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8.1 Introduction

Registration is basically the process of estimating the spatial transformation

that matches two images. Registration is especially important when analyzing

motion and deformations of natural phenomena. Registration is a very active

field of research. Various techniques have been proposed so far, concerning

rigid and non-rigid methods.

Rigid registration is adapted in many applications except in some situations:

complex deformations such as soft tissue deformation, evolution of lesions over

time, matter appearance or dissipation and so on. Therefore, non-rigid registra-

tion methods (also called deformable registration) have been developed. This

chapter will be mostly concerned with non-rigid registration methods and more

particularly with a specific application: registration of brains of different sub-

jects.

During the last few years, the development of electronic brain atlases has

emerged by overcoming some limitations of traditional paper-based atlases [49,

62, 81, 92, 97, 139]. To do so, non-rigid intersubject registration methods have

been developed in order to account for the intersubject variability [92].
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Electronic atlases have two main purposes:

� Automatic segmentation of a given subject by matching the segmentation

and labeling of anatomical structures of a template. Labels of the template

can be deformed into another subject, under the assumption that there is a

total relation between the points of the atlas (source) and the points of the

studied subject (target). This objective has been pursued for a long time

in medicine and was traditionally treated by paper atlases with generally

rather simple transformations. The most known example is the atlas of

Talairach with its famous AC-PC referential and its related proportional

squaring [131].

� Understanding of brain functions. Many techniques have been developed

to record brain activity (SPECT, PET, MEG/EEG, fMRI). However, the links

between anatomy and functional organization are often not well known:

the superimposition of multiindividual neurofunctional recordings on the

same anatomy is useful to better understand the human brain functional or-

ganization. In this case, inherent anatomical variability between individu-

als may disturb this interpretation. Therefore, spatial normalization, which

is the goal of non-rigid registration methods, makes it possible to study the

functional variability. A better knowledge of this anatomy-function rela-

tionship is of great interest for the researcher in cognitive neuroscience,

as well as for the surgeon and the neurologist who intend to delineate

relevant functional areas before surgery.

This chapter is divided into two sections: an overview with classification

of non-rigid registration techniques will be presented first. The Romeo algo-

rithm (robust multigrid elastic registration based on optical flow) will then be

described.

8.2 Overview of Non-Rigid Registration

Methods

8.2.1 Introduction

Non-rigid registration is a very active field of research and numerous methods

have been proposed. This section does not intend to propose an exhaustive
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list of methods but to present generic and up-to-date methods. The interested

reader will refer to [19, 60, 61, 87, 90, 91, 140, 143, 151] for a complete survey

on this subject. This section will therefore be restricted to an overview with

classification of non-rigid registration methods, more particularly applied to

non-rigid registration of brains of different subjects.

Methods can generally be classified according to the following criteria:

� Features that will be matched. This includes both the dimension of the

data (classically from 2D to 4D) as well as the homologous structures that

are chosen for matching.

� Transformation type. This includes the transformation domain: local or

global. A transformation is called “global” when the modification of one

parameter affects the entire image. This also includes the transformation

type (rigid, affine, projective and so on).

� The similarity measure. The similarity models the interaction between the

data (features used for matching defined above) and the variables to be

estimated (parameters of the transformation for instance).

� The regularization. The regularization can be implicit (regularized trans-

formation model for instance) or explicit (first-order regularization for

instance).

� The optimization method. Once the registration problem has been formal-

ized, the optimization plays a crucial role in estimating the registration

variables.

We have chosen to divide non-rigid registration methods into two classes:

geometrical methods that are based on the extraction and matching of sparse

features; and photometric (or intensity-based) methods that exploit luminance

information directly.

8.2.2 Geometric Methods

The amount of data in a 3D MR image is enormous: it contains more than 10

million voxels. The computation of a dense deformation field is a tough problem:

more than 40.106 variables have to be estimated. This complexity has motivated

geometric methods: sparse anatomical features reduce the dimension of the
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problem. Methods that are presented here extract geometrical features from

images and compute a transformation that matches these features while inter-

polating smoothly the deformation throughout the image.

8.2.2.1 Points

Earliest methods rely on points. The most famous one, which is still a reference in

the field of neuroscience, is the Talairach stereotaxic space [130]. It has then been

extended to the Talairach proportional squaring system [132]. Both methods rely

on the identification of the anterior comissure AC and posterior comissure PC,

as well as five brain extrema which makes it possible to specify a partition of the

volume into 12 subvolumes. The transformation associated with the Talairach

proportional squaring system is a piecewise linear one that makes it possible

to embed the brain into a “box” centered at AC and whose anatomical axes are

known. This framework is known to be quite accurate in the central region but

less accurate for cortical areas.

Other authors have proposed methods based on anatomical points to register

brains of different subjects [16, 26, 50, 116]. However, the number of points that

can be reproducibly identified among a population of subjects is limited. It has

been evaluated as 36 [38] or 26 [50]. This number of points seems limited to

understand the intersubject variability; in addition to this, the extraction step

might be erroneous. To limit the dependency toward extraction, some authors

have proposed differential geometry operators to automate the process [135,

114, 115].

8.2.2.2 Curves

Guéziec [66], Subsol [126] and Declerck [41] describe methods to register two

volumes thanks to curves: smoothing and curve matching in [66], application to

the registration of brains in [41], building of skull atlases in [126]. Crest lines,

introduced by Monga et al. [100], are defined as maximal curvature points and

can be automatically extracted using the marching lines algorithm [137].

Gueziec et al. [66] approximate curves using B-splines. This enables the

direct computation of features such as position, curvature and so on. Curves are

then registered using an iterative approach like the Kalman filter. Subsol [126]

and Declerck [41] have extended the ICP algorithm (Iterative closest points
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proposed by Zhang [150] and Besl [12]). The iterative approach matches each

point with the closest point on the target curve. [41] models the transformation

as a B-spline while [126] estimates successively a rigid, affine, polynomial and

spline transformation.

8.2.2.3 Surfaces

In 3D medical imaging, anatomical structures are likely to be closed surfaces

than points or curves. Several authors [51, 56, 138, 128] have therefore proposed

methods to register brain surfaces (like ventricles, central nuclei, brain surface).

In a nutshell, deformable models have been extensively used for segmentation

of medical images [8, 15, 94]. They can lead either to an explicit representation

of contours (e.g., snakes) or to an implicit representation of contours (e.g., level

sets [124]).

Thompson and Toga [138] have proposed an original method based on the

extraction and matching of the cortical surface. Surfaces are first modeled by

a superquadric [25] than refined by the “balloons” method [32]. Feldmar et al.

[52] have extended the curve matching methods (see Section 8.2.2 to the regis-

tration of free-form surfaces. The iterative approach matches points of similar

curvature.

8.2.2.4 From “Contour” to Volume

We have previously presented registration methods based on the extraction

and matching of sparse features. The next step is to extrapolate smoothly the

deformation to the entire volume. To do so, two kinds of approaches can be

used: thin plate spline methods and free form deformations.

The thin plate spline (TPS) approach consists in minimizing a functional

under constraints. Initiated by Duchon [47] and Meinguet [95], this method is

now widespread, thanks to the work of Bookstein [16]. The problem can be

formulated as the minimization of:

min
u

∫
|∇mu(x)|dx, under the constraint ∀i ∈ E,u(ai) = αi,

where u is the deformation field, E is the set of contour points, ai being

matched with αi. Bookstein describes the TPS method that minimizes the en-

ergy of a thin plate under constraint. The solution can be expressed as local
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solutions of the biharmonic equation �2U = 0 at different scales. Solutions are

expressed as z(x, y) = −U(r) = −r2 log(r2) in dimension 2 (with r =
√

x2 + y2)

and z(x, y) = |r| in dimension 3 (with r =
√

x2 + y2 + z2). This spline transfor-

mation ensures the matching of landmarks as well as a smooth interpolation

of the deformation. Chui and Rangarajan have proposed the TPS-RPM algo-

rithm [30] where they address both the correspondence and the transformation

problem. They propose the softassign algorithm to solve the correspondence

problem and the TPS for the transformation.

Another approach is the use of free-form deformations [123]. Initially intro-

duced to model and deform objects [6, 148], they have also been used to model

deformations [43, 64, 70, 96, 107, 117, 129, 134]. Splines models are quite powerful

to extrapolate deformations indeed.

8.2.3 Photometric Methods

The number of features that can be extracted reproductively among a population

of subjects is rather low. Therefore, photometric (also called “intensity-based” or

iconic) methods have been developed to take into account the entire information

of the volume. Photometric methods rely on a similarity (or dissimilarity) that

measures the dependency between two volumes. We have chosen to present the

registration methods according to the following classification: methods that de-

rive from the laws of continuum mechanics; methods that use cross-correlation;

the demon’s method; methods based on optical flow, and finally methods that

estimate jointly an intensity correction and a geometrical transformation.

8.2.3.1 Models Based on Continuum Mechanics

Considering two MR images of two different subjects, the estimation of a “plau-

sible” transformation must be sought. The notion of a “plausible” transforma-

tion in this context being particularly difficult to state, some authors have pro-

posed to comply with the laws of continuum mechanics, either elastic or fluid

(Section 8.2.3).

8.2.3.2 Elastic Models

Elastic models have been introduced by Broit [18] and extended by Bajcsy and

Kovacic [4, 5]. These models are nowadays used by various authors [39, 38, 54,
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59, 104, 105, 118, 121, 146]. The estimated deformation field should basically

obey the rule of the Navier equation:

µ∇2u+ (λ+ µ)∇(div(u))+ F = 0,

where u is the deformation field to estimate, λ and µ are the Lame coef-

ficients and F is the sum of forces that are applied on the system. The

problem is to specify the forces F that will lead to a correct registration.

