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Applications in Functional Imaging

Koon-Pong Wong

3.1 Introduction

Detection, localization, diagnosis, staging, and monitoring treatment responses

are the most important aspects and crucial procedures in diagnostic medicine

and clinical oncology. Early detection and localization of the diseases and

accurate disease staging can improve the survival and change management

in patients prior to planned surgery or therapy. Therefore, current medical

practice has been directed toward early but efficient localization and stag-

ing of diseases, while ensuring that patients would receive the most effective

treatment.

Current disease management is based on the international standard of cancer

staging using TNM classification, viz. size, location, and degree of invasion of the

primary tumor (T), status of regional lymph node (N), and whether there is any

distant metastasis (M). Over the century, histopathology retains its main role

as the primary means to characterization of suspicious lesions and confirma-

tion of malignancy. However, the pathologic interpretation is heavily dependent

on the experience of the pathologist, and sampling errors may mean that there

are insufficient amounts of tissue in the specimens, or the excised tissue does

not accurately reflect tumor aggressivity. In addition, some lesions may return

nondiagnostic information from the specimens, or they are difficult or too
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dangerous to biopsy. As a result, more invasive and unpleasant diagnostic pro-

cedures are sought.

The last few decades of the twentieth century have witnessed significant

advances in medical imaging and computer-aided medical image analysis. The

revolutionary capabilities of new multidimensional medical imaging modalities

and computing power have opened a new window for medical research and

clinical diagnosis. Medical imaging modalities are used to acquire the data from

which qualitative and quantitative information of the underlying pathophysi-

ological basis of diseases are extracted for visualization and characterization,

thus helping the clinicians to accurately formulate the most effective therapy for

the patients by integrating the information with those obtained from some other

possibly morbid and invasive diagnostic procedures. It is important to realize

that medical imaging is a tool that is complementary to but not compete with

the conventional diagnostic methods. Indeed, medical imaging provides addi-

tional information about the disease that is not available with the conventional

diagnostic methods, and paves a way to improve our understanding of disease

processes from different angles.

Modern medical imaging modalities can be broadly classified into two ma-

jor categories: structural and functional. Examples of major structural imag-

ing modalities include X-ray computed tomography (CT), magnetic resonance

imaging (MRI), echocardiography, mammography, and ultrasonography. These

imaging modalities allow us to visualize anatomic structure and pathology of

internal organs. In contrast, functional imaging refers to a set of imaging tech-

niques that are able to derive images reflecting biochemical, electrical, mechan-

ical, or physiological properties of the living systems. Major functional imaging

modalities include positron emission tomography (PET), single-photon emis-

sion computed tomography (SPECT), fluorescence imaging, and dynamic mag-

netic resonance imaging such as functional magnetic resonance imaging (fMRI)

and magnetic resonance spectroscopy (MRS). Fundamentally, all these imaging

techniques deal with reconstructing a three-dimensional image from a series of

two-dimensional images (projections) taken at various angles around the body.

In CT, the X-ray attenuation coefficient within the body is reconstructed, while in

PET and SPECT our interest is in reconstructing the time-varying distribution of

a labeled compound in the body in absolute units of radioactivity concentration.

Despite the differences between the actual physical measurements among

different imaging modalities, the goal of acquiring the images in clinical environ-

ment is virtually the same—to extract the patient-specific clinical information
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Figure 3.1: The steps and the ultimate goal of medical image analysis in a

clinical environment.

and their diagnostic features embedded within the multidimensional image data

that can guide and monitor interventions after the disease has been detected and

localized, and ultimately leading to knowledge for clinical diagnosis, staging, and

treatment of disease. These processes can be represented diagrammatically as a

pyramid, as illustrated in Fig. 3.1. Starting from the bottom level of the pyramid

is the medical image data obtained from a specific imaging modality, the ultimate

goal (the top level of the pyramid) is to make use of the extracted information to

form a set of clinical knowledge that can lead to clinical diagnosis and treatment

of a specific disease. Now the question is how to reach the goal. It is obvious that

the goal of the imaging study is very clear, but the solution is not. At each level of

the pyramid, specific techniques are required to process the data, extract the in-

formation, label, and represent the information in a high level of abstraction for

knowledge mining or to form clinical knowledge from which medical diagnosis

and decision can be made. Huge amounts of multidimensional datasets, ranging

from a few megabytes to several gigabytes, remain a formidable barrier to our

capability in manipulating, visualizing, understanding, and analyzing the data.

Effective management, processing, visualization, and analysis of these datasets

cannot be accomplished without high-performance computing infrastructure

composed of high-speed processors, storage, network, image display unit, as

well as software programs. Recent advances in computing technology such as

development of application-specific parallel processing architecture and dedi-

cated image processing hardware have partially resolved most of the limiting

factors. Yet, extraction of useful information and features from the multidi-

mensional data is still a formidable task that requires specialized and sophisti-

cated techniques. Development and implementation of these techniques requires
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thorough understanding of the underlying problems and knowledge about the

acquired data, for instance, the nature of the data, the goal of the study, and

the scientific or medical interest, etc. Different assumptions about the data and

different goals of the study will lead to the use of different methodologies. There-

fore, continuing advances in exploitation and development of new conceptual

approaches for effective extraction of all information and features contained

in different types of multidimensional images are of increasingly importance in

this regard.

Image segmentation plays a crucial role in extraction of useful information

and attributes from images for all medical imaging applications. It is one of the

important steps leading to image understanding, analysis, and interpretation.

The principal goal of image segmentation is to partition an image into regions

(or classes) that are homogeneous with respect to one or more characteris-

tics or features under certain criteria [1]. Each of the regions can be separately

processed for information extraction. The most obvious application of segmen-

tation in medical imaging is anatomical localization, or in a generic term, region

of interest delineation whose main aim is to outline anatomic structures and

(pathologic) regions that are “of interest.” Segmentation can be accomplished

by identifying all pixels or voxels that belong to the same structure/region or

based on some other attributes associated with each pixel or voxel. Image seg-

mentation is not only important for feature extraction and visualization but also

for image measurements and compression. It has found widespread applica-

tions in medical science, for example, localization of tumors and microcalcifi-

cations, delineation of blood cells, surgical planning, atlas matching, image reg-

istration, tissue classification, and tumor volume estimation [2–7], to name just

a few.

Owing to issues such as poor spatial resolution, ill-defined boundaries, mea-

surement noise, variability of object shapes, and some other acquisition arti-

facts in the acquired data, image segmentation still remains a difficult task.

Segmentation of data obtained with functional imaging modalities is far more

difficult than that of anatomical/structural imaging modalities, mainly because

of the increased data dimensionality and the physical limitations of the imag-

ing techniques. Notwithstanding these issues, there have been some significant

progresses in this area, partly due to continuing advances in instrumentation

and computer technology. It is in this context that an overview of the technical

aspects and methodologies of image segmentation will be presented. As image
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segmentation is a broad field and because the goal of segmentation varies ac-

cording to the aim of the study and the type of the image data, it is impossible

to develop only one standard method that suits all imaging applications. This

chapter focuses on the segmentation of data obtained from functional imaging

modalities such as PET, SPECT, and fMRI. In particular, segmentation based on

cluster analysis, which has great potential in classification of functional imaging

data, will be discussed in great detail. Techniques for segmentation of data ob-

tained with structural imaging modalities have been covered in depth by other

chapters of this book, and therefore, they will only be described briefly in this

chapter for the purpose of completeness.

3.2 Manual Versus Automated Segmentation

As mentioned at the beginning of this chapter, detection, localization, diagnosis.

staging, and monitoring treatment responses are crucial procedures in clinical

medicine and oncology. Early detection and localization of the diseases and

accurate disease staging could lead to changes in patient management that will

impact on health outcomes. Noninvasive functional imaging is playing a key

role in these issues. Accurate quantification of regional physiology depends

on accurate delineation (or segmentation) of the structure or region of interest

(ROI) in the images. The fundamental roles of ROI are to (1) permit quantitation,

(2) reduce the dataset by focusing the quantitative analysis on the extracted

regions that are of interest, and (3) establish structural correspondences for the

physiological data sampled within the regions.

The most straightforward segmentation approach is to outline the ROIs man-

ually. If certain areas in the images are of interest, the underlying tissue time–

activity curve (TAC) can be extracted by putting ROIs manually around those

areas. Approaches based on published anatomic atlases are also used to de-

fine ROIs. The average counts sampled over voxels in the region at different

sampling intervals are then computed to compose the TAC for that region. The

extracted tissue TACs are then used for subsequent kinetic analysis (Chapter 2

of Handbook of Biomedical Image: Segmentation, Volume I).

In practice, selection of ROI is tedious and time-consuming because the op-

erator has to go through the dataset slice by slice (or even frame by frame) and

choose the most representative ones from which 10–40 regions are carefully
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delineated for each imaging study. Needless to say, manual ROI delineation is

also operator dependent and the selected regions are subject to large intra- and

interrater variability [8, 9]. Because of scatter and partial volume effects

(PVEs) [10], the position, size, and shape of the ROI need careful considera-

tion. Quantitative measurement inaccuracies exhibited by small positional dif-

ferences are expected to be more pronounced for ROI delineation in the brain,

which is a very heterogeneous organ and contains many small structures of ir-

regular shape that lie adjacent to other small structures of markedly differing

physiology [11]. Small positional differences can also confound the model fit-

ting results [12, 13]. To minimize errors due to PVEs, the size of the ROI should

be chosen as small as possible, but the trade-off is the increase in noise levels

within the ROI, which maybe more susceptible to anatomical imprecision. On

the other hand, a larger region offers a better signal-to-noise ratio but changes

that occurred only within a small portion of the region maybe obscured, and the

extracted TAC does not represent the temporal behavior of the ROI but a mixture

of activities with adjacent overlapping tissue structures. Likewise, an irregular

ROI that conforms to the shape of the structure/region where abnormality has

occurred will be able to detect this change with much higher sensitivity than any

other geometrically regular ROI that may not conform well. In addition, man-

ual ROI delineation requires software tools with sophisticated graphical user

interfaces to facilitate drawing ROIs and image display. Methodologies that can

permit semiautomated or ideally, fully automated ROI segmentation will present

obvious advantages over the manual ROI delineation.

Semiautomated or fully automated segmentation in anatomical imaging such

as CT and MR is very successful, especially in the brain, as there are many well-

developed schemes proposed in the literature (see surveys in [14]). This may

be because these imaging modalities provide very high resolution images in

which tiny structures are visible even in the presence of noise, and that four

general tissue classes, gray matter, white matter, cerebrospinal fluid (CSF), and

extracranial tissues such as fat, skin, and muscles, can be easily classified with

different contrast measures. For instance, the T1- and T2-weighted MR images

provide good contrast between gray matter and CSF, while T1 and proton den-

sity (PD) weighted MR images provide good contrast between gray matter and

white matter. In contrast to CT and MRI, PET and SPECT images lack the ability

to yield accurate anatomical information. The segmentation task is further com-

plicated by poor spatial resolution and counting statistics, and patient motion
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during scanning. Therefore, segmentation in PET and SPECT does not attract

much interest over the last two decades, even though there has been remarkable

progress in image segmentation during the same period of time. It still remains

a normal practice to define ROIs manually.

Although the rationale for applying automatic segmentation to dynamic PET

and SPECT images is questionable due to the above difficulties, the application

of automatic segmentation as an alternative to manual ROI delineation has at-

tracted interest recently with the improved spatial resolution of PET and SPECT

systems. Automatic segmentation has advantages in that the subjectivity can be

reduced and that there is saving in time for manual ROI delineation. Therefore,

it may provide more consistent and reproducible results as less human interven-

tion is involved, while the overall time for data analysis can be shortened and

thereby the efficiency can be improved, which is particularly important in busy

clinical settings.

3.3 Optimal Criteria for Functional

Image Segmentation

Medical image segmentation is a very complicated process and the degree of

complexity varies under different situations. Based on the results of a survey

conducted among all centers performing emission tomographic studies and a

series of international workshops to assess the goals and obstacles of data acqui-

sition and analysis from emission tomography, Mazziotta et al. [15,16] proposed

a series of optimal criteria to standardize and optimize PET data acquisition and

analysis:

� Reproducible

� Accurate

� Independent of tracer employed

� Independent of instrument spatial resolution

� Independent of ancillary imaging techniques

� Minimizes subjectivity and investigator bias
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� Fixed assumptions about normal anatomy not required

� Acceptable to subjects’ level of tolerance

� Performs well in serial studies of the same patient and individual study of

separate patients in a population

� Capable of evolving toward greater accuracy as information and instru-

ments improve

� Reasonable in cost

� Equally applicable in both clinical and research settings

� Time efficient for both data acquisition and analysis

These criteria are not specific to the functional analysis of the brain, and

they are equally applicable to other organs and imaging applications upon mi-

nor modifications, in spite of the fundamentally differences between imaging

modalities.

