
Chapter 17 

Hamilton-Jacobi Equation 

17.1 The Principal Function 

Hamilton's Principle Again. Consider the motion of a holonomic 
conservative system in configuration space and consider a varied path 
such that the 8qr occur at a fixed time. Figure 17-1 shows the situation 
for two generalized coordinates. In this case, 

!(8q) = 8q 

and Eqn. (15.5) may be written: 

(17.1) 

Fig. 17-1 
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This leads directly to Hamilton's principle, as follows. Integrating Eqn. 
(17.1) from to to t1 with the variations 8qr zero at the endpoints gives 

rtt 8Ldt = LPrOQr ltl 
ito r to 

8 ~~~ Ldt = 0 

which is the third form of Hamilton's principle (see Section 4.3). 

Principal Function. Define Hamilton's principal function by 

rtt 
S =ito Ldt (17.2) 

Now suppose that all n integrals of Lagrange's equations are known; they 
will be functions of the form 

Qs(t) = Ps(q~, w~, to, t) ; 8 = 1, .. , n (17.3) 

where q~ = Qr(to) and w~ = tir(to). Then the Lagrangian will be of the 
form L = L(q~,w~,to,t) and from Eqn. (17.2) the principal function will 
be of the form 

S = S(q~,w~,to, ti) (17.4) 

We want, instead, to express S in terms of boundary conditions 

(17.5) 

where q~ = Qr(ti). We see that the solution may be thought of as a 
2n parameter family of functions, the parameters being the q~ and the 
w~. Alternatively, the solutions may be parameterized by the q~ and 
the q;, and we now proceed to replace the dependence on the w~ by 
dependence on the q;. In effect, this replaces a point-slope specification 
of the solution curves by a point-point specification (see Fig. 17-2). 

From Eqn. (17.3), 

q; = Ps(q~,w~, to, h) ; 8 = 1, .. , n 

If the Jacobian of this transformation is non-zero, this relation may be 
inverted to give 

(17.6) 
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to 
Fig. 17-2 

Substitution of these relations in Eqns. (17.4) gives Eqns. (17.5). 

Variation of the Principal Function. First, fix t0 and t1 and 
vary the q;, which also varies the q~, as shown on Fig. 17-3 for one q. 
Since to and t 1 are fixed, Eqn. (17.1) applies 

68 = 6 {t
1 

Ldt = [h 6Ldt 
lto lto 

= LP~6q;- LP~6q~ {17.7) 

Further, by Eqn. {17.5) with to and t1 fixed, 

{17.8) 

. 
q 

t 

Fig. 17-3 
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Comparing Eqns. (17.7) and (17.8) and recalling that the &q~ and the 
&q; are being regarded as independent, their coefficients must be equal, 

0 as 
Pr =- aq~; 

1 as 
Pr = aq; ; r = 1,··,n (17.9) 

From these equations, we see that if S is known, all the integrals of the 
motion are known; that is, the dynamics problem is completely solved. 
Indeed, the first set of Eqns. (17.9) provides the qi in terms of the q~ 
and p~, and to and t1. Together, they provide the solution (i.e. all the 
integrals) of Hamilton's equations. We note that if L-=/= L(t) then the qr 
are functions of time only of the form ( t - to) and hence S is a function 
of time only of the form (t1 -to). 

Next, fix the q~ and w~ and vary t 1 (and hence also the q;). From 
Eqn. (17.2), 

Thus, using the second set of Eqns. (17.9), 

Similarly, it may be shown that 

as =Ho 
ato 

(17.10) 

(17.11) 

(17.12) 

Finally, then, from Eqns. (17.7), (17.11), and (17.12) the total variation 
in S due to variations in all the 2n + 2 arguments of S is 

(17.13) 
r r 

Thus the transformation (q~,p~) -t (q;,p;) is a contact transformation 
(CT) with generating functionS. 

Remarks 

1. The goal has been to construct a unique trajectory through any 
two points in the event (qr, t) space; if this can be done, Sexists. 
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2. We have started by assuming that the integrals of motion, Eqns. 
(17.3}, are known. Thus none of what we have done indicates 
how to find S. We have shown only that if S can be found, the 
dynamics problem is solved. We will turn to the problem of finding 
S in Section 17.2. Thus S is another descriptive function, but one 
with an important difference from Land H. 