Bajcsy proposes to compute these forces so as to match the contours [5].

Davatzikos [39] and Peckar [104] do not compute any forces but segment the

brain surface and the ventricles using two different methods. The matching

of these surfaces provide boundary conditions that make it possible to solve

the problem. These two approaches are therefore sensitive to segmentation

errors.

The use of elastic methods raises the following questions:

� What should be the values of Lame coefficients? The choice of these coef-

ficients influence the deformation. Earliest work proposed that λ = 0 but

it appears nowadays to be a limitation.

� This modeling cannot handle large deformations. As a matter of fact, the

equation of Navier is only valid for small displacements. To solve this

problem, two kind of approaches can be used. A rigid registration can

provide a good initialization (Bajcsy [5] uses principal inertia axes and

Davatzikos [38] uses the stereotaxic space). Another way [104] is to solve

the problem iteratively using a multiresolution approach.

� The topology of present structures will be preserved. This may be inter-

esting in some applications but more questionable when matching brains

of different subjects. Ono [103] has shown that cortical structures are not

topologically equivalent among subjects indeed.

8.2.3.3 Fluid Models

Following the same inspiration as elastic models, Christensen and Miller [27]

propose to compute a deformation that obeys the rule of fluid mechanics (equa-

tion of Navier–Stokes). The major difference with the elastic modeling is the

fact that the fluid continuously “forgets” about its initial position. Large displace-

ments and complex motions are therefore much easier to handle. The equation
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of Navier–Stokes can be written as

∂ �u
∂t
− ν� �u+ (�u · �∇) �u+ �∇ p = 0

where ν is the fluid viscosity, �u its speed and �p its pressure. This equation is

highly non-linear (cross-terms) and its resolution is complex, leading to large

computation times. Christensen imposes the constraint that the Jacobian be

positive [27], leading to an homeomorphic transformation.

Christensen and Johnson [28] have extended the registration approach to

introduce the reversibility constraint. Given two subjects A and B, the method

jointly estimates transformation from A to B and from B to A. The inverse

consistency error is zero when the forward and reverse transformations are

inverses of one another. Furthermore, the transformations obey the rules of

continuum mechanics and are parameterized by Fourier series.

Bro-Nielsen [17] has proposed an improvement to solve the following partial

differential equation:

Lv = µ∇v(x)+ (λ+ µ) div(v) = f (x,u (x))

where u is the displacement and v the instantaneous speed. For a small time

change, internal forces are constant and the equation is linear. While Christensen

uses a finite element scheme, Bro-Nielsen considers the impulse response asso-

ciated with operator L. The solution is then expressed as linear combinations of

eigenvectors of operator L. This significantly decreases the computation time.

Wang and Staib [146] have also proposed two methods that obey the rule of

continuum mechanics. The methods respect the properties of elastic solids or

viscous fluids. A statistical shape information (sparse set of forces) is mixed with

a luminance information (dense set of forces within a Bayesian framework).

8.2.3.4 Correlation

Cross-correlation is a widespread similarity measure. It has been used by popular

methods such as ANIMAL [35] and Gee et al. [59]. ANIMAL uses a multireso-

lution strategy to estimate local linear transformations that maximizes cross-

correlation. At a resolution level σ , the regularization is based on the statement

that the norm of displacement vectors should not exceed σ . Colllins et al. [36]

has extended ANIMAL so that sulcal constraints can be taken into account in

the registration process.
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Gee, first interested in mechanical models [59], adopted a statistical Bayesian

framework [58]. Let us note IR the reference volume, IT the target volume,

z= {IR, IT } the data and u the deformation field. The problem is then to minimize

the cost functional:

P(z|u) ∝ exp−{
∫

x∈�T

S (IT (x), IR(x+ u (x))) dx},

where S is the similarity measure that has been chosen to be cross-correlation.

The regularization follows either a membrane model P(u) ∝ λ ∫ (u2
x + u2

y) dx or

a thin-plate model P(u) ∝ λ ∫ (u2
xx + 2u2

xy+ u2
yy) dx. Gee also made it possible

to incorporate landmark points in the registration process. If the transforma-

tion X matches pi with p′i, the associated potential is: P(Z = (pi, p′i)|θ = X) ∝
exp− 1

2σ 2
i

||X (pi)− p′i||2. This probabilistic approach is useful to mix mechani-

cal regularization, photometric similarity and landmark matching. It also make

it possible to experiment and compare different kinds of regularization [58].

Cachier et al. [21] have proposed the Pasha algorithm where the lo-

cal correlation coefficient is used. This coefficient can be efficiently com-

puted using convolutions with a Gaussian window function. The regulariza-

tion is a mixture of competitive and incremental regularization using quadratic

energies.

8.2.3.5 Demons

Thirion has proposed a method well known as the Demon’s algorithm [136]. At

each demon’s location, force is computed so as to repulse the model toward

the data. The force depends on the polarity of the point (inside or outside the

model), the image difference and gradients. For small displacements, it has been

shown that the demon’s method and optical flow are equivalent. The method is

alternated: computation of forces and regularization of the deformation field

by a Gaussian smoothing. The choice of the smoothing parameter is therefore

important. The Demon’s algorithm has been successfully used by Dawant et al.

[40].

Cachier and Pennec [106] have shown that the Demon’s method can be

viewed as a second-order gradient descent of the SSD (Sum of Square Differ-

ences). This amounts to a minmax problem: maximization of similarity and

regularization of solution.
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8.2.3.6 Displaced Frame Difference and Optical Flow

The displaced frame difference (DFD) measures the difference between

voxel intensities. It can be used either directly [1, 101, 144] or linearized

(known as optical flow) [46, 76, 125]. The DFD is known to be highly non-

linear whereas optical flow is linear. However, optical flow is only valid for

small displacements and can estimate motion only in the direction of the

image gradient (aperture problem). In both cases, this similarity will not

be valid if luminance is not conserved (this may happen because of im-

age acquisition, acquisition systems or parameters, MR inhomogeneities and

so on).

Close to mechanical approaches, Song and Leahy [125] and Devlaminck

[46] have proposed to estimate the optical flow with a mechanical reg-

ularization. More specifically, when images are density images (the lumi-

nance is directly related to a physical quantity), the mass conservation hy-

pothesis may be introduced to constraint the estimation in a plausible way

[37, 125].

In the field of cardiac imaging, Reissmann et al. [112] have proposed to use

the neuractive pyramid to register images using the optical flow. The elastic grid

that is the kernel of the deformation deforms so as to reject the discontinuities

at boundaries of the grid. The minimization is therefore alternated between the

deformation and the optimal shape of the grid.

The SPM spatial normalization approach [2] estimates warps by matching

each skull-stripped image to the skull-stripped reference. Registration involves

minimizing the mean squared difference between the images, which had been

previously smoothed by convolving with an isotropic 8 mm FWHM Gaussian

kernel. The non-rigid deformation is modeled by a linear combination of low-

frequency cosine transform basis functions [2]. Displacements in each direction

are parameterized by 392 basis function coefficients, making a total of 1176

parameters in total. Regularization is obtained by minimizing the membrane

energy of the warps.

Vemuri [144] also uses the optical flow but models the deformation as a

combination of splines similarly to [127]. Finally, Musse et al. [101] describe a

hierarchical method to estimate the deformation using the SSD criterion. The

solution is sought as a combination of the spine’s functions that ensure the

regularity of the solution.
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8.2.3.7 Joint estimation of Intensity and

Geometric Transformations

Many artifacts can modify the luminance of an MR image. One of them is the

inhomogeneity of the magnetic field for instance [80]. As a consequence, the

hypothesis of luminance conservation might not be valid anywhere. One solu-

tion consists in using robust estimators to get rid of inconsistent data. Another

solution consists in estimating jointly an intensity correction and a spatial trans-

formation [53, 55, 65].

Gupta and Prince [65] propose an affine correction model for tagged MR:

f (r+ dr, t + dt) = m(r,dr, t, dt) f (r, t)+ c(r,dr, t, dt). The optical flow equa-

tion then becomes:

f (r, t)+ ∇ f (r, t) ·U(r, t)− f (r, t)
∂m (r, t)
∂t

− ∂c(r, t)
∂t

= 0.

The equation is solved in a variational framework using a first-order regular-

ization.

Friston [55] and Feldmar [53] propose to embed the intensity correction and

the spatial transformation in the same cost functional:

C(f, g) =
∑
Mi∈i1

(I2( f (Mi))− g(I1(Mi),Mi))2,

where f is the 3D transformation and g is the intensity correction. Feldmar

generalizes this approach and considers 3D images as 4D surfaces. The criterion

becomes:

C(f, g) =
∑

(xj ,ij)

d ((f (xj), g(xj, ij)),C P4D(f(xj), g(xj, ij)))2,

where xj is the point of intensity ij and C P4D is the function that renders the

closest point. In this sense, this method is a generalization of the ICP (iterative

closest point) algorithm. Functions f and g can be modeled according to the

application. For instance, for a intra-subject monomodal registration, f is rigid

and g is the identity. For inter-subject registration, f can be a combination of

radial basis functions and f should correct acquisition artifacts.
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8.2.3.8 Non-Rigid Multimodal Registration

Although many efforts have been made to perform rigid multimodal registration,

as far as we know, there has been few research concerning non-rigid multimodal

registration. As a matter of fact, this is quite a challenging problem, since the

number of variables to be estimated can be very large (intensity mapping, and ge-

ometrical transformation, the two being dependent). Two different approaches

have been developed.

