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Chapter 23

Data Mining to Discover Emerging Patterns of
Antimicrobic Resistance

J. A. Poupard, R. C. Gagnon, and M. J. Stanhope
GlaxoSmithKline, Collegeville, PA, USA

1. INTRODUCTION

Antimicrobial susceptibility testing results are typically presented as
summary information in the form of percent susceptible-intermediate-resistant
(SIR), as the minimum concentrations required to inhibit 50% or 90% of iso-
lates (MIC50/90s) or as MIC frequency distributions. However, extracting addi-
tional information from large databases, involving thousands of isolates tested
against more than 20 antimicrobial agents containing 6–10 individual dilu-
tions, involve data points numbering in the millions. In such cases, traditional
methods of analysis are insufficient. One approach to dealing with these levels
of complexity is by applying novel data mining procedures. Although it should
be noted that there is no universal definition of the term “data mining,” for the
purposes of this chapter it is defined as:

A new discipline lying at the interface of statistics, database technology, pattern 
recognition and machine learning, and concerned with secondary analysis of large
databases in order to find previously unsuspected relationships, which are of interest or
value to their owners. (Hand, American Statistician, 1998 [Hand, 1998]).

Due to the complex nature of data mining in this context, a team effort is
required involving experts from various fields, including specialists in com-
puter/bioinformatics. Regardless of the number of disciplines involved, it is
critical that someone specializing in microbiology or infectious diseases is



included. This person should have full knowledge of the limitations, in design
and execution, of the susceptibility testing procedures used to generate the
data. In this capacity, the microbiologist evaluates the data generated and
searches out inconsistencies in those data as well as in the quality control pro-
cedures associated with the primary database. Any inconsistencies that are
revealed need to be pursued and resolved in order to assure validation of the
primary database. Failure to do this thoroughly will undermine any further
analysis conducted. As data mining of large multinational resistance databases
is relatively novel, the complexity of these procedures is just now becoming
apparent.

The goal of this chapter is to focus attention on methods for identifying
new or unrecognized resistance patterns in large surveillance study databases.
Application of these data for use in resistance modeling and infection control
is addressed elsewhere in this book. Although methods applicable to these
large databases certainly apply to information generated in individual hospital
laboratories, the large surveillance databases pose a special problem because
of the volume of data involved.

2. BRIEF LITERATURE REVIEW

Although it may not have been called data mining, the extraction of informa-
tion from large databases has been a hallmark of epidemiology studies for a long
period of time (Kaslow and Moser, 2000). In the 1980s investigators started to
apply data mining techniques in attempts to combine antimicrobial susceptibility
testing information obtained from the clinical microbiology laboratory with hos-
pital/medical center information systems to help identify specific hospital infec-
tion control problems. These studies attempted to characterize and rapidly
identify outbreaks of infection, particularly in locations such as intensive care
units. A series of papers associated with investigators at the University of
Alabama focused on many of these and related issues (Brossette et al., 1998,
2000; Moser et al., 1999). In a 1998 paper, Brossette et al. described a concept
they called data mining surveillance system (DMSS) to encourage the applica-
tion of rules of association in identifying new patterns within large infection
control and public health surveillance data. The DMSS was further refined in
subsequent papers through its application to intensive care units and for infection
control surveillance. More recently, Peterson and Brossette introduced the con-
cept of virtual surveillance to encourage the application of data mining
techniques on an ongoing basis (Peterson and Brossette, 2002).

Two significant data mining studies on antibiotic use and drug resistance in
a hospital setting have been conducted (Lopez-Lazano et al., 2000; Monnet
et al., 2001). These studies combined antimicrobial susceptibility testing data
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with information on antimicrobial use obtained from the hospital pharmacy to
conduct time-series analysis employing data mining techniques based on the
ARIMA (autoregressive integrated moving average) model proposed by Box
and Jenkins (Box and Jenkins, 1976). They succeeded in demonstrating a tem-
poral relationship between the use of two antibiotics in the hospital and the
percentage of Gram-negative bacilli resistant or intermediate to those antibi-
otics. In somewhat similar studies, Brown et al. evaluated the use of binary
cumulative sums (CUSUMs) and moving average (MA) control charts to iden-
tify clusters of nosocomial infections using changes in antimicrobial resistance
of isolates (Brown et al., 2002). In 2002 Poupard et al. summarized three meth-
ods for data mining of large multinational surveillance databases (Poupard
et al., 2002). It is becoming apparent that as hospital and third party payer data-
bases expand, the use of novel applications of data mining from other fields will
become increasingly applied to resistance surveillance databases.

3. PRIMARY RESISTANCE SURVEILLANCE 
DATA

When planning surveillance studies, the basic database for analysis will
need to contain line listings of MICs for the individual isolates. This is impor-
tant, not only because breakpoints (SIR) change over time, but because the
investigator may want to apply unique breakpoints that differ from the stan-
dard breakpoints; for example, in order to collect information on possible 
first-step mutations prior to an organism becoming resistant.

It should also be noted that as much patient demographic information and
specific isolate information as possible is always preferred, regardless of the
original intent of the planners. These kinds of information are often invaluable
when resolving issues of unusual or interesting results from data mining 
procedures.

4. THREE APPROACHES TO RESISTANCE
INFORMATION DATA MINING

Three main approaches will be discussed for data mining of large data-
bases containing drug susceptibility/resistance information to search for novel
information or patterns of antimicrobial resistance: (1) the antibiotype method,
(2) multivariate analysis, and (3) evolutionary genetics approaches. These
methods were previously presented in a summary paper analyzing information
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generated by the Alexander Project, a 10-year multinational surveillance study
of upper respiratory isolates (Poupard et al., 2002).

