
Chapter 5 

Generalized Coordinates 

5.1 Theory of Generalized Coordinates 

Remarks. As revealed by the simple pendulum (Fig. 5-l), for example, 
use of Newton's Second Law in rectangular coordinates has the shortcom­
ing that both the constraint force T and the gravitational force W appear 
explicitly. In the energy method, however, the first of these doesn't ap­
pear at all and the second appears via a potential energy function (see 
Fig. 3-9). 

A second important shortcoming is that coordinates x and y are 
awkward and, more fundamentally, one is redundant; only one coordinate 
is needed and () is the obvious choice. We now take up this second point 
and introduce "generalized coordinates", of which an example is () for 
the pendulum. 

m 
w 

Fig. 5-l 
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Generalized Coordinates. Suppose a system of N /3 particles is 
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constrained by L independent constraints, Eqns. {3.2): 

N 

~ ArsdUs + Ardt = 0 ; r = 1, .. ,£ 
s=l 

Suppose further that L' ( < L) of these are holonomic and L - L' = f are 
nonholonomic, i.e. if the integrated form of the holonomic constraints is 

i=1, .. ,L' (5.1) 

then the Pfaffian form of the constraints is 

~ a /i du + a /i dt = 0 · i = 1, .. , L' 
L.J aus 8 Ot ' s=l 

{5.2) 

N 

~ Ajs dus + Ai dt = 0; j = L' + 1, .. , L (5.3) 
s=l 

Recall from Sections 2.3 and 2.7 that DOF = N- L and DSAC 
= N - L'. From now on we will use the symbol n to denote the DSAC; 
that is n = N- L' (note that, therefore, n will not denote the number 
of particles as before). 

Now make the following definitions: 

1. Any finite set of numbers {q1,q2 , .. ,qn}, n ~ n, that completely 
defines the configuration of a system at a given instant is a set of 
coordinates. 

2. Any set of numbers { Ql, .. , Qn} is called a set of generalized coor­
dinates where n is defined as above. Thus n is the least possible 
number of coordinates and excedes the DOF by the number of 
nonholonomic constraints. 1 

'l'ransformation of Coordinates. We wish to transform from rect­
angular coordinates to generalized coordinates. Introduce transforma­
tion functions 

s=1, .. ,N (5.4) 

such that the first L' satisfy the holonomic constraints, i.e. 

s = 1, .. ,£' (5.5) 

where the a 8 are constants, and the remaining Ps ( ·), s = L' + 1, .. , N are 
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1. Single-valued. 

2. Continuous with continuous derivatives. 

3. Such that the Jacobian is not zero; that is, 

8p1 8pl 

OU! OUN 

J= ;zfO. (5.6) 
OPN OPN 

OUi OUN 

Under these restrictions, the transformation is one-to-one and onto (Fig. 
5-2); therefore by the implicit function theorem the transformation can 
be inverted to give 

Us = Us(ql, ··, qN, t) 
= Us( a!, ··, aL', qL'+l, ··, qN, t) ; s=l,··,N (5.7) 

one-to-one and onto not onto not one-to-one 

Fig. 5-2 

Now re-label: 

qL'+l = qt, · ·., qN = qn 

These then are the generalized coordinates; we have now 

s = l,··,n 

s= l,··,N (5.8) 

From the last of these, the differential displacements are related by 

s= l,··,N (5.9) 
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and therefore the virtual displacements are related by 

~ aus 8us = L....J -a 8qk ; 
k=l qk 

s= 1,··,N (5.10) 

Possible and Virtual Displacements in Generalized Coordi­
nates. The nonholonomic constraints are 

N 

L ArsdUs + Ardt = 0 j r = 1,··,£ (5.11) 
s=l 

where f = L- L'. The generalized coordinates are not subject to the 
holonomic constraints; the discarded L' coordinates have accomplished 
this. Substituting Eqn. (5.9) into (5.11): 

~ (~ aus aus ) L....J Ars L....J adqk + at dt + Ardt = 0 ; 
s=l k=l qk 

r = 1,··,£ 

t (f Ars :us) dqk + (f Ars a~s + Ar) dt = 0 
k=l s=l qk s=l 

n L Brkdqk + Brdt = 0 j r = 1,··,£ (5.12) 
k=l 

where 

(5.13) 

In terms of velocity components, these are 
n 
L BrkQk + Br = 0 j r = 1,··,£ (5.14) 
k=l 

As before, these equations define possible displacements and veloci­
ties. Virtual displacements satisfy 

n 
LBrkOqk =0; r = 1,··,£ (5.15) 
k=l 
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It is important to realize that generalized coordinates are general; 
they can be distances, angles, etc. and have any dimensions. 