3.4 Segmentation Techniques

A large number of segmentation techniques have been proposed and imple-

mented (see [14, 17–19]) but there is still no gold standard approach that satis-

fies all of the aforementioned criteria. In general, segmentation techniques can

be divided into four major classes:

� Thresholding

� Edge-based segmentation

� Region-based segmentation

� Pixel classification

These techniques are commonly employed in two-dimensional image segmen-

tation [1,17–21]. A brief review of these techniques will be given in this section.

More advanced techniques such as model-based approaches, multimodal ap-

proaches, and multivariate approaches, and their applications will be introduced

and discussed latter in this chapter.
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3.4.1 Thresholding

Semiautomatic methods can partially remove the subjectivity in defining ROIs

by human operators. The most commonly used method is by means of thresh-

olding because of its simplicity in implementation and intuitive properties. In

this technique, a predefined value (threshold) is selected and an image is divided

into groups of pixels having values greater than or equal to the threshold and

groups of pixels with values less than the threshold. The most intuitive approach

is global thresholding, which is best suited for bimodal image. When only a single

threshold is selected for a given image, the thresholding is global to the entire

image. For example, let f (x, y) be an image with maximum pixel value Imax,

and suppose � denotes the percent threshold of the maximum pixel value above

which the pixels will be selected, then pixels with value ρ given by

�

100
Imax ≤ ρ ≤ Imax (3.1)

can be grouped and a binary image g(x, y) is formed:

g(x, y) =
{

1 if f (x, y) ≥ ρ

0 otherwise
(3.2)

in which pixels with value of 1 correspond to the ROI, while pixels with value 0

correspond to the background.

Global thresholding is simple and computationally fast. It performs well if

the images contain objects with homogeneous intensity or the contrast between

the objects and the background is high. However, it may not lead itself fully au-

tomated and may fail when two or more tissue structures have overlapping

intensity levels. The accuracy of the ROI is also questionable because it is sep-

arated from the data based on a single threshold value which may be subject

to very large statistical fluctuations. With the increasing number of regions or

noise levels, or when the contrast of the image is low, threshold selection will

become more difficult.

Apart from global thresholding, there are several thresholding methods

which can be classified as local thresholding and dynamic thresholding. These

techniques maybe useful when a thresholding value cannot be determined from

a histogram for the entire image or a single threshold cannot give good segmen-

tation results. Local threshold can be determined by using the local statistical

properties such as the mean value of the local intensity distribution or some
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other statistics such as mean of the maximum or minimum values [21] or local

gradient [22], or by splitting the image into subimages and calculating thresh-

old values for the individual sub-images [23]. Some variants of the above two

methods can be found in Refs. [17, 18].

3.4.2 Edge-Based Segmentation

Edge-based segmentation approaches have two major components: (1) edge

detection and (2) edge linking/following to determine the edges and the re-

gions. Loosely speaking, an edge is a collection of connected pixels that lie on

the boundary between two homogeneous regions having different intensities.

Therefore, edges can be defined as abrupt changes in pixel intensity that can

be reflected by the gradient information. A number of edge detectors have been

defined based on the first-order or second-order gradient information of the im-

age [1, 20]. For a given image f (x, y), the gradient computed at location (x, y)

is defined as a vector:

∇f =
[
δ fx

δ fy

]
=

⎡
⎢⎢⎣

∂ f

∂x

∂ f

∂y

⎤
⎥⎥⎦ (3.3)

where δ fx and δ fy are gradients computed along x and ydirections. The gradient

vector points in the direction of maximum rate of change of f at (x, y). The

magnitude and the direction of the gradient vector are given by

|∇f| =
√

(δ fx)2 + (δ fy)2 =
√(

∂ f

∂x

)2

+
(
∂ f

∂y

)2

(3.4)

and

θ = tan−1
(
δ fy

δ fx

)
(3.5)

where the angle θ is measured with respect to the x axis.

In order to obtain the gradient of an image, computation of partial deriva-

tives δ fx and δ fy at every pixel location is required. Because the images have

been digitized, it is not possible to compute δ fx and δ fy using differentiation and

numerical approximation of the gradient by finite difference is used instead [20].

Implementation of edge detection can be accomplished by convolving the orig-

inal image with a mask (also called window or kernel) that runs through the
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entire image. A mask is typically a 2× 2 or a 3× 3 matrix. For example, Roberts

edge operator has two 2× 2 masks:

δ fx =
[
−1 0

0 1

]
δ fy =

[
0 −1

1 0

]

and Sobel edge operator has a pair of 3× 3 masks:

δ fx =

⎡
⎢⎣−1 −2 −1

0 0 0

1 2 1

⎤
⎥⎦ δ fy =

⎡
⎢⎣−1 0 1

−2 0 2

−1 0 1

⎤
⎥⎦

Detailed discussion on other edge operators such as Canny, Kirsch, Prewitt, and

Robinson can be found elsewhere [1, 20].

An edge magnitude image can be formed by combining the gradient compo-

nents δ fx and δ fy at every pixel location using Eq. (3.4). As the computational

burden required by square and square roots in Eq. (3.4) is very high, an approx-

imation with absolute values is frequently used instead:

|∇f| ≈ |δ fx| + |δ fy| (3.6)

After the edge magnitude image has been formed, a thresholding operation is

then performed to determine where the edges are.

The first-order derivatives of the image f (x, y) have local minima and

maxima at the edges because of the large intensity variations. Accordingly,

the second-order derivatives have zero crossings at the edges, which can

also be used for edge detection and the Laplacian is frequently employed in

practice. The Laplacian (∇2) of a two-dimensional function f (x, y) is defined

as

∇2 f = ∂2 f

∂x2
+ ∂2 f

∂y2
(3.7)

There are several ways to realize the Laplacian operator in discrete-time domain.

For a 3× 3 region, the following two realizations are commonly used:⎡
⎢⎣ 0 −1 0

−1 4 −1

0 −1 0

⎤
⎥⎦ and

⎡
⎢⎣−1 −1 −1

−1 8 −1

−1 −1 −1

⎤
⎥⎦

It should be noted that all gradient-based edge detection methods (including

the Laplacian) are very sensitive to noise because differentiation is a high pass
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operation that tends to enhance image noise. In some applications, it is possible

to improve the results obtained with these methods by smoothing the image prior

to edge detection. For example, a smoothing filter can be applied to an image

before computing the Laplacian. Marr and Hildreth [24] proposed smoothing the

image with a Gaussian filter followed by the Laplacian operation to determine

edge information and this operation is called Laplacian of Gaussian, which is

defined as

h(x, y) = ∇2[g(x, y)⊗ f (x, y)]

= ∇2[g(x, y)]⊗ f (x, y) (3.8)

where f (x, y) is the original image, ⊗ is the convolution operator, g(x, y) is a

Gaussian function, and ∇2[g(x, y)] is the Laplacian of Gaussian function that

is used for spatial smoothing of the original image. Edges can be determined

from the resultant image, h(x, y), by simply thresholding it for zero value to

detect zero crossing. Equation (3.8) represents a generic operation of taking the

Laplacian on the spatial smoothing filter, g(x, y), which can be replaced by other

filter function (e.g., directional low-pass filter [25]) to improve the performance

of edge detection in a specific application. Faber et al. [26] applied the Laplacian

edge detection technique to segment scintigraphic images and the results were

promising.

In practice, edge detection techniques produce only a series of edges for the

structures/areas of interest. It is not uncommon that the edge pixels do not char-

acterize an edge and that the edges do not enclose the ROI completely because

of noise and some other acquisition artifacts that caused spurious discontinu-

ities of edges. Therefore, the second component of edge-based segmentation

techniques is to track and link the edge pixels to form meaningful edges or

closed regions in the edge image obtained by one of the edge detection tech-

niques. One of the simplest approaches for linking edge pixels is to analyze local

characteristics of pixels within a small block of pixels (e.g., 3× 3 or 5× 5) for

the entire edge image and linked all edge pixels that are similar to each oth-

ers according to some predefined criteria. The Hough transform [27] can also

be applied to detect straight lines and parametric curves as well as arbitrarily

shaped objects in the edge image. It was shown by Deans [28] that the Hough

transform is a special case of the Radon transform for image projection and

reconstruction [29]. Thorough discussion and comparison of different varieties

of the Hough transform and their generalizations are considered beyond the
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scope of this chapter and they can be found in Refs. [30, 31]. There are several

more powerful edge tracking/linking techniques such as graph searching [32,33]

and dynamic programming [34, 35] that perform well in the presence of noise.

As might be expected, these paradigms are considerably more complicated and

computationally expensive than the methods discussed so far.

3.4.3 Region-Based Segmentation

Region-based segmentation approaches examine pixels in an image and form

disjoint regions by merging neighborhood pixels with homogeneity properties

based on a predefined similarity criterion. Suppose that I represents an image

that is segmented into N regions, each of which is denoted as Ri where i =
1, 2, . . . , N, the regions must satisfy the following properties:

I =
N⋃

i=1

Ri (3.9)

Ri ∩ Rj = 0 ∀i, j = 1, 2, . . . , N; i �= j (3.10)

L(Ri) = TRUE for i = 1, 2, . . . , N (3.11)

L(Ri ∪ Rj) = FALSE ∀i, j = 1, 2, . . . , N; i �= j (3.12)

where L(·) is a logical predicate. The original image can be exactly assembled

by putting all regions together (Eq. 3.9) and there should be no overlapping

between any two regions Ri and Rj for i �= j (Eq. 3.10). The logical predicate

L(·) contains a set of rules (usually a set of homogeneity criteria) that must be

satisfied by all pixels within a given region (Eq. 3.11), and it fails in the union of

two regions since merging two distinct regions will result in an inhomogeneous

region (Eq. 3.12).

The simplest region-based segmentation technique is the region growing,

which is used to extract a connected region of similar pixels from an image [36].

The region growing algorithm requires a similarity measure that determines the

inclusion of pixels in the region and a stopping criterion that terminates the

growth of the region. Typically, it starts with a pixel (or a collection of pixels)

called seed that belongs to the target ROI. The seed can be chosen by the operator

or determined by an automatic seed finding algorithm. The neighborhood of each

seed is then inspected and pixels similar enough to the seed are added to the

corresponding region where the seed is, and therefore, the region is growing

and its shape is also changing. The growing process is repeated until no pixel
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can be added to any region. It is possible that some pixels may remain unlabeled

when the growing process stops.

Hebert et al. [37] investigated the use of region growing to automated de-

lineation of the blood pool with computer simulations and applied the method

to three gated SPECT studies using Tc-99m pertechnetate, and the results were

promising. Kim et al. [38] also investigated an integrated approach of region

growing and cluster analysis (to be described later) to segment a dynamic

[18F]fluorodeoxyglucose (FDG) PET dataset. Although qualitatively reasonable

segmentation results were obtained, much more work is needed to overcome

the difficulties in the formation of odd segments possibly due to spillover region

boundaries, and evaluate the quantitative accuracy of the segmentation results

using kinetic parameter estimation.

Region splitting methods take an opposite strategy to the region growing.

These methods start from the entire image and examine the homogeneity crite-

ria. If the criteria do not meet, the image (or subimage) is split into two or more

subimages. The region splitting process continues until all subimages meet the

homogeneity criteria. Region splitting can be implemented by quadtree parti-

tioning. The image is partitioned into four subimages that are represented by

nodes in a quadtree, which is a data structure used for efficient storage and rep-

resentation. The partition procedure is applied recursively on each subimage

until each and all of the subimages meet the homogeneity criteria.

The major drawback of region splitting is that the final image may contain

adjacent regions Ri and Rj , which are homogeneous, i.e. L(Ri ∪ Rj) = TRUE,

and ideally this region should be merged. This leads to another technique called

split-and-merge, which includes a merging step in the splitting stage, where an

inhomogeneous region is split until homogeneous regions are formed. A newly

created homogeneous region is checked against its neighboring regions and

merged with one or more of these regions if they possess identical properties.

However, this strategy does not necessarily produce quadtree partitioning of

the image. If quadtree partitioning is used, an additional step may be added to

merge adjacent regions (nodes) that meet the homogeneity criterion.

