
Chapter 12 

Stability Of Motion 

12.1 Introduction 

First Order Form of Equations of Motion. As discussed in Section 
6.5, application of Lagrange's equations, Eqns. (6.29), to a dynamic 
system results in a system of differential equations of the form 

L a1sij8 + cP1 (qt, ··, qn, (h, ··,tin, t) = 0 
8 

(12.1) 

L an8ii8 + cPn(qt, ··, qn, <it,··, tin, t) = 0 
8 

n 
where q1, ··, qn are suitable generalized coordinates and L = L. Equa-

8 s=l 
tions (12.1) are called the mathematical model of the system. Note that: 
(I) These equations are linear in the acceleration components iit, ··, iini 
(2) They are in general dynamically coupled; and (3) The matrix ars is 
positive definite. 

In Section 8.1, the equations of motion were put into first order, 
generally coupled, form. We now do this by a different method that 
results in uncoupled equations. Because ars is positive definite, there 
exists a transformation to new generalized coordinates, say, Zt, · ·, Zn, 

(12.2) 
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such that in the new variables the equations are dynamically uncoupled: 

(12.3) 

Now let 

Yt = Zt 

Yn = Zn 
(12.4) 

Yn+l = Zt 

Y2n = Z2n 

Then the equations of motion may be written as a system of 2n first 
order equations of the form 

(12.5) 

where y = (y1, ··, y2n) is called the state vector. 1 The initial conditions 
are y(t;) = ( Yt(to), ··, Y2n(to)). Equations (12.5) are said to be in state 
vari~ble form. This is a convenient form for further analysis and com
putation. 

Intuitive Notion of Stability. Stability has to do with the fol
lowing question: Does the motion of a system stay close to the motion 
of some nominal (reference) motion if the conditions are somewhat per
turbed? By motion, we mean the solution of Eqns. (12.5). There are 
generally three types of perturbations of interest: 

1. In initial conditions. Frequently these are taken as current condi
tions in control applications. These perturbations may be due to 
sensor error or to disturbances. 
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2. In parameters (for example, mass, stiffness, or aerodynamic coeffi
cients). This is sometimes called structural uncertainty. 

3. In the dynamic model. Significant terms may have been neglected 
in formulating the equations, and there may be significant unmod
eled dynamics (for example, the controller dynamics are neglected 
in many control problems). 

Remarks. 

1. The reference motion is frequently an equilibrium condition (no 
motion). 

2. Only perturbations in initial conditions are usually considered in 
dynamics; all three are of importance in control system design. 

3. The question of stability is usually of vital importance for a dy
namic system because an unstable system is generally not usable. 

4. Since any dynamic model is only an approximation of a physical 
system, there is always unmodeled dynamics. 

Example. We investigate the stability of the motion of the harmonic 
oscillator, whose equation of motion is !i + n2x = 0, when the initial 
conditions are perturbed. The unperturbed motion is given by 

uo . x = xocosnt +- smnt 
n 

where x(O) = Xo and x(O) = uo. Let the perturbed initial conditions be 
x(O) = Xo + "lx and x(O) = uo +'flu so that the perturbed motion is 

x' = (xo + 'flx) cosnt + (uo + 'f/u) sinnt 
n 

The difference between the two is 

x' - x = 'flx cos nt + 'flu sin nt 
n 

Since this will stay small if 'flx and 'flu are small, the motion is stable. 
Note that the perturbation in the motion does not tend to zero over 
time, but rather persists at a constant amplitude. 
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12.2 Definitions of Stability 

Geometrical Representations of the Motion. Recall the represen
tations of motion introduced in Section 2.2; in the present terms, 

~ E C C fE1', where C is the configuration space 

(~, t) E E c JEn+l, where E is the event space 

'!!.. E S C IE2n, where S is the state space 

(Jb t) ETc IE2n+l, where T is the state-time space 

Liapunov Stability (L-Stability). Consider a motion (i.e. a so
lution of Eqns. (12.5)) h (t), ··, hn(t). This motion is L-stable if for 
each € > 0 there exists a 17( €) > 0 such that for all disturbed motions 
Yl (t), ··, Y2n(t) with initial disturbances 

I Ys(to)- fs(to)l :S ?J(€) (12.6) 

we have 

I Ys(t)- fs(t)l < € (12.7) 

for all t and s = 1, ··, 2n. The situation is depicted in Fig. 12-1 in T 
space for the case of two states for the general case and in Fig. 12-2 for 

Fig. 12-1 
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Fig. 12-2 

the special case of the reference motion being equilibrium. In words, the 
motion is £-stable if when the perturbed motions are sufficiently close 
to the reference motion at some time, then they remain close thereafter. 