4.1. The antibiotype approach

This is a method that first converts the long string of MICs to any number of
drugs into a series of 0s and 1s with 0s representing a susceptible result and 1s
representing non-susceptible or resistant results; the basic antibiotype. It
should be noted that the 1 can be based on selected, published breakpoints, or
an artificial breakpoint such as an MIC result that the investigator determines
to be a first-step mutation. The string of S (susceptible) and R (non-susceptible)
results of an isolate tested against individual drugs is converted into a string of
0s and 1s. The use of the binary code is adaptable to all computer programs and
enables the investigator to search the database for novel patterns. A string of 
all 0s indicates an isolate is susceptible (based on the chosen breakpoints) to all
drugs tested which is often lost when one prepares summary tables based on
percent SIR or on MIC50/90s.

In order to perform more sophisticated analysis, the long string of numbers
can be converted into a two- or three-digit number. This is done by grouping the
string of 0s and 1s into subsets of three numbers. Each consecutive number in the
set of three is assigned a value of 1, 2, or 4, with 0s remaining 0s. For example,
100 � 100; 010 � 020; 001 � 004; 111 � 124, etc. Once converted in this way,
each set of three numbers can then be transformed to a single number derived
from the sum of the values for the non-susceptible results, so: 100 � 100 � 1;
010 � 020 � 2; 001 � 004 � 4; 111 � 124 � 7, etc. It is also possible 
to assign a two- or three-digit hyphenated code based on the number of non-
susceptible results (1s) in the binary string. Each unique string with the same
number of non-susceptible results would give a new second digit, and the process
would be continued until each antibiotype has a unique number designation.

Use of this method permits the determination of the predominant antibio-
type, as well as rare antibiotypes, and enables the evolution of these antibio-
types to be tracked over time or by designated locations. It also permits analysis
of variability in a population of unique antibiotypes over time and can show 
the rise or decline in the all zero antibiotype within the population. Specific
applications of this methodology to isolates of Streptococcus pneumoniae and
Haemophilus influenzae can be found in the previously cited paper by Poupard
et al. (2002).

4.2. Multivariate analysis methods

Multivariate projection methods are applicable for obtaining a broad
overview of large, complex (multidimensional) data. Projection methods are
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powerful tools for discovering patterns in such data and have been applied in
many situations, for example, genetics (Nguyen and Rocke, 2002), cheminfor-
matics (Janne et al., 2001), and statistical process control (MacGregor and
Kourti, 1995), among others. In this chapter, we describe their application to
multinational surveillance data. These methods are not meant to supersede the
traditional univariate approach to analysis of surveillance data. Rather, they are
meant to enhance the univariate analysis and to enable a greater understanding
of the underlying patterns of variability among the antibiotics, countries, dates
of collection, isolate sources, etc. In addition to this greater understanding,
identification of interesting isolates, which may have escaped detection using
the univariate approach, is likely. Thus, multivariate processes extend the level
of understanding of the data beyond that obtained from the standard univariate
approaches and provide a framework for additional analysis.

We applied multivariate analysis to the 1998 Alexander Project collection
of 8,952 S. pneumoniae isolates from 24 countries. Isolates were tested against
20 antibiotics and data were available for age, gender, and isolate source
(Table 1). While it is possible, and generally of interest, to apply multivariate
techniques to the entire dataset, such an application may give rise to results
which are artifacts of the sampling, rather than reflecting true patterns of resis-
tance. For example, preliminary examination showed that data were collected
from any of six sources (throat, ear, sputum, blood, nasopharynx, sinus) and
from patients of any age. However, these data were not well distributed across
the countries of origin. Some countries had no ear isolates (e.g., Austria,
France, Germany) whereas others had many (e.g., United States). Similarly,
some countries have very few isolates from patients of 5 years of age or less

Data Mining to Discover Antimicrobic Resistance 425

Table 1. Antibiotics (abbreviation used) analyzed from the 1998 Alexander Project

�-Lactams Macrolides Quinolones Others

Penicillins Erythromycin (Ery) Ciprofloxacin (Cip) Clindamycin (Cli)
Penicillin (Pen) Clarithromycin (Cla) Ofloxacin (Ofl) Chloramphenicol (Chl)
Amoxicillin Azithromycin (Azi) Gemifloxacin (Gem) Doxycycline (Dox)
(Amx) Co-trimoxazole (Cot)
Amoxicillin/
clavulanic acid 
(Aug)

Cephalosporins and 
loracarbef

Cefaclor (Fac)
Loracarbef (Lor)
Cefuroxime (Fur)
Cefixime (Fix)
Cefotaxime (Tax)
Ceftriaxone (Axo)
Cefprozil (Cpz)



(e.g., Switzerland, Austria) and others had many (e.g., United States, Japan). As
the prevalence of resistance has been shown to vary based on isolate source and
age, particularly in patients of 5 years of age or younger (Sahm et al., 2000;
Thornsberry et al., 1999), there was a risk that the uneven distribution of these
data would produce misleading results. However, all the countries had large
numbers of sputum isolates from patients older than 5 years of age and the analy-
sis was therefore restricted to this subset, including 1,295 bacterial isolates.