One option is to estimate the geometrical transformation with the original

intensities of the two images to be registered. In this category, Maintz et al. [89]

and Gaens et al. [57] proposed an algorithm that seek a non-rigid transformation

by maximization of mutual information. They use a “block-matching” minimiza-

tion scheme with a Gaussian filtering of the estimated deformation field to avoid

blocky effects. On local windows, the estimation does not take into account the

spatial context of the deformation field and only a translation is estimated. Fur-

thermore, these methods are only performed in 2D. Rueckert et al. [117] and

Kybic et al. [84] proposed an approach based on cubic B-splines and mutual

information. The spline deformation model intrinsically contains the regulariza-

tion and provides a smooth interpolation of the field. Displacement of the nodes

are computed such as to maximize the similarity measure (mutual information,

or normalized mutual information).

Another appealing option has been proposed by Guimond et al. [63]. This

method considers the multimodal registration problem as a monomodal registra-

tion problem, and therefore estimates alternatively an intensity correction and

a monomodal registration. The originality of the method resides in the decom-

position of the problem into two “easier” ones: a polynomial intensity mapping

and a monomodal registration problem based on the demon’s algorithm [136].

8.2.4 Discussion

This section has presented a brief overview of non-rigid registration techniques.

Methods have been arbitrarily classified into two groups: geometric methods that

rely on the extraction and matching of geometrical features; and photometric

methods (or intensity-based) that rely on the luminance information directly.

Geometric methods are attractive because they rely on anatomical features.

The deformation is expected to be consistent in the vicinity of features that

are used. In addition, the complexity is significantly reduced compared to the
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method that uses the entire data. Despite these advantages, these methods ap-

pear limited in the context of inter-subject registration. As a matter of fact, the

number of features that can be reproductively identified among a population

of subjects is limited compared to the inter-subject variability. Furthermore, a

lot of information present in the data are not used by geometric methods while

photometric take advantage of all information available. This rapid comparison

may explain the popularity of photometric methods, which has been proved in

the particular context of rigid multimodal fusion [147].

Photometric methods differ by numerous aspects. Among them, two impor-

tant ones are the similarity measure and the regularization.

The choice of the similarity is crucial since this models the interaction be-

tween the data and the estimated variables. Roche et al. have shown [113] that

the choice of a similarity can be guided by the a priori knowledge that we have

about the data. Regularization is also crucial since it expresses the a priori

knowledge that we have about the deformation. The choice of a correct regular-

ization in the context of inter-subject normalization is difficult and still debated

since we do not know what should be the “ideal” deformation field between

two brains of two different subjects. Regularization often conserves the topol-

ogy of brain structures. While valid for internal structures such as ventricles,

the conservation of topology is a strong hypothesis when dealing with corti-

cal structures. Anatomists have indeed shown that cortical sulci have different

shapes and topology among individuals [103].

Recently there has been an increasing number of promising methods

[22, 29, 36, 68, 73, 79, 141] that combine the benefits of photometric and ge-

ometric approaches to register brains of different subjects. In these methods,

landmarks are used to drive the registration process so that the deformation

field is consistent with the matching of sparse anatomical structures.

8.3 Romeo: Robust Multigrid Elastic

Registration Based on Optical Flow

8.3.1 Introduction

We consider the registration problem as a motion estimation problem, which

has been studied by different authors [7, 9, 10, 11, 13, 31, 76, 82, 102, 120]. Our
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3D method performs a non-linear multimodality registration of MRI acquisition

of different subjects. The similarity measure that we use incorporates robust

estimators whose utility is twofold: on the one hand we want to limit the influence

of the acquisition noise, on the other hand, we want to cope with possible

modifications of structures’ topology [75].

Since the luminance of MR images might not be directly comparable, we

propose an intensity correction scheme that is anatomically consistent [71].

This correction method will be described in Section 8.3.2. Then volumes to be

registered are rigidly aligned by maximizing mutual information (described in

Section 8.3.2).

Many tasks in computer vision may be expressed as the minimization of a cost

function. The optimization is often difficult to achieve, because the cost function

is non-convex and because the optimization involves a very large number of

variables. Therefore efficient iterative multigrid (or multilevel) approaches have

been developed [67, 93] and applied in motion estimation [48] and in early vision

[133].

To take into account large deformations, we use a multiresolution optimiza-

tion scheme. Besides, at each resolution level, we use a multigrid minimization

to accelerate the algorithm and improve the quality of the estimation. Within

this hierarchical approach, we designed an adaptive partition of the volume to

refine the estimation on the regions of interest and avoid useless efforts else-

where. An anatomical segmentation of the cortex is introduced and used in two

ways: at each resolution level, we initialize the partition as an octree subdivision

based on the segmentation, and the segmentation mask is used in the subdivision

criterion which controls the refinement of the estimation.

The method will first be extensively presented in Section 8.3.2. We will also

present an extension of this method to multimodal data [72] in Section 8.3.2.

Results on synthetic and real data will then be presented in Section 8.3.3.

8.3.2 Method

8.3.2.1 General Formulation

The optical flow hypothesis, or brightness constancy constraint, introduced by

Horn and Schunck [76], assumes that the luminance of a physical point does

not vary much between the two volumes to register. It amounts to zeroing the
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so-called DFD (displaced frame difference):

f (s+ws, t1)− f (s, t2) = 0,

where s is a voxel of the volume, t1 and t2 are the indexes of the volumes (tem-

poral indexes for a dynamic acquisition, indexes in a database for multisubject

registration), f is the luminance function and w the expected 3D displacement

field. The DFD may not be valid everywhere, because of noise and intensity

inhomogeneities of MR acquisition. The robustness of the registration process

with respect to acquisition artifacts will be discussed later on, the sections 8.3.2

and 8.3.3.

Generally, a linear expansion of this equation is preferred : ∇ f (s, t) ·ws +
ft(s, t) = 0 where ∇ f (s, t) stands for the spatial gradient of luminance and

ft(s, t) is the voxelwise difference between the two volumes. The resulting set

of undetermined equations has to be complemented with some prior on the de-

formation field. Using an energy-based framework (which can be viewed either

from the Bayesian point of view, or from the one of the regularization theory),

the registration problem may be formulated as the minimization of the following

cost function:

U(w; f ) =
∑
s∈S

[∇ f (s, t) ·ws + ft(s, t)]2 + α
∑

<s,r>∈C
||ws −wr||2, (8.1)

where S is the voxel lattice, C is the set of neighboring pairs w.r.t. a given neigh-

borhood system V on S (<s,r> ∈ C ⇔ s ∈ V(r)), and α controls the balance

between the two energy terms. The first term captures the brightness con-

stancy constraint, thus modeling the interaction between the field (unknown

variables) and the data (given variables), whereas the second term captures a

simple smoothness prior. The weaknesses of this formulation are known:

(a) Due to the linearization, the optical flow constraint (OFC) is not valid in

case of large displacements.

(b) The OFC might not be valid in all the regions of the volume, be-

cause of the acquisition noise, intensity non-uniformity in MRI data, and

occlusions.

(c) The “real” field is not globally smooth and it probably contains dis-

continuities that might not be preserved because of the quadratic

smoothing.
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To cope with the (b) and (c) limitations, we replace the quadratic cost by

robust functions. To face the problem (a), we use a multiresolution plan and a

multigrid strategy to improve the minimization at each resolution level.

We have here introduced a simple regularization term that makes almost

no assumption on the estimated deformation field. One could imagine choosing

different regularizations for the different brain tissues, but that involves specific

assumptions on the “real” deformation that we do not address in that paper. How-

ever, the introduction of a robust estimator on the regularization term makes it

possible to take into account possible discontinuities on the border of structures

having different physical properties.

8.3.2.2 Rigid Registration Step

Given two images with potentially large displacement, it first seems reasonable

to estimate a rigid transformation. This step is performed by estimating a rigid

transformation that maximizes mutual information [33, 145]. Given two images A

and B, considered as discrete random variables, let us note pA(a) and pB(b) their

respective marginal probability distribution, and pA,B(a, b) the joint distribution.

Mutual information I(A, B) is then defined as [33, 145]:

I(A, B) =
∑
a,b

pA,B (a, b) log2
pA,B(a, b)

pA(a)pB(b)
= H (A)+ H (B)− H (A, B),

with

H (A) = −
∑

a

pA(a) log2(pA(a)) and

H (A, B) = −
∑
a,b

pA,B(a, b) log2(pA,B(a, b)).

In some particular cases, such as brain images for instance, it is possible to

define a reference coordinate system that takes into account some information

about the scene (such as resolution of pixels/voxels, orientation of axes, etc.).

In such cases, the two volumes to be registered are mapped in this reference

coordinate system and the rigid transformation is expressed in this coordinate

system. If this a priori information is not available, the rigid transformation is

estimated in the coordinate system attached to the data.

The registration is performed through a multiresolution optimization scheme

(construction of a pyramid of volumes by successive isotropic Gaussian filtering
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and subsampling in each direction) [69, 109]. At each resolution level, the simi-

larity I(A, T(B)) is maximized w.r.t. the parameters of the transformation using

a Powell’s algorithm [110]. We calculate the joint histogram on the overlapping

part of A with T(B) by partial volume interpolation, the latter being known to

provide a smoother cost function.