3.4.4 Pixel Classification

Recall that the key step of thresholding techniques described in section 3.4.1

is the choice of thresholds that is determined either manually or in a
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semiautomatic manner based on the local statistics such as mean, maximum, or

minimum of the given image (or subimages). The basic concept of threshold se-

lection can be generalized, leading to a data-driven paradigm, which determines

the threshold automatically based on clustering techniques or artificial neural

networks.

Pixel classification methods that use histogram statistics to define single or

multiple thresholds to classify an image can be regarded as a generalization of

thresholding techniques. It is particularly useful when the pixels have multi-

ple features, which can be expressed in terms of a vector in multidimensional

feature space. For instance, the feature vector may consist of gray level, lo-

cal texture, and color components for each pixel in the image. In the case of

single-channel (or single-frame) image, pixel classification is typically based on

gray level and image segmentation can be performed in a one-dimensional fea-

ture space. Segmentation can be performed in multidimensional feature space

through clustering of all features of interest for multichannel (multiple-frame)

images or multispectral (multimodality) images.

Clustering, or cluster analysis, has been widely applied in anthropology, ar-

chaeology, psychiatry, and zoology, etc, for many years. An example of clustering

is the taxonomy of animals and plants whose names have to be the same be-

tween different people for effective communication, although it is not necessary

that the naming scheme is the best [39]. Clustering is the process of grouping

of similar objects into a single cluster, while objects with dissimilar features are

grouped into different clusters based on some similarity criteria. The similarity

is quantified in terms of an appropriate distance measure. An obvious measure

of the similarity is the distance between two vectors in the feature space which

can be expressed in terms of L p norm as

d{xi,x j} =
(

n∑
k=1

‖ xi − x j ‖p

) 1
p

(3.13)

where xi ∈ R
n and x j ∈ R

n are the two vectors in the feature space. It can be

seen that the above measure corresponds to Euclidean distance when p = 2 and

Mahalanobis distance when p = 1. Another commonly used distance measure

is the normalized inner product between two vectors given by

d{xi,x j} = xT
i x j

‖xi‖ · ‖x j‖ (3.14)
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where T denotes the transpose operation. The above distance measure is simply

the angle between vectors xi and x j in the feature space.

Each cluster is represented by its centroid (or mean) and variance, which

indicates the compactness of the objects within the cluster, and the formation

of clusters is optimized according to a cost function that typically takes the sim-

ilarity within individual cluster and dissimilarity between clusters into account.

There are many clustering techniques proposed in the literature (see Ref. [39]).

The most famous clustering techniques are K -means [40], fuzzy c-means [41],

ISODATA [42], hierarchical clustering with average linkage method [43], and

Gaussian mixture approach [44].

As we will see later in this chapter, the idea of pixel classification in two-

dimensional image segmentation using clustering techniques can be extended to

multidimensional domain where the images convey not only spatial information

of the imaged structures but also their temporal variations, for which clustering

plays a pivotal role in identification of different temporal kinetics present in

the data, extraction of blood and tissue TACs, ROI delineation, localization of

abnormality, kinetic modeling, characterization of tissue kinetics, smoothing,

and fast generation of parametric images.

3.5 Advanced Segmentation Techniques

Functional imaging with PET, SPECT, and/or dynamic MRI provides in vivo

quantitative measurements of physiologic parameters of biochemical pathways

and physiology in a noninvasive manner. A critical component is the extraction

of physiological data, which requires accurate localization/segmentation of the

appropriate ROIs. A common approach is to identify the anatomic structures

by placing ROIs directly on the functional images, and the underlying tissue

TACs are then extracted for subsequent analysis. This ROI analysis approach,

although widely used in clinical and research settings, is operator-dependent and

thus prone to reproducibility errors and it is also time-consuming. In addition,

this approach is problematic when applied to small structures because of the

PVEs due to finite spatial resolution of the imaging devices.

Methods discussed so far can be applied to almost all kinds of image seg-

mentation problem because they do not require any model (i.e. model-free) that

guides or constrains the segmentation process. However, segmenting structures
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of interest from functional images is difficult because of the imprecise anatom-

ical information, the complexity and variability of anatomy shapes and sizes

within and across individuals, and acquisition artifact, such as spatial aliasing,

and insufficient temporal sampling, noise, and organ/patient movements. All

these factors can hamper the boundary detection process and cause discontin-

uous or indistinguishable boundaries. Model-free approaches usually generate

ambiguous segmentation results under these circumstances, and considerable

amounts of human intervention are needed to resolve the ambiguity in segmen-

tation. In this section, some advanced segmentation approaches are introduced,

including

� model-based segmentation techniques that use analytical models to de-

scribe the shape of the underlying ROI,

� multimodal techniques that integrate information available from differ-

ent imaging modalities for segmentation, or the image measurements are

transformed and mapped to a standard template, and

� multivariate approaches are data-driven techniques in which the struc-

tures are identified and extracted based on the temporal information

present in the dynamic images.

3.5.1 Model-Based Segmentation

Incorporation of a priori knowledge of the object such as shape, location, and

orientation using deformable models (also known as active contour models) is

one of the possible solutions to constrain the segmentation of organ structures.

The term deformable models was coined by Terzopoulos and his collabora-

tors [45,46] in the 1980s, but the idea of using a deformable template for feature

extraction dated back to the work of Fischler and Elschlager on spring-loaded

templates [47] and the work of Widrow on rubber mask technique [48] in the early

1970s. Deformable models are analytically or parametrically defined curves or

surfaces that move under the influence of forces, which have two components:

internal forces and external forces. The internal forces are used to assure the

smoothness of the model during deformation process and the external forces

are defined to push/pull the model toward the boundaries of the structure. Para-

metric representations of the models allow accurate and compact description
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of the object shape, while the continuity, connectivity, and smoothness of the

models can compensate for the irregularities and noise in the object boundaries.

Model-based approaches treat the problem of finding object boundaries as an

optimization problem of searching the best fit for the image data to the model. In

the case of boundary finding via optimization in image space, a fairly extensive

review on various deformable model methods can be found in Ref. [49].

Mykkänen et al. [50] investigated automatic delineation of brain structures

in FDG-PET images using generalized snakes with promising results. Chiao

et al. [51] proposed using model-based approach for segmenting dynamic car-

diac PET or SPECT data. The object model consists of two parts: a heart and the

rest of the body. The heart is geometrically modeled using a polygonal model [52]

and the myocardial boundaries are parameterized by the endocardial radii and

a set of angular thicknesses. Kinetic parameters in the compartment model

and the endocardial and epicardial radii are estimated by maximizing a joint

log-likelihood function using nonlinear parameter estimation. Tissue and blood

TACs are extracted simultaneously with estimated kinetic parameters. Chiao

et al. [51] proposed that some forms of regularization can be applied, including

auxiliary myocardial boundary measurements obtained by MRI or CT and reg-

istering the auxiliary measurements with the emission tomographic data, if the

kinetic parameter estimation failed.

3.5.2 Multimodal Techniques

Comparisons of datasets obtained from individual subjects between imaging

modalities are very important for the evaluation of the normal physiologic re-

sponses of the anatomic structure or the pathophysiological changes that ac-

company disease states. Likewise, it is also critical to compare data between

individuals both within and across different imaging modalities. Unfortunately,

many structures of interest, particularly in the brain, are often smaller than the

spatial resolution of the imaging devices and corrections aided by anatomical

imaging modalities such as CT and MR are often required [53, 54].

Anatomic structures, particularly those in the brain, can also be identified

using a standardized reference coordinate system or functional image data can

be fitted to a standard anatomical atlas (e.g., Talairach space) with the aid of

anatomical landmarks or contours [55–58]. This idea is somewhat similar to the

model-based approaches where analytically or parametrically defined models



Medical Image Segmentation 129

are used to segment the organ boundaries. The difference lies in the definition

of the model, which is described by a computerized anatomy atlas or a stereo-

taxic coordinate system—a reference that the functional images are mapped

onto by either linear or nonlinear transformation. A number of transformation

techniques have been developed for this process [59]. The ROIs defined on the

template are then available to the functional image data.

Similarly, functional (PET and SPECT) images and structural (CT and MR)

images obtained from individual subjects can be fused (coregistered), allowing

precise anatomical localization of activity on the functional images [60, 61].

Precise alignment between the anatomic/template and PET images is necessary

for these methods. Importantly, methods that use registration to a standard

coordinate system are problematic when patients with pathological processes

(e.g., tumors, infarction, and atrophy) are studied.

3.5.3 Multivariate Segmentation

The main aim of dynamic imaging is to study the physiology (function) of the or-

gan in vivo. Typically the image sequence has constant morphologic structures

of the imaged organs but the regional voxel intensity varies from one frame to

another, depending on the local tissue response to the administered contrast

agent or radiopharmaceutical. In the past, analysis of such dynamic images

involved only visual analysis of differences between the early and delayed im-

ages from which qualitative information about the organ, for instance, regional

myocardial blood flow and distribution volume are obtained. However, the se-

quence of dynamic images also contain spatially varying quantitative information

about the organ which is difficult to extract solely based on visual analysis. This

led to the method of parametric imaging where dynamic curves in the image se-

quence are fit to a mathematical model on a pixel-wise basis. Parametric images

whose pixels define individual kinetic parameters or physiologic parameters that

describe the complex biochemical pathways and physiologic/pharmacokinetic

processes occurred within the tissue/organ can then be constructed. This ap-

proach is categorized as model-led technique that utilizes knowledge and a pri-

ori assumptions of the processes under investigation, and represents the kinetics

of the measured data by an analytical (or parametric) model.

At the opposite end of the spectrum of model-led techniques are data-driven

techniques, which are based on the framework of multivariate data analysis.
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These paradigms minimize the a priori assumptions of the underlying processes

whose characteristics are interrogated from the measured data, independent of

any kinetic model. Multivariate approaches have been explored and successfully

applied in a number of functional imaging studies. The aims borne in mind

when applying these approaches are to (1) classify structures present in the

images, (2) extract information from the images, (3) reduce the dimensionality

of data, (4) visualize the data, and (5) model the data, all of which are crucial

in data analysis, medical research, data reduction, and treatment planning. In

general, the underlying structures are identified and extracted based on the

temporal information present in the sequence of the medical images. The implicit

assumptions for the validity of applying these approaches are that the statistical

noise present in the images is uncorrelated (independent) between different

frames and that there is a high degree of correlation (similarity) between tissue

TACs if they are originated from similar structures. In this section, we focus

our attention on four techniques among many different multivariate analysis

approaches and their applications in dynamic, functional imaging are discussed.

3.5.3.1 Similarity Mapping

In this section, we introduce an intuitive temporal segmentation technique called

similarity mapping (or correlation mapping), which was proposed by Ro-

gowska [62]. This approach identifies regions according to their temporal simi-

larity or dissimilarity with respect to a dynamic curve obtained from a reference

region. Consider a sequence of N spatially registered time-varying images X of

size M × N, with M being the number of pixels in one image and N the number

of frames. Then each row of X represents a pixel vector, i.e., a time-intensity

curve as stated in Rogowska’s paper [62] (also called a dixel [63] or a tissue TAC

in PET/SPECT or fMRI studies—it is just a matter of nomenclature!) which is a

time series

xi = [Xi(t1), Xi(t2), . . . , Xi(tN)]T (3.15)

where tj ( j = 1, 2, . . . , N) represents the time instant at which the jth frame is

acquired, Xi(tj) is the pixel value of the ith element evaluated in the jth frame

of X, for j = 1, 2, . . . , N, and T denotes the transpose operation.

Similar to the pixel classification technique described earlier in section 3.4.4,

some quantitative index is necessary to measure the similarity between
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time-intensity curves for different pixels or the mean of the pixel values av-

eraged over a selected ROI. Suppose a ROI is drawn on a reference region in the

dynamic sequence of images and its time course is extracted

r = [r(t1), r(t2), . . . , r(tN)]T (3.16)

The similarity between the reference time-intensity curve r and the time-

intensity curves for all pixels can then be calculated. And a similarity map,

which is a image where the value of each pixel shows the temporal similarity to

the reference curve, can be constructed.