For the 1998-subset data, 20 antibiotics were tested representing 20 dimen-
sions (variables) against 1,295 bacterial isolates (observations). It is, of course,
not possible to visually examine 20-dimensional data. The concept of multi-
variate projection is that high dimensional data are transformed into a lower
dimensional space, allowing data to be examined visually while at the same
time explaining the variation in the data. The percentage of the total informa-
tion in the data that is represented by the lower dimensional space is deter-
mined by R2, analogous to the familiar R2 value from simple linear regression.
Distributions of MIC data are generally not symmetric. For most modeling
procedures, whether univariate or multivariate, transformation of the MIC data
to achieve a close-to-symmetric distribution is common. For example, MIC
distributions are sometimes summarized using the geometric mean, which is
based on log MIC, a close-to-symmetric transformation of the MIC data. Such
transformations are essential for data modeling, mainly to make the models
more efficient (reliable) and to remove undue influence on the model from
relatively few extreme values, in this case extreme MICs.

For our analysis, MIC data were transformed to achieve a close-to-symmetric
distribution using a log transformation. Data were first modeled using principal
components analysis (PCA). The mathematical complexities of PCA are dis-
cussed in many statistical texts; see, for example, Morrison (1990), or Eriksson
et al. (2001). PCA was carried out on the log MICs using SIMCA (2000)
software. The principal components were then summarized graphically using
score and loading plots. In their lower dimensional space, score plots describe the
coordinates of the observations (isolates) while loading plots describe the coordi-
nates of the variables (antibiotics). In order to interpret the principal components,
it is necessary to examine loading plots. The loading plot for each principal com-
ponent describes the structure being revealed by the component. The largest com-
ponent corresponds to the highest proportion of total R2 explained and is called
the principal component 1, or p[1]. In addition to plots of individual loadings,
two-dimensional or three-dimensional plots of combinations of the loadings are
also very informative. Variables contributing similar information, for example,
those that are correlated, are grouped together in two-dimensional or three-
dimensional loading plots. Variables that are negatively correlated are located on
opposite sides of the plot. The further from the plot origin that a variable lies, the
greater its impact on the PCA model.
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For the 1998 MIC data, the 20 variables and 1,295 observations were
represented by four principal components, accounting for 88% of the total
information in the MICs. Thus, the 20-dimensional data are summarized and
interpretable in only four dimensions. The loadings for the first four principal
components for S. pneumoniae in 1998 are shown in Figure 1. As stated, the
loadings reflect structure among the variables, in this case antibiotics.

● The first principal component, p[1], explained 61% of the information in the
MIC data and described isolates with high MICs among all antibiotic classes
except the quinolones (Figure 1a).

● The second component explained an additional 13% of the MIC informa-
tion, separated macrolides, chloramphenicol, and doxycycline from the �-
lactams and co-trimoxazole, but contained relatively little information about
the quinolones (Figure 1b).
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Figure 1. Loading plots for the first four principal components. (a) Antibiotic loadings 
for principal component 1 (p[1]); (b) antibiotic loadings for principal component 2 (p[2]);
(c) antibiotic loadings for principal component 3 (p[3]); (d) antibiotic loadings for principal
component 4 (p[4]).



● The third component (11% of information) uniquely described isolates with
high quinolone MICs (Figure 1c).

● The fourth component (3% of information) picked up isolates with high 
chloramphenicol, doxycycline, and co-trimoxazole MICs, with relatively
low macrolide MICs (Figure 1d).

The 1998 MIC data therefore can be described by four components, which,
perhaps not surprisingly, closely follow the antibiotic classes.

Plots of two-dimensional loadings (antibiotics), combined with two-
dimensional score plots (isolates), reveal unusual isolates, patterns among the
isolates and relationships between the isolates and antibiotics (Figure 2). A two-
dimensional plot of components p[1] vs p[2] revealed clustering by antibiotic
class, with �-lactams clustered in the upper right-hand corner (Figure 2a).
This cluster was due to the strong correlation among the �-lactam MICs
(co-trimoxazole MICs were closely correlated with the �-lactams). The
macrolides (plus clindamycin) were also clustered, but were separate from the
�-lactams. Chloramphenicol and doxycycline were closely related to each
other, but dissimilar from the other classes of antibiotics. The quinolones, being
close to the origin, exerted no influence in the first two components. The two-
dimensional score plot for the first two dimensions is shown in Figure 2b. The
scores in dimension 1 are denoted t[1], and in dimension 2 are denoted t[2]. The
score plot revealed distinct clusters among the isolates and was interpreted by
relating the position of observations in the plot (which represent individual
bacterial isolates) to the positions of variables in the p[1], p[2] loading plot.
For example, the upper right quadrant of Figure 2b represents a cluster of iso-
lates with high �-lactam and co-trimoxazole MICs (cluster 1). These isolates
are associated with low macrolide MICs, and low to midrange doxycycline and
chloramphenicol MICs, because these drugs are located in different regions of
the loadings plot.

