
Chapter 4 

Variational Principles 

4.1 Energy Relations 

Kinetic Energy. Suppose a particle p has mass m, position ~' and 
velocity ;i<. relative to an inertial frame of reference. Then the kinetic 
energy of the particle is defined as 

T 1 . . 1 I .12 1 . 2 = -mx·x = -mx = -mx 2 - - 2 - 2 (4.1) 

For a system of n particles, with ~r ·and ;rr the position and velocity 
of particle r with mass mn r = 1, ··, n, 

n 1 n 1 n 
T = "'r = - "' m xr · xr = - "' m (xr) 2 
~ 2~ r- - 2~ r 
r=l r=l r=l 

where 

r = 1,··,n 

Now change to component form: 

Thus Eqn. (4.2) gives1 

1 N 
T =- "'m u2 

• 2 ~ 8 8' 
8=1 
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. ·2 
U4 = x 1 , · · • 

N=3n 

(4.2) 

(4.3) 
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Kinetic Energy in Catastatic System. Recall the fundamental 
equation, Eqn. {3.7): 

N 

~)msiis - F8 )8u8 = 0 
s=l 

In a catastatic system, the constraints are (see Eqn. (3.2) ): 

N 

LAr8 dU8 = 0; 
s=l 

r = l,··,L 

The virtual displacements always satisfy Eqn. (3.3): 

N 

LArs8Us = 0 j 

s=l 
r= l,··,L 

(4.4) 

Since the possible and the virtual displacements now satisfy the same 
equations, the fundamental equation may be written 

N 

L(msiis- F8 )du8 = 0 (4.5) 
s=l 

or as 

N N 

L msiisits = L Faits {4.6) 
s=l s=l 

where the it8 satisfy 

N 

LArsUs = 0; r = l,··,L (4.7) 
s=l 

Now differentiate T 

N 
dT " ... dt = ~msUsUs 

s=l 
(4.8) 

Comparing Eqns. (4.6) and (4.8) gives: 

dT N 
dt = LFsits 

s=l 
(4.9) 
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This states that in a catastatic system, the time rate of change of the 
kinetic energy equals the power of the given forces under possible veloc­
ities. 

Energy Relations in Catastatic Systems. If the u8 are all con­
tinuous (as we are assuming because all forces are bounded) and if the 
number of particles is constant (as we are also assuming), we can inte­
grate Eqn. ( 4.9) to get 

N N 
T = I L FsUsdt + h = I L F8 dU8 + h 

s=l s=l 
(4.10) 

where h is a constant of integration. 
Suppose that some of the given forces are conservative and some are 

not and let 

Fi = s component of resultant of all conservative forces = -8V / ou8 

F:c = s component of resultant of all nonconservative forces. 

Then Eqn. (4.10) gives 

N 

T + V = I L F8ncdu8 + h 
s=l 

(4.11) 

If all forces are conservative and included in V, the total mechanical 
energy of the system is constant over time for actual motions: 

T + V = h = constant (4.12) 

That is, in a closed system (catastatic and conservative), and only in a 
closed system, the total mechanical energy is a constant (is conserved). 
Note that these relations are true for all catastatic systems; they hold 
for holonomic or nonholonomic systems. 
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4.2 Central Principle 

Central Principle. Now consider a general system. The fundamental 
equation, Eqn. (3.7), in vector form is 

n 
L(mrft.r- pr). 6l;.r = 0 (4.13) 
r=l 

where pr are the resultants of the given forces. Consider 

~ m !it· 8xr =!!_(~mit· 6xr)- ~mit· 8:Y (4.14) LJ r_ - dt LJ r_ _ LJ r_ _ 
r=l r=l r=l 

From Eqn. ( 4.2) the variation of T is 

(4.15) 

0 

Combining Eqns. (4.14) and (4.15) gives 

t mrft.r · Ol;.r = ! (t mri{ · Ol;.r) - 8T 
r=l r=l 

(4.16) 

Finally, using the fundamental equation, Eqn. (4.13), 

(4.17) 

This is called the central principle by Hamel. 