Example. Consider a particle of unit mass moving in a plane under 
constant gravity (Fig. 17-4). The solution is known to be 

x = xo+uo(t-to) 
1 2 y = Yo+ vo(t- to) - 2g(t- to) 

y 

X 

Fig. 17-4 

where Xo = x(to), Yo = y(to), Uo = x(to) and Vo = y(to). From this 
solution, S may be computed directly from Eqn. (17.2} as follows 

L 

s = 

T - V = ! ( ±2 + iJ2) - gy 
2 

1 ( 2 ( ( 2) 1 2 2 2 u0 + vo - g t - to)) - gyo - gvo ( t - to) + 2 g ( t - to) 

l tt 
Ldt = S(xo, uo, Yo, vo, to, tl) 

to 

This corresponds to Eqn. (17.4). Next we do the inversion, Eqn. (17.6): 
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Substitution of these into the expression for S gives (the details are 
left as an exercise) 

(xi - xo)2 + (YI - Yo) 2 

2(ti -to) 
1 1 2 3 

--g(t1 - to)(YI -Yo)- -g {t1 -to) 
2 24 

Now apply the first set of Eqns. (17.9) to get 

as x1- xo 
uo = =---

8xo t1- to 

vo = _as = Yl- Yo + !g(tl _to) 
ayo tl- to 2 

This is the solution we started out with; this demonstrates that if S is 
known, then the solution (all integrals of the motion) is readily obtained. 
Clearly, this is valid for all cases except the trivial one, t1 - to = 0. 

Example - Harmonic Oscillator. The equation of motion and 
its solution are 

x+n2x = 0 

x = xocosn(t- to)+ uo sinn(t- t0 ) 
n 

Computing S as before 

We can solve for tto = uo(xo, Xt, to, tt) uniquely provided n(tt- to) f. 
nr, r an integer (see Fig. 17-5). Under this restriction, the result of 
putting Sin the form of Eqn. {17.5) is 

1 2 2 nXIXO 
S = -

2
n(x1 + x0) cotn(t1- to)- . ( ) smnt1-to 
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X 

Fig. 17-5 

so that from Eqns. (17.9) 

as ~~ 
uo = --0 = -nxocotn(tl- to)+ . ( ) xo smn t1- to 

which is the solution we started out with. 

17.2 Hamilton-Jacobi Theorem 

The Hamilton-Jacobi Equation. The solution of Eqns. (17.9) gives 
the q~ and p~ as functions of the 2n parameters q~ and p~. It is often 
convenient, however, to use other parameters O:r and f3r related to the 
q~ and p~ by a HCT (see Section 16.3). We seek such a transformation 
that leaves S invariant: 

Using Eqns. (17.13) and (16.19) results in 

so that 

dS = dS = "L,p;dq:- "L,p~dq~- H1dt1 + Hodto 

= "L,p;dq;- "L,f3rdO:r- H1dt1 + Hodto 

(17.14) 

(17.15) 

(17.16) 
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These equations are the solutions to Lagrange's equations. Also, 

(17.17) 

Previously, we have shown that if we could find the principal function, 
8, then the solution to the dynamics problem is easily obtained. We now 
turn to the task of finding an equation for 8. Let ar, f3r define a HCT; 
that is, from Eqn. (16.19), 

(17.18) 
r r 

In this section, we shall take to = 0, write 8 = S, and suppress the 
superscript 1; thus 

With this new notation, Eqn. (17.15) becomes 

so that 

d8 = L Prdqr - L f3rdar - H dt 
r r 

88 
- =Pr; r= 1,··,n 
Oqr 

88 
- = -f3r ; r = 1, ··, n 
oar 

88 =-H 
8t 

(17.19) 

(17.20} 

(17.21) 

(17.22) 

(17.23) 

where H = H(qr,Pr, t). Substituting Eqn. (17.21) into (17.23), we arrive 
at 

88 ( 88 ) 8t + H qr, oqr' t = 0 

88 ( 88 88 ) 
8t +H qb··,qn'8ql'··,8qn't =0 (17.24) 
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This first-order, non-linear, partial differential equation is known as the 
Hamilton-Jacobi equation, 1 or sometimes as Hamilton's equation. 