If, further, 

lim I I t-+ 
00 

Ys(t) - fs(t) = 0 (12.8) 

for all s then the motion is asymptotically stable. 

Poincare Stability (P-Stability). In some cases, a type of sta
bility other than £-Stability is of interest. For example, consider the 
motion of the harmonic oscillator expressed in the form: 

x = Asin(wt +B) (12.9) 

It is clear that this motion is £-Stable with respect to perturbations in 
both A and B, but is £-Unstable with respect to parameter w (see Fig. 
12-3). If the motion is plotted in the state space, however, we see that 
the perturbed motion remains close to the reference motion and it may 
be that this is all that's desired (Fig. 12-4). This motivates another 
definition of stability. 

Consider a motion fr ( 'Y), · ·, hn ( 'Y) where 'Y is an arc length parameter. 
Then the motion is P-Stable iffor each € > 0 there exists a 17(€) > 0 such 
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t 

perturbation in B 

t 

that for all disturbed motions y8 (r) with initial disturbances 

we have 

!Ysb) - fsb)l < € 

perturbed motion x 
at timet 

reference 
motion 
at timet 

Fig. 12-4 

(12.10) 

(12.11) 

X 

for all "f and s. A motion that is L-Unstable and P-Stable is illustrated 
on Fig. 12-5 in T space. Note that if a motion is L-Stable, then it is 
always P-Stable, but not necessarily conversely. 

Poincare stability is sometimes called orbital stability, for obvious 
reasons. 
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Fig. 12-5 

12.3 Indirect Methods 

Introductory Remarks. The stability properties of linear systems are 
well-known as compared with the stability properties of nonlinear sys
tems. This observation suggests the following procedure. The nonlinear 
system is approximated by linearizing about a reference motion, that 
is, by expanding the disturbed motion in a Taylor series in the pertur
bations and retaining only the first (linear) terms. The stability of the 
linear system is then investigated. 

There are two potential dangers in this approach: 

1. If the disturbances become "large", the first order terms no longer 
dominate and the approximation is not valid. What constitutes 
"large", unfortunately, is not usually known. 

2. In some exceptional cases, stability of the linear system does not 
guarantee stability of the nonlinear system, no matter how small 
the disturbances. 

Variational Equations. Let the disturbed motion be equal to the 
reference motion plus a perturbation: 

Ys(t) = fs(t) + "ls(t) ; s = 1, ··, 2n (12.12) 

Substitute this into Eqns. (12.5) and expand in a Taylor's series in the 
perturbations: 
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2n 

= Ys(JI,··,hn) + Lasr1Jr 
r=l 

+nonlinear terms in the 1Jri s = 1, ··, 2n (12.13) 

a~ . 
where a8r = -a evaluated at Yr = fr· But Is = Y8 (/I, ··, hn, t) because 

Yr 
f 8 (t) is a motion; therefore, neglecting the nonlinear terms in Eqns. 
(12.13) gives 

2n 

ils = Lasr1Jr; S = 1,··,2n 
r=l 

(12.14) 

In general, the a8r will be explicit functions of time. If, however, the 
reference motion is an equilibrium position (js = 0 for all s, which implies 
that all velocities and accelerations are zero) and if the functions Y8 do 
not depend explicitly on time, then the a8r do not depend on time and 
Eqns. (12.14) are a time-invarient linear system, the stability properties 
of which are well-known and easily stated. 

Stability of Time-Invariant Linear Systems. The key results 
will be stated without proof. The characteristic equation associated with 
Eqns. (12.14) can be obtained by taking Laplace transforms or by sub
stituting 7]1 = A1e8t, · ·, 7J2n = A2ne8t; the result is 

(12.15) 

where Isr is the identity matrix. The 2n roots of Eqn. (12.15) are called 
the eigenvalues of a8r and their signs determine the stability of Eqns. 
(12.14) as follows: 

(1) If all roots >.8 ; s = 1, ··, 2n have negative real parts, Eqns. (12.14) 
are asymptotically stable. 