The median MICs from cluster 1 in Figure 2b were plotted in Figure 3a
expressed as the number of dilutions from each antibiotic’s respective MIC90.
As expected, the �-lactam median MICs were at their respective MIC90s
(i.e., 0 dilutions from the MIC90) and macrolide, clindamycin MICs were
between 9 and 11 dilutions below their MIC90s. Cluster 2, at the bottom of the
score plot Figure 2b, was associated with high macrolide and low �-lactam
MICs; this was reflected by median MICs in that cluster, compared to the
MIC90s for each drug (Figure 3b). Clusters 3 and 4 were both high in the first
component, the difference being the relative positions in the second compo-
nent, and hence these clusters differed primarily by macrolide MICs (Figure 3c
and 3d, respectively). Clearly the MICs were high for all drugs (except
quinolones) in cluster 4, and in cluster 3 the increase in MICs among the
macrolides was evident (compare with Figure 3a).
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Figure 2. Two-dimensional loading and score plots for the first four principal components at
the MIC level. (a) p[1] vs p[2] loading plots, showing clustering among antibiotics for the
first two components; (b) t[1] vs t[2] score plots, showing major clusters among isolates for
the first two components; (c) p[3] vs p[4] loading plots, showing clustering among antibi-
otics in the last two components; (d) t[3] vs t[4] score plots, showing major clusters among
isolates in the last two components.

Figure 1c showed that the third principal component represented the
quinolones and Figure 1d showed that the fourth component was dominated by
chloramphenicol. Two-dimensional loading plots and corresponding two-
dimensional score plots help to reveal how the isolates with high quinolone or
chloramphenicol MICs cluster with the other isolates (Figure 2c and 2d).
Isolates with high quinolone MICs are easily identified (on the far right of
Figure 2d), and other outlying isolates, driven by high or low chloramphenicol
MICs can be seen clearly. Note the vertical banding among the isolates of
Figure 2d; these bands correspond to MICs of the quinolones, with the highest
density bands being in the mid-MIC range.
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Figure 3. Median number of dilutions from each antibiotic’s MIC90, for major clusters in the
first two principal components (p[1] and p[2]). (a) Cluster 1, median MICs for isolates in
cluster 1 are at the MIC90 for �-lactams, but are between 9 and 11 dilutions below the MIC90

for the macrolides, between 3 and 5 dilutions below the MIC90 for clindamycin and doxycy-
cline, and 2 dilutions below for chloramphenicol; (b) cluster 2, this is the inverse of cluster 1
with the �-lactams having low MICs relative to their MIC90s, whereas macrolides and clin-
damycin are at their MIC90s; (c) cluster 3, this shows MICs which are similar to cluster 1
except that macrolide, clindamycin MICs have increased compared with cluster 1; (d) clus-
ter 4, this corresponds to high MICs for all non-quinolones, with MICs at the MIC90s.
Note that quinolones are not included in this figure as there was no information about the
quinolones in the first two principal components.

The methodology described above can also be applied to the antibiotypes,
and, as expected, the results were similar, though with some notable excep-
tions. First, the two-dimensional loadings plot for the first two components
(Figure 4a) illustrates that antibiotic groupings were similar to the MIC group-
ings (Figure 2a), with the exception that amoxicillin and amoxicillin/clavulanic
acid, at the antibiotype level, were distinct from the other �-lactams in p[1].
This distinction is due to the comparatively increased susceptibility of 
S. pneumoniae strains to amoxicillin vs other �-lactams when NCCLS break-
points are used to determine the antibiotype (NCCLS, 2000). Figure 4b
describes the distribution of isolates at the antibiotype level. The interpretation
was similar to that for isolates at the MIC level (Figure 2b), although here 
there appeared to be a greater variety in the clustering pattern. The third and



fourth components (Figure 4c) described (1) isolates with resistance to the
quinolones ciprofloxacin and ofloxacin (there was no resistance to gemi-
floxacin in the isolates analyzed), and (2) the isolates with resistance to amox-
icillin and amoxicillin/clavulanic acid (Figure 4c). Figure 4d shows the pattern
of isolates in the third and fourth components. Isolates resistant to both 
amoxicillin and amoxicillin/clavulanic acid but not the two quinolones were
clustered at the very top of the plot (cluster 1). There were two isolates with
resistance to both amoxicillin and amoxicillin/clavulanic acid and one of the
two quinolones, ciprofloxacin, or ofloxacin (cluster 2). A small group of 
six isolates were resistant to both quinolones, as well as to amoxicillin and
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Figure 4. Two-dimensional loading and score plots for the first four principal components at
the antibiotype level. (a) p[1] vs p[2] loading plots showing clustering among antibiotics in
the first two components; (b) t[1] vs t[2] score plots, showing major clusters among isolates
in the first two components; (c) p[3] vs p[4] loading plots, showing clustering among antibi-
otics in the last two components; (d) t[3] vs t[4] score plots, showing major clusters among
isolates in the last two components.



amoxicillin/clavulanic acid (cluster 3). Cluster 4 included a group of isolates
resistant to one of the two quinolones but not amoxicillin or amoxicillin/
clavulanic acid. Finally, cluster 5 was a group of isolates resistant to both
quinolones but not to amoxicillin and amoxicillin/clavulanic acid.

Other interactions among the antibiotics and isolates may be obtained 
by other two-dimensional and/or three-dimensional views of the components.
The four components together explained over 80% of the information in the
antibiotypes. In the above analysis, the country-to-country effect was not
included. However, it is straightforward to include country as a variable. One
way is to fit the same overall PCA model but use different colors or graph
symbols in the score plots to depict the distribution of isolates for the different
countries, and/or use graphical tools to display the countries individually. This
works well and is a rather striking way to examine countries. Another approach
is to use a related multivariate projection to model the relationship between
countries and isolates; in this case the technique known as projection to latent
structures (PLS) works well. The technical details of PLS have been well
described (Eriksson et al., 2001). With PLS, countries are considered predictor
variables (or X variables) and antibiotics are considered response variables (or
Y variables), with the isolates as observations. Both the X and Y, which are
matrices with rows as isolates and columns as variables (countries in the 
X matrix and antibiotics in the Y matrix), are projected into lower dimensional
space similar to a PCA projection, with the projections modified slightly to
maximize the correlations between the X and Y variables. PLS models are 
easily fitted with the SIMCA software package.