We know that the principal function, Eqn. (17.19), is a solution (com­
plete integral) of Eqn. (17.24). The solutions of Eqn. (17.24), however, 
are not unique, raising the question of which of the solutions solve the 
dynamics problem. The following theorem establishes that any solution 
ofEqn. (17.24) also satisfies Eqns. (17.21) and (17.22), and thus solves 
the problem. 

Hamilton-Jacobi Theorem. If S = S(qr, O:r, t) is a complete inte­
gral of Eqn. (17.24) then the integral's of Hamilton's equations are given 
by Eqns. (17.21) and (17.22}. Hence we have replaced the problem of 
solving a 2n-order system of ordinary differential equations (Hamilton's 
equations) by the problem of solving one first order partial differential 
equation (the Hamilton-Jacobi equation). 

The proof proceeds as follows. By definition, a complete integral of 
Eqn. ( 17.24) is a function of class C 2 containing n arbitrary constants 
0:1, · ·, O:n such that 

(17.25) 

Regard the qr and O:r as independent parameters and differentiate Eqn. 
(17.24) w.r.t. o:1: 

(17.26) 

where Eqn. (17.21) was used. Also, from Eqns. {17.21) and (17.22), 

as 
- = -/31 
00:1 

a2s __ 8/31 __ L a131 aqr 
ataa1 - at - r aqr at 

828 a2S oqr 
ataa1 + .L aqraa1 at = 0 (17.27) 
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Since S E C2 , 

EPS EJ2S 

so that Eqns. (17.26) and (17.27) combine to give 

L a2s [aqr _ an] _ 0 r aqraal at apr - (17.28) 

If this procedure is repeated for a 2 , ··,an, the following matrix equa­
tion results 

II a2 s II I aq _ an I = 0 aqaa at ap (17.29) 

The first of these factors in an n x n matrix and the second is n x 1. In 
view of Eqn. (17.25), Eqn. (17.29) implies 

aqr an 
- =-; r= 1,··,n at apr (17.30) 

which are the first n of Hamilton's equations. Note that we have written 
aqr I at here instead of dqr I dt because we are considering the family of 
trajectories generated by independently varying a, /3, and t, and not the 
time rate of change along a trajectory. 

To get the other n of Hamilton's equations, we proceed much as 
before. Differentiate Eqn. (17.24) w.r.t. q1 and use Eqns. (17.21) to 
obtain 

a2s +an+ L a2s an = 0 aql at aql r aql aqr apr (17.31) 

Also, from Eqns. (17.21) and (17.22), 

{)pl a2 s a2 s aqr 
at = ataql + ~ aqraql at (17.32) 

Combining these two equations, repeating this for q2 , ··, Qn, and forming 
a matrix equation as before, we arrive at 

apr an 
-=--; r=1,··,n at aqr (17.33) 

and the theorem is proved. 
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Historical Remarks. Hamilton, born in Ireland, in 1805, was the 
ultimate child prodigy. Attracted to foreign languages as a child, by 
the age of 10 he was proficient in writing Latin, Greek, Hebrew, Italian, 
French, Arabic, and Sanskrit, and was learning a half a dozen others. 
He then became interested in mathematics, teaching himself the known 
mathematics of the time, by the age of 17. He was by then a student 
at Trinity College, Dublin, and had started his revolutionary research in 
optics. 

Hamilton's goal was to bring the theory of optics to the same "state 
of perfection" that Lagrange had brought dynamics. By the age of 22 
his work on optics was complete; it succeeded in resolving the most out­
standing problem of mathematical physics of his time - unifying the 
particle and wave concepts of light into one elegant, comprehensive the­
ory. Already he was called "the first mathematician of the age" and it 
was said that "a second Newton has arrived". At this time, while still a 
student, he was appointed professor of astronomy at Trinity, not having 
even applied for the position. 

