
Chapter 2 

Motion and Constraints 

2.1 Newton's Second Law 

Vector Form. Consider a system of n mass particles of masses m1, 
m2, ... , mn· (Occasionally we will call a system of particles a dynamic 
system.) Let the position of particle r in an inertial reference frame be 
denoted ;fr(t), as shown on Fig. 2-1. Let the resultant forces on the 
particles be bounded functions of the particles' positions, velocities, and 
time. Then Eqn. ( 1.1) gives 

or 

n ·1 
.. , ;f ' ;f ' .. xn t) -' 

m xn(t) = "'pn(x1 .. xn x1 •• xn t) n- LJ- - ' ' - ' - ' - ' 

(2.1) 

r = 1, 2, .. , n (2.2) 

If none of the forces depend explicitly on time, we say the system is 
autonomous. Note that forces are not allowed to be functions of the 
particles' accelerations.1 

In the "Newtonian" problem, unbounded forces are allowed provided 
they are measurable, that is if J P dt; r = 1, .. , n are always bounded. 
A force which is unbounded but measurable is called an impulsive force. 
In the "strictly Newtonian" problem, all forces are bounded. For most 
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(inertial) 
Fig. 2-1 

of this book we restrict our attention to the strictly Newtonian problem. 
The exception is Chapter 13 where impulsive forces will be considered. 

Recall that there are two ways Newton's Second Law can be used. 
One way (problem of the second kind) is to determine the forces acting 
on a system when the motion of the system is given. This is typically 
the situation at the design stage. For example, when designing a space 
launch system the motion is known (transition from earth surface to orbit 
location and speed) and Newton's Second Law can be used to predict the 
propulsive forces required, and hence the size of the vehicle. The second 
way is to determine the motion when the forces are given (problem of the 
first kind). This situation typically arises in the performance estimation 
of an existing system. For example, it may be of interest to determine 
the range of orbits accessible by an existing launch vehicle. In this book 
we approach dynamics as a problem of the first kind, although all the 
results obtained apply equally to either type of problem. Thus it is 
characteristic that the equations of motion of a particle system give the 
accelerations of the particles in terms of their positions, velocities, and 
time. 

Component Form. Now introduce linearly independent unit vec­
tors { et, e2, e3}. Then, if { e1, e2, e3} are fixed in the inertial frame, 

~r(t) = xi(t)e1 + x~(t)e2 + x3(t)e3 
(2.3) 

Label the components of ~I, ;&_2, ··, ~n as follows 
- 1 - 1 1 2 u1 - x 1 , u2 - x 2 , u3 = x 3 , U4 = x 1 , 
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N=3n 

Then we can write the Second Law as 

or 

m1ii1 = 'E F((u1, u2, ··, uN, u1, u2, ··, uN, t) 

m1ii2 = 'E Fj(u1, u2, ·· UN, ur, u2, ··, uN, t) 

m1u3 = L_Fj(u1,u2, ··, UN,u1,u2, ··,UN, t) 

ffi2U4 = 'E F[( U!, U2, ··, UN, Ul, U2, ··, UN, t) 

49 

(2.4) 

(2.5) 

m 8 U8 = l:F8 (ur, ··, UN, U1, ··,UN, t); s = 1, ··, N (2.6) 

Note the interpretations of m 8 and F8 ; for example, m1, m2: and m3 
are all the mass of the first particle and F1, F2, and F3 are the three 
components of the resultant force acting on the first particle. 

2.2 Motion Representation 

Configuration Space. By the correspondence between n-tuples and 
vectors in Euclidean spaces, the components of displacement, u1, ··, UN 
can be thought of as forming a vector in a subset of JEN, the N­
dimensional Euclidean space: 

(2.7) 

We call C the configuration space. As the motion of the system proceeds, 
a path is generated in this space called a C trajectory. 

Event Space. The combination of the configuration components 
and time is called an event; an event is a vector in the event space E: 

(y, t) = E E C JEN+l (2.8) 
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Paths in this space are called E trajectories. 

State Space. The combination of the configuration components and 
the components of velocity defines a point in state space S: 

(y,y) = (2.9) 

Paths in this space are S trajectories. 

State-Time Space. The combination of states and time gives a 
point in state-time space 

(y,y, t) = (2.10) 

2.3 Holonomic Constraints 

Introduction. The motion of a particle system is frequently subject to 
constraints. As an example, suppose the motion of a single particle is 
constrained to be on a surface, as shown on Fig. 2-2. Note that now only 
two of the coordinates are independent; the third, say z, is determined 
by the constraint. 

