
Chapter 9

EXPERIMENTAL ANALYSIS OF
HEURISTICS FOR THE STSP

David S. Johnson
AT&T Labs - Research, Room C239, Florham Park, NJ 07932, USA
dsj@research.att.com

Lyle A. McGeoch
Dept. of Mathematics and Computer Science, Amherst College, Amherst, MA 01002

lam@cs.amherst.edu

1. Introduction
In this and the following chapter, we consider what approaches one

should take when one is confronted with a real-world application of the
TSP. What algorithms should be used under which circumstances? We
are in particular interested in the case where instances are too large
for optimization to be feasible. Here theoretical results can be a useful
initial guide, but the most valuable information will likely come from
testing implementations of the heuristics on test beds of relevant in
stances. This chapter considers the symmetric TSP; the next considers
the more general and less well-studied asymmetric case.

For the symmetric case, our main conclusion is that, for the types of
instances that tend to arise in practice, heuristics can provide surpris
ingly good results in reasonable amounts of time. Moreover the large
collection of heuristics that have been developed for the STSP offers a
broad range of tradeoffs between running time and quality of solution.
The heuristics range from those that take httle more time than that
needed to read an instance and still get within 50% of optimum to those
that get within a few percent of optimum for 100,000-city instances in
seconds to those that get within fractions of a percent of optimum for
instances of this size in a few hours.

 The Traveling Salesman Problem and Its Variations
© Springer Science+Business Media, LLC 2007
G. Gutin et al. (eds.),

mailto:dsj@research.att.com
mailto:lam@cs.amherst.edu

370 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The relevant level of performance will of course vary, depending on
the application. This chapter provides a tentative characterization of
the most promising approaches at many levels of the tradeoff hierarchy.
In this way we hope to put previous theoretical and experimental work
into a practical perspective.

In order to provide an up-to-date picture of the state of the art, the
authors of this chapter, together with Fred Glover and Cesar Rego, or
ganized a DIMACS Implementation Challenge^ on the STSP. The Chal
lenge began in June 2000 and continued through November, with addi
tional data collected through June 2001. Researchers from all over the
world, including all the current top research groups, ran their codes on
instances from a collection of test suites, reporting running times and
the lengths of the constructed tours. They also reported running times
for a special benchmark code distributed by the organizers. These times
allowed us to estimate the speeds of their machines (as a function of
instance size) and thus to normalize running times to what they might
(approximately) have been had the codes all been run on the same fixed
machine. We thus can provide detailed comparisons between a wide
variety of heuristics and implementations with specific attention to ro
bustness, scalability, and solution quality/running time tradeoffs. In this
way we hope to improve on earlier studies, such as those of Golden and
Stewart [388], Bentley [103], Reinelt [710, 711], and Johnson-McGeoch
[463], which covered fewer heuristics and instances and did not provide
as convenient mechanisms for future comparability.

The remainder of this chapter is organized as follows. In Section 2 we
provide more details about the Challenge, the testbeds of instances it
covered, its participants, our scheme for normalizing running times, and
our methods for evaluating tour quality. In Section 3, we describe the
various heuristics studied, divided into groups on the basis of approach
and speed, and summarize the experimental results obtained for them.
Section 4 then presents some overall conclusions and suggestions for
further research.

We should note before proceeding that certain heuristics described
elsewhere in this book are for various reasons not covered in this chap
ter. Perhaps our foremost omission is the approximation schemes for
geometric STSP's of Arora, Mitchell, et al. [35, 601, 696], as described
in Chapter 5. These heuristics, despite their impressive theoretical guar-

^ DIMACS is the Center for Discrete Math and Theoretical Computer Science, a collaboration
of Rutgers and Princeton Universities with Bell Labs, AT&;T Labs, NEC Labs, and Telcordia
Technologies. This was the 8th in the DIMACS Implementation Challenge series. For more
information, see h t t p : / / d imacs . ru tge r s . edu /Cha l l enges / .

http://dimacs.rutgers.edu/Challenges/

Experimental Analysis of Heuristics for the STSP 371

antees, have significant drawbacks compared to the competition we shall
be describing. Because of the perturbation of the instances that they
initially perform, the versions of the heuristics guaranteeing 1 + e worst-
case ratios are likely to be off by a significant fraction of e even in the
average case. Thus, to be competitive with heuristics that typically get
within 1 or 2 percent of optimum in practice, one probably must choose
e < 0.05. This is likely to make the running times prohibitive, given the
large constant factor overheads involved and the fact that the running
times are exponential in 1/e. It would be interesting to verify that this
is indeed the case, but as of this date we know of no attempt at a serious
implementation of any of the schemes.

