncertainty, but more than
four has proved (in his experience) to be impractical;

Each scenario must be plausible, meaning that it can be seen to evolve in
a logical manner from the past and present;

Each scenario must be internally consistent;
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Scenarios must be relevant to the client’s concerns and they must provide
a useful, comprehensive and challenging framework against which the
client can develop and test strategies and action plans;

The scenarios must produce a novel perspective on the issues of concern
to the client.

Once scenarios are constructed, they may be used to explore and to evaluate
alternative strategies for the organization. Most proponents of scenario planning
seem to avoid formal evaluation and analysis procedures, preferring to leave the
selection of strategy to informed judgement. For example, van der Heijden [52]
(pp. 232–235) rejects “traditional rationalistic decision analysis” as an approach
which seeks to find a “right answer”. This, however, represents are rather lim-
ited and technocratic view of decision analysis, contrary to the constructive
and learning view espoused by most in the MCDA field. The constructivist
perspective is discussed at a number of places by Belton and Stewart [6] (see
particularly Chapters 3, 4 and 11), where it is argued that the underlying axioms
are not meant to suggest a “right answer”, but to provide a coherent discipline
within which to construct preferences and strategies. Within such a view, the
aims of scenario planning and MCDA share many commonalities, suggesting
the potential for substantial synergies in seeking to integrate MCDA and sce-
nario planning. On the one hand, MCDA can enrich the evaluation process
in scenario planning, while the scenario planning approach can contribute to
deeper understanding of the effects of external uncertainties in MCDA.

Various authors have hinted at the concept of scenarios in MCDA. These
include, for example, Klein et al. [29], although this is largely in the context of a
two state stochastic programming model; Watkins et al. [54], also in a stochastic
programming context; Millet and Wedley [37], Section 3, who refer to “states
of nature”; Urli and Nadeau [51] in the context of multiple objective linear
programming. These authors do not refer directly to the philosophical basis of
scenario planning, however, and in many senses the models are structured to
suggest that the scenarios or states of nature constitute a complete sample space
(see later).

Pomerol [40] is one of the few to discuss scenario planning in the context
of decision theory or decision analysis, but without substantive link to MCDA.
He does however warn (page 199) of the danger that what might appear to
be a robust choice of action (perhaps through unstructured and unsupported
use of scenarios) may in fact be an illusion resulting from the fact that some
events have simply been ignored. Such a danger suggests another perspective
on the potential for two-way synergistic advantage between scenario planning
and formal decision analysis: not only may scenario planning provide a means
of dealing with uncertainties in MCDA, but decision analysis might contribute
to avoiding of illusions of robustness or control in decision making. In the latter
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context, MCDA might contribute to the choice of scenarios as well as to the
formal analysis of alternative courses of action.

Preliminary suggestions for such integration of scenario planning and MCDA
is made on pages 312–315 of Belton and Stewart [6], which extended an earlier
discussion in Chapter 14 of of Goodwin and Wright [17]. In the remainder
of this section, we seek to explore these potentialities in greater detail. For
this purpose, suppose that a set of scenarios have been
selected for purposes of evaluating alternatives. Let us then define
(expressed by a lower case letter to emphasize that this is no longer viewed as
a random variable) as the consequence of action in terms of criterion under
the conditions defined by scenario As before, will represent the
corresponding vector of consequences.

Standard assumptions of MCDA imply that it should be possible for each
individual criterion, to obtain at least partial preference orderings on any given
set of specific (deterministic) consequences, independently of any other crite-
ria, whether or not these outcomes refer to real or hypothetical alternatives.
This observation forms the basis of a scenario-based approach to MCDA under
uncertainty.

A direct MAUT approach would presumably still strive to establish a pref-
erence ordering of the alternatives in terms of an “expected” utility defined
by:

where represent the “probability” associated with scenario There is, how-
ever, an immediate theoretical problem concerning the definition and interpre-
tation of The set of scenarios Y does not constitute a complete probability
space. More importantly, each element of this set, cannot in general be ex-
pected to represent the same hypervolume in probability space, so that even a
relative probability density (or “likelihood”) at the point in probability space
represented by cannot be used as a surrogate for Thus both the practical
and theoretical questions regarding the assessment of the remain fundamen-
tally unanswered, and alternative procedures need to be defined.