(2) If one or more root has a positive real part, the equations are 
unstable. 

(3) If all roots are distinct and some roots have zero and some negative 
real parts, the equations are stable but not asymptotically stable. 

The characteristic equation, Eqn. (12.15) is a polynomial equation of 
order 2n. Criteria, called the Routh-Hurwitz Criteria, have been devel
oped to determine the stability of a system directly from the coefficients 
of the system's characteristic equation. This will not be pursued here. 
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Example - Double Plane Pendulum. Consider a. double pendu
lum with both links of length e and both bobs of mass m (Fig. 12-6). 
The masses of the links are negligible. In this case, Eqns. (7.25) reduce 
to 

.. •• "2 g 
2lh + cos(81 - 82)82 + 82 sin(81- 82) + 2£ sin81 = 0 

•• •• "2 g 
82 + cos(81 - 82)81 - 81 sin(lh - 82) + f sin82 = 0 

(12.16) 

m 

Fig. 12-6 

We investigate the stability of the equilibrium positions; these are defined 
by Bi = 02 = Oi = 02 = 0. Substitution into Eqns. (12.16) gives sinOi = 
0 and sin 02 = 0 so that the four equilibrium positions are given by the 
combinations of (Fig. 12-7): 

or= 0°,180°; 82 = 0°,180° 

We investigate the stability of these positions by using the rules in the 
previous section. 

First consider equilibrium position (a), Oi = 02 = 0. Let 

81 = 111, 81 = 112, 82 = 173, 82 = 174 

where the 17i are small perturbations from equilibrium. Substitution into 
Eqns. (12.16) and retaining only the first order terms gives: 

ill = 172 
2 . . 2g 

172 + 174 = - £''11 

i!3 = 174 
. . g 

174 + 172 = --173 e 
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v 
• a) el = 0 b) e~ = 180° • c) el = 0 d) e~ = 180° 
• ~=0 • ~=0 • ~ = 180° 

Fig. 12-7 

(Note that these are not in state variable form.) The eigenvalues of the 
coefficient matrix of this system are 

Since g j f > 0, all four of these eigenvalues have only imaginary parts 
{Fig. 12-8). Thus this is case {3) above and the equilibrium is stable but 
not asymptotically stable. 

Next consider position (b), Oi = 1r, 02 = 0; proceeding as before, 

01 = 7r + 7}1 ' ih = '1}2 ' 02 = '1}3 ' ih = '1}4 

fJl = '1}2 

2 . . 29 
'1}2 + '1}4 = £7}1 

fJ3 = '1}4 
. . g 

'1}4 + '1}2 = £'1}3 
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Fig. 12-8 Fig. 12-9 

The eigenvalues thus have only real parts and two of them are posi
tive (Fig. 12-9). This is case (2) above and the equilibrium position is 
unstable. 

Equilibrium positions (c) and (d) are also unstable. 

Some Simple Examples. Here and in the next section we consider 
motions in which the reference motion is not an equilibrium position. 
First, consider the motion of a particle moving vertically near the surface 
of the earth. The equation of motion is x = -g, with x measured 
upwards from the earth surface. Letting y = x, the solution with initial 
conditions x(O) = xo and y(O) = yo is 

1 2 x = xo + yot - 2gt , y =Yo- gt 

Suppose the initial conditions are now perturbed so that x(O) = xo + fJx 
and y{O) =Yo+ ry11 ; then the perturbed motion is given by 

I 1 2 x = xo + fJx +(yo+ ry11 )t- 2gt 

Y1 
= Yo + 1711 - gt 

The difference between the two motions is: 
I I 

X - X = fJx + f/yt , y - y = f/y 

Thus the difference between the reference and the perturbed motion 
grows with time and the motion is not L-stable. 