The results of our PLS modeling have shown which countries are most 
(or least) highly associated with the antibiotic MIC or antibiotype patterns. As
an example, we consider the 1998 antibiotype data previously modeled.
In PLS we examine loadings for both X and Y variables to learn about their
associations. To distinguish the PLS loadings from the PCA loadings, we used
w[i] and c[i] for X and Y loadings, respectively, for component i. The loading
plots for the first two components of the PLS projections are shown in Figure
5a (countries) and 5b (antibiotics). Figure 5b shows that the first Y component
had high loadings for all antibiotics except the quinolones, and to a lesser
extent amoxicillin, amoxicillin/clavulanate, clindamycin, and co-trimoxazole.
Thus, this component picked up countries with resistance patterns dominated
by most of the non-quinolone agents. X variables with high loadings are highly
correlated with these Y loadings—hence from Figure 5a we see that France,
Hong Kong, and Japan were the countries most highly associated with resis-
tance to most non-quinolone agents. The next PLS component, captured in
Figure 5c and 5d, was primarily driven by the United States, Japan, and the
Slovak Republic, and picked up isolates that were differentiated based upon
macrolide/�-lactam/doxycycline/co-trimoxazole resistance. Note that Figure
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5b and 5d shows that there was no information about the quinolones in the first
two PLS components.

As with PCA, it is of interest to plot two-dimensional plots. In Figure 6a we
plotted w[1] and w[2] for the country loadings, and in Figure 6b c[1] and c[2]
for the antibiotic loadings. Figure 6a shows which countries had the most
extreme patterns of resistance (The Slovak Republic, United States, Japan,
Hong Kong, and France) compared with the rest of the countries sampled.
Figure 6b shows the projection into the Y space for the antibiotics, and spa-
tially relating positions of antibiotics and countries in Figure 6a and 6b pro-
vides an understanding of the relationship between antibiotic resistance and
country. Hong Kong, with high loadings in component 1 and loadings close to
zero in component 2 had a relatively large number of isolates with resistance
across all antibiotics. France was similar to Hong Kong, but a smaller compo-
nent 1 loading suggests that this type of resistance was not as prevalent as in
Hong Kong. Japan, high in component 1, but low in component 2 had isolates
with resistance across all antibiotics, but also had a set of isolates with high
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Figure 5. Loading plots for PLS models, relating country to antibiotype. (a) X matrix 
loading for component 1; (b) Y matrix loading for component 1; (c) X matrix loading for 
component 2; (d) Y matrix loading for component 2.



resistance among the macrolides, chloramphenicol, doxycycline, and clin-
damycin with low resistance among the �-lactams. Japan’s second component
of resistance was almost the opposite of the United States, which appeared to
have isolates with resistance among the �-lactams but not among other antibi-
otics. The Slovak Republic had isolates generally associated with �-lactam
resistance. The quinolones were not significant in the first or second compo-
nent and hence no interpretations can be made regarding quinolone resistance
and country for these two components. Note that this PLS model, with two
components, explained only 30% of the information among the countries. The
model points toward relationships between countries and antibiotics that are
potentially of interest and worth further investigation.

The multivariate analysis clearly shows the broad patterns of antibiotic MICs
and resistance for 1998 in S. pneumoniae. Based on PCA, �-lactam and
macrolide resistance were responsible for the greatest variation among isolates,
followed by quinolone resistance and resistance to chloramphenicol. At the MIC
and antibiotype levels there were distinct clusters of isolates, which were largely
determined by �-lactam and macrolide resistance. As the prevalence of quinolone
resistance is still low, these agents were set apart from the other classes. At the
antibiotype level, amoxicillin and amoxicillin/clavulanic acid were distinct from
the population of other �-lactams, with less resistance to these two antibiotics.

4.2.1. Multidimensional scaling

It is often of interest to genotype the isolates. Isolates that are similar genet-
ically can be grouped together, and likewise, isolates dissimilar genetically,
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can be identified using a multitude of techniques. Multidimensional scaling
(MDS) is one such technique, which is often applied to the analysis of genetic
distances—see, for example, Agodi et al., 1999. For a detailed description 
of this approach, see texts on multivariate statistics, such as Morrison, 1990. 
In this section we show an example from a set of 193 isolates sampled and
genotyped from the 1998 and 1999 Alexander Project. In this example, the
housekeeping gene gki was genotyped. After the nucleotide sequences were
determined, the genetic divergence matrix for pairwise divergence among the
isolates was computed (see Section 4.3 for details).