It will simplify further discussion (and often the implementation) of the
models to be discussed if now restrict consideration to the case in which the
space of alternatives is also discrete, i.e. the alternatives belong to the set

With some abuse of notation we shall then use to denote the
performance level of alternative in terms of criterion under the conditions
of scenario The vector will be interpreted in a similar manner.

In searching for an appropriate and broadly applicable theoretical basis
for modelling preferences in this context, two approaches immediately sug-
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gest themselves as an extension of the approach discussed by Goodwin and
Wright [17], Chapter 14:

Model A: Apply a standard MCDA approach, to construct a preference model
(ordinal or cardinal) across all possible outcomes (combinations of
alternatives and scenarios) given by the performance level vectors
This process involves aggregation across the original criteria. Good-
win and Wright [17] adopt this model, making use of an
additive value function to generate preference values for each Other
MCDA approaches may equally well be employed, however, such as
outranking (to generate a classification into preference classes) or goal
programming (to measure achievements in terms of distance from a goal
or reference level). An table can then be constructed, giving for
each alternative an aggregate measure of performance or goal satisfaction
under each scenario. A second evaluation is then required to select the
alternative which is “best” in some sense across all scenarios.

Model B: Treat each of the criterion-scenario combinations as metacriteria
(much as in Teghem et al. [50]), and apply some form of MCDA to the
problem of comparing alternatives in terms of the metacriteria.

Let us now explore the above two possibilities in somewhat greater detail.

5.1 Model A
Here the first step is to evaluate the distinct “outcomes” in terms of the
criteria by some form of MCDA process, to provide an aggregate comparative
evaluation of each outcome. As indicated above, Goodwin and Wright [17]
suggested such an approach, and applied a simple value measurement model
(SMART) to this step. In other words, the approach adopted was as follows:

A value function was constructed for each criterion, standardized
(e.g. to a 0–100 scale) over an appropriate range of performance levels
covering at the least the outcomes.

Swing weights were assessed by considering the ranges of outcomes
used to standardize the scale for each criterion.

An overall value for each outcome was computed as:

1

2

As an alternative to the value measurement suggested by Goodwin and
Wright, the analyst might:

3
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Use an outranking method to construct a valued pairwise preference rela-
tion as done by Mareschal [35], or a (perhaps partial) preference ordering
of the full set of outcomes; or

Apply a goal programming method obtain an aggregate distance measure
between each of the outcomes and a pre-specified set of goals for
each of the criteria.

Whichever methodology of MCDA is applied, the result will be some nu-
merical scoring, say indicating a level of performance or goal satisfaction
achieved by each alternative under the conditions of each scenario The

scores can be represented in a two-dimensional matrix, to give a form of
“pay-off” table. The places the problem into a framework which can be viewed
either as a standard monocriterion decision problem under uncertainty, or as
an MCDA problem with aggregate performances under each scenario playing
the role of “criteria”. The final step is to select the alternative i which is robust
against the uncertainties (according to the first view), or which best satisfies
these “criteria” (according to the second view).

Goodwin and Wright leave this second phase selection problem to direct
holistic judgement, and this does indeed seem to be consistent with the usual
scenario planning philosophy. Nevertheless, if a value function approach is
adopted and properly implemented in the first step, then the values should
constitute an interval preference scale. It should then be permissible to construct
an additive aggregation of the form where the represent relative
weights on the scenarios. It may be difficult to elicit appropriate values for
the scenario weights, however, as these may not be intuitively self-evident.
Certainly, as we have indicated earlier, an assumption that should be equated
to a “probability” for scenario cannot really be supported. Some form of
“swing-weighting” approach would perhaps be more justifiable.

An alternative approach may be to adopt a “max-min” strategy, i.e. to se-
lect alternative which maximizes the worst aggregate performance given by

This could plausibly be construed as the most robust solution,
but is unsatisfying from an MCDA perspective, as no consideration is given
to possibilities of trade-offs between performances under different scenarios.
For example, if one alternative is very good under all but one scenario, but
marginally worst on the remaining scenario, should it summarily be rejected?
The second level MCDA problem thus poses some challenging questions to the
MCDA research community.