Since the time instants do not affect the computation of cross correlation

between two time-intensity curves as pixel intensity values in one frame are

measured at the same time, xi in Eq. (3.15) and r in Eq. (3.16) can be rewritten

in a time-independent form as

xi = [Xi,1, Xi,2, . . . , Xi,N]T (3.17)

where Xi, j ≡ Xi(tj) is the pixel value of the ith element evaluated in the jth

frame of X, and

r = [r1, r2, . . . , rN]T (3.18)

whose mean intensity value is given by

r = 1
N

N∑
j=1

rj (3.19)

The similarity map R based on normalized cross correlation can be defined for

each pixel i as

Ri =
∑N

j=1

(
Xi, j − Xi

) (
rj − r

)
√∑N

j=1

(
Xi, j − Xi

)2 ∑N

j=1

(
rj − r

)2
(3.20)

where

Xi = 1
N

N∑
j=1

Xi, j (3.21)

is the mean value of the time sequence for pixel i. The normalized cross correla-

tion has values in the range of−1 to+1. Regions of identical temporal variation

have a coefficient of +1, with the exception that xi or r are extracted from

regions of constant pixel intensity (e.g. background). In this case, the denomi-

nator of Eq. (3.20) equals zero. Therefore, the following restrictions have to be
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imposed on the computation of the normalized cross correlation:

N∑
j=1

(
Xi, j − Xi

)2 �= 0 and
N∑

j=1

(
rj − r

)2 �= 0 (3.22)

Time-intensity curves similar to the reference curve will have high-correlation

values and are bright in the similarity map, whereas those with low-correlation

values are dark. Therefore, structures in the dynamic image sequence can be

segmented from the similarity map based on their temporal changes rather than

spatial similarities. It should be noted that cross-correlation does not depend

on the absolute magnitude of the time-intensity curves. Regions whose time-

intensity curves are differed from the reference curve r by an additive or by a

multiplicative constant, will have a perfect positive correlation (+1).

By using different reference ROIs, a series of similarity maps containing

different segmentation for regions that have similar or different temporal kinet-

ics can be obtained. It was used to investigate local changes and segmentation

of rabbit kidney on spatially aligned image sequences obtained from dynamic

MR imaging of Gd-DTPA [64]. The similarity mapping technique has also been

applied to brain activation studies to extract the activated regions and their

temporal dynamics [65]. The same technique has also been used to segment the

area of ischemia in the left coronary artery territory, lung tumor, and tentorial

meningioma, and localize the focal ischemic region in brain [66].

3.5.3.2 Principal Component Analysis

Principal component analysis (PCA), also called Karhunen–Loéve transform

or Hotelling transform, is probably the most famous method in multivariate

data analysis [67]. It was developed independently by Pearson [68] in 1901 and

Hotelling [69] in 1933. It has been widely applied in a number of scientific areas

such as biology, chemistry, medicine, psychology, and the behavioral sciences.

Given a set of multivariate data, PCA explains the variance–covariance struc-

ture by linearly transforming the (possibly) correlated variables into a smaller

set of uncorrelated (orthogonal) variables called principal components (PCs).

The first (highest order) component maximally accounts for the variation in the

original data and each succeeding component maximally accounts for the re-

maining variation present in the original data. In other words, higher order com-

ponents are important as they explain the major variation (also the feature) in
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the data, whereas lower order components are unimportant as they mainly con-

tain noise, which can be discarded without causing too much loss of information

of the original data. Therefore, dimensionality reduction (or data compression)

can be achieved using PCA technique. Separation of tissue types characterized

by different features can also be accomplished by careful inspection of the PCs.

This is because each PC contains only the representative feature that is specific

to that PC and cannot be found elsewhere (theoretically) owing to orthogonality

among PCs.

Let the dynamic sequence of images be represented by a matrix X that

has M rows and N columns. Each column represents a time frame of image

data and each row represents a pixel vector, i.e., a tissue TAC or a dixel [63],

which is a time series xi as in Eqs. (3.15) and (3.17). Note that there is no ex-

plicit assumption on the probability density of the measurements xi as long

as the first-order and second-order statistics are known or can be estimated

from the available measurements. Each of xi can be considered as a random

process

x = [x1, x2, . . . , xN]T (3.23)

If the measurements (or random variables) xj are correlated, their major vari-

ations can be accurately approximated with less than N parameters using the

PCA. The mean of x is given by

x = E{x} (3.24)

and the covariance matrix of the same dataset is given by

Cx = E{(x− x)(x− x)T } (3.25)

which is a N × N symmetric matrix. The elements of Cx, denoted by ckl , rep-

resent the covariances between the random variables xk and xl , whereas the

element ckk is the variance of the random variable xk. If xk and xl are uncor-

related, their covariance would be zero, i.e., ckl = clk = 0. The mean and the

covariance matrix of a sample of random vectors xi can be estimated from its

sample mean and sample covariance matrix in a similar manner.

The orthogonal basis of the covariance matrix Cx can be calculated by finding

its eigenvalues and eigenvectors. It is well known from basic linear algebra that

the eigenvectors ek and the corresponding eigenvalues λk are the solutions of
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the equation

Cxek = λkek (3.26)

for k = 1, 2, . . . , N and λk �= 0. There are several numerical methods to solve

for λk and ek in Eq. (3.26). One of the popular approaches is to make use

of the symmetrical property of Cx and solve for the eigenvalues and eigen-

vectors by means of Householder reduction followed by QL algorithm with

implicit shifts [70, 71]. As Cx is a real, symmetric matrix, an equivalent ap-

proach is to compute the singular value decomposition (SVD) of the matrix Cx

directly:

Cx = UΛVT (3.27)

where U is a N × N column-orthogonal matrix, V is a N × N orthogonal ma-

trix that contains the eigenvectors, and Λ is a N × N diagonal matrix whose

squared diagonal elements correspond to the eigenvalues. However, the differ-

ence between SVD and the eigen-decomposition should be noted, in particular,

the eigen-decomposition of a real matrix might be complex, whereas the SVD

of a real matrix is always real.

The ordering of the eigenvectors can be sorted in the order of descending

eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. In this way, an ordered orthogo-

nal basis is formed, and the first eigenvector e1 (the one associated with λ1) has

the direction of the largest variance of the data (the first PC), and the second

eigenvector e2 has the direction of the second largest variance of the data (the

second PC), and so on. The PCs are obtained by projecting the multivariate ran-

dom vectors onto the space spanned by the eigenvectors. Let Ω be a matrix that

stores the eigenvectors ek as row vectors, then the PCs, y = [y1, y2, . . . , yN]T ,

can be calculated as

y = Ω(x− x) (3.28)

which defines a linear transformation for the random vector x through the or-

thogonal basis and x is calculated from Eq. (3.24). The kth PC of x is given

by

yk = eT
k (x− x) (3.29)
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which has zero mean. The PCs are also orthogonal (uncorrelated) to one another

because

E{ykyl} = E
{(

eT
k (x− x)

) (
eT

l (x− x)
)} = eT

k Cx el = 0 (3.30)

for k > l. The original random vector x can be reconstructed from y by

x = ΩTy+ x (3.31)

where Ω−1 = ΩT since Ω is an orthogonal matrix.

The variances of the PCs can be computed as follows:

E
{
y2

k

} = E
{(

eT
k (x− x)

) (
eT

k (x− x)
)} = eT

k Cx ek = λk (3.32)

which indicates that the variances of the PCs are given by the eigenvalues of

Cx. As the PCs have zero means, a very small eigenvalue (variance) λk implies

that the value of the corresponding PC is also very small to contribute to the

total variances present in the data. Since the eigenvalue sequence {λk} is mono-

tonically decreasing and typically the sequence drops rapidly, it is possible to

determine a limit below which the eigenvalues (and PCs) can be discarded with-

out causing significant error in reconstruction of the original dataset using only

the retained PCs. Thus, data compression (or dimensionality reduction) can be

achieved and this is an important application of PCA. Instead of using all eigen-

vectors of the covariance matrix Cx, the random vector x can be approximated

by the highest few basis vectors of the orthogonal basis. Suppose that only the

first K rows (eigenvectors) of Ω are selected to form a K × N matrix, ΩK , a

similar transformation as in Eqs. (3.28) and (3.31) can be derived

ỹ = ΩK (x− x) (3.33)

and

x̂ = ΩT
K y+ x (3.34)

where ỹ represents a truncated PC vector, which contains only the K highest

PCs, and x̂ is an approximation of x with the K highest PCs. It can be shown

that the mean square error (MSE) between x̂ and x is given by

E{‖x̂− x‖2} =
N∑

k=K+1

λk (3.35)
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The practical issue here is the choice of K beyond which the PCs are insignif-

icant. The gist of the problem lies in how “insignificant” is defined and how

much error one could tolerate in using less number of PCs to approximate the

original data. Sometimes, a small number of PCs are sufficient to give an accu-

rate approximation to the observed data. A commonly used strategy is to plot

the eigenvalues against the number of PCs and detect a cut-off beyond which

the eigenvalues become constants. Another approach is to discard the PCs with

eigenvalues lower than a specified fraction of the first (largest) eigenvalue. There

is no simple answer and one has to trade off between errors and the number of

PCs for approximation of the observed data which is the primary concern when

PCA is used for data compression.

PCA has been applied to analyze functional images including nuclear medi-

cine [72–77] and dynamic MRI [78, 79] where data visualization, structure and

functional classification, localization of diseases, and detection of activation pat-

terns are of primary interests. Moeller and Strother [72] applied PCA to analyze

functional activation patterns in brain activation experiments. Strother et al. [75]

revealed an intra- and intersubject subspace in data and demonstrated that the

activation pattern is usually contained in the first PC. A later study conducted

by Ardekani et al. [76] further demonstrated that the activation pattern may

spread across several PCs rather than lie only on the first PC, particularly when

the number of subjects increases and/or multicenter data are used. PCA was

also applied to aid interpretation of oncologic PET images. Pedersen et al. [74]

applied PCA to aid analyze of dynamic FDG-PET liver data. Anzai et al. [77]

investigated the use of PCA in detection of tumors in head and neck, also using

dynamic FDG-PET imaging. It was found that the first few highest order compo-

nent images often contained tumors whereas the last several components were

simply noise.

Absolute quantification of dynamic PET or SPECT data requires an invasive

procedure where a series of blood samples are taken to form an input function

for kinetic modeling (Chapter 2 of Handbook of Biomedical Image Analysis:

Segmentation, Volume I). Sampling blood at the radial artery or from an arte-

rialized vein in a hand is the currently recognized method to obtain the input

function. However, arterial blood sampling is invasive and has several poten-

tial risks associated with both the patient and the personnel who performed the

blood sampling [80]. Drawing ROI around vascular structures (e.g., left ventricle

in the myocardium [81] and internal carotid artery in the brain [82]) has been
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Figure 3.2: A sequence of dynamic neurologic FDG-PET images sampled at

the level where the internal carotid arteries are covered. Individual images are

scaled to their own maximum.

proposed as a noninvasive method that obviates the need of frequent blood sam-

pling. Delineation of larger vascular structures in the myocardium is relatively

straightforward. In contrast, delineation of internal carotid artery in the head

and neck is not trivial. A potential application of PCA is the extraction of input

function from the dynamic images in which vascular structures are present in

the dynamic images. Figure 3.2 show a sequence of dynamic neurologic FDG-

PET images sampled at the level in the head where the internal carotid arteries

are covered. Figure 3.3 shows the highest 12 PC images. The signal-to-noise ra-

tio (SNR) of the first PC image is very high when comparing with the original

image sequence. For PC images beyond the second, they simply represent the

remaining variability that the first two PC images cannot account for and they

are dominated by noise. The internal carotid arteries can be seen in the second

PC image which can be extracted by means of thresholding as mentioned before

in sections 3.4.1 and 3.4.4. Figure 3.4 shows a plot of percent contribution to the

total variance for individual PCs. As can be seen from the figure, the first and

the second PCs contribute about 90% and 2% of the total variance, while the re-

maining PCs only contribute for less than 0.6% of the total variance individually.
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Figure 3.3: From left to right, the figure shows the first six principal component

(PC) images (top row), and the 7th to 12th PC images (bottom row) scaled to

their own maxima. All but the first two PC images are dominated by noise. The

higher order PC images (not shown) look very similar to PC images 3–12.

This means that large amount of information (about 92%) is preserved in only

the first two PCs, and the original images can be approximated by making use

only the first one or two PCs.

Different from model-led approaches such as compartmental analysis where

the physiological parameters in a hypothesized mathematical model are esti-

mated by fitting the model to the data under certain possibly invalid assump-

tions, PCA is data-driven, implying that it does not rely on a mathematical model.

Figure 3.4: The percent variance distribution of the principal component (PC)

images.
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Instead, it explores the variance–covariance structure of the observed data and

finds a set of optimal (uncorrelated) PCs, each of which contains maximal vari-

ation present in the measured data. A linear combination of these components

can accurately represent the observed data. However, because of lack of model

as a constraint, PCA cannot separate signals from statistical noise, which may be

an important component if it is highly correlated and dominates the multivariate

data. In this case, convincing results of dimensionality reduction or structure

exploration may not be achievable as noise is still retained in the higher order

components. In addition, the orthogonal components produced by PCA are not

necessarily physiological meaningful. Thus, it is difficult to relate the extracted

components to the underlying TACs and structures in the multivariate data.