4.3 Hamilton's Principle 

First Form. We will derive several forms of Hamilton's principle, each 
more specialized. Integrating Eqn. (4.17) between times to and t 1, 

[ 
n l t1 t 

L mr~r. Ol;.r = 11 

(oT + oW)dt 
r=l to to 

(4.18) 
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Now consider virtual displacements from the actual motion satisfying 

Figure 4-1 shows the situation in the event space. Note that the varia­
tions take place with time fixed; thus they are called contemporaneous. 
Equation (4.18) therefore reduces to: 

1
tl 

(oT + oW)dt = o 
to 

(4.19) 

This is the first form of Hamilton's principle, known as the extended or 
unrestricted form, which states that "The time integral of the sum of 
the virtual work and the variation of the kinetic energy vanishes when 
virtual displacements are made from the actual motion with endpoints 
held fixed". 

Second Form. If all given forces are conservative,2 Eqn. (3.42) 
applies: 

ow= -ov 

Recall that oW is the virtual work, not the variation of W, but that oV 
is the variation of V. Therefore, in this case, 

oT +oW = oT - oV = o(T - V) ( 4.20) 

which is the variation in T-V. Define the Lagrangian function 

L=T-V (4.21) 

Then Hamilton's principle for a conservative system is: 

1tt 
to oL dt = o (4.22) 
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or "The time integral of the variation of the Lagrangian function vanishes 
for the actual motion". 

Since, in general, virtual changes from a possible state do not lead to 
another possible state, in Hamilton's principle constraints are generally 
violated and this is not a problem of the calculus of variations. The 
exception, stated earlier, is a holonomic system.3 

Third Form. Now suppose the system is conservative and bolo­
nomic. Then the variations satisfy the constraints and Hamilton's prin­
ciple is 

[,
h 

8 Ldt=O 
to 

(4.23) 

or "The time integral of the Lagrangian is stationary along the actual 
path relative to other possible paths having the same endpoints and 
differing by virtual displacements". This equation is usually referred to 
as simply Hamilton's Principle. 

Remark. The derivation of the various forms of Hamilton's princi­
ple given here are completely reversible; that is, starting from them we 
may derive the corresponding fundamental equations. Thus Hamilton's 
principle is necessary and sufficient for a motion to be an actual motion. 
It is precisely an integrated form of the fundamental equation. 

Example. A particle moves on a smooth surface with gravity the 
only given force (Fig. 4-2). We have: 

T = !mv2 = !m(x2 + il + .i2) 2 2 
V=mgz 

i = fxx + /yi/ 

L =T-V= ~m [x2 + y2 + Uxx + /yi/)2
] - mgf 

Since the only given force is conservative and the only constraint is holo­
nomic, the third form of Hamilton's principle applies: 

[,
tl lh m 8 L dt = 8 -2 {±2 + y2 + Uxx + /yi/)2

- 2gf} dt = 0 
to to 

We could carry out these variations to get the equation of motion; we 
will not do this for this problem, but will do it for the following one. 
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z 

Fig. 4-2 Fig. 4-3 

Example. Consider again the simple pendulum (Fig. 4-3). We have: 

T = ~mv2 = ~(£0)2 
2 2 

V = mgl(l- cosO) 

L =T-V= ~m£202 - mg£(1- cosO) 

The third form of Hamilton's principle applies: 

61:
1 

L dt = 6 ~1 Um£202
- mg£(1- coso)] dt = 0 

We will now carry out the variation to get the equation of motion: 

1h [ . . ] m£20 MJ- mg£sin0 60 dt = 0 
to 

Integration by parts gives4 

1tr . . 1h . d . lt1 1ft .. 0 60 dt = 0-d (60)dt = 060 - 60 0 dt 
to to t to to 

""-v-' 
=0 

Consequently 

1tr ( .. ) £0 + g sin 0 60 dt = 0 
to 

But 60 is an arbitrary virtual displacement; therefore by the Funda­
mental Lemma of the calculus of variations (see next section) we must 
have 

.. g 
0+ -sinO= 0 

i 
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We see that getting equations of motion from Hamilton's principle is 
somewhat cumbersome. Lagrange's Equations, to be derived shortly, 
essentially carry out this variation in general for all problems and are 
much easier to use. 

4.4 Calculus of Variations 

Statement of the Problem. Because of the close connection between 
the variational principles of dynamics and the calculus of variations, 
the latter will be briefly reviewed. Attention will be restricted to the 
"simplest problem" of the calculus of variations, stated as follows. We 
seek the function x = x(t), t E [to, tt], that renders the integral 

l.
ti 

J = f(x, x, t)dt 
to 

(4.24) 

a minimum subject to fixed endpoints x(to) = xo and x(tl) = x1. 