A second hole in our coverage concerns local-search heuristics based
on polynomial-time searchable exponential-size neighborhoods, one of
the subjects of Chapter 6. We have results for only one such heuristic.
Empirical study of such heuristics is still in its infancy, and so far very
little has emerged that is competitive with the best traditional STSP
heuristics.

The final hole in our coverage is rather large - much of the burgeon
ing field of metaheuristics is not represented in our results. Although we
do cover one set of tabu search implementations, we cover no heuristics
based on simulated annealing, neural nets, classical genetic algorithms,
GRASP, etc. The Challenge was advertised to the metaheuristic com
munity and announcements were sent directly to researchers who had
previously published papers about heuristics of these sorts for the TSP.
For various reasons, however, little was received. Fortunately, we may
not be missing much of practical value in the context of the STSP. As
reported in the extensive survey [463], as of 1997 all metaheuristic-based
codes for the STSP were dominated by 3-Opt, Lin-Kernighan, or Iter
ated Lin-Kernighan. Metaheuristics, if they are to have a role in this
area, are more likely to be useful for variants on the TSP. For example,
they might well adapt more readily to handling side constraints than
would more classical approaches.

2. DIMACS STSP Implementation Challenge
For a full description of the DIMACS Implementation Challenge, see

the website at h t tp : / /www.research .a t t . co in /~ds j /ch t sp / . In ad
dition to providing input for this chapter, the Challenge is intended to
provide a continually updated picture of the state of the art in the area
of TSP heuristics (their effectiveness, robustness, scalabihty, etc.). This
should help future algorithm designers to assess how their approaches
compare with already existing TSP heuristics.

http://www.research.att.coin/~dsj/chtsp/

372 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

To this end, the website currently makes a variety of material available
for viewing or downloading, including instances and instance generators,
benchmark codes, raw data from the participants, and statistics and
comparisons derived therefrom. Our intent is to maintain the website
indefinitely, updating it as new results are reported and adding new
instances/instance classes as interesting ones become available.

This chapter presents a summary and interpretation of the available
results as of June 2001, representing code from 15 research groups. Many
of the groups reported on implementations of more than one heuristic
or variant, thus providing us with fairly comprehensive coverage of the
classical heuristics for the STSP along with several promising new ap
proaches. For additional details, the reader is referred to the website
and to a forthcoming DIMACS Technical Report that will present the
data in a more hnear fashion. In the remainder of this section, we de
scribe the Challenge testbeds in more detail, as well as our scheme for
normalizing running times.

2.1 . Testbeds

In designing the Challenge testbeds, we have chosen to ignore in
stances with fewer than 1,000 cities. This was done for several reasons.
First, as we shall see, currently available optimization codes, in par
ticular the publicly available Concorde package"^ of Applegate, Bixby,
Chvatal, and Cook [29], seem to be able to solve typical STSP instances
with fewer than 1,000 cities in quite feasible running times. Indeed,
Concorde was able to solve all the 1,000-city instances in our random
testbeds using its default settings. Normalized running times were typi
cally in minutes, and the longest any such instance took was just a little
over two hours. Second, if one is only willing to spend seconds rather
than minutes, the best of the current heuristics are hard to beat. For
instance, the A^/10-iteration version of the publicly available LKH code
of Keld Helsgaun [446] can get within 0.2% of optimum in no more than
20 seconds (normalized) for each of our 1,000-city random instances and
for the six TSPLIB^ instances with between 1,000 and 1,200 cities. Thus
it is not clear that heuristics are needed at all for instances with fewer
than 1,000 cities, and even if so, high quality solutions can be obtained in
practical running times using publicly available codes. The real research
question is how heuristic performance scales as instance sizes grow, es-

^Currently available from ht tp: / /www.math.pr inceton.edu/ tsp/concorde.htni l .
"̂ TSPLIB is a database of instances for the TSP and related problems created and maintained at
ht tp: / /www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ by Gerd Reinelt
and described in [709].

http://www.math.princeton.edu/tsp/concorde.htnil
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Experimental Analysis of Heuristics for the STSP 373

pecially since many modern applications generate instances with 10,000
cities or more.