Variation Operator. Recall Eqn. (3.28): 

!!_(<Su) = t5 (du) = <Su 
dt dt 

or, 

d(<Su) = <S(du) (5.16) 

It may be shown that also 

d(8q) = 8(dq) (5.17) 

In words, the d and 8 operators are communicative in generalized coor­
dinates. 

5.2 Examples 

Simple Pendulum. Let the rectangular components of the bob be 
(x, y); then the constraint is (see Fig. 5-1) 

which is of the form f(x, y) = a and which is holonomic, scleronomic, 
and catastatic. We have: 

N = number of rectangular components = 2 
L' = number of holonomic constraints = 1 
e = number of nonholonomic constraints = 0 
L = number of constraints = L' + f = 1 
DOF =degrees of freedom= N- L = 1 
n = number of generalized coordinates = N - L' = 1 

According to our approach, we transform to new variables such that 
first is equal to a and second is convenient: 

ql = a = e = PI (x, y, t) 
q2 = tan- 1 ¥_ = P2(x, y, t) 

X 
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The inverse transformation is 

X - Ql COSQ2 = a1 COSQ2 = fcosq2 

y - Ql sinq2 = a1 sinq2 = isinq2 

The Jacobian of this transformation is 
ox ox 
--
oq1 oq2 

J= 
-q1 sinq2 
-ql cosq2 

= Ql cos2 
Q2 + Ql sin2 

Q2 = Ql = e # 0 

Therefore the transformation satisfies all three requirements. Now re­
label to get the generalized coordinate: 

Q2 = Ql = () 

and the transformations are now 

() = tan-1 ¥. 

X= fcos() 
y =£sinO 

X 

The Ql and Q2 in this problem are of course just the polar coordinates 
(Fig. 5-1) and the choice of () could have been made by inspection. 

In Section 2.3 it was shown that a rigid body in unconstrained motion 
has DOF = 6; thus it has 6 generalized coordinates. These are usually 
taken to be the coordinates of some body-fixed point, say the center 
of mass, and three angles defining the location of body fixed axes. A 
common choice of angles are the Euler angles; these are defined and 
used in Chapter 11. 

Example. Three bars are hinged and lie in a plane such that one 
end is attached at 0 and the other end carries particle p (Fig. 5-2). Then 
either (x, y) or ( 01, 02, 03) determine the location of p. This seems to 
imply that there is a relationship f(Ol, 02, 03) =constant because it only 
takes two parameters to give the location of p. This, however, is not true 
because the transformations have the properties (see Fig. 5-3): 

(01,02,03)---+ (x,y) is one-to-one, but not onto 
(x,y)---+ (01,02,03) is not one-to-one, but onto 
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Fig. 5-3 

p 

Fig. 5-4 

A basic assumption is violated and the transformation theory does not 
apply. 

Remarks. 

1. For specific problems, generalized coordinates usually suggest them­
selves from the geometry of the problem; the choice of () for the 
simple pendulum is an example of this. The general theory of 
transformation is needed, however, because we desire to put the 
key equations of dynamics in terms of generalized coordinates. 

2. In some cases there are isolated points in configuration space for 
which one or more of the three conditions on the coordinate trans­
formation are not satisfied. In this case, the transformation is re­
stricted to regions of the configuration space not containing these 
points. 
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Notes 

1 In some texts, "generalized coordinates" are not necessarily minimal. Also, 
they are sometimes called Lagrangian coordinates. 

PROBLEMS 

5/1. A particle moves on the surface of a three-dimensional sphere. 

(a) Choose suitable generalized coordinates for the motion. 
(b) What are the Eqns. ( 5. 7) for this case? 
(c) Examine the Jacobian. 

5/2. A particle moves on the surface of a right circular cylinder whose 
radius expands according to the law r = f(t) while its axis remains 
stationary. Answer the same questions as in Problem 5/1. 

5/3. A centrifugal governor has the configuration shown. If uncon­
strained, six coordinates would be required to define the config­
urations of the fiyballs. How many constraints must the Cartesian 
coordinates satisfy? What are they? Choose suitable generalized 
coordinates to describe the position of the fly balls. Construct Eqns. 
(5. 7) for this problem. 

Problem 5/3 