8.3.2.3 Intensity Correction

The hypothesis of luminance conservation is strong and cannot stand when

considering a large database. Actually, studies nowadays involve distributed

databases. Since the MR acquisition can come from different systems, the inten-

sity difference of MR images of different subjects needs to be corrected prior to

registration. Let us formulate the problem as:

Given two 3D images I1 and I2, and their histograms h1 and h2, the problem is

to estimate a correction function g such that corresponding anatomical tissues

of g(I1) and I2 have the same intensity, without registering volumes I1 and I2 .

Estimation of Mixture Model. The intensity correction f should be

anatomically consistent, i.e., the intensity of gray matter (resp. white mat-

ter) of g(I1) should match the intensity of gray matter (resp. white matter)

of I2. To ensure this coherence, we estimate a mixture of n Gaussian distri-

butions [3, 83, 86, 122, 149] that models the two histograms h1 and h2 using

the expectation-maximization (EM) algorithm [44] or a stochastic version, the

stochastic expectation maximization (SEM) algorithm [23].

Basically, the EM algorithm consists of two steps: Step E where conditional

probabilities are computed, and step M where mixtures parameters are esti-

mated so as to maximize the likelihood. Contrary to the EM algorithm, the SEM

algorithm consists in adding a stochastic “perturbation” between the E and M

step. The labels are then randomly chosen from their current conditional distri-

bution. The SEM algorithm is supposed to be less sensitive to initialization but

also to converge more slowly than the EM algorithm.

It is well known that the MR histogram can be roughly modeled as the mix-

ture of five Gaussian laws modeling the main tissues: background, cerebrospinal

fluid (CSF), gray matter (GM), white matter (WM) and a mixture of fat and

muscle. The Gaussian mixture has proved to be relevant for fitting MR-T1 his-

tograms [83]. It has also been shown that mixture tissues (interface gray-CSF and
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Gray-White) can also be modeled by additional Gaussian laws to model partial-

volume effects. To do so, a mixture of seven models can be used instead.

In every case (EM or SEM algorithm, five or seven Gaussian models), we

model each class κ by a Gaussian distribution of mean µκ (respectively, νκ) for

image I1 (respectively, image I2).

Parametric Correction. To align the intensities of the anatomical tissues

and to interpolate smoothly the correction, we choose a polynomial correction

function of order p (see [63] for a similar modeling of intensity correction) such

that gp(x) =∑i=p

i=0 θ
ixi. The coefficients θ i are estimated such as to minimize

the following cost:

l=n∑
l=1

(
g p(µ j)− ν j

)2
.

The intensity correction aims at aligning the mean values of each classes

while interpolating smoothly between the samples. This least-square problem

amounts to inverting a linear system of order p. The resulting correction can

then be applied to the voxel intensities of volume I1.

8.3.2.4 Robust Estimators

Cost function Eq. (8.1) does not make any difference between relevant data

and inconsistent data, nor between neighboring pairs where the field is smooth

and neighboring pairs where the field is discontinuous. Therefore, we introduce

robust functions [77] and more precisely two robust M-estimators [14], the first

one on the data term and the second one on the regularization term. We do not

describe in details the properties of robust M-estimators, referring the reader to

[14, 98] for further explanations. The cost function (8.1) can then be modified as:

U(w; f ) =
∑
s∈S

ρ1 (∇ f (s, t) ·ws + ft(s, t))+ α
∑

<s,r>∈C
ρ2 (||ws −wr||) . (8.2)

According to some properties of robust M-estimators [14, 24], it can be shown

that the minimization of U (Eq. 8.1) is equivalent to the minimization of an

augmented function, noted
∗

U :

∗
U (w, δ, β; f ) =

∑
s∈S

δs (∇ f (s, t) ·ws + ft(s, t))2 + ψ1(δs)+ α

×
∑

<s,r>∈C
βsr||ws −wr||2 + ψ2(βsr), (8.3)
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where δs and βsr are auxiliary variables (acting as “weights”) to be estimated.

This cost function has the advantage to be quadratic with respect to w. It also

shows clearly that, when a discontinuity gets larger, the contribution of the

pair of neighbors is limited by the reduction of the associated weight βsr . The

minimizers of
∗

U with respect to the auxiliary variables are obtained in closed

form [14, 24]. The overall minimization of such function consists in an alternated

weights computation and quadratic minimizations (with respect to w).

8.3.2.5 Multiresolution Incremental Computation

of the Optical Flow

In cases of large displacements, we use a classical incremental multiresolution

procedure [11, 48] (see Fig. 8.1). We construct a pyramid of volumes { f k} with

successive Gaussian smoothing and subsampling in each direction [20]. For each

direction i = x, y, z, di is the spatial resolution of a voxel (the spatial resolution

of MR acquisition is around 1 mm, depending on the system). We perform a

Gaussian filtering using the recursive implementation proposed in [45] with a

standard deviation of 2di in direction i, in order to satisfy Nyquist’s criterion.

This implementation allows to perform infinite impulse response filtering at a

constant computation cost.

At the coarsest level, displacements are reduced, and cost function (8.3) can

be used because the linearization hypothesis becomes valid. For the next resolu-

tion levels, only an increment dwk is estimated to refine the estimate ŵ
k obtained

ŵ

Resolution
level k

Resolution
level k − 1

minimization
dwk =   0

dwk − 1 = 0
minimization

Projection

Resolution level k + 1

Resolution     level k −  2

ˆ ˆ

ŵk − 1

ˆdwk +  wkˆ

k

dwk − 1  +  wk − 1

Figure 8.1: Incremental estimation of the optical flow.
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from the previous level. We perform the registration from resolution kc until res-

olution k f (in general k f = 0). This is done using cost function (8.2) but with

∇ f̃ k(s, t)
�=∇ f k(s+ ŵ

k
s, t2) and f̃ k

t (s, t)
�= f k(s+ ŵ

k
s, t2)− f k(s, t1) instead of

∇ f k(s, t) and f k
t (s, t).

To compute the spatial and temporal gradients, we construct the warped

volume f k(s+ ŵ
k
s, t2) from volume f k(s, t2) and the deformation field ŵ

k
s , using

trilinear interpolation. The spatial gradient is hence calculated using the recur-

sive implementation of the derivatives of the Gaussian [45]. At each voxel, we

calculate the difference between the source volume and the reconstructed vol-

ume, and the result is filtered with a Gaussian to construct the temporal gradient.

As previously, these quantities come from the linearization of the constancy as-

sumption expressed for the whole displacement ŵ
k
s + dwk

s . The regularization

term becomes
∑
<s,r>∈C ρ2(||ŵk

s + dwk
s − ŵ

k
r − dwk

r ||).

8.3.2.6 Multigrid Minimization Scheme

Motivations. The direct minimization of Eq. (8.3) is intractable. Some iter-

ative procedure has to be designed. Unfortunately, the propagation of infor-

mation through local interaction is often very slow, leading to an extremely

time-consuming algorithm. To overcome this difficulty (which is classical in

computer vision when minimizing a cost function involving a large number of

variables), multigrid approaches have been designed and used in the field of

computer vision [48, 98, 133]. Multigrid minimization consists in performing the

estimation through a set of nested subspaces. As the algorithm goes further,

the dimension of these subspaces increases, thus leading to a more accurate

estimation. In practice, the multigrid minimization usually consists in choosing

a set of basis functions and estimating the projection of the “real” solution on

the space spanned by these basis functions.

Description. At each level of resolution, we use a multigrid minimization

(see Fig. 8.2) based on successive partitions of the initial volume [98]. At each

resolution level k, and at each grid level �, corresponding to a partition of cubes,

we estimate an incremental deformation field dwk,� that refines the estimate

ŵ
k, obtained from the previous resolution levels. This minimization strategy,

where the starting point is provided by the previous result—which we hope

to be a rough estimate of the desired solution—improves the quality and the
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Figure 8.2: Example of multiresolution/multigrid minimization. For each res-

olution level (on the left), a multigrid strategy (on the right) is performed. For

legibility reasons, the figure is a 2D illustration of a 3D algorithm with volumetric

data.

convergence rate as compared to the standard iterative solvers (such as Gauss–

Seidel).

At grid level �,�� = {�n,n= 1, . . . , N�} is the partition of the volume B into

N� cubes �n. At each grid level � corresponds a deformation increment Tk,�

that is defined as follows: A 12-dimensional parametric increment deformation

field is estimated on each cube �n, hence the total increment deformation field

dwk,� is piecewise affine. At the beginning of each grid level, we construct a

reconstructed volume with the target volume f k(s, t2) and the field estimated

previously (see section 8.3.2). We compute the spatial and temporal gradients at

the beginning of each grid level and the increment deformation field dwk,� is ini-

tialized to zero. The final deformation field is hence the sum of all the increments

estimated at each grid level, thus expressing the hierarchical decomposition of

the field.

Contrary to block-matching algorithms, we model the interaction between

the cubes (see Section 8.3.2) of the partition, so that there is no “block-effects”

in the estimation. At each resolution level k, we perform the registration from

grid level �c until grid level � f . Depending on the application, it may be useless

to compute the estimation until the finest grid level, i.e., � f = 0. We will evaluate

this fact later on (see section 8.3.3).

Adaptive Partition. To initialize the partition at the coarsest grid level �c,

we consider a segmentation of the brain obtained by morphological operators.

