
Chapter 14 

Gibbs-Appell Equations 

14.1 Quasi-Coordinates 

Introduction. Nonholonomic constraints are accounted for in Lagran­
ge's equations by the use of Lagrange multipliers. We now develop an 
approach to systems with nonholonomic constraints that does not de­
pend on multipliers - the use of quasi-coordinates and the Gibbs-Appell 
equations. 

Quasi-coordinates are analogous to nonholonomic constraints in that 
they are defined by differential relations that are not integrable. Thus 
the requirement that the displacement components of the particles are 
explicit functions of the generalized coordinates is relaxed (see Eqns. 
{5.7)), and we consider coordinates such that the velocity components 
are explicit, linear, nonintegrable functions of the time derivatives of the 
generalized coordinates. 

In this and the next four chapters, we will loosely follow Pars. There­
fore, we make a notation change to bring our notation into line with that 
of Pars. The displacement components will now be denoted by Xr, that 
IS 

Xt = Ul =X~ 
X2 = U2 =X~ 
X3 = U3 = xj 
X4 = U4 = Xf 
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where ~r = (xi, x~, x~) ; r = 1, ··, v are the position vectors of the 
particles. Now, vis the number of particles and N = 3v is the number of 
displacement components; as before, n will be the number of generalized 
coordinates, L will be the total number of constraints, £ will be the 
number of nonholonomic constraints, and k = N - L will be the degrees 

n 
of freedom of the dynamic system. As usual, L will denote L· 

s s=l 

Quasi-Coordinates. Consider a dynamic system with v particles, 
f nonholonomic constraints, and no holonomic ones. Let a set of gener­
alized coordinates be 

qr; r = 1, ··, k + f = n = 3v = N 

The f constraints are 

LBrsdqs + Brdt = 0; r = 1,··,£ (14.1) 
8 

Introduce p new coordinates Or, called quasi coordinates, such that 

dOr = L Cr8dq8 + Crdt ; r = 1, ··,p (14.2) 
8 

whereCr8 , Cr E C 1(q,t). Thetotalnumberofcoordinatesisnowk+£+p 
where 

qk+i+r =Or ; r = 1, ··,p 

Relabel this new set of coordinates q1, ··, qk+i+P so that Eqn. (14.2) may 
be rewritten as 

dqk+l+r = L Cr8dq8 + Crdt; r = 1, ··,p (14.3) 
8 

We now require that the matrix [ ~~: ] have maximum rank. (Since 

Brs is (k +f) X£ and Crs is (k + £) x p, the matrix is (k + £) x (£ + p).) 
Under this condition the implicit function theorem guarantees that we 
may solve for £ + p of the dqr as functions of the remaining k dqr. Call 
the remaining ones p8 • Then 

k 

dqr = LDrsdPs +Drdt; r = 1, .. ,£+p 
s=I 

(14.4) 
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Equation (14.4) is equivalent to Eqns. (14.1) and (14.3). In general, 
the coefficients Drs and Dr will be functions of all k + £ generalized 
coordinates Qr. 

The displacement components in terms of the generalized coordinates 
are, as usual, given by Eqns. (5.9): 

k+la a 
""'"' Xr Xr dxr = L....t 8dqs + at dt j 
s=l Qs 

r= 1,··,N (14.5) 

Next we relabel p8 = q8 ; r = 1, ··, k and use Eqn. (14.4) to eliminate the 
superfluous coordinates in Eqn. (14.5): 

k 

dxr = L arsdQs + ardt j r = 1, ··, N 
s=l 

Equation ( 14.4) becomes 
k 

dqr = L /3r 8 dq8 + /3rdt j r = 1, ··, n = k + £ 
s=l 

(14.6) 

(14.7) 

Comparing Eqns. (14.5) and (14.6), we see that we have reduced the 
number of dqr upon which the dxr depend to k, the degrees of free­
dom. Thus the system now appears to be holonomic because it takes k 
coordinates to specify the system, and no multipliers will be needed. 

From Eqns. (14.6) and (14.7), virtual displacements satisfy 
k 

6xr = Lars6Qs j r= 1,··,N (14.8) 
s=l 

k 
6qr = Lf3rs6Qs j r = 1,··,n (14.9) 

s=l 

Example. First consider a particle moving in a plane (Fig. 14-1). 
Two possible choices of generalized coordinates are rectangular, (x, y), 
and polar, (r, 8). A possible quasi-coordinate is q, defined by 

dq = xdy- ydx 

It is easy to show that this is nonintegrable (see Section 2.6). We have 

q =xi;- yx 

q = rt (xy- yx)dt ito 
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X 

Fig. 14-1 

so that q is twice the area swept out in time (t - to) by the position 
vector. We will come back to this problem later. 