As a second example, consider the motion defined by the system 
. ax 

X = -x - y + . I 2 2 
yX +y 

. ay 
y=x-y+ .I 2 2 

yX +y 
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Transforming to polar coordinates, the system equations are 

r=a-r, 0=1 
With initial conditions r(O) = ro and 0(0) = Oo, the solution is 

r = (ro - a)e-t +a , 0 = Oo + t 
Now suppose the initial conditions are perturbed, r(O) = ro + rJr and 

0(0) = Oo + '78· Then the perturbed motion is 

r' = (ro + rJr - a)e-t +a 

O' = Oo + rJo + t 
The difference between the two is 

I -t r - r = rJre , O'- 0 = rJo 

Therefore the perturbation in the motion stays small if 'f/r and rJo are 
small and the system is £-stable. Note that r' - r --7 0 as t --7 oo but 
that 0' - 0 remains constant. Thus the stability is not asymptotic. 

As a third example, consider the motion defined by 

:i; = -yJx2 +y2 

il = xJx2 + y2 

Take the initial conditions, without loss of generality, to be 

x(O) =a cos a, y(O) = asina 

Then the motion is 

x = acos(at +a) 

y = asin(at +a) 

The motion therefore describes a circle in the (x, y) plane with radius 
a and period 21r /a. Now let the initial conditions be perturbed to a+ rJa 
and a+ 'f/oi then the perturbed motion is 

x' = (a+ rJa) cos[(a + rJa)t +a+ 'f/0 ] 

y' = (a+ rJa) sin[(a + rJa)t +a+ rJo] 

Because the period has been changed, the system is not £-stable but is 
P-stable. The situation is similar to that shown on Fig. 12-4. 
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12.4 Stability of Orbits in a Gravitational Field 

Here we consider the important problem of the stability of closed or
bits (i.e. elliptical and circular orbits) of a body moving in a central 
gravitational field. For specificity, the case of a satellite or space craft 
in a nominally circular earth orbit will be discussed. The perturbation 
equations, derived in most books on orbital dynamics, are 

x - 2ny - 3n2x = 0 

ii + 2nx = 0 

z+n2z=0 

{12.17) 

where n = ViifO,'J is called the mean motion and J..L and a are the earth's 
gravitational parameter and the radius of the nominal orbit, respectively. 
Eqns. ( 12.17) are called in various places the Hill, the Euler-Hill, or 
the Clohessy-Wiltshire equations. They have found wide application in 
orbital dynamics; for example they are used in the analysis of rendezvous 
between two spacecraft in neighboring circular orbits, docking maneuvers 
between two spacecraft, and orbital station-keeping. 

The solution of Eqns. {12.17) is 

x(t) = 2 (~ + 2xo) - (2~ + 3xo) cosnt + ~ sinnt 

xo . xo y(t) =Yo- 2-- 3{yo + 2nxo)t + 2- cosnt n n 

+ 2 ( 2 ~ + 3xo) sin nt 

( ) zo . z t = z0 cosnt + -smnt n 

(12.18) 

In these equations, xo, yo, zo, xo, iJo, zo are the perturbations in po
sition and velocity components at time t = 0 from a nominal circular 
orbit, relative to a frame that travels with the orbit (Fig. 12-10), and 
x(t), y(t), z(t) are the perturbations at some later timet. 

Inspection of Eqns. (12.18) shows the following. First, the motion 
perpendicular to the orbital plane, z(t), is uncoupled from the in-plane 
motion, and this component of the motion is L-stable but not asymp
totically so. Second, because of the term linear in tin the y(t) equation, 
the in-plane perturbations are not generally bounded and the motion is 
not L-stable. The radial component, however, is bounded and thus the 
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Fig. 12-11 

perturbed (elliptical) orbit remains close to the nominal circular one, 
with an object in the perturbed orbit either pulling ahead or falling back 
relative to an object in the nominal one. Again the situation is similar 
to that shown on Fig. 12-4 and the motion is P-stable. 