A special case is motion in the (x, y) plane, for which the constraint 
is: 

f(x,y,z) = z = 0 ==::::} z = 0, z = 0 
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z f(x,y,z) = 0; z = cp(x,y) 

X 

Fig. 2-2 

Equations (2.6) become, for this case: 

mx = Fx(x, y, 0, x, iJ, 0, t) 
my = Fy(x, y, 0, x, y, 0, t) 

0 = Fz(x, y, 0, x, iJ, 0, t) 

These are the equations of planar motion as expected. 
Of course constraints also may be prescribed functions of time, for 

example: 

f(x,y,z,t) = 0 

Definitions. Consider a system of n particles; such a system has a 
N = 3n dimensional configuration space C. A holonomic constraint on 
the motion of the particles is one that can be expressed in the form 

(2.11) 

Otherwise the constraint is nonholonomic. As a special case, if a halo­
nomic constraint can be expressed as 

(2.12} 

then it is scleronomic; otherwise it is rheonomic. If all constraints are 
holonomic we say the system is holonomic, and if all holonomic con­
straints are scleronomic the system is scleronomic. 

The constraint equation is an N - 1 dimensional surface in the con­
figuration space C c JEN; the C trajectories must lie on this surface. Of 
course there may be several such constraints. 
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f=O 

uz 
Cspace 

Fig. 2-3 
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C space 
uz 
C trajectory 

Fig. 2-4 

Figures 2-3 and 2-4 show the cases of a single particle subject to 
one and two constraints, respectively. In E space, for the case of two 
components, the E trajectories lie on a right cylindrical surface, if the 
constraints are scleronomic (Fig. 2-5). 

l~+tilf--E trajectory 

uz 
E space 

Fig. 2-5 

z 

Fig. 2-6 

Next consider two particles constrained to move on a single surface 
(Fig. 2-6). The position vectors of the particles resolved into components 
are: 

;£1 = xlel + x~e2 + x§e3 
;£2 = x~el + x~e2 + x~e3 

Relabeling to put in component form: 

'Ul = xl , U2 = X~ , U3 = x§ 
U4 = X~ , U5 = X~ , U6 = X~ 

If the surface is given by f(x,y,z) = 0, then there are two constraints in 
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configuration space: 

fi = f(ui, U2, U3) = 0 j 

The unconstrained particles had a total of six independent components, 
but the two constraints have reduced this number to four. 

Every C trajectory satisfying all constraints is a possible motion, but 
is not necessarily an actual motion because actual motions also obey 
Newton's Laws. 

Degrees of Freedom. Given a system of n = N /3 particles suppose 
there are L independent constraints. The number of degrees of freedom 
of the system is then 

DOF=N-L>O (2.13) 

If N = L the system is fixed in space if all constraints are scleronomic 
and moves with prescribed motion if at least one is rheonomic. 

For a single particle, if there are no constraints DO F = N - L = 
3 - 0 = 3 and it takes three independent parameters to specify position 
in configuration space (Fig. 2-7). If there is one holonomic constraint, 
DOF = 2 and it takes two (motion on a surface). If there are two 
holonomic constraints, DOF = 1 and it takes one (motion on a line) 
and if there are three holonomic constraints, DO F = 0 and the particle 
is fixed. 

• 

Fig. 2-7 

L=3 
DOF=O 

The situation for a rigid body is more difficult. We establish the 
number of DOF of a rigid body in 3-D unconstrained motion in two 
different ways. First, fix a body-fixed reference frame with axes (, rJ, v 
at the body's center of mass and let the coordinates of the origin of this 
frame be x, y, z with respect to a non-body-fixed frame with axes x, y, z 
(Fig. 2-8). Let the direction cosines of(, rJ, v relative to x, y, z be 
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z 

~-41> ~3 3 

X 
y 

Fig. 2-8 Fig. 2-9 

(For example, £1 is the cosine of the angle between (and x). The coor­
dinates of the rth particle of the rigid body are then 

Xr =X+ il(r + i211r + £31/r 

Yr = Y + m1 (r + ffi27Jr + ffi31/r 
Zr = Z + n1 (r + n21Jr + n3Vr 

Due to the orthogonality of the direction cosine matrix, the direction 
cosines are functions of three independent angles, say lh, 02 , 03 . Thus 
the location of all the points of the rigid body are specified by (x, y, z, 01, 