After a threshold and an erosion of the initial volume, a region growing pro-

cess is performed from a starting point that is manually chosen. A dilatation
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operation allows us to end up with a binary segmentation. At grid level �c, the

partition is initialized by a single cube of the volume size. We iteratively divide

each cube as long as it intersects the segmentation mask and as long as its

size is superior to 23�c . We finally get an octree partition which is anatomically

relevant.

When we change from grid level, each cube is adaptively divided. The sub-

division criterion depends first on the segmentation mask (we want a maxi-

mum precision on the cortex), but it also depends on the local distribution

of the variables δs (see Eq. (8.3)). More precisely, a cube is divided if it inter-

sects the segmentation mask or if the mean of δs on the cube is below a given

threshold. As a matter of fact, δs indicates the adequation between the data

and the estimated deformation field at voxel s. Therefore, this criterion mixes

an indicator of the confidence about the estimation with a relevant anatomical

information.

8.3.2.7 Parametric Model

We now introduce the deformation model that is used. We chose to consider an

affine 12-parameter model on each cube of the partition. That kind of model is

quite usual in the field of computer vision but rarely used in medical imaging.

If a cube contains less than 12 voxels, we only estimate a rigid 6-parameter

model, and for cubes that contain less than 6 voxels, we estimate a translational

displacement field. As we have an adaptive partition, all the cubes of a given grid

level might not have the same size. Therefore, we may have different parametric

models, adapted to the partition.

At a given resolution level k and grid level �, �k,� = {�n,n= 1 · · · Nk,�} is

the partition of the volume into Nk,� cubes �n. On each cube �n, we estimate

an affine displacement defined by the parametric vector �k,�
n : ∀s = (x, y, z) ∈

�n, dws = Ps�
k,�
n , with

Ps =

⎛⎜⎝ 1 x y z 0 0 0 0 0 0 0 0

0 0 0 0 1 x y z 0 0 0 0

0 0 0 0 0 0 0 0 1 x y z

⎞⎟⎠ .
A neighborhood system V k,� on the partition �k,� derives naturally from V (see

section 8.3.2):
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∀n,m∈ {1 · · · Nk,�},m∈ V k,�(n) ⇔ ∃s ∈ �n, ∃r ∈ �m\r ∈ V(s). C being the

set of neighboring pairs on Sk, we must now distinguish between two types

of such pairs: the pairs inside one cube and the pairs between two cubes:

∀n ∈ {1 . . . Nk,�}, < s, r >∈ C�n ⇔ s ∈ �n, r ∈ �n and r ∈ V(s).

∀n ∈ {1 . . . Nk,�}, ∀m∈ V �(n), < s, r >∈ C�nm ⇔ m∈ V l(n), s ∈ �n, r ∈ �m

and r ∈ V(s).

For the sake of concision, we will now drop the resolution index k. With

these notations, the cost function (8.3) becomes

∗
U
�

(��, δ�, β�; w, f �) =
N�∑

n=1

∑
s∈�n

δ�s
[∇ f̃ T

s Ps�
�
n+ f̃t(s, t)

]2 + ψ1
(
δ�s
)

+α
N�∑

n=1

⎡⎣ ∑
m∈V �(n)

∑
<s,r>∈C�nm

β�sr||
(
ws + Ps�

�
n

)− (wr + Pr�
�
m

)||2 + ψ2
(
β�sr

)⎤⎦
+α

N�∑
n=1

⎡⎣ ∑
<s,r>∈C�n

β�sr||
(
ws + Ps�

�
n

)− (wr + Pr�
�
n

)||2 + ψ2
(
β�sr

)⎤⎦ . (8.4)

Considering the auxiliary variables of the robust estimators as fixed, one

can easily differentiate the cost function (8.4) with respect to any ��n and get

a linear system to be solved. We use a Gauss-Seidel method to solve it for its

implementation simplicity. However, any iterative solver could be used (solvers

such as conjugate gradient with an adapted preconditioning would also be effi-

cient). In turn, when the deformation field is “frozen”, the weights are obtained

in a closed form [14, 24]. The minimization may therefore be naturally han-

dled as an alternated minimization (estimation of ��n and computation of the

auxiliary variables). Contrary to other methods (minmax problem like the de-

mon’s algorithm for instance), that kind of minimization strategy is guaranteed

to converge [24, 42, 99] (i.e., to converge toward a local minimum from any

initialization).

Moreover, the multigrid minimization makes the method invariant to inten-

sity inhomogeneities that are piecewise constant. As a matter of fact, if the

intensity inhomogeneity is constant on a cube, the restriction of the DFD on

that cube is modified by adding a constant. As a consequence, minimizing the

cost function 8.3.2 gives the same estimate, whenever the cost at the optimum

is zero or a constant (see section 8.3.3 for an illustration on that issue).
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8.3.2.8 Multimodal Non-Rigid Registration

We have proposed a multimodal version of Romeo [72] where the optical flow

is replaced by a more adapted and general similarity measure: mutual informa-

tion. Mutual information has been presented in the section dedicated to rigid

registration (8.3.2).

Let us note Tw as the transformation associated with the deformation field w.

The total transformation Tw ◦ T0 maps the floating volume B onto the reference

volume A. The field w is defined on SB, where SB denotes the lattice of volume B

(pixel lattice or voxel lattice). The cost function to be minimized then becomes:

U(w; A, B,T0) = −I(A, (Tw ◦ T0)(B))+ α
∑

<s,r>∈CB

||ws −wr||2,

whereCB is the set of neighboring pairs of volume B (if we noteV a neighborhood

system on SB, we have: < s, r >∈ CB ⇔ s ∈ V(r)).

A multiresolution and multigrid minimization are also used in this con-

text. At grid level � and on each cube �n, we estimate an affine displace-

ment increment defined by the parametric vector��n: ∀s ∈ �n, dws = Ps�
�
n,with

Ps = I2 ⊗ [1xsys] for 2D images, and Ps = I3 ⊗ [1xsyszs] for 3D images (operator

⊗ denotes the Kronecker product).

To be more explicit, in 3D we have:

Ps =

⎛⎜⎝ 1 xs ys zs 0 0 0 0 0 0 0 0

0 0 0 0 1 xs ys zs 0 0 0 0

0 0 0 0 0 0 0 0 1 xs ys zs

⎞⎟⎠ .
Let us note T��n, as the transformation associated with the parametric field

��n. We have T� = Tdw� and T��n = Tdw� |�n
, where Tdw� |�n

denotes the restriction

of T��n to the cube �n.

A neighborhood system V � on the partition �� derives naturally from V :

∀n,m∈ {1 · · · N�},m∈ V �(n) ⇔ ∃s ∈ �n, ∃r ∈ �m/r ∈ V(s). C being the set

of neighboring pairs on Sk, we must now distinguish between two types of such

pairs: the pairs inside one cube and the pairs between two cubes:

∀n ∈ {1 . . . N�}, < s, r >∈ C�n ⇔ s ∈ �n, r ∈ �n and r ∈ V(s).

∀n ∈ {1 . . . N�}, ∀m∈ V �(n), < s, r >∈ C�nm ⇔ m∈ V l(n), s ∈ �n, r ∈ �m

and r ∈ V(s).
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With these notations, at grid level �, the cost function can be modified as:

∗
U (��; A, B,T0,w

�) = −
N�∑

n=1

I
(
A,
(
T��n ◦ Tw� ◦ T0

)(
B|�n

))
+α

N�∑
n=1

⎡⎣ ∑
m∈V �(n)

∑
<s,r>∈C�nm

||(w�s + Ps�
�
n

)− (w�r + Pr�
�
m

)||2
⎤⎦

+α
N�∑

n=1

⎡⎣ ∑
<s,r>∈C�n

||(w�s + Ps�
�
n

)− (w�r + Pr�
�
n

)||2
⎤⎦ , (8.5)

where B|�n
denotes the restriction of volume B to the cube�n. The minimization

is performed with Gauss-Seidel iterative solver (each cube is iteratively updated

while its neighbors are “frozen”). On each cube, Powell’s algorithm [110, 111] is

used to estimate the parametric affine increment.

8.3.2.9 Implementation

The algorithm has been implemented in C ++ using a template class for volu-

metric images.2 A synopsis of the algorithm is presented in Fig. 8.3.

8.3.3 Results

8.3.3.1 Intensity Correction

We have evaluated the approach on various MR acquisitions. We present results

on real data of the intensity correction, comparing the EM and SEM approaches

and comparing the number of Gaussian laws used to model the histogram.

We have tested the approach on various T1-MR images and the algorithm has

proved to be robust and reliable. Furthermore, it does not require any spatial

alignment between the images to be corrected and can therefore be applied in

various contexts: MR time series or MR of different subjects. Figure 8.4 presents

cut-planes images of volumetric MR.

Figure 8.5 presents the effect of the correction using a EM algorithm and

Fig. 8.6 the correction using a SEM algorithm. For each estimation scheme, we

test a mixture of five (left) and seven Gaussian distributions to model the his-

togram. In each case, a fourth order parametric correction has been estimated.

2 http://www.irisa.fr/vista/Themes/Logiciel/VIsTAL/VIsTAL.html
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Source MR image Target MR image

Figure 8.4: MR images of different subjects. The intensity of tissue classes is

different for source (top) and target (bottom) volume.
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Figure 8.5: Intensity correction using the expectation maximization (EM) al-

gorithm. The corrected source volume is presented, as well as the parametric

intensity correction (to be compared with the identity function). The histogram

has been modeled by five Gaussian distributions (top) and seven Gaussian dis-

tributions (bottom). Points represent the mean of Gaussian laws that model the

histogram.
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Figure 8.6: Intensity correction using the stochastic expectation maximization

(SEM) algorithm. The corrected source volume is presented, as well as the

parametric intensity correction (to be compared with the identity function).