Our second decision was to concentrate primarily on geometric in
stances in two dimensions. Most experimental research on the STSP to
date has concentrated on such instances. This is largely because the ma
jor applications for the STSP, both industrial and academic, have been
of this sort. Consequently, many codes have been written to exploit such
structure and only work for such instances. (Limited experimentation
with higher dimensional instances suggests that the lessons learned in
two dimensions carry over at least to three or four [461, 465].)

A third decision, based on common practice in the literature and an
assumption made by many codes, was to restrict attention to instances
in which inter-city distances are all integral.

The Challenge test suite contains three classes of geometric instances:

• Random Uniform Euclidean Instances ("Uniform"). Here the cities
are points whose two coordinates are each integers chosen ran
domly from the interval [0,10^), with instance sizes increasing
roughly by factors of yTO from N = 1,000 to Â == 10,000,000.
Distances are the Euclidean distance rounded to the nearest inte
ger. There are ten instances with 1,000 cities, five with 3,162, three
of size 10,000, two each of sizes 31,623 and 100,000, and one each
of sizes 316,228, 1,000,000, 3,162,278, and 10,000,000. Instances of
this type have been widely studied and yield an interesting view
on asymptotic performance.

• Random Clustered Euchdean Instances ("Clustered"). Here we
choose A^/100 cluster centers with coordinates chosen uniformly in
[0,10^), and then for each of the Â cities we randomly choose a
center and two normally distributed variables, each of which is then
multiplied by 10^/y/N^ rounded, and added to the corresponding
coordinate of the chosen center. Distances are again the Euclidean
distance rounded to the nearest integer. For this class there are ten
instances with 1,000 cities, five with 3,162, three of size 10,000, two
each of sizes 31,623 and 100,000, and one of size 316,228. These
were designed to be challenging for local search heuristics.

• All 33 geometric instances in TSPLIB with 1,000 or more cities as
of June 2001. These instances range in size from 1,000 cities to
85,900. All are 2-dimensional with rounded Euclidean distances
(either rounded up or to the nearest integer). Most come either
from geography (coordinates of actual cities, with the earth viewed
as planar) or from industrial applications involving circuit boards,
printed circuits, or programmable gate arrays.

374 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

As to applications with non-geometric instances, these tend to be
asymmetric as well as non-geometric and hence will be covered in the
next chapter. For the STSP Challenge, our main source of non-geometric
instances consisted of random symmetric distance matrices, the only
non-geometric class that has previously been widely studied in the con
text of the STSP. Although such instances have no direct relevance to
practice, they do offer a substantial challenge to many heuristics and
thus are useful in studying the robustness of various approaches. For
our Random Matrix testbed, distances were independently chosen in
tegers distributed uniformly in the interval [0,10^). We include four
instances of size 1,000, two of size 3,162, and one of size 10,000. (Since
an instance of this type consists of roughly N'^/2 integers, storage can
become a problem for larger A .̂) In addition, our testbed contains the
one instance from TSPLIB that is given by its distance matrix and has
1,000 or more cities (s i 1032).

Although participants were encouraged to run their codes on as many
of the testbed instances as possible, this was not always possible. There
were four main reasons why participants could not handle the entire test
suite:

1. The participant's code was too slow to handle the largest instances
on the participant's machine.

2. The code was fast enough, but required too much memory to han
dle the largest instances on the participant's machine.

3. The participant's code was designed to handle geometric instances
and so could not handle instances given by distance matrices.

4. The participant's code was not designed to handle instances with
fractional coordinates. Despite the fact that the TSPLIB instances
all have integral inter-city distances, 13 of the 33 geometric TSPLIB
instances in our test suite have fractional coordinates.

Not all of these need be defects of the underlying heuristic. In particu
lar, (4) can typically be circumvented by additional coding, as several of
our participants have shown, and (1) and (2) can often be ameliorated
by cleverer code-tuning and memory management (or more powerful
machines). Reason (3) may be less forgiving, however: Some heuristics
are geometric by definition (e.g.. Convex Hull Cheapest Insertion), and
others will experience substantial slowdowns if they are unable to ex
ploit geometric structure. In any case, we can only report on the results
for the implementations we have, although where relevant we will try to
identify those heuristics for which faster or more robust implementations
may well be possible.