02,83) relative to the other frame, and therefore the body has 6 DOF. 
Alternatively, we may view the rigid body as a system of constrained 

particles. It is clear that the first three particles take 3 constraints, and 
that each additional particle takes 3 more {Fig. 2-9). Thus if the rigid 
body has n particles, the total number of constraints is 3 + 3(n- 3). But 
since a particle without constraints has 3 DOF, the DOF for the rigid 
body is 

DOF = 3n- [3 + 3(n- 3)] = 6 

Infinitesimal Displacements. The constraint as specified by Eqn. 
(2.11) or (2.12) is for arbitrarily large displacements. We now derive 
local conditions, that is, conditions on small displacements. Suppose we 
have L holonomic constraints and let u8 = u8 (a) and t = t(a) where a 
is a parameter: 

/r(Ut(o:), U2{o:), · · ·, UN(a), t] = 0 j r = 1, 2, ··, L (2.14) 

Differentiating w.r.t. a:: 
N L 8fr du8 + 8/r dt =O; 

s=I ou8 da 8t da 
r = 1, 2, ··, L {2.15) 
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An important special case is a = t: 

~ aJr . afr - 0. 
L...J au Us + at - 1 

s=l 8 
r = 1, 2, ··, L (2.16) 

In differential form 

~ aJr aJr 
L...J au dus + at dt = 0 ; 
s=l 8 

r = 1, 2, ··, L (2.17) 

For the special case of all constraints scleronomic, Eqns. (2.16) and 
(2.17) become 

N 
""'aJr. -O· L...i- Us- ' 
s=l aus 

N 
""' afr L...J -a dus = 0 ; 
s=l Us 

r = 1, 2, ··, L (2.18) 

r = 1, 2, ··, L (2.19) 

The first of these is a local condition on velocities and displacements and 
the latter is a local condition that small displacements must remain in 
the tangent plane of the constraint. If u; is a position on the constraint, 
then infinitesimal displacements dus satisfying 

are in the tangent plane (Fig. 2-10) of the constraint at u;. 

constraint 
tangent plane-+-~ 

'----1 

Fig. 2-10 
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2.4 Nonholonomic Constraints 

Configuration Constraints. A nonholonomic constraint is one that 
is not holonomic. This can happen in several ways and we discuss two. 

If a constraint can be reduced to an inequality in the configuration 
space, 

(2.20) 

it is called a configuration constraint. Such a constraint may depend 
explicitly on t (rheonomic), or not (scleronomic). An example of a con-

• figuration constraint is the requirement that an object must stay on or 
above a plane surface (Fig. 2-11). 

f(x,y,z) = z- h ~ 0 

Fig. 2-11 

Equality Constraints. These are differential relations among the 
u1. u2, ··, 'UN, t of the form 

N 

L Arsd'Us + Ardt = 0 ; 
s=l 

r = 1, 2, ··, L (2.21) 

that are not integrable; that is, we cannot use this to get a relation 
between finite displacements. 

Recall that starting with a holonomic constraint 

we differentiated to get 

N L ofr dus + ofr dt = o 
s=l O'Us dt 
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Integrating, we can go back to the finite form. With a nonholonomic 
constraint of the type of Eqn. (2.21) this cannot be done. 

From Eqn. (2.16), we see that one way nonholonomic constraints 
can occur is as constraints on the velocity components, and that such 
constraints are restricted to those in which this dependence is linear. The 
most common situations in which such constraints arise involve bodies 
rolling on other bodies without slipping; several example of this will be 
analyzed later. 

Pfaffian Form. The differential form (whether integrable or not) 
of a constraint, Eqn. (2.21), is called the Pfaffian form and it is the 
most general type of constraint we will consider in this book. Thus the 
DOF of a system is the number of velocity components that can be given 
arbitrary values. 

2.5 Catastatic Constraints 

Definitions. Consider a system of constraints in Pfaffian form 

N L Arsd'Us + Ardt = 0; r = 1, ··,L (2.22) 
s=l 

Each constraint may be either holonomic (integrable) or nonholonomic. 
Each constraint may be either scleronomic (Ars =f. Ar8 (t) and Ar = 0) or 
rheonomic. We make an additional distinction. A constraint is catastatic 
if Ar = 0 and acatastatic otherwise; if all constraints are catastatic, we 
say the system is catastatic. Note that the Ar., may be functions of t in 
a catastatic constraint. 

Equation (2.22) implies that the condition of static equilibrium, u8 = 
0, s = 1, ··, n, is possible if and only if the system is catastatic. 