Similar to PCA and PLS, MDS approximates the data matrix, in this case the
matrix of genetic divergence, in a lower dimensional space. Hence the 193-
dimensional divergence matrix will be represented in a few, interpretable dimen-
sions. We applied the PCA program from SIMCA to the divergence matrix; 
the two-dimensional loadings plot for p[1] and p[2] is shown in Figure 7. From
this figure, along the p[1] axis we see isolates which are genetically highly
divergent. In particular, a lone isolate collected in Italy in 1999 at the p[1] �
	0.05 level (circled in Figure 7a) was very different from, for example, any of
the isolates in the p[1] � 0.06–0.08 range. This was confirmed by plotting
pairwise distances for the isolate at p[1] � 	0.05 and two isolates at the other
extreme. As an example we picked two isolates near p[1] � 0.08 and p[2] � 0
(one from the United Kingdom 1998, the other from Portugal 1999), and plot-
ted the set of 193 distance pairs for these two, and for the former against the
p[1] � 	0.05 Italian 1999 isolate (Figure 8). In Figure 8a, the two isolates that
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are close together on the plot are highly correlated; the Italy 1999 isolate is not
correlated with these and the divergence from each of the other isolates is large
(Figure 8b). Once genetically divergent isolates are identified, cross referenc-
ing with MIC and/or antibiotype data can be carried out, to determine the 
relationship of these divergent isolates to their MIC/resistance phenotype.

4.2.2. Summary

The projection methods described above can handle extremely large num-
bers of observations and variables. For example, the Alexander Project 10-year
dataset (1992–2001) has well over 35,000 isolates; despite this, analysis of the
entire dataset is well within the computational boundaries of these projection
methods. This may be of particular interest, for example, when investigating
time trends over the 1992–2001 period. The many variables available in the
Alexander Project data can also be modeled, such as age, gender, isolate
source, and country. It is also possible to assess genetic divergence for these
very large sets of data. Many other data mining methods exist for evaluation of
such large datasets, and each method has its merits. Projection methods are
robust methods that can handle extremely large data sets of predictor (X)
and/or response (Y) matrices, and user-friendly software is readily available.

4.3. Evolutionary genetic approaches

Technical developments associated with the polymerase chain reaction
(PCR) and automated DNA sequencing technology, over the course of the last
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decade or so, have made it very easy to obtain large amounts of comparative
sequence data from virtually any organism. Alongside this progression in lab-
oratory technology, the evolutionary analysis of molecular sequence data has
also advanced. This concomitant development of molecular biology technol-
ogy and analytical perspective has resulted in the burgeoning field of molecu-
lar phylogenetics, which is now influencing all areas of biology. Despite this,
the application of modern principles and techniques of molecular phylogenet-
ics to the analysis of antibiotic resistance development and spread has not been
widely undertaken. Nonetheless, we feel the application of such a perspective
is ideally suited to extracting important information from large antimicrobial
susceptibility databases, such as the Alexander Project. This is at least partly
due to the fact that molecular phylogenetics falls within the broader realm of
comparative biology and the nature of such databases provides numerous com-
parative possibilities. Databases such as the Alexander Project have a temporal
perspective allowing comparisons between years, a geographical component
allowing comparisons between collecting centers, as well as susceptibility data
for numerous antibiotics for each isolate. This permits the correlation of 
isolate genetics with resistance over time and across geographical regions. 
The purpose of this section is to outline a few modern molecular phylogenetic
perspectives on typical questions of antibiotic resistance development and
spread in S. pneumoniae.

4.3.1. S. pneumoniae and questions of clonal spread

Analyses performed over recent years suggest that a small number of geno-
types are responsible for �85% of fully penicillin-resistant pneumococci in
the United States (MICs �2 mg/L) (Corso et al., 1998; Gherardi et al., 2000;
Richter et al., 2002). The majority of these studies used pulse field gel elec-
trophoresis (PFGE), however, and in an organism such as S. pneumoniae,
where nucleotide substitutions are relatively uncommon, PFGE is arguably too
imprecise a method to gain an accurate picture of the species’ genetic diversity.
Furthermore, most of these studies examined only resistant isolates, whereas
the inclusion of isolates with resistant as well as susceptible phenotypes is 
necessary to gain a more complete picture of the origins of resistance. An
important additional level of specificity to isolate typing has been achieved
with multiple locus sequence typing—MLST (Enright and Spratt, 1998;
Maiden et al., 1998; McGee et al., 2001). However, the allele frequency data
that arise from such studies do not lend themselves to forming an accurate 
picture of the cladistic history of the isolates.

Individuals from the same species diverge later than individuals from 
different species, which means that intraspecific molecular sequence data are
typified by much lower levels of sequence variation. We have found this to be
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particularly the case in an organism like S. pneumoniae. This species exhibits
very low levels of genetic diversity in comparisons of housekeeping gene
sequences in clinical isolates sampled from globally distributed locations. In
contrast, in comparisons involving the same housekeeping genes for the same
country and year in the Alexander Project collection, H. influenzae has much
higher genetic diversity than S. pneumoniae. For example, in the Alexander
Project during collection of isolates for the United Kingdom in 1998, indexes
of diversity for three different housekeeping gene sequences are 1.8–5.4 times
higher for H. influenzae than for S. pneumoniae (Table 2).

The relative lack of genetic variation in S. pneumoniae means that it can be
more difficult to accurately reconstruct the evolutionary history of isolates
using traditional molecular phylogenetic procedures (which require at least
moderate levels of sequence divergence between entities), particularly when
the number of isolates is quite large. Furthermore, it is very difficult to root an
S. pneumoniae phylogeny using another species. This is because most of the
taxa widely recognized to be different species are much too distant to provide
anything but a long branch attraction problem (a phylogenetic artifact which
results in some sequences being artificially “dragged” to the base of the 
tree due to homoplasy with the outgroup), and other taxa which are currently
classified as different species, may have no evolutionary basis for such a 
classification (Stanhope, unpublished data).