3.5.3.3 Factor Analysis

Factor analysis of dynamic structures (FADS), or factor analysis (FA), can be

thought of as a generalization of PCA as it produces factors closer to the true

underlying tissue response and assumes a statistical model for the observed data.

FADS is a semiautomatic technique used for extraction of TACs from a sequence

of dynamic images. FADS segments the dynamic sequence of images into a

number of structures which can be represented by functions. Each function

represents one of the possible underlying physiological kinetics such as blood,

tissue, and background in the sequence of dynamic images. Therefore, the whole

sequence of images can be represented by a weighted sum of these functions.

Consider a sequence of dynamic images X of size M × N, with M being the

number of pixels in one image and N the number of frames. Each row of X

represents a pixel vector, which is a tissue TAC in PET/SPECT data. Assume

that pixel vectors in X can be represented by a linear combination of factors F,

then X can written as

X = CF+ η (3.36)

where C contains factor coefficients for each pixel and it is of size M × K with

K being the number of factors; F is a K × N matrix which contains underlying

tissue TACs. The additive term η in Eq. (3.36) represents measurement noise

in X.

Similar to the mathematical analysis detailed before for similarity mapping

and PCA, we define xi as the ith pixel vector in X, and fk being the kth underlying
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factor curve (TAC), and cki being the factor coefficient that represents contribu-

tion of the kth factor curve to xi. Let Y = CF and yi be a vector which represents

the ith row of Y, then

yi =
K∑

k=1

ckifk (3.37)

and

xi = yi + ηi (3.38)

where ηi represents a vector of noise associated with xi. Simply speaking, these

equations mean that the series of dynamic images X can be approximated and

constructed from some tissue TACs of the underlying structures (represented

by a factor model Y = CF), which are myocardial blood pools, myocardium,

liver, and background for cardiac PET/SPECT imaging, for example. The aim of

FADS is to project the underlying physiological TACs, yi as close as possible to

the measured TACs, xi, so that the MSE between them can be minimized:

�(C,F) =
M∑

i=1

(
xi −

K∑
k=1

ckifk

)2

(3.39)

Typically, FADS proceeds by first identifying an orthogonal basis for the se-

quence of dynamic images followed by an oblique rotation. Identification of the

orthogonal basis can be accomplished by PCA discussed previously. However,

the components identified by PCA are not physiologically meaningful because

some components must contain negative values in order to satisfy the orthog-

onality condition. The purpose of oblique rotation is to impose nonnegativity

constraints on the extracted factors (TACs) and the extracted images of factor

coefficients [63].

As mentioned in section 3.2, careful ROI selection and delineation are very

important for absolute quantification, but manually delineation of ROI is not easy

due to high-noise levels present in the dynamic images. Owing to scatter and

patient volume effects, the selected ROI may represent “lumped” activities from

different adjacent overlapping tissue structures rather than the “pure” temporal

behavior of the selected ROI. On the other hand, FADS can separate partially

overlapping regions that have different kinetics, and thereby, extraction of TACs

corresponding to those overlapping regions is possible.
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Although the oblique rotation yield reasonable nonnegative factor curves

that are highly correlated with the actual measurements, they are not unique [83]

because both factors and factor coefficients are determined simultaneously. It

is very easy to see this point by a simple example. Assume that a tissue TAC x

composes of only two factors f1 and f2 and c1 and c2 being the corresponding

factor coefficients. According to Eqs. (3.36) and (3.37), x can be represented

by

x = c1f1 + c2f2 (3.40)

which can be written as

x = c1(f1 + αf2)+ (c2 − αc1)f2 (3.41)

with some constant α. It can be seen that Eqs. (3.40) and (3.41) are equivalent for

describing the measured TAC, x, as long as f1 + αf2 and c2 − αc1 are nonnegative

if nonnegativity constraints have to be satisfied. In other words, there is no

difference to represent x using factors f1 and f2 and factor coefficients c1 and c1,

or using factors f1 + αf2 and f2 and factor coefficients c1 and c2 − αc1. Therefore,

further constraints such as a priori information of the data being analyzed are

required [84–87].

FADS has been successfully applied to extract the time course of blood ac-

tivity in left ventricle from PET images by incorporating additional information

about the input function to be extracted [88, 89]. Several attempts have also

been made to overcome the problem of nonuniqueness [90, 91]. It was shown

that these improved methods produced promising results in a patient planar
99mTc-MAG3 renal study and dynamic SPECT imaging of 99mTc-teboroxime in

canine models using computer simulations and measurements in experimental

studies [90, 91].

3.5.3.4 Cluster Analysis

Cluster analysis has been described briefly in section 3.4.4. One of the major

aims of cluster analysis is to partition a large number of objects according to

certain criteria into a smaller number of clusters that are mutually exclusive and

exhaustive such that the objects within a cluster are similar to each others, while

objects in different clusters are dissimilar. Cluster analysis is of potential value

in classifying PET data, because the cluster centroids (or centers) are derived
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from many objects (tissue TACs) and an improved SNR can be achieved [92].

It has been applied to segment a dynamic [11C]flumazenil PET data [92] and

dynamic [123I]iodobenzamide SPECT images [93]. In the following, a clustering

algorithm is described. Its application to automatic segmentation of dynamic

FDG-PET data for tumor localization and detection is demonstrated in the next

section. An illustration showing how to apply the algorithm to generate ROIs

automatically for noninvasive extraction of physiological parameters will also

be presented.

The segmentation method is based on cluster analysis. Our aim is to classify

a number of tissue TACs according to their shape and magnitude into a smaller

number of distinct characteristic classes that are mutually exclusive so that the

tissue TACs within a cluster are similar to one another but are dissimilar to

those drawn from other clusters. The clusters (or clustered ROIs) represent the

locations in the images where the tissue TACs have similar kinetics. The kinetic

curve associated with a cluster (i.e. cluster centroid) is the average of TACs in

the cluster. Suppose that there exists k characteristic curves in the dynamic PET

data matrix, X, which has M tissue TACs and N time frames with k � M and that

any tissue TAC belongs to only one of the k curves. The clustering algorithm then

segments the dynamic PET data into k curves automatically based on a weighted

least-squares distance measure, D, which is defined as

D{xi,µ j} =
k∑

j=1

M∑
i=1

‖xi − µ j‖2
W (3.42)

where xi ∈ R
N is the ith tissue TAC in the data,µ j ∈ R

N is the centroid of cluster

C j , and W ∈ R
N×N is a square matrix containing the weighting factors on the

diagonal and zero for the off-diagonal entries. The weighting factors were used

to boost the degree of separation between any TACs that have different uptake

patterns but have similar least-squares distances to a given cluster centroid.

They were chosen to be proportional to the scanning intervals of the experiment.

Although this is not necessarily an optimal weighting, reasonably good clustering

results can be achieved.

There is no explicit assumption on the structure of data and the clustering

process proceeds automatically in an unsupervised manner. The minimal as-

sumption for the clustering algorithm is that the dynamic PET data can be rep-

resented by a finite number of kinetics. As the number of clusters, k, for a given

dataset is usually not known a priori, k is usually determined by trial and error.
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In addition, the initial cluster centroid in each cluster is initialized randomly to

ensure that all clusters are nonempty. Each tissue TAC is then allocated to its

nearest cluster centroid according to the following criterion:

‖xl − µi‖2
W < ‖xl − µ j‖2

W

⇒ xl ∈ Ci ∀i, j = 1, 2, . . . , k, i �= j

(3.43)

where xl ∈ R
N is the lth tissue TAC in X; µi ∈ R

N and µ j ∈ R
N are the ith and

jth cluster centroid, respectively; and Ci represents the ith cluster set. The

centroids in the clusters are updated based on Eq. (3.43) so that Eq. (3.42) is

minimized. The above allocation and updating processes are repeated for all

tissue TACs until there is no reduction in moving a tissue TAC from one clus-

ter to another. On convergence, the cluster centroids are mapped back to the

original data space for all voxels. An improved SNR can be achieved because

each voxel in the mapped data space is represented by one of the cluster cen-

troids each of which possesses a higher statistical significance than an individual

TAC.

Convergence to a global minimum is not always guaranteed because the

final solution is not known a priori unless certain constraints are imposed on

the solution that may not be feasible in practice. In addition, there may be

several local minima in the solution space when the number of clusters is large.

Restarting the algorithm with different initial cluster centroids is necessary to

identify the best possible minimum in the solution space.

The algorithm is similar to the K -means type Euclidean clustering algo-

rithm [40]. However, the K -means type Euclidean clustering algorithm requires

that the data are normalized and it does not guarantee that the within-cluster

cost is minimized since no testing is performed to check whether there is any

cost reduction if an object is moved from one cluster to another.

3.6 Segmentation of Dynamic PET Images

The work presented in this section builds on our earlier research in which we

applied the proposed clustering algorithm to tissue classification and segmenta-

tion of phantom data and a cohort of dynamic oncologic PET studies [94]. The

study was motivated by our on-going work on a noninvasive modeling approach
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for quantification of FDG-PET studies where several ROIs of distinct kinetics are

required [95, 96]. Manual delineation of ROIs restrain the reproducibility of the

proposed modeling technique, and therefore, some other semiautomated and

automated methods have been investigated and clustering appears as a promis-

ing alternative to automatically segment ROI of distinct kinetics. The results

indicated that the kinetic and physiological parameters obtained with cluster

analysis are similar to those obtained with manual ROI delineation, as we will

see in the later sections.

3.6.1 Experimental Studies

3.6.1.1 Simulated [11C]Thymidine PET Study

To examine the validity of the segmentation scheme, we simulated a dynamic

2-[11C]thymidine (a marker of cell proliferation) PET study. 2-[11C]thymidine

was chosen because it is being increasingly used in the research setting to eval-

uate cancer and treatment response, and it offers theoretical advantages over

FDG such as greater specificity in the assessment of malignancy. Also, the ki-

netics are very similar for most tissues and the data are typically quite noisy.

Thus, thymidine data represent a challenging example for testing the clustering

algorithm.

Typical 2-[11C]thymidine kinetics for different tissues were derived from

eight patients. The data were acquired on an ECAT 931 scanner (CTI/Siemens,

Knoxville, TN). The dynamic PET data were acquired over 60 min with a typical

sampling schedule (10× 30 sec, 5× 60 sec, 5× 120 sec, 5× 180 sec, 5× 300 sec)

and the tracer TAC in blood was measured with a radial artery catheter following

tracer administration. Images were reconstructed using filtered back-projection

(FBP) with a Hann filter cut-off at the Nyquist frequency. ROIs were drawn over

the PET images to obtain tissue TACs in bone, bone marrow, blood pool, liver,

skeletal muscle, spleen, stomach, and tumor. Impulse response functions (IRFs)

corresponding to these tissues were determined by spectral analysis of the tis-

sue TACs [97]. The average IRFs for each common tissue type were obtained

by averaging the spectral coefficients across the subjects and convolved with

a typical arterial input function, resulting in typical TACs for each tissue. The

TACs were then assigned to the corresponding tissue types in a single slice of

the Zubal phantom [98] which included blood vessels, bone, liver, bone marrow,
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Figure 3.5: A slice of the Zubal phantom. B = blood vessels; b = bone; L =
liver; M = marrow; Mu = muscle; S = spleen; St = stomach; T = tumor.

muscle, spleen, stomach, a large and small tumor in the liver (see Fig. 3.5). A

dynamic sequence of sinograms was obtained by forward projecting the images

into 3.13 mm bins on a 192 × 256 grid. Attenuation was included in the sim-

ulations for the purpose of obtaining the correct scaling of the noise. Poisson

noise and blurring were added to simulate realistic sinograms. Noisy dynamic

images were then reconstructed using FBP (Hann filter cut-off at the Nyquist

frequency). Figure 3.6 shows the metabolite-corrected arterial blood curve and

noisy 2-[11C]thymidine kinetics in some representative tissues.

Figure 3.6: Simulated noisy 2-[11C]thymidine kinetics in some representative

regions. A metabolite-corrected arterial blood curve, which was used to simulate

2-[11C]thymidine kinetics in different tissues, is also shown.
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Figure 3.7: A slice of the Hoffman brain phantom. A tumor in white matter

(white spot) and an adjacent hypometabolic region (shaded region) are shown.