As a simple example, suppose a spacecraft in a circular earth orbit 
ejects a particle of small mass in the outward radial direction. In this 
case the initial perturbations are 

xo = Yo = zo = iJo = io = 0 , xo > 0 

and Eqns. (12.18) become 

( ) xo . x t = -smnt 
n 
2xo 2xo y(t) = -cosnt--
n n 

z(t) = 0 

These are the equations of an ellipse with semi-major and semi-minor 
axes of 2xo/n and xofn, respectively. Thus, relative to the spacecraft 
the particle travels in a elliptical orbit (Fig. 12-11} and arrives back 
at the spacecraft at the time at which the spacecraft has completed 
one revolution of the earth. In an inertial frame, the particle travels 
around the earth in an ellipse neighboring the circular orbit with the 
same period, rendezvousing with the circular orbit after each revolution. 
This motion is clearly £-stable. 
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12.5 Liapunov's Direct Method 

Autonomous Case. Let "ls(t}; s = 1, ··, 2n be a perturbation from 
equilibrium of a dynamical system. Then these functions satisfy equa
tions of the form 

(12.19} 

In the autonomous case, these functions do not depend explicitly on t. 
We define the following classes of functions: 

1. IfV('fl1, ··, 1J2n) is of class C 1 (i.e. continuous with continuous deriva
tives) in an open region n c JE2n containing the origin, ifV(O, ··, 0) 
= 0, and if V(-) has the same sign everywhere inn except at the 
origin, then v (.) is called definite in n. 

2. If V ( ·) is positive everywhere except at the origin, it is positive 
definite (Fig. 12-12); if negative everywhere except at the origin, it 
is negative definite (Fig. 12-13). 

3. If V ( ·) has the same sign everywhere where it is not zero, but it can 
be zero other than at the origin, it is called semidefinite. Figure 
12-14 shows a positive semidefinite function. 

These definitions are generalizations of the idea of positive definite and 
negative definite quadratic forms. 

Now let the "ls in these definitions be solutions of Eqns. (12.19}; then 

dV 2n 8V 2n 8V 
& = L: an ils = L: an 9s 

s=l •ts s=l •ts 

(12.20} 

v 

v 

Fig. 12-12 Fig. 12-13 
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We now define a Liapunov function as a function V ( ·) in n definite 
in sign for which dVfdt is semidefinite and opposite in sign to V(·), or 
dV / dt = 0. The key result is then the following. 

Liapunov's Theorem. If a Liapunov function can be constructed 
for Eqns. (12.19), then the equilibrium position is stable. A geometric 
proof of the theorem follows from Fig. 12-15. The properties of V(-) 
ensure that the motions due to small perturbations from equilibrium 
either tend to zero or remain small. 

Application to Dynamics. Consider a natural (holonomic, scle
ronomic, conservative) system. Lagrange's equations for such a system 
are2 

s = 1,··,n (12.21) 

Because the system is scleronomic, the transformation equations to gen
eralized coordinates are time independent, and therefore, from Eqn. (6.2) 
the equilibrium condition is T = 0. The equations defining the equilib
rium condition are thus: 

av-o· 
8qs- ' s = 1,··,n (12.22) 

This equation is a necessary condition for an unbounded extremal point 
of V; that is, V has a stationary value at an equilibrium point. Also, 
since the system is closed, energy is conserved: 

E=T+V=h (12.23) 
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Dirichlet's Stability Theorem. An equilibrium solution of the 
equations of motion for the class of systems defined above is stable if 
the stationary value of the potential energy is a minimum relative to 
neighboring points. 

To prove this theorem, it suffices to show that E is a Liapunov func
tion. Let qi, · · · , q~ be the equilibrium values, and let 111, ··, 1Jn be small 
perturbations from these values; that is qr = q; + 1Jri r = 1, ··, n. Then 
V = V(TJt, ··, TJn). Choose the datum for V such that V(O, ··, 0) = 0. 
Then, since V has a minimum at 1Jl = 0, ··, 1Jn = 0, V is positive at 
neighboring points and V is a positive definite function. From Section 
6.1, T is always positive definite so that E = T + V is positive definite. 
Also, E = h = const. implies that dE I dt = 0. Consequently, E is a 
Liapunov function and by Liapunov's Theorem the equilibrium is stable. 

Example. Consider again the double pendulum (Fig. 12-6), for 
which 

V = 2mgf(1- cosllt) + mgf(1- cos02 ) 

Consider the equilibrium position (a), Oi = 02 = 0. We see that: (i) 
V(O, 0) = 0 and (ii) V(Ot, 02) > 0 for all sufficiently small 01 and 82. Thus 
V is positive definite. Since the system is closed, energy is conserved and 
dE I dt = 0. Consequently, E is a Liapunov function and the equilibrium 
is stable. 