Hamilton then turned his attention back to dynamics, applying the 
methods he had developed in optics. In his First Essay on a General 
Method in Dynamics (1834) he introduced the "characteristic function", 

lot 2Tdt, clearly motivated by the Principle of Least Action, and used 
it to formulate the dynamics problem. In this work he also introduced 

the principal function, S = lot L dt. In the Second Essay on a Gen­

eral Method in Dynamics (1835), he derived both what we now call the 
Hamilton-Jacobi equation, Eqn. (17.24) and Hamilton's canonical equa­
tions, Eqns. (15.11). He fully realized the importance of finding the 
function S as well as the difficulty in doing so (he gave an approxima­
tion method). As Hamilton stated in his paper, in the impersonal style 
then in vogue: 

"Professor Hamilton's solution of this long celebrated problem 
contains, indeed, one unknown function, namely, the principal 
functionS, to the search and the study of which he has reduced 
mathematical dynamics. This function must not be confounded 
with that so beautifully conceived by Lagrange for the more sim­
ple and elegant expression of the known differential equations. 
Lagrange's function states, Mr. Hamilton's function would solve 
the problem." 
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Beginning in his late 20's, Hamilton suffered severe psychological 
problems. He became reclusive, alcoholic, and irregular in his eating 
and sleeping habits. As a consequence, he was not productive during 
these years. Later in life he spent all of his mathematical energies on the 
development of quaternians, which he regarded as his greatest achieve­
ment. 

During his life, Hamilton was awarded every honor possible to a 
scientist, including being knighted and being named the first foreign 
member of the U.S. Academy of Sciences. When he died at age 61, his 
study was found piled high with mathematical papers, interspersed with 
plates of partially finished meals. 

Jacobi's life was apparently relatively settled. He was born in Prussia 
in 1804 and spent most of his professional life as a professor (he was by 
all accounts an excellent teacher). His main contributions to dynamics 
were the proof of the Hamilton-Jacobi theorem and putting Hamilton­
Jacobi theory into its modern form. These contributions were given in a 
series of lectures in 1842 and 1843, which were not published until1866. 
Jacobi was a first-rate mathematician and he is perhaps best known for 
his contributions outside of dynamics, specifically to the fields of elliptic 
functions, solution of algebraic equations, number theory, and differential 
equations. 

Hamiltonian dynamics has had a far-reaching impact on all of math­
ematics and physical science. As Bell states, "it is the aim of many work­
ers in particular branches of theoretical physics to sum up the whole of 
a theory in a Hamiltonian principle." Most remarkable, is that when, 
about 100 years ago, experiments began to reveal the nature of the mo­
tion of atomic particles, the tools of Hamiltonian dynamics (Hamilton­
Jacobi equation, canonical equations, contact transformations, and Pois­
son brackets) proved to be ideal as the basis for the modern theory of 
quantum mechanics. 

17.3 Integration of the Hamilton-Jacobi Equa­
tion 

Natural Systems. Consider a natural system. For such a system 

(17.34) 

We see by direct substitution that in this case a solution of Eqn. (17.24) 
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is of the form 

S= -ht+K (17.35) 

where 

and where we have taken a1 =h. The function K(·) is called Hamilton's 
characteristic function. 2 Substitution of Eqn. (17.35) into (17.24) gives 

H (qr, :~) = h (17.36) 

By the Hamilton-Jacobi Theorem, the integrals of motion are given 
by Eqns. (17.21) and (17.22); the first of Eqns. (17.22) yields: 

as =as= _131 aa1 ah 

aK 
-t+ ah = -/31 =-to 
aK 
ah = t- to 

where to is written in place of /31· The rest of the equations are 

aK 
- = -f3r; 
aar 

aK 
aqr = Pr; 

r=2, .. ,n 

r = 1, .. ,n 

(17.37) 

(17.38) 

(17.39) 

The remaining problem is to find the function K. Note that Eqns. 
(17.38) determine the path in configuration space, and Eqn. (17.37) then 
gives time elapsed along the path. 

Natural System with Ignorable Coordinate. Now, in addition, 
suppose qn is ignorable with corresponding momentum integral Pn = 'Y = 
constant. Then 

In this case we write 

(17.40) 
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where 

where we have taken an = 'Y· The last of Eqns. (17.22) gives 

8K' 
qn + O"f = - f3n = q~ 

where we have taken f3n = -q~. Thus from Eqns. (17.22) the first n 
integrals are given by 

8K' 
ah = t- to 

8K' 
~ = -/3r ; r = 2, ··, n - 1 
uar 

8K' 
O"f = q~- qn 

Equations (17.21) give the other n integrals: 

8K' 
oqr = Pr ; r = 1, ··, n- 1 

8K' 
-- =Pn ="f 
Oqn 

The remaining problem is now to find the function K'. 