Euler - Lagrange Equation. In ordinary calculus, necessary con­
ditions for the minimum of a function are obtained by considering the 
first and second derivatives. Analogously, in the calculus of variations 
necessary conditions are obtained by considering the first and second 
variations of J. The most important result, obtained from setting the 
first variation, 6J, to zero, is that if x(t) minimizes J then it must satisfy 
the Euler-Lagrange equation: 

(4.25) 

where subscripts indicate partial derivatives. A function satisfying this 
equation is called an extremal; it is a candidate for the minimizing func­
tion. Carrying out the differentiation gives the long form of the Euler -
Lagrange equation: 

f x - f xt - f xxX - f xxX = 0 ( 4.26) 

Two key lemmas are needed to establish this result. The Funda­
mental Lemma states that if M(t) is a continuous function on [to, t 1] 

and 

l.
ti 

M(t)17(t)dt = 0 
to 
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for allTJ(t) E C 1 with TJ(to) = TJ(tt) = 0 then M(t) = 0 for all t E [to, t1]. 
The DuBois- Reymond Lemma states that if N(t) is continuous on 

[to, td and if 

1
tl 

iJN dt = 0 
to 

for allTJ(t) E C' with TJ(t0 ) = TJ(tt) = 0 then N(t) =constant for all t E 
[to, t1]. 

The other necessary conditions, arising from consideration of the sec­
ond variation, will not be discussed here. 

Application to Dynamics. Consider a holononomic, conservative 
system with a single coordinate, x. Hamilton's principle for such a sys­
tem is Eqn. (4.23): 

1
tl 

6 L(x, x, t)dt = 0 
to 

(4.27) 

Applying Eqn. (4.25), 

( 4.28) 

This is in fact Lagrange's equation for the system. (Lagrange's equations 
for general systems will derived in Chapter 6.) 

Inverse Problem. In the inverse problem of the calculus of varia­
tions, we are given a two parameter family of curves 

x = g(t, a, /3) (4.29) 

and we want to find a function f(x, x, t) such that the family members 
are the extremals of 

1tt 
J = f(x, x, t)dt 

to 
(4.30) 

Differentiating Eqn. (4.29) twice, 

x = 9t(t, a, /3) (4.31) 

x = 9tt(t, a, /3) (4.32) 
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Under general conditions, Eqns. (4.29} and (4.31) may in principle 
be solved for a and {3, 

a = p(x,x,t) 
{3 = '1/J(x, x, t) 

and then substituted into Eqn. (4.32) to obtain an equation of the form 

x = G(x,x, t) (4.33) 

This equation must be the Euler-Lagrange equation; that is, it must be 
identical to Eqn. (4.26). Substitute Eqn. (4.33) into Eqn. (4.26) and 
differentiate the result with respect to x to get 

!xtx + xfxxx + Gfxxx + Gxfxx = 0 

Letting M = fxx, this becomes 

oM .oM oM 
8t + x ox + G ox + GxM = 0 

Now define the function 

8(t,a,{3) = exp [I Gx(t,g(t,a,{3),gt(t,a,{3))dt] 

The solution of Eqn. (4.34} may be shown to be of the form 

M= <I>(~P(x,x,t), '1/J(x,x,t)) =fxx 
8(t, It'( X, x, t}, '1/J(x, x, t)) 

(4.34) 

(4.35) 

(4.36) 

where <I> is an arbitrary but nonzero function of 1p and '1/J. Integrating 
Eqn. (4.36) twice gives an expression for f: 

f = I I M dxdx + x-\(x, t) + p.(x, t) (4.37) 

where,\ and p. must be chosen so that f satisfies Eqn. (4.26). Since <I> is 
arbitrary there are an infinity of such functions f and thus the solution 
to the inverse problem is not unique. 