Methods have been developed over the course of the last decade, and 
are coming into increasing use over the last number of years, that employ phy-
logenetic statistical procedures for dealing with this problem of low sequence
variation in the reconstruction of evolutionary history. One such method, known
as statistical parsimony, was developed by Templeton in a series of important
papers in the early to mid-1990s (Templeton, 1995; Templeton and Sing, 1993;
Templeton et al., 1987, 1992). In addition to being able to reconstruct accurate
histories with low sequence divergence, the method also has a number of 
other important benefits: (1) the algorithm collapses the sequences into their
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Table 2. Nei and Li’s (1979) index of nucleotide diversity; based on
total number of alleles, population frequency of each allele, and
number of nucleotide substitutions per site between alleles; for 
S. pneumoniae (N � 75) and H. influenzae (N � 73) collected from the
United Kingdom as part of the 1998 Alexander Project

Species gdh gki recP

S. pneumoniae 0.01092 0.01479 0.00717
H. influenzae 0.02623 0.02633 0.03844



various haplotypes, estimates the maximum number of differences among
these haplotypes, resulting from single substitutions, and then joins the haplo-
types in a parsimony network with each step justified by a probability level of
95%; (2) the program TCS estimates haplotype outgroup probabilities for each
haplotype, with the highest probability being judged the most likely ancestral
haplotype for that set of sequences (Clement et al., 2000); (3) it can be com-
bined with a nested analysis procedure to partition the resulting network into a
series of nested clades which can in turn be used to statistically test associa-
tions between genotype and phenotype, where “phenotype” could represent
anything, such as geographic location, clinical setting, or antibiotic resistance
phenotype (Templeton and Sing, 1993; Templeton et al., 1987).

To illustrate this evolutionary approach using TCS, statistical parsimony
networks were reconstructed from gki (840 bp) and gdh (1,245 bp) sequences
for a set of isolates possessing a mixture of resistance phenotypes collected
from Ohio, USA (Alexander Project collection, 2000) (Figure 9). For each of
these two networks we tested the following null hypothesis: no association
between genotype and isolates with penicillin (Pen) MICs �4 mg/L. For both
these loci and networks the null hypothesis is rejected. Thus, we can conclude
that, at least for this set of isolates, there was a significant correlation between
genotype and isolates with penicillin (Pen) MIC �4 mg/L, indicating a signif-
icant degree of clonality to this type of resistance. By then examining the
phenotypes of the constituent members of the various nests in the network, we
can determine if there is a single clone or several clones that have convergently
evolved this phenotype. In the present example, the vast majority of penicillin
resistance of MIC �4 mg/L could be explained by two or three clones which
have convergently evolved this phenotype. The fact that this test is not signifi-
cant at the “0–step” clades (i.e., the individual haplotypes) indicates that both
the relationships depicted in the network and the nested cladistical design
associated with it were necessary to detect the genotype–phenotype associa-
tion. In other words, any attempt to correlate haplotypes with resistance, while
not taking into consideration the evolutionary history depicted in these net-
works, would have resulted in inaccurate conclusions.

Although in recent years there has been important work accomplished on
the question of clonality and resistance in S. pneumoniae, it is also true that the
issue can still benefit from the analytical procedures and perspective typical of
modern molecular evolutionary biology. The statistical parsimony approach
has various advantages, including the fact that it can be scaled up tremendously
to include hundreds of isolate sequences. In contrast, traditional phylogenetic
methods would be bogged down with such large numbers of highly similar
sequences, as those typical of comparative data regarding S. pneumoniae
housekeeping genes.
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4.3.2. Horizontal transfer of resistance loci in S. pneumoniae

It has been known for many years that one of the principal mechanisms 
for S. pneumoniae resistance to �-lactam antibiotics is through specifically
mutated penicillin-binding protein ( pbp) genes. Unlike the housekeeping
genes of S. pneumoniae, pbps tend to be highly variable between isolates with
a mosaic pattern in their homology comparisons to other species of strepto-
cocci. This pattern has provided evidence that these hyper-variable, resistance-
conferring pbps in S. pneumoniae have their origins in lateral gene transfer
events involving other species, followed with intraspecific recombination
events to create the mosaics. The frequency with which such lateral resistance
transfer events take place is not well understood.
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Arguments regarding lateral gene transfer events, whether it be regarding
antibiotic resistance or not, are often based on basic interpretations of percent
identity, or quite simply, BLAST (basic local alignment search tool) alignment
scores. However, understanding whether a gene has been laterally transferred
from another lineage is an evolutionary biology problem. A high profile exam-
ple of the risks of failing to use such a perspective concerns claims, by the
Human Genome Sequencing Consortium, that hundreds of human genes likely
resulted from independent horizontal transfer events from bacteria at various
points in the diversification of vertebrates (IHGSC, 2001). This conclusion was
based on BLASTP alignment scores, or in other words, basic interpretations of
sequence homology. However, subsequent, detailed phylogenetic analysis of
this claim, did not find any support for horizontal gene transfer from bacteria
to vertebrates (Stanhope et al., 2001). Similarly, the best means to understand
the history and dynamics of lateral transfer of pbps in S. pneumoniae is to
employ phylogenetic principles and techniques.