3.6.1.2 Simulated FDG-PET Study

Dynamic FDG-PET study was simulated using a slice of the numerical Hoff-

man brain phantom [99] that modified using a template consisting of five differ-

ent kinetics (gray matter, white matter, thalamus, tumor in white matter, and

an adjacent hypometabolic region in left middle temporal gyrus), as shown in

Fig. 3.7. The activities in gray matter and white matter were generated using a

five-parameter three-compartment FDG model [100] with a measured arterial

input function obtained from a patient (constant infusion of 400 MBq of FDG

over 3 min). The kinetics present in the hypometabolic region, thalamus, and

tumor were set to 0.7, 1.1, and 2.0 times the activity in gray matter. The kinetics

were then assigned to each brain region and a dynamic sequence of sinograms

(22 frames, 6× 10 sec, 4× 30 sec, 1× 120 sec, 11× 300 sec) was obtained by for-

ward projecting the images into 3.13 mm bins on a 192× 256 grid. Poisson noise

and blurring were also added to simulate realistic sinograms. Dynamic images

were reconstructed using FBP with Hann filter cut-off at the Nyquist frequency.

The noisy FDG kinetics are shown in Fig. 3.8 and some of the kinetics are similar

to each other due to the added noise and gaussian blurring, although their ki-

netics are different in the absence of noise and blurring. This is illustrated in the

white matter and the hypometabolic region, and the gray matter and thalamus.

3.6.2 Cluster Validation

As mentioned earlier, the optimum number of clusters for a given dataset is

usually not known a priori. It is advantageous if this number can be determined
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Figure 3.8: Simulated noisy[18F]fluorodeoxyglucose (FDG) kinetics in differ-

ent regions.

based on the given dataset. In this study, a model-based approach was adopted to

cluster validation based on two information-theoretic criteria, namely, Akaike

information criterion (AIC) [101] and Schwarz criterion (SC) [102], assuming

that the data can be modeled by an appropriate probability distribution function

(e.g. Gaussian). Both criteria determine the optimal model order by penalizing

the use of a model that has a greater number of clusters. Thus, the number of

clusters that yields the lowest value for AIC and/or SC is selected as the opti-

mum. The use of AIC and SC has some advantages compared to other heuristic

approaches such as the “bootstrap” resampling technique which requires a large

amount of stochastic computation. This model-based approach is relatively flex-

ible in evaluating the goodness-of-fit and a change in the probability model of

the data does not require any change in the formulation except the modeling

assumptions. It is noted, however, that both criteria may not indicate the same

model as the optimum [102].

The validity of clusters is also assessed visually and by thresholding

the average mean squared error (MSE) across clusters, which is defined

as

MSE = 1
k

k∑
j=1

M∑
i=1

‖xi − µ j‖2
W. (3.44)
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Both approaches are subjective but they can provide an insight into the “correct”

number of clusters.

3.6.3 Human Studies

The clustering algorithm has been applied to a range of FDG-PET studies and

three examples (two patients with brain tumor and one patient with a lung can-

cer) are presented in this chapter. FDG-PET was chosen to assess the clustering

algorithm because it is commonly used in clinical oncologic PET studies. All

oncological PET studies were performed at the Department of PET and Nuclear

Medicine, Royal Prince Alfred Hospital, Sydney, Australia. Ethical permissions

were obtained from the Institutional Review Board.

Dynamic neurologic FDG-PET studies were performed on an ECAT 951R

whole-body PET tomograph (CTI/Siemens, Knoxville, TN). Throughout the

study the patient’s eyes were patched and ears were plugged. The patients re-

ceived 400 MBq of FDG, infused at a constant rate over a 3-min period using

an automated injection pump. At least 30 min prior to the study, patient’s hands

and forearms were placed into hot water baths preheated to 44 ◦C to promote

arterio-venous shunting. Blood samples were taken at approximately 30 sec for

the first 6 min, and at approximately 8, 10, 15, 30, and 40 min, and at the end of

emission data acquisition. A dynamic sequence of 22 frames was acquired for

60 min following radiotracer administration according to the following sched-

ule: 6× 10 sec, 4× 30 sec, 1× 2 min, 11× 5 min. Data were attenuation corrected

with a postinjection transmission method [103]. Images were reconstructed on

a 128 × 128 matrix using FBP with a Shepp and Logan filter cut-off at 0.5 of the

Nyquist frequency.

The dynamic lung FDG-PET study was commenced after intravenous injec-

tion of 487 MBq of FDG. Emission data were acquired on an ECAT 951R whole-

body PET tomograph (CTI/Siemens, Knoxville, TN) over 60 min (22 frames,

6 × 10 sec, 4 × 30 sec, 1 × 2 min, and 11 × 5 min). Twenty one arterial blood

samples were taken from the pulmonary artery using a Grandjean catheter to

provide an input function for kinetic modeling.

The patient details are as follows:

Patient 1: The FDG-PET scan was done in a female patient, 6 months after

resection of a malignant primary brain tumor in the right parieto-occipital
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lobe. The scan was done to determine if there was evidence for tumor

recurrence. A partly necrotic hypermetabolic lesion was found in the

right parieto-occipital lobe that was consistent with tumor recurrence.

Patient 2: A 40-year-old woman had a glioma in the right mesial temporal

lobe. The FDG-PET scan was performed at 6 months after tumor re-

section. A large hypermetabolic lesion was identified in the right mesial

temporal lobe that was consistent with tumor recurrence.

Patient 3: A 67-year-old man had an aggressive mesothelioma in the left lung.

In the PET images, separate foci of increased FDG uptake were seen in

the contralateral lymph nodes as well as in the peripheral left lung.

As they are unnecessary for clustering and the subsequent analysis, low

count areas such as the background (where the voxel values should be zero the-

oretically) and streaks (which are due to reconstruction errors) were excluded

by zeroing voxels whose summed activity was below 5% of the mean pixel in-

tensity of the integrated dynamic images. A 3 × 3 closing followed by a 3 × 3

erosion operation was then applied to fill any “gap” inside the intracranial/body

region to which cluster analysis was applied. Parametric images of the phys-

iological parameter, K , which is defined as the value of k∗1k∗3/(k∗2 + k∗3) [104],

were generated by fitting all voxels inside the intracranial/body region using

Patlak graphical approach [105]. The resultant parametric images obtained for

the raw dynamic images and dynamic images after cluster analysis were as-

sessed visually. Compartmental model fitting using the three-compartment FDG

model [104] was also performed on the tissue TACs extracted manually and by

cluster analysis to investigate whether there is any disagreement between the

parameter estimates.

3.6.4 Results

3.6.4.1 Simulated [11C]Thymidine PET Study

Figure 3.9 shows the segmentation results using different numbers of clusters,

k, in the clustering algorithm. The number of clusters is actually varied from 3

to 13 but only some representative samples are shown. In each of the images in

Figs. 3.9(a)–3.9(f), different gray levels are used to represent the cluster loca-

tions. Figure 3.9 shows that when the number of clusters is small, segmentation
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Figure 3.9: Tissue segmentation obtained with different number of clusters.

(a) k = 3, (b) k = 5, (c) k = 7, (d) k = 8, (e) k = 9, and (f) k = 13. (Color

Slide)

of the data is poor. With k = 3, the liver, marrow, and spleen merge to form a

cluster and the other regions merge to form a single cluster. With 5 ≤ k ≤ 7, the

segmentation results improve because the blood vessels and stomach are visu-

alized. However, the hepatic tumors are not seen and the liver and spleen are

classified into the same cluster. With k = 8, the tumors are visualized and almost

all of the regions are correctly identified (Fig. 3.9(d)). Increasing the value of

k to 9 gives nearly the same segmentation as in the case of k = 8 (Fig. 3.9(e)).

Further increasing the value of k, however, may result in poor segmentation be-

cause the actual number of tissues present in the data is less than the specified

number of clusters. Homogeneous regions are therefore fragmented to satisfy

the constraint on the number of clusters (Fig. 3.9(f)). Thus, 8 or 9 clusters ap-

pear to provide reasonable segmentation of tissues in the slice and this number

agrees with the various kinetics present in the data.

Figure 3.10 plots the average MSE across clusters as a function of k. The av-

erage MSE decreases monotonically, as it drops rapidly (k < 8) before reaching

a plateau (k ≥ 10). From the trend of the plot, there is no significant reduc-

tion in the average MSE with k > 12. Furthermore, the decrease in the average

MSE is nearly saturated with k ≥ 8. These results confirm the findings of the

images in Fig. 3.9, suggesting 8 or 9 as the optimal number of clusters for this

dataset.

Table 3.1 tabulates the results of applying AIC and SC to determine the op-

timum number of clusters which is the one that gives the minimum value for
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Figure 3.10: Average mean squared error (MSE) as a function of number of

clusters.

the criteria. Both criteria indicate that k = 8 is an optimal approximation to

the underlying number of kinetics. It was found that a good segmentation can

be achieved when the number of clusters is the same as that determined by

the criteria. Conversely, the segmentation result is poor when the number of

clusters is smaller than that suggested by the criteria and there is no signifi-

cant improvement in segmentation when the number of clusters is larger than

that determined by the criteria. The heuristic information given by both criteria

also support our visual interpretation of the clustering results, suggesting that

the criteria are reasonable approaches to objectively determine the number of

clusters.

Table 3.1: Computed values for AIC and SC with different choices of the

value of k

Number of clusters, k

Criterion 3 4 5 6 7 8 9 10 11 12 13

AIC 99005 95354 93469 90904 88851 86967a 89769 93038 91994 90840 89807
SC 98654 94888 92887 90206 88038 86038a 88725 91878 90719 89450 88301

AIC: Akaike information criterion; SC: Schwarz criterion.
a Values in bold correspond to the computed minimum of the criterion.
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Figure 3.11: Single slice of simulated 2-[11C]thymidine PET study. Top row

shows the original reconstructed images at (a) 15 sec, (b) 75 sec, (c) 135 sec,

(d) 285 sec, (e) 1020 sec, and (f) 2850 sec postinjection. Bottom row shows same

slice at identical time points after cluster analysis. Individual images are scaled

to their own maximum.

Application of the clustering algorithm to the simulated PET data is shown

in Fig. 3.11. The number of clusters is eight, corresponding to the optimum

number of clusters determined by the statistical criteria. The SNR of the im-

ages is markedly improved after clustering. In addition, the blood vessels are

clearly seen in the frame sampled at 15 and 75 sec after clustering but not in the

corresponding frame in the original data. In the original images, it is difficult to

identify different tissues which may be due to reconstruction effects and inhomo-

geneous noise. However, the liver, spleen, muscle, marrow, stomach, and tumors

are clearly delineated by the clustering algorithm (bottom row of the figure).

3.6.4.2 Simulated FDG-PET Study

Five cluster images were generated by applying the clustering algorithm to the

noisy simulated dynamic images. The number of clusters k was actually varied

from 3 to 10 and the optimal k was determined by inspecting the change of

average MSE and the visual quality of the cluster images. Figure 3.12 shows the

cluster images for k = 5 that was found to be the optimum number of clusters

for this dataset. It was found that the tumor cannot be located when k was small

(k < 4). The tumor was located by gradually increasing the number of clusters.

However, there was a deteriorated segmentation of all regions when k was large

(k > 7).
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Figure 3.12: Five cluster images obtained from the noisy simulated dynamic

FDG-PET data. The images correspond to (a) ventricles and scalp, (b) white

matter and left middle temporal gyrus (hypometabolic zone), (c) partial volume

between gray matter and white matter, (d) gray matter, deep nuclei, and outer

rim of tumor, and (e) tumor.

Although the tumor was small in size, cluster analysis was still able to locate

it because of its abnormal temporal characteristics as compared to the other

regions. Cluster analysis also performed well in extracting underlying tissue

kinetics in gray matter and white matter because of their distinct kinetics. On

the contrary, the kinetics in the thalamus and the hypometabolic region were

not separated from those in gray and white matter but this was not unexpected

since their kinetics were very similar.

Owing to the partial volume effects (PVEs), there were some vague regions

whose kinetics were indeterminate (Fig. 3.12(c)) and did not approach gray or

white matter. The algorithm was unlikely to assign such kinetics to the cluster

corresponding to white matter or to the cluster corresponding to gray matter

since the overall segmentation results would be deteriorated. Thus, a cluster

was formed to account for the indeterminate kinetics.