The histogram has been modeled by five Gaussian distributions (top) and seven

Gaussian distributions (bottom). Points represent the mean of Gaussian laws

that model the histogram.

Corrected source volumes and parametric correction functions are pre-

sented. The corrected volume seems visually more similar to the target volume

(when comparing intensities of corresponding tissues). Modeling the histogram

with seven classes seems more adequate in this context. This is actually more

relevant from an anatomical point of view and provides more sample to esti-

mate the correction function. The experiments we have conducted so far do not
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Before correction After correction

Figure 8.7: Joint histogram before and after intensity correction. To compute

the joint histogram, MR volumes have been previously rigidly registered by max-

imizing mutual information [88].

favor the SEM or the EM algorithm. There may be an indication that the SEM

is more adapted in presence of field inhomogeneity and should be investigated

further.

The relevance of this intensity correction can be assessed using the joint

histogram (Fig. 8.7). To compute the joint histogram, a spatial alignment of the

volumes needs to be performed. To do so, we estimate a rigid displacement

that maximizes mutual information [88]. Figure 8.7 shows the joint histogram

before and after intensity correction (using EM and seven Gaussian laws to

model the histogram). It must be noted that the same displacement has been

applied to the corrected and uncorrected volume (in other words, the effect of a

possible misalignment is equal for both histograms). The joint histogram shows

the relevance of the intensity correction.

8.3.3.2 Experiments on Simulated Data

Evaluation on the MNI Phantom. To evaluate the global registration

method, we use the simulated data provided by the MNI3 [34]. Data have been

collected with three levels of noise and inhomogeneity. We design a synthetic

deformation field made up of a global affine field with large deformations com-

bined with local stochastic perturbations. We do not try to build a “realistic”

3 Brainweb: http://www.bic.mni.mcgill.ca/brainweb
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field, but rather a field with the following properties: large deformations and

local perturbations that modify the topology of the structures, in order to vali-

date the basic hypothesis of our work. The “local” field is generated from 2,000

voxels which are randomly picked in the volume. For each voxel, each of the

three components of the deformation is the realization of a Gaussian random

variable of standard deviation 120 mm. We then perform a Gaussian smoothing

with a small average deviation in order to propagate this perturbation to a local

neighborhood while preserving discontinuities. The volumes and the results are

shown on Fig. 8.8. We compare the multigrid method with a global affine regis-

tration method, in which a 12-parameter deformation is estimated for the entire

volume.

To asses the quality of the registration, we compute the mean square er-

ror (MSE)4 which is an indicator of the quality of the registration. However,

it would be unfair to evaluate the registration only with a measure that is the

underlying driving force of the estimation. Therefore, as we have the binary

classification of the phantom, we can also assess the quality of the registration

based on the overlap of two volumes: the first volume is the initial classification,

i.e., a gold standard (gray matter/white matter), the second volume is the de-

formed classification, registered with the estimated deformation field. We then

measure out overlapping ratios like the sensitivity, the specificity, and the to-

tal performance [142]. Results are presented in Table 8.1. Despite the use of

binary classes, the resulting measures that we obtain are very satisfactory. Par-

ticularly, the robustness of the method is demonstrated in critical conditions

(9% noise and 40% inhomogeneity), which are far tougher than in any realistic

acquisition.

The numerical evaluation also allows to study the sensitivity of the algorithm

with respect to the parameters of the algorithm, i.e., parameters of the robust

estimators. We have two parameters to fix, σ1 and σ2. σ1 corresponds to the

hyperparameter of robust function ρ1, associated with the similarity term, while

σ2 corresponds to the hyperparameter of robust function ρ2 associated with the

regularization term. We made the parameters σ1 and σ2 vary in a cube of size

[1.0e4, 1.0e5]× [1, 20] with step, respectively, of 1.0e4 and 1 (which means that

we performed the registration with 200 different sets of parameters), and we

observe that the final result (the mean square error between the source volume

4 MSE = 1
N

∑i=N

i=1 (I1(i)− I2(i))2, where I1 and I2 are the volumes to compare, and N is
the number of voxels.
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Original data

original phantom deformed with the synthetic field
Reconstructed volumes

Global affine registration Non-linear robust registration
Difference volumes

Global affine registration Multigrid robust registration

Figure 8.8: Results of the registration process on simulated data. The 3D MRI

phantom has been deformed on the top of the figure. In the middle, the recon-

structed volumes are shown and must be compared with the initial volume to

evaluate the quality of the registration. On the bottom, the difference volumes

show the benefits of non-linear registration.

and the reconstructed volume) varies less than 5% of the nominal MSE. This

indicates that the sensitivity of algorithm with respect to these two parameters

is very low.

For simulated data, mean square error (MSE) is a direct measure of the

quality of the registration. Therefore we can also evaluate the influence of � f (see

section 8.3.2) on the computation time and on the accuracy of the registration.
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Figure 8.9: Evolution of the MSE with respect to the grid level (at finest resolu-

tion 1 mm) and computation time needed to perform the registration until a given

grid level. We observe that the MSE decreases significantly at the coarsest grid

level, whereas at the finest grid level it continues to decrease, but less rapidly.

At the same time, the computation time increases continuously. If we look at

the difference between grid level 2 (the smallest cubes are of size 22 × 22 × 22

and the incremental deformation field is affine on each cube) and grid level 0

(the smallest cubes are reduced to a voxel and the incremental deformation

field is translational for the smallest cubes), the computation time increases by

100%, whereas the MSE variation is only 5.3%. That suggests that, depending on

the application, the user can make a compromise between the accuracy of the

registration and the computation time if the resources are limited.

Figure 8.9 shows the evolution of the MSE with respect to the grid level (at

finest resolution 1 mm) and also shows the computation time needed to perform

the registration until a given grid level. We observe that the MSE decreases

significantly at coarsest grid level, whereas at the finest grid level it continues

to decrease, but less rapidly. At the same time, the computation time increases

continuously. If we look at the difference between grid level5 2 and grid level6 0,

the computation time increases by 100%, whereas the MSE variation is only

5.3%. That suggests that, depending on the application, the user can make a

compromise between the accuracy of the registration and the computation time

5 The smallest cubes are of size 22 × 22 × 22 and the increment deformation field is affine
on each cube.

6 The smallest cubes are reduced to a voxel and the increment deformation field is trans-
lational for the smallest cubes.
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Source volume Target volume

Figure 8.10: Synthetic data to validate the link between robust estimator on

the regularization term and local changes of topology.

if its resources are limited. In our case, we find that � f = 1 (the smallest cubes

are of size 2× 2× 2 and the allowed deformation is rigid on the smallest cube)

is generally a good compromise.

Importance of Robust Estimator. We have introduced robust estimators

in the registration process, in order to let local discontinuities of the deformation

field occur. We now want to verify on simulated data the direct link between

the introduction of a robust function and the possibility to locally change the

topology of the structures. Therefore, we construct two volumes (see Fig. 8.10)

to be registered, with a local modification of the topology. The volumes are

composed of two homogenous classes, each one being defined by a unique gray

level. With these two volumes, we obviously face the aperture problem, which

is classical in the optical flow literature.

We first register the two volumes without any robust estimator. Results are

presented in Fig. 8.11. The reconstructed volumes are computed with the target

volume and the estimated deformation field with trilinear interpolation. One

must therefore compare the reconstructed volume and the source volume to

assess the quality of the registration. The different volumes shown in Fig. 8.11

correspond to different values of the parameter α. This parameter balances

the importance of the similarity term and the regularization term. When this

parameter is high, the solution is smooth but the topology is not modified. Whenα

decreases, the solution is not smooth, the aperture problem is obvious, whereas

the topology is not correctly modified.
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a = 500

a = 50a = 100a = 250

a = 1000a = 5000

Figure 8.11: Results of the registration without robust estimator. The differ-

ent volumes correspond to different values of the parameter α, and must be

compared to the source volume.

We then perform the robust multigrid registration process, with a robust

function only on the regularization term. Results are presented in Fig. 8.12, with

two “extreme” values of the parameter α. In that case, the modification of the

topology is possible, while preserving the global smoothness of the solution.

However, the aperture problem is still present in the tubular structure on the

right. This experiment makes it possible to verify the link between the introduc-

tion of a robust estimator on the regularization term and the possibility to handle

local change of topology. In addition, the robust registration process appears to

be also more robust with respect to the parameter α, because the results of the

registration are very similar, when α varies in a range of [100, 3,000].

8.3.3.3 Experiment on Two Subjects

Importance of Intensity Correction. We first want to present cases

where the registration method cannot work properly without a prior intensity



308 Hellier

a = 100 a = 3000

Figure 8.12: Results of the registration with a robust estimator on the regu-

larization term. The reconstructed volumes must be compared to the source

volume. We can handle with local topology changes, while preserving the global

smoothness of the solution.

correction. Figure 8.13 shows the impact of the intensity correction step on the

registration of two volumes. The source image is first corrected using the EM

algorithm, seven classes to model the histogram and a fourth order parametric

correction. Figure 8.13 presents the source image deformed toward the target

image, as well as the difference image. While the registration has failed without

intensity correction due to a very large intensity difference, it has performed

successfully with an intensity correction step. It must be noted that the set of

parameters is the same for both registration processes. That demonstrated the

usefulness of such correction for a non-rigid registration task.