As a second example, the total rotation about a given line of a rigid 
body is often a convenient quasi coordinate. For example, from Eqn. 
(11.8) the total rotation about the axis of a spinning top is q, where 

dq = dt/J + cos Od¢ 

where 1/J, 0, and¢ are the spin, nutation, and precession angles, respec­
tively. 

14.2 Fundamental Equation 

Fundamental Equation with Quasi-Coordinates. Recall the three 
forms of the fundamental equation established in Chapter 3, namely 
Eqns. (3.7), (3.38) and (3.39), repeated here in the new notation: 

N 

L(mrXr- Fr)t5xr = 0 
r=l 
N 

L(mrXr- Fr)~Xr = 0 
r=l 
N 
L(mrXr- Fr)~xr = 0 
r=l 

(14.10) 

(14.11) 

(14.12) 

We want to obtain a fundamental equation similar to Eqn. (14.12) in our 
new coordinates. 

First, the virtual work is obtained using Eqn. (14.8): 

N N k k 

L Frt5Xr = L Fr L arst5Qs = L Qst5Qs 
r=l r=l s=l s=l 
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so that 

From Eqn. {14.6), 

k 

k 
Xr = L Ors<is +Or j r = 1, .. , N 

s=l 

Xr = L Orsiis +terms without the ij8 ; r = 1, .. , N 
s=l 

Consider another possible acceleration Xr + ~Xri then 

k 
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{14.13} 

{14.14) 

Xr + ~Xr = L Ors(iis + ~ij5 ) +terms without the ij8 ; r = 1, .. , N 
s=l 

Thus 
k 

~xr = Lars~iis; r = 1, .. ,N 
s=l 

Substitute Eqn. (14.15} into (14.12} and use (14.13}: 

N N k L ffirXr~Xr - L Fr L Ors~iis = 0 
r=l r=l s=l 

N k 

L ffirXr~Xr - L Qs~iis = 0 
r=l s=l 

(14.15} 

(14.16} 

which is what we wanted to derive. Note that this involves a mixture of 
rectangular and generalized coordinates. 

14.3 Gibbs' Theorem and the Gibbs-Appell 
Equations 

Gibbs' Function. Define the acceleration, or Gibbs, function by 
N 

G 1~ .. 2 
= 2 ~mrXr 

r=l 
(14.17} 
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Note that this is similar to the definition of kinetic energy, except that 
accelerations are used instead of velocities. Substituting Eqn. (14.14) 
into (14.17) gives a function of the form 

G = G2 + G1 +Go 

where G2 is quadratic in the Qr, G1 is linear in the iir, and Go does not 
contain the Qr. We now state the following. 

Gibb's Theorem. Given the displacements and velocities at some 
time t, the accelerations at that time are such that 

k 

G- LQsQs 
s=l 

is a minimum with respect to the Qr· 
The proof is as follows. Let q8 be the actual accelerations and let 

q8 + tl.q8 be possible ones. Form the change in the function just above 
and use Eqn. (14.16): 

N k 

= ~ L mr(Xr + tl.xr)2
- L Qs(iis + tl.qs) 

r=l s=l 
N k 

1~ ··2 ~Q .. -2 L...t mrXr + L...t sqs 
r=l s=l 

- ~ Emr(M,)2 + (Em,X,L\X,- ~Q,L>q,) 
N 

~ L mr(tl.xr)2 > 0 
r=l 

(14.18) 

which proves the theorem. 

Gibbs-Appell Equations. These equations are the first order nec­
essary conditions associated with Gibbs' Theorem, namely, 

oG 
Qs = OQs ; S = 1, ··, k (14.19) 

Also to be satisfied are the constraint equations, obtained from Eqns. 
(14.7): 

k 

tir = L f3rstis + f3r; r = k + 1, .. , n 
s=l 

(14.20) 
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Equations (14.19) and (14.20) serve to determine the equations of motion 
of a dynamic system. 

Remarks. 

1. The Qr are in general a mixture of generalized coordinates and 
quasi-coordinates. 

2. Equations {14.19) were first discovered by Gibbs but attracted little 
attention. They were later discovered independently by Appell who 
first realized their full importance. 

3. The Gibbs-Appell equations are equivalent to Kane's equations 
(see Baruh and Kane and Levinson) 

Solution Procedure. To solve problems using Eqns. (14.19), the 
following steps are required. 