Experimental Analysis of Heuristics for the STSP 375

2-2. Running Time Normalization
Running time comparisons are notoriously difficult to make with any

precision, even when all codes are compiled using the same compiler and
compiler options and run on the same machine. By allowing participants
to compile their own codes and run them on their own machines, we have
made the problem substantially more difficult. However, since we did
not wish to restrict participation to those who were willing to share their
source codes, and we wanted to establish a record of the state of the art
that might still be meaningful after the machines we currently have are
obsolete and forgotten, there seemed to be no other choice.

In order to provide some basis for comparison, we thus have dis
tributed a benchmark STSP code, an implementation of the Greedy
(or Multi-Fragment) heuristic that uses K-d trees to speed up its opera
tion on geometric instances. Participants were asked to run this code on
their machines for a set of instances covering the whole range of sizes in
the Challenge test suite and to report the resulting running times. Note
that one cannot accurately quantify the difference in speeds between
two machines by a single number. Because of various memory hierarchy
effects, the relative speeds of two machines may vary significantly as a
function of the size of the input instances. Figure 9.1, which graphs the
running time of the benchmark code as a function of instance size for a
variety of machines, shows how widely relative machine speeds can vary
as a function of A .̂ (In the chart, running times are divided by NlogN^
the approximate number of basic operations performed by the heuristic.)

Using these reports, we can normalize running times to approximately
what they would have been on a specific benchmark machine: a Compaq
ES40 with 500-Mhz Alpha processors and 2 Gigabytes of main memory.
The basic plan is to compute a normalization factor as a function of A .̂
For Â equal to one of the instance sizes in our Uniform test suite, we
simply use the ratio between the benchmark code's time on the source
machine and on the ES40 for the test instance of that size (assuming
the benchmark code could be run on the source machine for instances
that large). For other values of N, we interpolate to find the appropriate
normalization factor.

There are multiple sources of potential inaccuracy in this process.
Linear interpolation is an inexact approach to getting intermediate nor
malization factors. A particular code may require more (or less) memory
for a given value of Â than does the benchmark Greedy code. It may
make more (or less) efficient use of instruction and data caches than
the benchmark code. Also, our normahzation process de-emphasizes the
time to read an instance. Reading times do not necessarily differ by the

376 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

MACHINE SPEEDS

CO

8
8

Z
o
o

CO
Q z o o
lU
CO

o

d

135 Mhz PowerPC
196 Mhz MIPS
300 Mhz MIPS
400 Mhz MIPS
440 Mhz Sparc
500 Mhz Pentium
500 Mhz Alpha

/
/ ^

^,/

/
/
/

/ 1
/
/
/

/ / /
/ -'— //

1 - ' /••••••

/ /

/ — 7 " / /
/-" / / ••

/ / / ' /

/ ,^-^' y ..-••' ^y""^

Zz:i:srj:z.—-'^^^7-----y-^\-:^^
_^'

1 1 1 1 1
10^3 10̂ 4 10̂ 5 10̂ 6

NUMBER OF CITIES N

10^7

Figure 9.1. Running times for benchmark greedy code as a function of instance size
for a variety of microprocessor-baised machines. The microprocessors are listed in the
order of their average times for 1000-city instances.

same factors as do CPU times, and they can be a significant compo
nent of the running time for the faster codes in our study, especially on
smaller instances and on instances given by full distance matrices.

The de-emphasis arises because of the way we deal with the fact that
systems typically only report running times in increments of 0.01 sec
onds. The benchmark Greedy code is so fast that its running time is
typically 0.00, 0.01, or 0.02 for 1,000-city instances. This makes it diffi
cult to derive precise normalization factors based on a single run. Thus,
when we perform the benchmark runs on the smaller instances, we re-

Experimental Analysis of Heuristics for the STSP 377

port the total time over a series of runs on the same instance. The
number of runs is chosen so that the product of the number of runs and
N is roughly 1,000,000, with just one run performed for each instance
with 1,000,000 or more cities. Although the basic data structures are
rebuilt in each run, the instance itself is read only once. A single read
makes sense since the heuristics we are testing only read the instance
once. However, by reducing the proportion of the total time devoted to
reading, this approach may misrepresent the impact of reading time on
heuristics for which it is a major component of the total time.