17.4 Examples 

(17.41) 

(17.42) 

Example. We now return to the two examples of Section 17 .1. Consider 
again a particle of unit mass in 2-D motion in a uniform gravitational 
field (Fig. 17-4). We have 

8L . 
Py= aiJ =y 
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2 
H = LPr<ir- L = x2 + y2

- ~(x2 + y2) + gy 
r=l 

= ~(x2 + y2) + gy = T + v = ~(p; + P;) + gy 
We see that x is ignorable. Hamilton's equation is 

as ( as as) at + H x, y, ax' ay = O 

: + ~ ( (~!) 2 + (~!) 2) + gy = 0 

Since H = h =constant and xis ignorable, Eqns. (17.35) and (17.40) 
apply: 

S = -ht + -yx + K'(y) 

Substitution into Hamilton's equation gives 

-h + ~ ( 'Y2 + ( aa~') 2) + gy = o 

Letting gk = h - ~-y2 , the solution of this equation is 

K' = ~k J2g(k - 17) dry 

rk-y 
K' = J2U Jo ..jV dv 

Thus 

S =- (~-y2 + gk) t + -yx + J2U fok-y ..jV dv 

Now apply Eqns. (17.21) and (17.22) 

as . ax= 'Y = Px =X 

as=- 12g(k- y) = Py = Y ay v 
as 
O'Y = --yt +X = -/31 

as = -gt + · l2g(k- y) = -!32 ak v 
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The last two of these may be written as 

X+ /31 = 1t 

2g(k- y) = !3'#. + g2t2 - 2f32gt 

If a projectile is launched at position (xo, Yo) at time to = 0 with 
velocity components (uo, vo), these equations give at time to 

which give 

'Y = uo 

-J2g(k- Yo)= vo 

xo + f3I = 0 

2g(k -Yo) = !3'#. 

'Y = uo' 

so that the solution may be written as 

x- xo = uot 

2g(yo - y) = g2t2 - 2vogt 

which is the well-known solution to this problem. We note that h is 
the energy integral and k is the maximum height of the projectile. The 
problem has been completely solved.3 

Example- Harmonic Oscillator. For this problem, 

T = ~x2 
, V = ~n2x2 , p = ~~ = x 

H = ~x2 + ~n2x2 = ~(p2 + n2x2) = h 
2 2 2 

Thus Hamilton's equation is 

as 1 ((as) 2 
2 2) Ot + 2 OX + n X = O 
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We try a solution of the form 

1 
S = - 2n 2a 2 t + p(x) 

Substitution gives 

-~n2a2 + ~ ( (~r + n2x2) = 0 

p = n fox V a2 - 1]2 d1] 

where 1J is a dummy integration variable. Then 

S = -~n2a2t + n fox Ja2 -172 d1] 

Equation (17.22) gives the solution of the problem as: 

88 = -{3 
8a 

-n2at + na fox (a2 _1J2)-1/2d1J = -{3 

313 

where Liebnitz' rule for differentiating under the integral sign has been 
used; this may be written in the more familiar form3 

x = asinn(t- to) 

where {3 = n2at0 • The constants a and to may be expressed in terms of 
initial conditions if desired. 

In Section 17.1, we found (by starting with a known solution) a dif­
ferent functionS that satisfies Hamilton's equation for this problem than 
the one found here. This shows that the solution of Hamilton's partial 
differential equation is not unique. Both functions, however, provide the 
complete solution to the problem. 

17.5 Separable Systems 

Separability. In this section we continue to consider natural systems. 
In Section 17.3, we gave partial solutions of the Hamilton-Jacobi equa­
tion by writing the principal function as the sum of two or more parts. 
For example, in Eqn. (17.35) S was written as the sum of a function 
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depending only on t and a function depending only on the Qr· Such a 
separation is always possible when H ::/: H(t). More generally, it may 
be possible to write S as a sum of functions, each containing just one of 
the Qi or just t. In this case we say the problem is completely separable. 
Both of the examples of Section 17.4 were completely separable. 