Example. Consider again a system with a single generalized coor­
dinate subject to a conservative force. From Newton's Second Law we 
know that the equation of motion is 

x = F = _ dV(x) 
dx 
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where V(x) is the potential energy function of F. We want to find 
a function l(x, x, t) such that this differential equation is the Euler­
Lagrange equation for 

1
h 

J = to l(x, x, t)dt 

That is, 

1
tr 

6 l(x, x, t)dt = 0 
to 

From Eqn. (4.33) we see that 

G = x = F =-dV(x) 
dx 

so that Gx = 0 and Eqn. (4.35) gives 

£J(t,a,{3) = exp [I Gxdt] = 1 

Therefore, from Eqns. (4.36) and (4.37), 

M = ci> = lxx 

I = II ci>(x, x, t)dxdx + x..\(x, t) + ~-t(x, t) 
To get the "simplest case", select ci> = 1 to obtain 

1 = !x2 + x..\ + ~-t 
2 

Substituting into Eqn. ( 4.26), 

fx- lxt- xlxx- xlxx = 0 

8~-t(x, t) 
ax 

8..\(x, t) dV(x) 
=---at dx 

Thus we must have ..\ = 0 and J1. = - V ( x), and f becomes 

I = !x2 - V = T- V = L 
2 

Hence the "simplest" variational problem that leads to the correct 
equation of motion for this case is 

61h Ldt = 0 
to 

which is, of course, Hamilton's principle. Choosing other functions ci> 
gives other variational principles. 
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4.5 Principle of Least Action 

Historical Remarks. Although Newton's Second Law gives highly 
accurate results in most situations, it doesn't seem to emanate from 
any deeper philosophic or scientific principle, a matter of great concern 
to eighteenth century scientists. Variational principles arose initially to 
meet this perceived need. The idea was that of all the possible motions 
of a dynamic system, the one that is actually followed is the one that 
minimizes some fundamental quantity; in other words, nature acts in the 
way that is most efficient. 

The first successful variational principle was Fermat's principle of 
minimum time in optics. He starts "from the principle that Nature 
always acts in the shortest ways". With this principle, Fermat was able 
to derive the laws of refraction. 

Maurpertius stated the Principle of Least Action (PLA) in dynamics 
from analogy to Fermat's principle. Maurepertius' viewpoint was that 
"nature in the production of her works always acts in the most simple 
ways". He stated the principle in metaphysical terms and never proved 
the PLA in the sense of showing that it was equivalent to the established 
laws of dynamics. Immediately after statement of the principle, a con­
troversy started. On the one hand, some claimed, most notably Koenig, 
that the principle was not valid or that Leibniz had discovered it previ­
ously, or both! Even the great Voltaire, who knew little of mathematics 
and science, got into the act, satirizing the PLA in some of his books. 

Euler sided with Maupertuis and managed to prove (in the sense just 
stated) the PLA for a particle, thus putting the principle an a sound ba­
sis. Many years later, Mach remarked that "Euler, a truly great man, 
lent his reputation to the PLA and the glory of his invention to Mau­
pertuis; but he made a new thing of the principle, practical and useful". 
(Euler was also the first to consider the inverse problem.) 

We now have the PLA in two forms, associated with the names of 
Lagrange and Jacobi. The latter's version has path length as the inde­
pendent variable and may be viewed as a geometrical statement. In this 
view, the principle becomes a problem of finding geodesics in a Riemann 
space. 

The previous Section shows that it is possible to generate an infinite 
number of variational principles. The only requirement is that they be 
"valid", that is, that they lead to the same equations of motion as does 
Newton's Second Law. It is surprising that the principle that is perhaps 
the most straight-forward and useful, that of Hamilton, did not emerge 
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until much later than the PLA. 

Noncontemporaneous Variations. In Hamilton's principle, the 
variations from the actual path take place with time fixed and the vari­
ations are zero at the endpoints. Now we relax this restriction and 
consider noncontemporaneous variations, as shown on Fig. 4-4. 