1. Determine k = N - l, the degrees of freedom of the system. 

2. Obtain G by expressing the x; in terms of k of the iir (see Eqn. 
(14.17)). Note that generally all the qr and Qr will appearinG, 
but only k of the iir· The k preferred Qr may be either generalized 
or quasi-coordinates. 

k 
3. Consider the work done in a virtual displacement to get L Q8 8q8 

s=l 
and hence the Q 8 • 

4. Form the equations of motion from Eqns. (14.19) and (14.20). 

14.4 Applications 

Particle in a Plane. Let a particle in a plane be subjected to a force 
with radial and transverse components Rand S, respectively, as shown 
on Fig. 14-2. As mentioned previously, either (x, y) or (r, 8) serve as 
generalized coordinates. We pick coordinates (r, q) defined by 

dq = xdy- ydx 
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R 

Fig. 14-2 

Coordinates r and q are generalized and quasi-coordinates, respectively. 
To form the Gibbs function G from Eqn. (14.17), x and ii are needed: 

rr =XX+ yy 
r2 + rr = x2 + XX + 1i2 + Yii 
q = xiJ- yx 
ij = xy + xjj - yx - yx = xjj - yx 

These expressions are to be solved for x = x { r, r, r, ij, q, q) and ii = 
ii(r,r,r,ij,q,q) and substituted into 

G 1 (··2 + ··2) = -m x y 2 
The result is 

G 1 (··2 2 ·2·· + 1 ··2) = -m r - -q r -q 
2 r 3 r 2 

where all terms not having the factors r or ij have been omitted because 
in view of Eqn. (14.19) they do not enter into the equations of motion. 

The generalized forces are obtained by considering the virtual work 
done by RandS. We have 

Thus 

and 

q = xiJ- yx 
= (r cos O)(r sin()+ riJ cos 0) 

-(rsinO)(rcosO- riJsinO} = r2iJ 
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and therefore 

Consequently, 

6q 
6W = RtSr + SrMJ = RtSr + Sr2 r 

Qr =R, 
s 

Qq=­
r 

Now we apply the Gibbs-Appell equations, Eqns. (14.19), 

a a 
of = Qr' 

a a 
{)ij =Qq 

to obtain 

253 

Consider the special case of central force motion with conservative 
force; in this case 

S=O, 

and 

cj =a= constant, 

dV R=-m­
dr 

m (r - a2) = -m dV 
r3 dr 

Using the identity of Eqn. (9.14), the second of these integrates to 

a2 
r2 + 2V + 2 = 2h = constant r 

which is the energy integral. 

Analogue of Koenig's Theorem. Let G be the center of mass of a 
rigid body and fix an axis system at G that does not rotate relative to an 
inertial frame (but the body may rotate) as shown on Fig. 14-3. Recall 
that Koenig's theorem states that the kinetic energy of the body is given 
by Eqn. (1.58). Since the Gibbs function is analogous to the kinetic 
energy, with accelerations replacing velocities, we have immediately, for 
the same situation, 

(14.21) 
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Fig. 14-3 

where M = E mr is the mass of the rigid body. 

Analytical Dynamics 

Two-Dimensional Problems. Let a rigid body move in a plane 
(Fig. 14-4). We note that r is a constant for each particle, but () varies 
with time. Consequently, 

( = rcos () 
( = -rsinOO 
( = -r cos 002 - r sin ()0 

1J = rsinO. 
iJ = r cos ()() 
ij = -r sin 002 + r cos ()0 

so that 

y 

X 

Fig. 14-4 
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Substituting into Eqn. (14.21), 

(14.22) 

where / 2 = i:2 +iff is the acceleration of G squared, 1 = 2: mrr2 is the 
moment of inertia relative to an axis passing through G and perpendic­
ular to the plane of the motion, and the r 2iJ4 term has been omitted 
because it does not contain any acceleration factors. 

Cylinder Rolling in a Cylinder. We first get the rolling without 
slipping condition (Fig. 14-5) by noting that A' is at A when () = 0. 
Letting c = b- a, 

From Eqn. (14.22), 

AB = A'B 
b() = a(O + ¢) 
a<f> =cO 
a¢= ciJ 
a~= cO 

Fig. 14-5 
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Because k = 1, we must write this in terms of only one acceleration 
component; the rolling constraint is used to do this: 

1 2 .. 2 2 • 4 1 2 ( c ••) 2 
G = 2M ( c 0 + c 0 ) + :t M a -;_0 

G = ~ M c202 + terms without 0 

Since the contact force does no virtual work, the only given force 
doing virtual work is gravity: 

8W = Mg8(ccos0) = -Mgcsin080 

so that Q9 = -MgcsinO. Equation (14.19) then gives the equation of 
motion: 

3 2 .. 
-MgcsinO = 2Mc 0 

0 + ~!?:sinO= 0 
3c 

which is a form of the equation of a simple pendulum. 

Sphere Rolling on a Rotating Plane. In the preceeding two 
examples, the systems were holonomic and the equations of motion could 
have been obtained by more elementary means. Now we consider a 
nonholonomic system, the situation in which the use of quasi-coordinates 
and the Gibbs-Appell equations is particularly advantageous. 