In practice, the Hamilton-Jacobi equation is only useful when there 
is some degree of separability. Some problems, for example the famous 
three-body problem, are not separable. For other problems, separability 
depends on the choice of coordinates. For example, the central force 
problem is not separable in rectangular coordinates but is in polar (be­
cause in the latter case one coordinate is ignorable}. A classic and im­
portant special case of complete separability is that of linear systems 
written in terms of modal coordinates. 

Conditions for Separability. General conditions for complete sep­
arability are not known, but Pars (who devotes two chapters to the sub­
ject of separability}, gives some results for systems for which the kinetic 
energy contains only squared terms: 

(17.43} 

Not surprisingly, the same systems for which Lagrange's equations are 
separable (see Section 8.4} are separable in the Hamiltonian sense. Thus 
Liouville systems, defined by Eqns. (8.4), are completely separable. 

The most general separable system of the type Eqn. (17.43) is given 
by Stackel's theorem, not stated here. 

Solution of Separable Systems. General methods have been de­
veloped for solving completely separable systems; see for example Pars, 
Goldstein, or McCuskey. These methods depend on the theory of con­
tact transformations, developed in the previous chapter. They will not 
be reviewed here. 

As a practical matter, the most common case of separability occurs 
when there are ignorable coordinates. We have already seen that if a 
coordinate, say Qn, is ignorable, then a partial separation occurs, as ex­
pressed by Eqn. (17.40). In general, if coordinates Qm, ··, Qn are ignorable 
then the characteristic function may be written as 

(17.44) 

where the ai are constants. In particular, if all coordinates but q1 are 
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ignorable, the problem is completely separable, because then 

(17.45) 

In this case the Hamilton-Jacobi equation reduces to an equation in q1, 

which is always reducible to quadratures; the problem has been com­
pletely solved. 

Example. 4 As an example of a non-trivial problem, consider again 
the heavy symmetrical top analyzed in Section 11.2 and shown on Fig. 
11-4. From Eqns. (8.24) and (11.10), 

Po= IO 
Pc!> = I~sin2 (} + J(~ +~cos(}) cos(} 

Pt/J = J(¢ +~cos(}) 

Using Eqns. (11.11) and (15.15), we arrive at 

H 1 [p~ (Pcf>- Pt/J cos 0)2 P~l f (} 
= 2 I + I sin2 (} + J + mg cos 

First, we see that H -=J H(t) so that Eqns. (17.35) and (17.36) apply. 
Second, we see that ¢ and 1/J are ignorable so that K has the form 

The problem is thus completely separable. 
The Hamilton-Jacobi equation, Eqn. (17.36), is 

1 (()K) 2 
1 (oK oK )2 

1 (()K) 2 

2! ()(} + 2! sin2 (} o¢ - o'I/J cos (} + 2J o'I/J 
+mgf cos(} = h 

Substituting for K, we obtain 

1 (dK') 2 
1 1 

21 d(} + 
21 

sin2 (} (a2- a3 cos 0)2 + 2Ja~ + mgf cos(}= h 

so that 

dK' = IF(ii} 
d(} y.r\U) 
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and 

K' =I ji(i}do 
where 

I 2 1 2 F(O) = 2/h- -Ja3 - 2Imgicos0- -.-2-(a2- a3cosO) 
sm 0 

Thus 

K = a2<P + a31/J + I ji(i}do 
and Sis given by Eqn. (17.35). 

Now apply Eqns. (17.22); the first of these is given by Eqn. (17.37): 

I !dO 
y'F(8) = t - to 

and the other two are 

The constants h, a2, a3 may be determined by initial conditions. 

Notes 

1 The same equation plays a central role in the subject of dynamic programming, 
where it is called the Hamilton-Jacobi-Bellman equation. 

2 It may be shown that K is equivalent to the action integral, Eqn. ( 4.40), see 
Goldstein. 

3 The details of the solution to this problem are left as an exercise. 
4 McCuskey. 

PROBLEMS 

Solve the following three problems by the Hamilton-Jacobi method. 

17/1. Problem 4/2. 
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17/2. Problem 6/7. 

17/3. Problem 10/1. 

317 

17/4. Show that linear systems written in terms of modal coordinates 
are completely separable. 

17/5. Fill in the details of the solution to the first example of Section 
17.4. 

17/6. Fill in the details of the solution to the second example of Section 
17.4. 

17/7. Fill in the details of the solution to the example of Section 17.5. 