X 

x(D 
x(t) 

to t t 

Fig. 4-4 

varied path 
actual path 

t 

Lagrange's Principle of Least Action. In the principle of least 
action we consider variations from the actual path with energy held 
fixed. We consider closed systems only, so that energy is conserved, and 
denote the noncontemporaneous variation operator by dt. Thus from 
Eqn. (4.12), 

dt T+6t V = 0 ( 4.38) 

The relation between the operators 6 and dt for a function F(x, t) is given 
by 

(4.39) 

and is illustrated on Fig. 4-5. 
Because the principle of least action is largely of historical interest 

only, the details of the derivation will be omitted and the results will be 
summarized.5 The action is defined by 

l
tJ 

A= 2Tdt 
to 

(4.40) 

The Lagrange form of the principle of least action is 

dt A= 0 (4.41) 
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Fig. 4-5 
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t 

In words, "the action is stationary for the actual path in comparison 
with neighboring paths having the same energy". The principle is both 
necessary and sufficient and thus it may be used to derive equations of 
motion. We note that the varied motion does not in general take the 
same time as the actual motion and in fact the varied motion is not in 
general a possible motion. Clearly, the factor 2 in Eqn. (4.40) may be 
omitted. 

Jacobi's Principle of Least Action. Since energy is conserved, 
Eqn. (4.40) may be written 

A' = [t
1 
2JT(h - V) dt ito (4.42) 

However, from Eqn. (4.3) Tis a quadratic function of the u8 and thus 
the integral in Eqn. (4.42) is homogeneous of degree one in the u8 • This 
means that A depends only on the path in the configuration space and 
not in the event space.6 Writing Eqn. (4.42) in terms of s, the path 
length in configuration space, gives 

A' = j J2(h- V) ds (4.43) 

Consequently, the Jacobi form of the principle is 

(4.44) 

This is a problem in the calculus of variations. 
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Notes 

1 Strictly speaking, T = T(xLxt x~, xi,··, x~) and T'(u1, ··,UN) are two different 
functions but we will use the same symbol, T, for both. 

2 Hamilton's principle for a class of non-conservative systems may be found in 
"Some Remarks on Hamilton's Principle", G. Leitmann, J. Appl. Mech., Dec. 
1963. 

3 This was proved in Section 3.3; an alternate proof will be given in Section 6.5. 

4 Recall that I u dv = uv -! v du; here we take u = iJ and dv = ~ (MJ}dt. 

5 See Rosenberg or Pars for the details. 

6 See Pars 

PROBLEMS 

4/1. A weight of mass 4m is attached to a massless, inextensible string 
which passes over a frictionless, massless pulley, as shown on Fig. 
4/1. The other end of this string is attached to the center of a 
frictionless, homogeneous pulley of mass m. A second massless 
inextensible string having masses m and 2m attached to its ex­
tremities passes over the pulley of mass m. Gravity is the only 
force acting on this system. 

(a) Give the kinetic energy for this system; 

(b) Give the energy integral, if one exists; 

(c) Write down Hamilton's principle. 

Problem 4/1 Problem 4/2 
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4/2. A homogeneous disk of mass M, constrained to remain in a ver­
tical plane, rolls without sliding on a horizontal line as shown. A 
massless horizontal, linear spring of rate k is attached to the center 
of the disk and to a fixed point. If the free length of the spring is 
l, and the disk radius is R, 

(a) Give the kinetic energy for this system; 
(b) Give the energy integral, if one exists; 
(c) Write down Hamilton's principle. 

4/3. Give the same answers as in Problem 4/2 when the configuration is 
changed so that the line is inclined by the angle a to the horizontal, 
as shown. 

Problem 4/3 

4/4. Three particles of mass m1, m2, and m3, respectively, are con­
strained to move so that they lie for all time on a straight line 
passing through a fixed point. For the force-free problem in Carte­
sian coordinates: 

(a) Give the kinetic energy; 
(b) Give the energy integral, if one exists; 
(c) Write down Hamilton's principle. 

4/5. A heavy, homogeneous inextensible string of given length remains 
for all time in a vertical plane. It lies in part on a smooth, hori­
zontal table, and in part, it hangs vertically down over the table 
edge. What is Hamilton's principle? 

4/6. A particle of mass m moves in the x, y plane under a force which 
is derivable from a potential energy function. The particle velocity 
is directed for all time toward a point P which moves along the x 
axis so that its distance from the origin is given by the prescribed 
function e ( t). 
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(a) How many degrees of freedom does the particle have? 
(b) What is Hamilton's principle? 
(c) Give the energy integral, if one exists. 

99 

4/7. One point of a rigid body is constrained to move on a smooth space 
curve defined by f(xo, yo, zo, t) = 0. If the forces and moments act­
ing on the body are conservative, give Hamilton's principle. Does 
an energy integral exist? If so, write it down. If none exists, explain 
why. 