Consider a spherical rigid body with radius a and radial mass symme­
try (i.e. the mass density depends only on the distance from the center) 
rolling without slipping on a rotating plane (Fig. 14-6). The plane ro­
tates with variable rate O(t) E C 1 about the z-axis. The {i,J, k} frame 
is fixed (inertial) with origin at the center ofrotation and the {i', ]' ,k'} 
frame is parallel to the fixed frame with origin at G, the center of mass 
of the sphere. The rectangular coordinates of the center of mass relative 
to the fixed frame are (x, y, a). Let the angular velocity of the body be 
!:!l = Wxi + wy] + Wzk. 

If the plane were at rest, the rolling-without-slipping conditions would 
be x = awy and iJ = -awx. If the sphere were at rest on the rotating 
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y 

Fig. 14-6 

plane, :i; = -Oy and iJ = Ox. Combining the rotating and rolling gives 
the nonholonomic constraints: 

:i;- awy = -Oy 

iJ+awx = nx 
(14.23) 

Thus there are one holonomic (z =a) and two nonholonomic constraints 
on the motion so that L' = 1, £ = 2 and k = 3. We choose the five 
coordinates x, y, qx, qy, qz where x andy are generalized coordinates and 
the three quasi-coordinates are defined by 

Qx = Wx, Qz = Wz (14.24) 

Using the analoque of Koenig's theorem, the Gibbs function is1 

(14.25) 

where all non-essential terms have been omitted, and where I is the 
moment of inertia of the body about any axis passing through G. (For 
a body with radial mass symmetry any axis passing through G is a 
principal axis of inertia and the moment of inertia about all such axes is 
the same.) 

The Gibbs function must now be expressed in terms of the acceler­
ation components of three of the coordinates; we choose x, y, and qz. 
Differentiating Eqns. ( 14.23), 

aijy = x + OiJ + Oy 
(14.26) 
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Substituting these relations into Eqn. (14.25) gives 

(14.27) 

Now suppose that the external force system acting on the body has 
been resolved into a force F = Fxi + Fy] + Fzk acting at the center of the 
sphere and a moment M = Mxi +My]+ Mzk about the center. From 
Eqns. (14.23) and (14.24) 

dx-adqy = -Qydt 

dy + a dqx = nx dt 

so that virtual displacements satisfy 

c5x - a c5qy = 0 

c5y + a c5qx = 0 

Consequently, the work done in a virtual displacement is 

Fxc5x + Fy6y + Fzc5z + Mxc5Qx + Myc5Qy + Mz6Qz 

= (Fx + ~Y) c5x + (Fy- ~x) c5y + Mz6Qz (14.28) 

where, of course, c5z = 0. 
We are now in a position to apply the Gibbs-Appell equations, Eqns. 

(14.19); the result is 

M .. I (·· n. A ) F My x + a2 x + HY + HY = x + 7 

M.. I (·· n· 0 ) F Mx y + a2 y - X - X = y - 7 
(14.29) 

Consider the following special case: (i) the rotation n = const., (ii) 

the body is a homogeneous sphere, so that I= ~Ma2 , and (iii) there is 
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no external moment acting on the sphere. Then the equations of motion 
of the mass center reduce to: 

7x+2f!y = 5Fx 
M 

7 .. 2n. _ 5Fy y- HX--
M 

(14.30) 

These linear equations are easily solved in terms of convolution integrals. 

Notes 

1 See Section 11.1 

PROBLEMS 

14/1. Consider a rigid body moving in space under the action of any given 
system of forces. Let {i', ]', k'} be a body-fixed frame aligned with 
the principal axes of inertia, and { i, J, K} be non-moving (inertial) 
axes. Let the moments of inertia be Ix, Iy, and lz and let the mass 
be m. Suppose the resultant force has components Fx, Fy, and Fz 
along the inertial axes and the resultant moment has components 
Mx, My, and My about the center of mass along the body-fixed 
axes. Then the Gibbs function is (Pars, pp. 216): 

G 1M ( ··2 ··2 ··2) 1 [I . 2 2(1 I ) . I . 2 = 2 X + Y + Z + 2 xWx - y - z WyWzWx + yWy 

-2{Iz- lx)WzWxWy + lzw;- 2(Ix- ly)WxWyWz] 

where (x, y, z) are the coordinates of the center of mass relative to 
{i, J, K}, Wx = Qx, Wy = Qy, and Wz = Qz, and where Qx, Qy, and tiz 
are the components along {i',]', k'} of the angular velocity of the 
body. The system is holonomic with 6 DOF. Choose as coordinates 
x, y, z, which are generalized coordinates, and q1, q2, q3, which are 
quasi-coordinates. 
Use the Gibbs-Appell Eqns. to generate the equations of motion, 
three of which are called in this case Euler's equations. 

14/2. Fill in the details of the particle in a plane problem. 

14/3. Fill in the details of the cylinder rolling in a cylinder problem. 

14/4. Fill in the details of the sphere rolling on a turntable problem. 