Extensive Results for Two Subjects. Results of the 3D method are pre-

sented in Figs. 8.14, 8.15, and 8.16. Two 3D MRI-T1 volumes of two different

subjects are registered. The source volume, the target volume and the recon-

structed volume are presented in Fig. 8.14. The reconstructed volume f2(s+ ŵs)

is computed with the target volume f2 and the final displacement field ŵ by the

way of a trilinear interpolation. To assess the quality of the registration, one

must compare the source volume with the reconstructed volume.

We also present the volumes of difference, before and after registration in

Fig. 8.15. In the same figure, the adaptive partition at grid level 3 is also presented

(we do not present further grid levels for readability reasons). The difference

volumes must be interpreted carefully, since we get the superposition of two
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Source image Target image

Registered
with correction

Registered
without correction

Difference
with correction

Difference
without correction

Figure 8.13: Impact of the intensity correction for the non-rigid registration.

Top row: the images to be registered. Middle row: The source image is registered

toward the target image, without intensity correction (left) and with correction

(right). Bottom row: the differences images show the relevance of the intensity

correction on the non-rigid registration.

errors: the first one is the registration error which comes from the anatomical

variability that we could not apprehend. The second error is due to the difference

of acquisition of the two volumes, which makes the histograms of the source

and target volumes different.
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Source volume f1

Reconstructed volume f2 (s + ws)ˆ

Target volume f2

Figure 8.14: Final 3D results of the registration on real data. The volumes

are T1-MRI acquisitions of two different subjects. The reconstructed volume

is computed by trilinear interpolation with the target volume and the final

dense displacement field. In order to evaluate the quality of the registra-

tion, we must therefore compare the source volume and the reconstructed

volume.

In Fig. 8.16, the outliers are drawn, i.e., the data outliers map (variable δs)

and the spatial outlier map (for each point s, we compute the mean of vari-

able βsr with respect to r ∈ V(s)). Looking at the data outliers map, the dark

points represent areas where the optical flow hypothesis is inadequate, be-

cause of occlusions for instance (see the jaw in Fig. 8.16). For these points,

the regularization term overwhelms the similarity term. Looking at the spa-

tial outlier term, we observe that dark regions are located in the cortex. At

that locations, the importance of the regularization term is reduced, and dis-

continuities can appear. The fact that discontinuities appear in the cortex is

significant because we know that inter-subject variability is very high on the

cortex.
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Figure 8.15: Final 3D results of the registration on real data. Top: difference

before registration. Middle: difference after registration. Bottom: adaptive par-

tition at grid level 3. The difference volumes must be interpreted carefully, since

we get the superposition of two errors: the first one is the registration error

which comes from the anatomical variability that we could not apprehend. The

second error is due to the difference of acquisition of the two volumes, which

makes the two original histograms of the two volumes different.

The 3D deformation field is presented in Fig. 8.17. The vector field is sub-

sampled in order to be easier to look at, and we also show the three components

of the field on the sagittal view. Although discontinuities are visible, the general

spatial coherence of the final deformation field is visible, due to the regulariza-

tion. The field also confirms that there is no “block-effect” in the registration

process.

The computation takes about 1 : 30 hour on an Ultra Sparc 30 (300 MHz).

The volumes are 256× 256× 200. We use three levels of resolution (k = 0, 1, 2)

because the displacement amplitude may reach 30 voxels, and at each resolution

level we perform the registration from grid level 4 until grid level 0.
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Data outliers

Spatial outliers

Figure 8.16: Final 3D results of the registration on real data. Top: data outlier

map. Middle: spatial outlier map. Looking at the spatial outlier term, we observe

that dark regions are located in the cortex. Dark areas shows that the importance

of the regularization term is reduced, and discontinuities can appear. The fact

that discontinuities appear in the cortex is significant because we know that

inter-subject variability is very high on the cortex.

Deformation field

3 components of the field on the sagittal view

Figure 8.17: Top: deformation field. Bottom: Images of the three components

of the field on the sagittal view. The 3D deformation field is subsampled in

order to be easier to look at. Although discontinuities are visible, the general

spatial coherence of the final deformation field is visible, due to the regulariza-

tion. The field also confirms that there is no “block-effect” in the registration

process.
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8.3.3.4 Experiments on a Dataset of 18 Subjects

In order to validate the registration method on a larger database, we acquire MRI-

T1 volumetric data of 18 patients. One subject is chosen as the reference subject.

We then perform the registration between the reference volume (source) and

each of the other subjects (target) using always the same set of parameters for

the algorithm. Finally, we get 17 reconstructed volumes that can be compared

to the reference volume. We average all the reconstructed volume in order to

have a global overview of the quality of the method.

Average Deformed Volume. Figures 8.18 and 8.19 present the averaging

between 17 patients after a global affine registration (top), after a quadratic

multigrid registration, i.e., the method without robust estimators (middle), and

the average volume after a robust multigrid registration (bottom). After global

affine registration and averaging, we notice that the internal anatomical struc-

tures are blurred, because the registration is not precise enough. However, after

a robust multigrid registration, we may distinguish precisely the contours of

anatomical structures, such as ventricles, deep nuclei, white matter tracks, and

even cortical regions (sylvian fissure and parietal region for instance).

The comparison between the quadratic registration and the robust registra-

tion shows the benefit of robust functions, because cortical regions are better

registered. The MSE between the reference volume and the averaged volume is

892 for quadratic registration, and drops to 584 for robust registration. We must

note that, considering two subjects, the MSE is not a good absolute measure of

the quality of the registration because of the acquisition (a simple translation

between the two histogram can lead to large MSE). However, the MSE is a good

relative measure to compare two registration processes over a large database.

These experiments clearly show the significant impact of robust estimators.

All the more, it validates the assumption that it is necessary to let discontinuities

appear in the deformation field to register brains correctly. These experiments

also demonstrate the robustness of the method (robustness with respect to the

acquisitions and also with respect to the algorithm parameters) over a realistic

database of subjects.

Overlapping of Brain Tissues. The evaluation must not be based only on

a measure that is more or less related to the image similarity. Therefore, as in
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Global affine registration

Quadratic multigrid registration

Robust multigrid registration

Figure 8.18: Results of experiments on a database of 18 subjects. One sub-

ject was chosen as the reference subject (see Fig. 8.19), and we averaged all

the reconstructed volumes after global affine registration (top), after quadratic

multigrid registration (middle) and after robust multigrid registration (bottom).

We kept the same set of parameters for all the subjects. This demonstrates the ro-

bustness of the method, and the importance of robust estimators (the quadratic

registration is less accurate on the cortex).

section 8.3.3, we evaluate in this section the registration process by computing

the overlap between the tissues (gray matter and white matter) of the reference

volumes and the tissues of each studied volume after registration. We measure

the overlap with the total performance, which has already been presented in

section 8.3.3.

The extraction of gray matter and white matter is performed using a tech-

nique presented in [85]. It consists in a 3D texture analysis to compute statis-

tical attributes of each voxel. A clustering procedure is used to find the ini-

tial discrimination of the data, and a bayesian relaxation refines the primary

decision.
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Robust multigrid registration

Reference subject

Figure 8.19: Results of experiments on a database of 18 subjects. One subject

was chosen as the reference subject (bottom), and we averaged all the recon-

structed volumes after robust multigrid registration (top). We kept the same set

of parameters for all the subjects, which demonstrates the robustness of the

method. Results of the averaging after registration show the accuracy of the

registration (after averaging we can distinguish precisely anatomical structures

such as ventricles, deep nuclei, white matter tracks and even cortical regions).

For gray matter tissue, the average overlap after registration is 93.9% (mean of

total performance). For white matter, the average overlap is 94.9%. If we perform

a rigid registration by maximization of mutual information, we obtain 88.3% and

87.1% of average overlap, for gray matter and white matter, respectively. These

measures must be interpreted carefully for two reasons. We use binary classes

(and not fuzzy classes) and a simple trilinear interpolation scheme, which may

introduce some error. Furthermore, the classification algorithm introduces er-

rors that disturb the overlapping measure. In the last 5% to recover, it is difficult

to distinguish what is due to the registration process and what is due to inter-

polation and segmentation errors. However, these overlapping measures show

the benefit of non-rigid registration.

8.3.3.5 Experiments on Multimodal Datasets

The extension of Romeo to multimodal dataset was motivated by a particu-

lar problem: the correction of distortions in echo-planar images. Among the
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functional images of the brain, fMRI is an appealing technique because it offers

a good trade-off between spatial and temporal resolution. To increase its tem-

poral resolution, echo-planar imaging (EPI) is used because it makes possible

to collect at least five slices per second at a reduced spatial resolution. The

drawback of this impressive acquisition rate is that it may introduce artifacts

and distortions in the data. More details about these distortions can be found in

[78].

If the distortions do not vary during the time series, they will not affect much

the detection of subtle signal changes, but they will perturb the localization of the

functional activity once being overlapped to the anatomical volume. It becomes

necessary to correct these geometrical distortions in order to accurately identify

activated areas.

Simulated Data. To evaluate the multimodal registration method, we use

the simulated database of the MNI (Brainweb)7 [34]. The T1-weighted MR vol-

ume is the reference volume (3% noise and 9% inhomogeneity), whereas the

T2-weighted MR volume is the floating volume.