2.6 Determination of Holonomic Constraints 

Remarks. Holonomic constraints usually come in integrated form. 
However, sometimes they come in Pfaffian form. We must then be able 
to distinguish between holonomic and nonholonomic. If the Pfaffian 
form is an exact differential, then the constraint is integrable, but this is 
not necessary. The following theorem (without proof) is a very general 
result. 
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Theorem. Suppose an equation of independent variables YI, Y2, ··, 
YM is given in differential form as: 

M L As(YI,Y2, ··, YM)dys = 0 
s=l 

(2.23) 

Then it is necessary and sufficient for the existence of an integral of this 
equation of the form 

that the equations 

Ay (8AtJ _ 8Aa) + AtJ (8Aa _ 8A-y) 
8ya oyfJ 8y-y 8ya 

+A (
8A-y - 8AtJ) = 0. {3 1 2 M a OytJ Oy-y , a, , "'( = , , ··, 

(2.24) 

be simultaneously and identically satisfied. There are M(M- 1)(M-
2)/6 such equations, of which (M- 1)(M- 2)/2 are independent. 

For three variables, M = 3, Eqn. (2.23) is 

and 

_M....!,.(M_-_1..:....:)(_M_-_2_:..} = 1 ; 
6 

(M- 1)(M - 2} = 1 
2 

Thus for the equation to be integrable the only requirement is: 

In the application of this theorem to the constraints on a dynamical 
system, the Yr may be displacement components, velocity components, 
or time. 

As an example, suppose a particle moves in the (x, y) plane such that 
the slope of it's path is proportional to time, dyfdx = Kt. In Pfaffian 
form, this constraint is 

Ktdx-dy = 0 
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This is a differential constraint of three variables; thus we take Yl = x, 
Y2 = y, and Y3 = t so that A1 = K y3, A2 = -1, and A3 = 0. The left­
hand side of Eqn. (2.26) equals K, so that the constraint is nonholonomic. 

One consequence of the theorem is that any differential relationship 
between only two variables is always integrable. Indeed, in this case the 
constraint may be written 

A1(Y1, Y2) 
A2(y~, Y2) 

(2.27) 

This may be integrated under mild assumptions on the functions A1(·) 
and A2 (·), if not analytically, then numerically. This means for example, 
that any time-independent constraint on the position of a particle in 2-D 
motion is holonomic. 

2. 7 Accessibility of Configuration Space 

Definition. Recall that a holonomic constraint reduces the number of 
quantities required to define a point in configuration space. If there 
are n particles and L holonomic constraints this number is N- L, where 
N = 3n. We say that there is an N- L fold oo of motion or, alternatively, 
that the dimensionality of the space of accessible configurotions (DSAC) 
is N -L. 

Nonholonomic equality constraints do not reduce the DSAC; conse­
quently in general the DSAC is given by 

DSAC = N- L' (2.28) 

where L' is the number of holonomic constraints (L' ~ L).2 The fact 
that nonholonomic constraints do not reduce the DSAC will be shown 
by some of the following examples. 

2.8 Examples 

Example. Suppose a constraint on the motion of a particle is z = dy / dx. 
In Pfaffian form, 

Relabeling: 

dy- z dx = 0 

Yl = X ' Y2 = y ' Y3 = z 
A1 = -z , A2 = 1 , A3 = 0 
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Xt X X 

Fig. 2-12 

/ 
/ 

The left-hand-side of Eqn. (2.26) is equal to one so that the constraint 
is nonholonomic and therefore the DSAC is not reduced. We now show 
this directly. We need to show that there is at least one path from the 
origin to any arbitrary fixed point (x1, Yb zt) that satisfies the constraint. 
Consider any path such that (Fig. 2-12): 

y = f(x), df z=-, dx /(0) = /'(0) = 0, 

f(xi) = Y1 , f'(xt) = z1 

The following shows that the constraint is satisfied and that the endpoint 
is reached. 

dy - zdx = f' dx - f' dx = 0 

at X= Xl, y = Yl and z = z1 

Example. Two particles Pl and P2 moving in the (x, y) plane are 
connected by a light rod of length a which changes as a prescribed func­
tion of time, a(t) E C 1 • Let the coordinates of the two particles be 
(x1, Y2) and (x2, Y2)· Then the constraint is 

(x2 - xi)2 + (Y2 - Yl)2 = a2 

In Pfaffian and velocity forms, respectively, 
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It is clear that the constraint is holonomic rheonomic and that DOF = 
DSAC = 3. 

Now suppose the rod has constant length a, but there is additionally 
the constraint that the velocity of p1 is always directly along the rod. 
The two constraints are 

or, in Pfaffian form, 

(x2 - xi)(dx2 - dxi) + (y2 - yi)(dy2 - dyi) = 0 

(Y2 - yl)dx1 - (x2 - X1)dy1 = 0 

The first of these is holonomic scleronomic and the second is nonholo­
nomic. Thus DOF = 2 and DSAC = 3. 