5.2 Model B

In this model, the approach is of a standard MCDA form, treating all
combinations of criteria and scenarios as “metacriteria” (where each represents
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the desire of the decision maker to achieve satisfactory performance according
to a particular criterion under a particular scenario).

At the outset, this formulation fits neatly into the MCDA framework, as the
operational requirement of being able to compare alternatives in terms of each
criterion without reference to performance on other criteria, will typically be
satisfied if true for the original criteria. Even the stricter preferential indepen-
dence condition of additive value function models may be expected to apply
if satisfied for the original criteria. This would follow, provided that tradeoffs
between outcomes under two scenarios do not depend on how well the alter-
native performs under other scenarios. On prima facie grounds it is difficult to
conceive of situations in which such independence would not apply.

The process would then follow standard MCDA procedures, and any of the
well-known MCDA methodologies (e.g. value measurement, goal program-
ming or outranking) should in principle all be applicable (not necessarily equally
easily or transparently, however). An important point distinguishing model B
from model A, is that preference structures across criteria would be allowed to
differ across scenarios, in the sense that (a) relative tradeoffs between criteria
(importance weights) and (b) intensities of preference for different increments
in performance on any one criterion may differ from scenario to scenario. It is
an open question as to whether such changes may or should be expected.

Perhaps the most critical question would relate to importance weights placed
on each of the metacriteria, as required in some or other sense by most MCDA
methods. In principle, we require a relative weight, say to be placed on
each metacriterion. There seems to be no difficulty in principle in establish-
ing ratios for any pair of criteria under the assumption of the same
scenario This would correspond exactly to standard MCDA considerations
(e.g. swing weights for value functions). If decision makers can also express
the relative importance of changes in performance level for the same criterion
under different scenarios, by considering the question as to whether the same
range of outcomes on the criterion would have a more or less important im-
pact on the final decision under one scenario than another, this would generate
estimates of for the pair of scenarios. From the two sets of ratios, it
would be possible to infer relative weights for all combinations. In fact, by
repeating the assessments for two or more criteria, some evaluation of
the consistency of the estimates would also be possible.

5.3 The Way Forward
A formal integration of MCDA and scenario planning would thus appear to offer
substantial potential benefits, and anecdotal evidence suggests that something
along this line is done from time to time. At the present time, however, a com-
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pletely integrated procedure would require answers to the following research
questions:

Do preference structures tend to change from scenario to scenario? If so,
then this might better be handled by Model B.

Are particular MCDA methods more appropriate to one model or the
other?

How many scenarios are needed for effective application of MCDA?

How should these scenarios be constructed? Should the primary emphasis
be on plausibility of the scenarios (as in standard scenario planning) or
on achieving representivity of ranges of variation that can occur?

How should weights be assessed?

At time of writing, a series of simulation studies are under way (based broadly
on the approach described by Stewart [47, 49]) to address some of the above
questions, especially those related to the number and selection of scenarios.
Definitive results are not yet available, but early indications are extremely en-
couraging, in the sense that good results can be obtained with as few as 3–5
scenarios.

6. Implications for Practice

It should be evident from the preceding discussion that there still remains consid-
erable scope for research into the treatment of substantive external uncertainties
within an MCDA framework. It is hoped that such research will lead to ever-
improved methodologies. Nevertheless, for the practitioner, certain guidelines
can be given at the present time. These may be summarized as follows.

For those working within a value or utility function framework, the ex-
pectation of a simple additive value function can generate quite useful
insights for the decision maker, provided that due attention is given to
the shape (changing marginal values) of the function (cf. Stewart [46]).
On the other hand, complete multiplicative or multilinear multiattribute
utility functions may be difficult to implement correctly.

With any MCDA approach, there is value and some theoretical justifica-
tion in decomposing those criteria for which there is substantial uncer-
tainty regarding outcomes, into two subcriteria of expected value and a
risk measure respectively. An open question remains as to whether vari-
ance or standard deviation (which are conventionally used in this context)
are the most appropriate risk measures for all problem types.

1

2
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The integration of MCDA and scenario planning is relatively easy to
apply in at least two different ways, and may be particularly transparent to
many decision makers. Once again, there do remain some open questions,
especially as regards the number of scenarios to be used and the means
by which they are constructed or selected.

3
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