From the T2-weighted MR volume, we extract a subvolume and we apply

a rigid transformation (three rotations and three translations). To simulate lo-

cal geometrical distortions, we apply a thin-plate spline [16] deformation to the

volume. The thin-plate deformation is computed by choosing one point in the vol-

ume and a displacement for this point. We choose a displacement of magnitude

5 voxels, with no privileged direction. Furthermore, the thin-plate deformation

field is constrained to be naught at the border of the volume.

After rigid registration (see Fig. 8.20), distortions are clearly visible. On the

axial view, ventricles are not well registered ; on the sagittal and coronal view, the

sagittal mid-plane is not well aligned. We then perform the multigrid non-rigid

registration from grid level 7 until grid level 5 to avoid useless computational

efforts. In this case we do not need to estimate a dense transformation, since the

distortions are rather smooth and regular. Furthermore, the statistical similarity

measure is only meaningful for a large number of voxels, i.e., for large cubes.

After non-rigid registration, the internal structures are accurately registered

(see ventricles on the axial view, and sagittal mid-plane on the coronal view for

instance).

7 http://www.bic.mni.mcgill.ca/brainweb
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Figure 8.20: Results of the registration on simulated data. Top: results after rigid

registration. Distortions are visible on axial view (ventricles) and on coronal

view (sagittal mid-plane). Bottom: results after performing a 3D multimodal

non-rigid registration. Misregistration is significantly reduced (see ventricles on

axial view for instance).

In Fig. 8.21, we present the evolution of the similarity measure, computed

for all the volume. As the hierarchical estimation is performed, the similarity

increases, which means that the dependence between the volumes to be regis-

tered also increases, leading to a more and more accurate registration. This is a

numerical confirmation of visual assessment.

At this stage, the evaluation is not completely fair, since the criterion is re-

lated to the similarity used to drive the registration process. As we have the

segmentation of the phantom (gray matter and white matter classes), we can

evaluate objectively the registration process. We deform the segmentation vol-

umes as described at the beginning of section (8.3.3). We can assess the quality

of the registration by computing overlapping measures (specificity, sensitivity

and total performance, see [142] for tutorial) between the initial classes and the

deformed classes, once registered with the estimated deformation field. Let us

recall that:

⎧⎪⎨⎪⎩
sensitivity = T P/(T P + F N)

specificity = T N/(F P + T N)

total performance = (T P + T N)/(T P + F P + T N + F N),

(8.6)
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Figure 8.21: Evolution of the similarity measure. As the hierarchical estimation

is performed, the similarity increases, which means that the volumes are more

accurately registered.

where T P, T N, F P and F N, respectively, denote the number of true positive,

true negative, false positive, and false negative points.

These numerical results are shown in Table (8.2). At the end of grid level 5,

we manage to recover more than 95% of the segmentation. This result is satisfac-

tory, due to the use of binary classes, and due to a simple trilinear interpolation

scheme that causes artefacts [108].

Real Data. We have performed the algorithm on real data (see Fig. 8.22).

The patient has a cyst and a bone tumor, therefore the multiple interfaces

(air/cyst/bone) introduce large distortions that are visible after rigid registra-

tion. For instance, on the left hemisphere, distortions are clearly visible on the

posterior part of the cyst.

There are many artefacts in this fMRI acquisition: there has been signal

saturation and signal drops (visible in the cyst and in the border of the skull).

This illustrates the difficulty of registering real clinical data. Although quality of

the results is quite difficult to quantify, we can see that the cyst (on the axial

view) and the ventricles (on the sagittal view) are better aligned after non-rigid

registration.
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Table 8.2: Numerical evaluation of the multimodal registration method on

simulated data. The overlapping measures (specificity, sensitivity, and total

performance) are computed after rigid registration and at each grid level of the

non-rigid registration process

Registration Overlap measure Grey matter White matter

Rigid sensibility 74.7% 76.6%
specificity 93.0% 92.8%
Total performance 87.0% 87.6%

Non-rigid sensibility 84.7% 86.0%
grid level 7 specificity 97.2% 96.2%

Total performance 93.2% 92.9%

Non-rigid sensibility 86.6% 86.8%
grid level 6 specificity 98.5% 97.3%

Total performance 94.6% 93.9%

Non-rigid sensibility 87.5% 87.0%
grid level 5 specificity 98.9% 98.0%

Total performance 95.8% 95.3%

Figure 8.22: Results of clinical data. Top: results of the rigid registration. The

multiple artefacts are visible: distortions, signal saturation, signal drops. Bottom:

Results of the non-rigid registration. The registration is more accurate, in par-

ticular, for the ventricles and for the cyst. The data are courtesy of “laboratoire

IDM, Hopital de Pontchaillou, Rennes”.
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8.4 Conclusion

This chapter has presented an overview of the classification of non-rigid reg-

istration methods with particular focus on non-rigid registration of brains of

different subjects. Methods can be broadly classified into two groups: geomet-

ric methods that rely on the extraction and matching of sparse features (points,

curves, surfaces), and photometric (or intensity-based) methods that rely on

image luminance directly.

Geometric methods reduce the dimensionality of the problem and are con-

sistent in the vicinity of features used for registration. However, the registration

might be incorrect far from used features. Photometric methods use all the avail-

able information present in the volume but lead to a complex problem involving

a very large number of variables.

We have presented here the Romeo algorithm (Robust Multigrid Elastic reg-

istration based on optical flow) that refers to photometric methods. Romeo

uses the optical flow as a similarity measure and relies on an efficient multires-

olution and multigrid optimization scheme. Robust estimators are introduced

to limit the effect of erroneous data and to preserve discontinuities of the de-

formation field when needed. Prior to the non-rigid registration step, two pre-

processing steps are performed: a rigid registration by maximization of mutual

information and an intensity correction so that the luminance of the volumes

to be registered are comparable. An extension to multimodal data has been

presented. The multiresolution and multigrid framework is flexible enough to

be adapted to multimodal similarity measures such as mutual information for

instance.

It has been shown that photometric methods fail in matching cortical struc-

tures such as cortical sulci, for instance [74]. This can be explained by the high

variability of cortical structures among subjects. Anatomists have pointed out

[103] that cortical sulci of different subjects are very different in shapes. This

has motivated mixed approaches where a photometric registration method in-

corporates sparse anatomical structures so as to drive the registration process

[22, 29, 36, 68, 73, 79, 141].

In this context, it must be noted that validation is difficult and should be

investigated further. Validation of non-rigid registration methods on anatomi-

cal structures have been conducted [74, 119]. However, the impact of non-rigid
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registration methods on functional data is still unknown. As a matter of fact,

since these methods are dedicated to anatomical and functional normalization,

it would be interesting to know how much of the intersubject functional vari-

ability can be understood and compensated by anatomical non-rigid registra-

tion. This is a challenging research subject that requires a better knowledge

about the relationship between the anatomy of the brain and its functional

organization.

Questions

1. What are photometric and geometric registration methods? How can these

methods be compared?

2. What is optical-flow?

3. What is the aperture problem? How can it be solved?

4. What are the advantages and drawbacks of optical-flow based registration?

5. What are robust estimators?

6. What are the advantages and drawbacks of robust M-estimators?

7. How useful is a multiresolution scheme?

8. How should the Gaussian standard deviation be chosen for building the

multiresolution pyramid?

9. What is a multigrid optimization scheme?

10. What are the different options to regularize the deformation field?
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[66] Guéziec, A. and Ayache, N., Smoothing and matching of 3D space

curves, International Journal of Computer Vision, Vol. 12, No. 1,

pp. 79–104, 1994.

[67] Hackbusch, W., Multigrid Methods and Applications, Springer Verlag,

1985.

[68] Hartkens, T., Hill, D., Castellano-Smith, A., Hawkes, D., Maurer, C., Mar-

tin, A., Hall, W., Liu, H., and Truwit, C., Using points and surfaces to

improve voxel-based non-rigid registration, In: Proc. of Medical Image

Computing and Computer-Assisted Intervention, Dohi, T. and Kikinis,

R., eds., No. 2488 in Lecture Notes in Computer Science, pp. 565–572,

Springer, Tokyo, September 2002.

[69] He, Renjie and Narayana, Ponnada A. Global optimization of mutual

information: application to three dimensional retrospective registra-

tion of magnetic resonance images. Computerized Medical Imaging and

Graphics, Vol. 26, No. 4, pp.277–292, 2002.

[70] Hebert, M. and Ikeuchi, H., K.and Delingette, A spherical representa-

tion for recognition of free form surfaces, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, Vol. 17, No. 7, pp. 681–690,

1995.

[71] Hellier, P., Consistent intensity correction of MR images, In: IEEE con-

ference on Image Processing, ICIP 2003, Barcelona, September 2003.

[72] Hellier, P. and Barillot, C., Multimodal non-rigid warping for correction

of distortions in functional MRI, In: Proc. of Medical Image Computing

and Computer-Assisted Intervention, MICCAI’00, Delp, S. et al., ed.,

No. 1935 in Lecture Notes in Computer Science, pp. 512–521, Springer,

Pittsburgh, Pennsylvania, October 2000.

[73] Hellier, P. and Barillot, C., Coupling dense and landmark-based ap-

proaches for non-rigid registration, IEEE Transactions on Medical

Imaging, Vol. 22, No. 2, pp. 217–227, 2003.

[74] Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Goualher, Le G., Collins,

D. L., Evans, A., Malandain, G., Ayache, N., Christensen, G. E., and John-

son, H. J., Retrospective evaluation of inter-subject brain registration,



330 Hellier

IEEE Transactions on Medical Imaging, Vol. 22, No. 9, pp. 1120– 1130,

2003.
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