If two or more genes have the same evolutionary history then it is likely
that there has been no lateral transfer involving those genes, and their history
can be explained through a shared common ancestry and descent. In contrast,
genes that have been laterally transferred will be discordant with the history
depicted by genes that are not laterally transferred. Housekeeping genes are
much less likely to be laterally transferred than are pbps, and there is little
a priori evidence to support their lateral transfer. Thus, the clearest phyloge-
netic evidence for lateral gene transfer of pbps would be strongly supported by
conflicting branching arrangements when comparing the phylogenies of pbp
sequences and housekeeping genes for the same set of isolates. The phylogeny
arising from the housekeeping genes can, therefore, be regarded as a “control
phylogeny,” or the best estimate of the true phylogeny. Nonetheless, in order to
help verify their vertical inheritance, there are various methods available to
detect the presence of recombinant sequences in any given sequence alignment
(see, e.g., Posada, 2002). If one or more of such methods identify the presence
of a recombinant, that particular sequence can be excluded from the set under
analysis. These same methods can be used to distinguish between intragenic
recombination of pbps vs lateral transfer. In other words, it is possible that dis-
cordant phylogenies between housekeeping genes and pbps could be the result
of pbp lateral transfer, or intragenic recombination.

To illustrate this approach, we include an example of pbp sequences from a
set of Alexander Project isolates from the United Kingdom collected in 1998.
The control phylogeny in this case is based on an alignment of two concate-
nated housekeeping gene sequences, gdh and gki for a total of 2,085 bp; com-
plete gdh and gki sequences were obtained for each isolate, these two
sequences were joined together to make one long sequence for each isolate,
and then the set of concatenated sequences were aligned. The low sequence
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divergence typical of S. pneumoniae housekeeping genes means that a single
gene often does not have sufficient phylogenetic signal to reconstruct robust
phylogenies using traditional methods (i.e., in comparison with methods such
as TCS). However, low sequence divergence is not typical of pbps, and thus in
our experience it is possible to easily reconstruct reliable histories of at least
pbp1a, pbp2b, and pbp2x genes. Traditional phylogenetic methods are best
suited for comparisons between evolutionary histories—there is a wealth of
theory, and statistics, for comparing the branching arrangements of bifurcating
phylogenies, but at present such methods for comparing networks, such as
those obtained from TCS, lag behind. Programs for computing phylogenies
from molecular sequence are numerous, but the two most common and 
comprehensive are PHYLIP (Felsenstein, 1993) and PAUP* (Swofford, 2002).

In the present example the resulting housekeeping gene sequences showed
no evidence for intragenic recombination and there was no evidence of lateral
transfer for either housekeeping gene (no strongly supported conflicting nodes
in individuals trees for each gene). Consequently, both loci were combined to
yield the unrooted maximum likelihood tree depicted in Figure 10. Similarly,
there was no evidence for intragenic recombination in the pbp2x sequences.
Note that the composition of the italicized clade of isolates in the housekeep-
ing tree includes two phenotypes: susceptible (isolates labeled 0) and those
resistant to penicillin, cephalosporins, and co-trimoxazole (isolates labeled 17).
Note that in the pbp2x tree, the “17” phenotype is either identical or very
closely related to several other isolates with multidrug resistant phenotypes
(labeled 23, 20, and 24), to which it was unrelated in the housekeeping tree.
Furthermore, the “0” isolates from the housekeeping 0/17 clade no longer
group with the multidrug resistant 17 isolates. These results indicate that there
was the lateral transfer of a particular pbp2x allele into one or another of the
“0” isolates of the 0/17 clone, and that this lateral transfer was correlated with
a major shift in phenotype from all susceptible to multidrug resistant.

In general, our present collection of data suggests that pbp genes that are
judged by our approach to be laterally transferred are often highly similar
between a selection of multidrug resistant isolates. As these isolates share no
close relationship on the basis of housekeeping genes, the most parsimonious
explanation is lateral transfer rather than intragenic recombination. Whether
the explanation is intragenic recombination or lateral transfer, the knowledge
of the evolutionary history of the isolates themselves, based on their house-
keeping gene sequences, can lead to important conclusions regarding the 
shifts in phenotype that have occurred coincidentally with the acquisition or
alteration of the pbps in question.

This comparative approach can be scaled up to include larger numbers of
isolates from different locations and years allowing examination of (1) the rel-
ative frequency of lateral transfer of the resistance loci and whether this differs
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between years and countries; (2) which variants of these loci are associated with
major shifts in resistance phenotype; (3) the sequence of lateral transfer events
involving the resistance loci—that is, which resistance genes are acquired first,
or all at once; (4) whether there are geographically specific pbps that are being
laterally transferred amongst a set of isolates within a given region.

5. CONCLUSIONS

Microbiologists are conditioned to approach a scientific subject with a
hypothesis, a protocol outlining how to proceed, and a clear idea of what they
are looking for. Data mining is a relatively new concept to microbiologists, and
requires a change in mind set, as a key element of this approach is to apply
methods developed for other fields like statistics and bioinformatics to a search
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for novel facts within the accumulated data. The papers cited in Section 2 of
this chapter are included here to encourage workers interested in the subject of
antimicrobial resistance to approach their subject within a new paradigm. The
three general methods presented in some detail, antibiotypes, multivariate
analysis, and evolutionary genetics, are techniques designed to stimulate the
investigator rather than present any one set approach to the subject. Interested
parties are encouraged to take the first step, namely, search for colleagues with
expertise in other fields to become familiar with the rich data generated by
antimicrobial surveillance and other research programs from the viewpoint of
their individual specialities and search for novel aspects that will shed light on
a problem that will only become more critical over the coming years. Data
mining is one approach that may offer novel insights into our understanding 
of resistance, and ultimately may result in providing potential solutions to 
slow the rate of resistance against organisms of medical and environmental
importance.
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