Example - Disk Rolling on Plane. A knife-edged disk rolls with­
out slipping on a horizontal plane (Fig. 2-13). There are two constraints 
- (i) the edge remains in contact with the plane, and (ii) the no slipping 
condition. The first is holonomic and reduces the DSAC from six {the 
general number for a rigid body) to five, say the (x, y) coordinates of 
the contact point and three angles usually taken as Euler's angles. The 
second constraint is a relation between velocities (the contact point must 
have instantaneous zero velocity relative to the surface) and is in general 
nonholonomic. 

Fig. 2-13 
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rolling without slipping on a plane. rolling without slipping on a line. 

Fig. 2-14 Fig. 2-15 

One of the Euler angles is the angle of rotation of some fixed line 
in the plane of the disk, say 8, Fig. 2-14. It is clear that there is no 
finite relation between 8 and the coordinates of the contact point, (x, y), 
because the path can vary and still satisfy the constraint. If the rolling is 
confined to be on a line (Fig. 2-15), however, there is such a relationship, 
namely (x2- xi) = r(82- 81), and therefore the constraint is holonomic. 
In Chapter 7, we will return to the problem of a disk rolling on a plane 
and obtain the equations of motion. 

Notes 
1 Pars shows that otherwise the law of vector addition of forces would be violated. 

2 It is clear that inequality constraints of the type of Eqn. (2.20) do not de­
crease the DSAC but rather restrict configurations to regions, but we are not 
considering this type of constraint. 

PROBLEMS 

2/1. Two particles having Cartesian coordinates (x1, Yl, zl) and (x2, 
Y2, z2), respectively, are attached to the extremities of a bar whose 
length l(t) changes with time in a prescribed fashion. Give the 
equations of constraint on the finite and infinitesimal displacements 
of the Cartesian coordinates. 

2/2. What are the equations of constraint on the finite and infinitesimal 
coordinates (x1, Yb z1) and (x2, y2, z2) of the bobs of a double 
spherical pendulum of lengths It and l2, respectively? 
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2/3. A thin bar of length l < 2r can move in a plane in such a way 
that its endpoints are always in contact with a circle of radius 
r. If the Cartesian coordinates of its endpoints are (x1, Yt) and 
(x2 , y2), respectively, what constraints on finite and infinitesimal 
displacements must these coordinates satisfy? 

2/4. Answer the same questions as in Problem 2/3 if the circle is re­
placed by an ellipse having major axis 2a and minor axis 2b, and 
l < 2b. Are these constraints holonomic? 

2/5. The motion of an otherwise unconstrained particle is subject to 
the conditions z = xy. Discuss the constraint on the infinitesimal 
and finite displacements. 

2/6. A particle moving in the xy plane is connected by an inextensible 
string of length l to a point P on the rim of a fixed disk of radius r, 
as shown. The line PO makes the angle () with the x axis. What 
are the constraints on the finite and infinitesimal displacements of 
the point at the free end of the string having the position (x, y)? 

y 

Problem 2/6 

2/7. A circular shaft of variable radius r(x) rotates with angular velocity 
w(t) about its centerline, as shown. The shaft is translated along 
its centerline in a prescribed fashion f(t). Two disks of radii r1 and 
r2, respectively, roll without slipping on the shaft. A mechanism 
permits the disks to rise and fall in such a way that the disk rims 
never lose contact with the shaft. Show that the relation, free of 
w, between the angular displacement t/J1 and t/J2 of the disks is in 
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general nonholonomic. State the general condition that must be 
satisfied in the exceptional case that the constraint is holonomic 
and give an example. 

Problem 2/7 

2/8. A particle moving in the vertical plane is steered in such a way that 
the slope of its trajectory is proportional to its height. Formulate 
this constraint mathematically and classify it. 

2/9. Write down and classify the equation of constraint of a particle 
moving in a plane if its slope is always proportional to the time. 

2/10. A particle P moving in 3-space is steered in such a way that its 
velocity is directed for all time toward a point 0 which has a pre­
scribed motion in space and time. Formulate and classify the equa­
tion(s) of constraint of the particle motion under the assumption 
that the positions of P and 0 never coincide. 

2/11. A dynamic system is subject to the constraint 

(cosO)dx + (sinO)dy + (ycosO- xsin8)d8 = 0 

Is this constraint holonomic? Prove your answer. 