Remark. In all but the simplest problems, there is no systematic 
procedure for finding Liapunov functions and they are generally very 
difficult to find. 

Nonantonomous Case. In this case, one or more of the perturba
tion equations contains time explicitly: 

TJs = 9s(1Jl, ··, 112n, t) ; s = 1, ··, 2n (12.24) 

We now need to introduce two functions V(TJt, ··, 1J2n, t) and W(771, ··, 172n) 
such that (i) they vanish at (TJr, ··, 1J2n) = (0, ··, 0), (ii) they are single
valued and of class C 1 inn, and (iii) W(·) is positive definite. Then: 

(1) If V(·) 2: W(·) for all (171, ··, 1J2n) En, 
then V ( ·) is positive definite. 

(2) If V(·) ~ W(·) for all (TJr, ··, 1J2n) En, 
then V ( ·) is negative definite. 

(12.25) 
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The change in V ( ·) along a trajectory is now 

dV 2
n av av 

di= La9s+8t 
s=l "'s 
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(12.26) 

For this case, we call a function V ( ·) a Liapunov function if it is definite 
in sign in accordance with definitions (12.25) and dVjdt as given in Eqn. 
(12.26) is semidefinite with opposite sign of V(·). 

Liapunov's Theorem (nonantonomous case). If there exists a 
Liapunov function for Eqns. (12.24), the reference motion is stable. 

The proof of this theorem is similar to that for the autonomous case. 
If the conditions of the theorem are satisfied, the function V ( ·) will stay 
"completely inside" the function W(·) (Fig. 12-16), ensuring that motion 
will tend to zero or remain small. It is clear that this is a much stronger 
requirement than for the autonomous case, and that Liapunov functions 
will be even more difficult to find. 

v 

,~, 
~ s "'''''~ 
~ -space~ 
~ 

Fig. 12-16 

Notes 

1 More precisely, '!l = (y1, ··, Y2n)T where T denotes transpose. 

2 Caution: We are using the same symbol, V, for two different functions, Lia
punov and potential energy functions. 
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PROBLEMS 

12/1. Investigate the stability of equilibrium position (c) of the double 
plane pendulum by using linearized equations. 

12/2. Investigate the stability of equilibrium position (d) of the double 
plane pendulum by using linearized equations. 

12/3. A heavy, inverted pendulum of mass m is restrained by identical 
linear springs, as shown. The rigid rod has negligible mass. Ex
amine the stability of small motions about the inverted, vertical 
position by means of the linearized variational equations. 

Problem 12/3 Problem 12/5 

12/4. The torque-free motion of a rigid body about a point is given by 

fxWx - (Iy - fz)WyWz = 0 , 
fyWy- (/z- fx)WzWx = 0, 
fzWz- (/x- ly)WxWy = 0. 

Use the linearized variational equations to examine the stability 
of the steady-state rotation Wz = n = const, Wy = Wz = 0. In 
particular, show that the motion is unstable if lx is intermediate 
in magnitude between ly and lz. 

12/5. A heavy pendulum of mass m rotates with constant angular veloc
ity about the vertical, as shown. The rigid rod has negligible mass. 
Show that there exist three steady-state motions, for one of which 
the pendulum angle with the vertical is a non zero constant, and 
examine the stability of all three steady motions by means of the 
linearized variational equations. 

12/6. Find a Liapunov function for the system of Problem 12/3 thus 
verifying the results of the linear analysis. 
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12/7. Investigate the functions 

and 

as Liapunov functions for the motion of Problem 12/4. 

12/8. Investigate the function 

V = iP + w2 (cos2 (} + 2a(1 -cos 0)] 

as a Liapunov function for the steady motion with (} not zero of 
Problem 12/5. If this is not an £-function, can you find one? 

12/9. Show that the equilibrium point (} = - i of Problem 7/3 is stable 
by finding a Liapunov function. 

12/10. Show, by both the indirect and direct methods, that the equilib
rium position of Problem 4/2 is stable. 