3.6.4.3 Human Studies

Segmentation results are shown for dynamic neurologic (Fig. 3.13) and lung

(Fig. 3.14) FDG-PET studies. The clusters are represented by differing gray

scales and slices were sampled at the level where the lesions were seen on

the original reconstructed data. Since there is no a priori knowledge about the

optimum number of clusters, the value of k was varied in order to determine

the optimal segmentation using the AIC and SC as in the phantom study. For

Fig. 3.13, eight clusters were found to give the optimal segmentation for these

datasets. The locations of the tumors and the rim of increased glucose uptake
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Figure 3.13: Tissue segmentation obtained from Patient 1 at (a) slice 10,

(b) slice 13, and (c) slice 21; and Patient 2 at (d) slice 21, (e) slice 24, and

(f) slice 26. The number of clusters used is eight. The locations of the solid hy-

permetabolic portions of the tumors (arrows) and the small rim of increased

glucose uptake (arrow heads) identified by cluster analysis are shown.

are identified correctly by the clustering algorithm with the optimal value of

clusters.

For Fig. 3.14, the number of clusters was varied from 3 to 13 and only some

representative results are shown. Similar to the simulation study, the segmen-

tation results are poor when the number of clusters is small (k = 3), while the

segmentation is gradually improved by increasing the number of clusters. Based

on the AIC and SC, the optimum numbers of clusters for the selected slices (4,

19, and 24) were found to be 8, 8, and 9, respectively. It is not surprising that

the optimum number of clusters is different for different slices because of the

differing number of anatomical structures contained in the plane and the het-

erogeneity of tracer uptake in tissues. Nevertheless, the tumor (slice 4), right

lung and muscle (slices 4, 19, and 24), blood pool (slices 4, 19, and 24), separate

foci of increased FDG uptake (slices 19 and 24), and the injection site (slices 4,

19, and 24) are identifiable with the optimum number of clusters.

Figure 3.15 shows the measured blood TAC at the pulmonary artery and

the extracted tissue TACs for the tumor (from slice 4), lung and muscle (from
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Figure 3.14: Tissue segmentation of the dynamic lung FDG-PET data from

Patient 3 in three selected slices: 4 (top row), 19 (middle row), and 24 (bottom

row) with different number of clusters. (a) k = 4, (b) k = 7, (c) k = 8, (d) k = 9,

(e) k = 10, and (f) k = 12. (I = injection site; B = blood pool; L = lung; T =
tumor).

Figure 3.15: Extracted tissue time–activity curve (TACs) corresponding to the

tumor, lung, and muscle, foci of increased FDG uptake, and blood pool. The

measured blood TAC at the pulmonary artery is also shown.
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Table 3.2: Compartmental modeling of the tumor TACs obtained by

manually ROI delineation and by cluster analysis

Parameter Manual delineation Cluster analysis

k∗1 (ml/min/g) 0.854 ± 17.1 0.921 ± 18.2
k∗2 (min−1) 1.987 ± 21.2 2.096 ± 22.5
k∗3 (min−1) 0.099 ± 0.9 0.100 ± 0.9
k∗4 (min−1) 0.018 ± 1.1 0.017 ± 1.2
K (ml/min/g) 0.041 ± 5.3 0.042 ± 5.3

TAC: Time–activity curve; ROI: region of interest. Values are given as estimate ±% CV.

slice 19), foci of increased FDG uptake (from slice 24), and the blood pool (from

slice 19) using the corresponding optimal value of clusters.

The extracted tissue TACs obtained by cluster analysis and manual ROI de-

lineation were fitted to the three-compartment FDG model using nonlinear least

squares method and the results obtained for the tumor tissue TAC (Patient 2)

are summarized in Table 3.2. There was a close agreement between the param-

eter estimates for the tissue TACs obtained by different methods in terms of the

estimate and the coefficient of variation (CV), which is defined as the ratio of

the standard deviation of the parameter estimate to the value of the estimate.

Similar results were also found for other regions.

3.7 Extraction of Physiological Parameters

and Input Function

Quantification of dynamic PET or SPECT data requires an invasive procedure

where a series of blood samples are taken to form an input function for kinetic

modeling. One of the potential applications of the clustering algorithm presented

earlier is in noninvasive quantitative PET. We have proposed a simultaneous es-

timation approach to estimate the input function and physiological parameters

simultaneously with two or more ROIs and our results with in vivo PET data

are promising [95]. The method is still limited, however, by the selection of

ROIs whose TACs must have distinct kinetics. As the ROIs are drawn manually

on the PET images, reproducibility is difficult to achieve. The use of cluster-

ing to extract tissue TACs of distinct kinetics has been investigated in three
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Table 3.3: Comparison between the estimated input functions obtained using

different number of manually drawn ROIs and clustered ROIs, and the

measured input functions

Number of ROIs

2 3 4 5

Manually drawn ROIs

MSE 0.632 0.365 0.431 0.967
AUC (measured = 24.077) 23.796 23.657 24.188 25.138
Linear regression on AUC (n= 19)

Slope 0.967 0.963 0.984 1.022
Intercept 0.493 0.460 0.609 0.712
r value 0.999 0.999 0.999 0.999

Clustered ROIs

MSE 0.100 0.096 0.040 0.066
AUC (measured = 24.077) 20.742 23.721 25.430 23.481
Linear regression on AUC (n= 19)

Slope 0.807 0.953 1.067 0.946
Intercept 0.874 0.575 -0.321 0.481
r value 0.993 0.998 0.999 0.999

MSE = Mean square errors between the estimated and the measured input functions; AUC = area under

the blood curve; r = coefficient of correlation; ROI = region of interest.

FDG-PET studies. Table 3.3 summarizes the results for the estimation of the

input functions by the proposed modeling approach for both manually drawn

ROIs and clustered ROIs. The MSE between the estimated and the measured in-

put functions are tabulated. In addition, results of linear regression analysis on

the areas under the curves (AUCs) covered by the measured and the estimated

input functions are listed for comparison. Regression lines with slopes close to

unity and intercepts close to zero were obtained in all cases for manually drawn

ROIs and for clustered ROIs.

Figure 3.16 plots the measured input function and the estimated input func-

tions for manually drawn ROIs and clustered ROIs, respectively. The estimated

input functions were obtained by simultaneously fitting with three ROIs of dis-

tinct kinetics. There was a very good agreement between the estimated input

functions and the measured blood curve, in terms of the shape and the peak

time estimation at which the peak occurs, despite the overestimation of the

peak value. Thus, cluster analysis may be useful as a preprocessing step before

our noninvasive modeling technique.
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Figure 3.16: Plot of the measured arterial input function, the estimated input

function from manually drawn regions of interest (ROIs), and clustering based

ROIs. The estimated input functions were obtained by simultaneously fitting

with three ROIs of distinct kinetics.

Alternatively, clustering can be applied to extract input function directly

on the dynamic PET/SPECT data if the vascular structures (e.g. left ventricle

[81] and internal carotid artery [82]) are present in the field of view, providing

that partial volume and spillover effects are appropriately corrected. Clustering

has also been found useful in analyzing PET/SPECT neuroreceptor kinetics in

conjunction with simplified techniques for quantification [106]. In particular,

identification of regions that are devoid of specific binding is attractive because

the kinetics of these regions can be treated as a noninvasive input function to

the simplified approach for parametric imaging of binding potentials and relative

delivery [107, 108].

3.8 Fast Generation of Parametric Images

Fast generation of parametric images is now possible with current high-speed

computer workstations. However, overestimation of parameters and negative

parameter estimates, which are not physiologically feasible, occur often when

the data are too noisy. Reliable parametric imaging is therefore largely dependent
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Figure 3.17: Parametric images on a pixel-by-pixel basis of K obtained from

Patient 1: (a) slice 10; (b) slice 13; (c) slice 21. Top row shows the images obtained

from the raw dynamic images and bottom row shows the images obtained from

dynamic images after cluster analysis. The images have been smoothed slightly

for better visualization.

on the noise levels inherent in the data which affect, in addition to meaningful

parameter estimation, the time required to converge as well as the convergence.

Clustering may be useful as a preprocessing step before fast generation of para-

metric images since only a few characteristic curves which have high statisti-

cal significance, need to be fitted as compared to conventional pixel-by-pixel

parametric image generation where many thousands of very noisy tissue TACs

must be analyzed. The computational advantage and time savings for generation

of parametric images (fitting many thousands of kinetic curves versus several

curves) are apparent.

Figure 3.17 shows the parametric images of physiological parameters, K , ob-

tained from the neurologic study for Patient 1 in the three selected slices. The top

and bottom rows of the images correspond to the results obtained from pixel-by-

pixel fitting the TACs in the raw dynamic PET data and data after cluster analysis,

respectively. The K images are relatively noisy when compared to the data after

cluster analysis because of the high-noise levels of PET data which hampered

reliable parametric image generation. However, the visual quality of the K im-

ages improves markedly with cluster analysis as a result of the increased SNR

of the dynamic images. Low-pass filtering of the original parametric images may

improve the SNR but clustering should produce better results because it takes
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the tissue TACs with similar temporal characteristics for averaging. Meanwhile,

low-pass filtering only makes use of the spatial (adjacent pixels) information for

filtering and this will only further degrade the spatial resolution. The feasibility of

using the kinetic curves extracted by cluster analysis for noninvasive quantifica-

tion of physiological parameters and parametric imaging has been investigated

and some preliminary data have been reported [109]. Some other recent studies

can be found elsewhere [110–115].

3.9 Visualization of Disease Progress

In nuclear medicine, several kinds of organ function can be measured simultane-

ously with various radiopharmaceuticals under different conditions. This gives

us useful information about the stage of disease progress if the relationship

between various parameters such as metabolism, blood flow, and hemodynam-

ics can be elucidated. Toyama et al. [116] investigated the use of agglomera-

tive hierarchical and K -means clustering methods to study regional vasodila-

tive and vascoconstrictive reactivity and oxygen metabolism before and after

revascularization surgery in chronic occlusive cerebrovascular disease. By clus-

tering a four-variable correlation map, whose pixel values on the X, Y , Z, and T

axes represent, respectively, the resting cerebral blood flow, the hyperventila-

tory response, the acetazolamide response, and regional oxygen metabolic rate,

anatomically and pathophysiologically different areas can be identified showing

the involvement of certain areas with varying degrees of progression between

pre- and postsurgical treatment, while functional changes in the revascularized

region can be depicted on the clustered brain images. It appears that clustering

technique maybe useful for multivariate staging of hemodynamic deficiency in

obstructive cerebrovascular disease and it also be suitable for objective repre-

sentation of multiple PET physiological parameters obtained from 15O-labeled

compound studies and also in brain activation studies.

3.10 Characterization of Tissue Kinetics

Kinetic modeling of radiotracer (or radiopharmaceutical) is the core of dy-

namic PET/SPECT imaging. The aim of modeling is to interpret kinetic data
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quantitatively in terms of physiological and pharmacological parameters of a

mathematical model, which describes the exchanges (e.g. delivery and uptake)

of radiotracer by the tissue. Statistical inferences can then be made regard-

ing the distribution and circulation of tracers within different tissues regions,

which are quantitatively represented by the physiological/pharmacological pa-

rameters in the model. Successful statistical inference relies heavily on the

appropriate use of analysis approaches and a priori knowledge of the un-

derlying system as well as the validity of the assumptions being made. What

if we know nothing about the underlying system, or little is known about

the tracer characteristics and we are unsure if the assumptions (e.g. tissue

homogeneity) being made are valid? The use of kinetic modeling could lead

to incorrect inferences about the complex physiological or biochemical pro-

cesses. In this case, data-driven approaches can provide important clues to

what is going on inside the underlying system and how the radiotracer be-

haves inside the tissue, as they interrogate the measured data to characterize the

complex processes, with minimal assumptions and independent of any kinetic

model.

Evaluation of soft tissue sarcomas (STS) is a challenging clinical prob-

lem because these tumors are very heterogeneous, and the treatment of pa-

tients with STS is also very complicated. The most essential step in the di-

agnostic evaluation of STS is tumor biopsy. PET imaging has the ability to

differentiate benign from malignant lesions. It can detect intralesional mor-

phologic variation in soft tissue sarcomas, and it is of value in grading tu-

mor, staging, restaging, and prognosis. Fluoromisonidazole (FMISO) has been

shown to bind selectively to hypoxic cells in vitro and in vivo at radiobi-

ologically significant oxygen levels. When labeled with the positron emitter

fluorine-18 (18F), its uptake in tissue can be localized and detected quantita-

tively with high precision by PET. [18F]FMISO uptake has been investigated in

various human malignancies [117]. PET imaging with [18F]FMISO, FDG, and
15O-water may provide valuable information complementary to tumor biopsy

for better understanding of the biological behavior of STS. As cluster analy-

sis does not rely on tracer assumptions nor kinetic model, it maybe useful in

analyzing tissue TACs of STS obtained from [18F]FMISO-PET and FDG-PET,

and in looking for any correlations, for instance, tumor volume, hypoxic vol-

ume, and vascular endothelial growth factor expression, etc, between different

datasets [118].
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3.11 Partial Volume Correction in PET

Ideally, after corrections for the physical artifacts (e.g. scatter and attenuation)

and calibration, the reconstructed PET image should represent highly accurate

radiopharmaceutical distribution in absolute units of radioactivity concentra-

tion throughout the field of view of the PET scanner. However, this only holds

for organs or structures with dimensions greater than twice the spatial resolution

of the scanner, which is characterized by the full width at half maximum height

of an image of a line source. When the object or structure being imaged is smaller

than this, the apparent activity concentration is diluted. The degree of dilution in

activity concentration varies with the size of the structure being imaged and the

radioactivity concentration of the imaged structure comparing to its surround-

ing structures [10]. This phenomenon is known as partial volume effect (PVE),

which is solely caused by the limited spatial resolution of the PET scanner.

A number of approaches have been proposed to correct or minimize the

PVE, including resolution recovery before or during image reconstruction, and

incorporation of side information provided from anatomical imaging modalities

such as CT and MRI. One of the popular approaches that incorporates MRI

segmentation for partial volume correction is the method proposed by Müller-

Gärtner et al. [54] but the method is only applicable to brain imaging. PET images

are first spatially co-registered with MR images obtained from the same subject.

The MR images are then segmented into gray matter, white matter, and CSF

regions, represented in three separate images. These images are then convolved

spatially with a smoothing kernel which is derived from the point spread function

of the PET scanner. The convolved white matter, image is then normalized to

the counts in a white matter ROI drawn on the PET image so that spillover white

matter activity into gray matter regions can be removed. Finally, the resultant

image is divided by the smoothed gray matter image so that signals in small

structures, which were smoothed severely, can be enhanced.

3.12 Attenuation Correction in PET

Accurate attenuation correction (AC) is essential to emission computed to-

mography such as PET and SPECT, for both quantitative and qualitative
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interpretation of the results (Chapter 2 of Handbook of Biomedical Image Anal-

ysis: Segmentation, Volume I). In PET, for instance, AC factors are most often

determined by calculating the pixel-wise ratio of a blank scan acquired before

positioning the patient in the gantry of the scanner, and a transmission scan per-

formed with the patient in the gantry. The major drawback of this approach is

that statistical noise in the transmission data would propagate to the emission

data [119, 120]. Depending on several factors such as body size and compo-

sition, transmission scans of 15–30 min are often performed to minimize the

propagation of noise to the emission data through AC, at the price of reducing

the patient throughput and increasing the errors due to patient motion, causing

misalignment between transmission and emission data. Segmented AC methods,

which employ image segmentation to partition the transmission images into re-

gions of homogeneous density such as soft tissue, lung, and solid bones whose

AC factors are known a priori and can be assigned, are particularly useful in

cases where propagation of noise in transmission measurements during AC be-

comes a significant effect. A number of approaches based on the framework of

pixel classification techniques and region-based segmentation approaches have

been proposed and examined for segmented AC in PET. For example, Huang et

al. [121] proposed a method where the operator manually defines the outlines of

the body and the lung on the attenuation images. Known attenuation coefficients

are then assigned to these regions and noiseless AC factors are then obtained

by forward projecting the attenuation images with assigned attenuation coeffi-

cients. This approach has been further extended by a number of investigators by

automating the determination of lung and the body regions using image segmen-

tation techniques. For instance, Xu et al. used local thresholding approach to

segment attenuation images into air, lung, and soft tissue [122]. Meikle et al. [123]

used histogram fitting techniques to assign the attenuation values based on an

assumed probability distribution for the lung and soft tissue components. Pa-

penfuss et al. [124] used expectation-maximization clustering technique in con-

junction with thresholding to produce fuzzy segmentation of attenuation images.

Likewise, Bettinardi et al. [125] proposed an adaptive segmentation technique,

also based on fuzzy clustering. This method can automatically determine the

number of tissue classes in the attenuation images. The method can generally

be applied to any region of the body. At least one of the aforementioned methods

is currently in routine use by many PET centers worldwide.
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3.13 Application to Analysis of fMRI Data

Functional MRI is a powerful modality for determining neural correlates of cog-

nitive processes. It can be used to monitor changes of physiological parameters

such as regional cerebral blood flow, regional cerebral blood volume, and blood

oxygenation during cognitive tasks [126]. To extract functional information and

detect activated regions using fMRI, the most widely adopted procedures are

generally based on statistics theory and are paradigm dependent [65, 127, 128].

Cluster analysis has recently been applied to the fMRI discipline [129–131].

It is anticipated that cluster analysis will have great impact on analysis of

fMRI signals for the detection of functional activation sites during cognitive

tasks.

3.14 Discussion and Conclusions

In this chapter, a number of segmentation techniques used in, but not specific

to functional imaging have been detailed. In particular, tissue segmentation and

classification in functional imaging are of primary interests for dynamic imag-

ing, for which cluster analysis is a valuable asset for data analysis because the

identified characteristic curves are in the same space as the original data. This

certainly has advantages over PCA in terms of interpretation of identified PCs,

and over FADS where the factor components are rotated, leading to possibly

nonunique factor explanation and interpretation. This chapter focuses on func-

tional segmentation and a clustering technique is presented and discussed in

great detail. The proposed technique is an attempt to overcome some of the

limitations associated with commonly used manual ROI delineation, which is

labor intensive and time-consuming. The clustering technique described is able

to provide statistically meaningful clusters because the entire sequence of im-

ages are analyzed and different kinetic behaviors and the associated regions are

extracted from the dataset, as long as there is a finite number of kinetics in the

data. Once the segmentation process is completed, the extracted TACs, i.e. the

cluster centroids, are then mapped back to the original data space for all vox-

els. Thus, an improved SNR can be achieved because each voxel in the mapped

data space is represented by one of the cluster centroids each of which pos-

sesses a higher statistical significance than an individual TAC in the same spatial
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location. Therefore, the extracted TACs obtained by cluster analysis should be

more consistent and reproducible.

It is difficult to identify obvious cluster centroids in PET data because they

are multidimensional and noisy. Therefore, initial centroids are needed for the

proposed algorithm. The initial cluster centroids do not have to be accurate

because they are used only as seeds to start the algorithm. However, if the

starting centroids are far from the final cluster centroids, more iterations may

be required. An incorrect initial selection may occur if a noisy outlier is chosen,

resulting in a cluster with a single member. For this case, a lower bound on

the final number of members in a cluster should be incorporated to prevent the

cluster from being exhausted.

The optimum number of clusters for cluster analysis is usually not known

a priori. The number of clusters, k, is also dependent on a number of factors

mentioned previously. In addition, different choices for the values of k may

result in different partitions of data. In this study, we limited the range for the

values of k and applied the clustering algorithm to the simulated and real data.

Nevertheless, it is reasonable to assume that the limited number of clusters used

in this study is feasible, given that there is a finite number of kinetics present in

the data. With the use of information-theoretic approaches to cluster validation,

one can objectively determine the optimum number of clusters for the given

dataset. However, caution should be taken when using the criteria as they are

model dependent. The optimum number of clusters suggested by the criteria

may not make sense if the specified probability distribution function for the

observed data is not appropriate. There are a number of statistical criteria for

the determination of the optimal number of clusters in addition to those used

in this study and we are currently exploring various approaches, including the

minimum description length to the cluster validation problem.

A limitation of the proposed algorithm is that it cannot differentiate anatom-

ical structures having similar kinetics but are unconnected spatially. It is ex-

pected that future work will consider the addition of other information such as

the geometry and the coordinates of the structure concerned. Another related

issue is tissue heterogeneity [132] although this effect is usually ignored. In the

work described, we did not attempt to solve this problem for cluster analysis.

However, some heuristic interpretations could be made. In anatomy, most of

the anatomical structures are discrete and well separated, they should easily be

segmented by the proposed algorithm. Because of biological variations, a tissue
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type may have inherent heterogeneity in it. A typical example is tumor, which are

naturally heterogeneous. Activity concentration in a small tissue structure can

be underestimated or overestimated due to partial volume effects, which cause

the structure being imaged to mix with adjacent structures of possibly markedly

different kinetics within the image volume, resulting in a mixed kinetics of the

structures involved. As a finite number of clusters is assumed to be present

in the raw PET data, the clustering algorithm will automatically look for the

cluster centers that best represent the dataset without any a priori knowledge

about the data and without violating the specified number of clusters. There-

fore, certain regions which are indeterminate but their kinetics are similar, may

be grouped together due to the constraint on the number of clusters, resulting

in the formation of vague clusters. Further studies are required to investigate

tissue heterogeneity in cluster analysis.

In earlier work, O’Sullivan [110] used cluster analysis as an intermediate step

to extract “homogeneous” TACs from data containing a heterogeneous mix of

kinetics resulting from spillover and partial volume effects for parametric map-

ping. This method is very similar to FADS but still there is a main difference

between them: FADS extracts physiological factors (TACs) that could (theoret-

ically) be found in the original data, whereas the set of “homogeneous” TACs

does not necessarily correspond to the underlying physiology. In this current

work, cluster analysis is used to extract kinetic data with different temporal

characteristics as well as for parametric mapping. This is important for data

analysis because data with different temporal behavior are better characterized

by the extracted features seen in a spatial map. A spatial map is simpler to in-

terpret when compared to the original multidimensional data. However, similar

to O’Sullivan’s approach [110], our method is data driven and is independent of

the properties of tracer that may be required by other methods [111]. Thus, the

clustering approach can be applied to a wide range of tracer studies.

It is anticipated that cluster analysis has a great deal of potential in PET data

analysis for various neurodegenerative conditions (e.g. dementias) or diseases

such as multiple system atrophy, Lewy Body disease, and Parkinsons disease

where numerical values for glucose metabolism and the patterns of glucose

hypometabolism may aid in the diagnosis and the assessment of disease pro-

gression. Localization of seizure foci in patients with refractory extratemporal

epilepsy is also important as it is a difficult management problem for surgi-

cal epilepsy programs for this patient group. Functional segmentation may be
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a useful tool in this regard. Investigation of the applicability of cluster anal-

ysis to whole-body PET for lesion localization and assessment of treatment

response in a variety of oncological conditions will also be a fruitful research

direction. Combining information provided by structural images for segmen-

tation of functional image data will certainly become one of the key research

areas in a new, hybrid PET/CT imaging technique, which will likely replace the

existing PET alone facilities and will become a new standard of cancer imaging

in the near future. With this hybrid imaging technique, precisely coregistered

anatomical (CT) and functional (PET) images can be acquired in a single scan-

ning session, and accurate localization of lesions could be achieved with the use

of CT images as they provide very clear boundary delineation and anatomical

information.

The above list of segmentation methods and applications are by no means

complete. In fact, segmentation is one of the most difficult problems in medi-

cal image analysis but it is very useful in many medical imaging applications.

Tremendous efforts have been devoted to cope with different segmentation

problems. Continuing advances in exploitation and development of new concep-

tual approaches for effective extraction of all information and features contained

in different types of multidimensional images are of increasingly importance in

this regard. The following quote by the late philosopher, Sir Karl Popper, is worth

noting when we think about new ideas and using analysis tools [133]:

. . . at any moment we are prisoners caught in the framework of our theories; our

expectations; our language. But . . . if we try, we can break out of our framework at

any time. Admittedly, we shall find ourselves again in a framework, but it will be a

better and roomier one; and we can at any moment break out of it again.

There is no magic method that suits all problems. One has to realize the strengths

and limitations of the technique, and understand what kind of information the

technique provides, and careful definition of the goals of segmentation is essen-

tial. It is also important to remember that new ideas and techniques may bring us

something valuable that we are eager to see but something may be overlooked

or missed out in the mean time, because we are bounded by the framework of

the ideas or techniques, just like a prisoner, as Popper said. What we can only

hope is that the new idea or the new technique, i.e. the prison, will be a better

and roomier one where we can break out of it again at any time if there is a

need!
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Questions

1. What is the major purpose of image segmentation? Why is it so significant

in medical image analysis?

2. Identify the major classes of techniques for image segmentation.

3. List the advantages and disadvantage of using edge detection techniques

for image segmentation.

4. What are the advantages and disadvantages of using manual region of

interest (ROI) delineation with respect to using a template?

5. What are the disadvantages of using similarity mapping for segmentation?

6. What are the common and differences between principal component anal-

ysis (PCA) and factor analysis of dynamic structures (FADS)?

7. What are the major advantages of cluster analysis over other multivariate

analysis approaches such as PCA and FA?

8. What are the major advantages of using clustering for characterizing tissue

kinetics?
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