To get a feel for the typical accuracy of our normalization proce
dure, see Figure 9.2 which charts, for the benchmark Greedy code and
a Johnson-McGeoch implementation of the Lin-Kernighan heuristic the
ratio between the actual time on the target ES40 machine and the nor
malized time based on compiling the code and running it on a 196-Mhz
MIPS RIOOOO processor in an SGI Challenge machine. Note that for
each heuristic, the error is somewhat systematic as a function of A ,̂ but
the error is not consistent between heuristics. For Greedy the tendency
is to go from underestimate to overestimate as N increases, possibly
reflecting the reading time underestimate mentioned above. For Lin-
Kernighan, on the other hand, read time is not a major component of
running time on geometric instances, and for these the tendency is to
go from overestimate to underestimate, possibly because this code needs
substantially more memory than Greedy and because the MIPS machine
has larger 2nd level caches than does the ES40. It is worth noting, how
ever, that for both codes the estimate is still typically within a factor of
two of the correct time.

Unfortunately, even if we can estimate running times for specific codes
to within a factor of two, this may not imply anything so precise when
talking about heuristics. Diff'ering amounts of low-level machine-specific
code tuning can yield running time differences of a factor of two or more,
even for implementations that supposedly use the same data structures
and heuristic speedup tricks. And the latter can cause even greater
changes in speed, even though they are not always specified in a high-
level description of a heuristic. Thus, unless one sees order-of-magnitude
differences in running times, or clear distinctions in running time growth
rates, it is difficult to draw definitive conclusions about the relative ef
ficiency of heuristics implemented by different people on different ma
chines. Fortunately, there are orders-of-magnitude differences in running
time within the realm of TSP heuristics, so some conclusions about rel
ative efficiency will be possible.

378 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Errors in Running T ime Normal izat ion: Benchmark Greedy Code

o
E
I -

<

Q.

0
E

<D
. N

To
E
o
z
a.

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

I ' ' ' I '

X

X

r X "" X * x

L °
r 0
1 1 . . . 1

+

o

X

' 1

+

X

1 1

Uniform points
Clustered points

TSPL IB instances
Random matr ices

Overest imate

0

o 0

+

Underest imate

1 I I I 1

0

+

X J
D

0

^

. 1

1,000 10,000 100,000 10^6 10^7

o
E
f-
(0
13

<
CO

Q .

E
1-
• D
CD
. N

"cO
E
o
z
C/)
CL

^

1.8

1.6

1.4

1.2

1.0

0.8

0.6

n A

—1 '

-

1
. 1 x ^ x ^

X

-

-J
_ J 1

Errors in Running T ime Normal izat ion: L in-Kernighan

1 r—T 1 1 r—, 1 1 r—1 1 1 1 — | 1

-\

+ J

$ 1 ^^ X X + Overest imate
X X XX "1

X $

X
^ Underest imate

D

a ^ o
o

o

1 1—1 1 1 U_J 1 1 L_J 1 1 l _J

1,000 10,000 100.000 10^6

Number of Cit ies

10^7

Figure 9.2. Ratios of predicted running time to actual running time on a Com
paq 500-Mhz Alpha processor for the Benchmark Greedy code and for the Johnson-
McGeoch implementation of Lin-Kernighan.

Experimental Analysis of Heuristics for the STSP 379

2.3. Evaluating Tour Quality
The gold standard for tour quality is of course the distance from the

optimal solution, typically measured as the percentage by which the
tour's length exceeds the length of an optimum tour. In order to use
this standard, one unfortunately must know the optimal solution value.

Modern optimization technology is surprisingly effective: provably op
timal solutions have been found for all but one of the instances in TSPLIB
with 15,112 cities or fewer, and the Concorde code of Applegate, Bixby,
Chvatal, and Cook [29] is able to solve all the random instances in the
Challenge test suite with 3,162 or fewer cities (and the one 10,000-city
Random Matrix instance). However, a prime reason for using heuristics
is to get reasonable results for instances that are too difficult for current
optimization algorithms to work. For this reason our test suite contains
many instances for which optimal tour lengths are not yet known.

In order to provide a point of reference that is similar across all in
stances, our default comparison is thus to the Held-Karp lower bound
on the optimal solution [444, 445]. This is the hnear programming re
laxation of the standard integer programming formulation for the STSP,
as described in Chapter 2. Johnson et al. [465] argue that this bound is
a good surrogate for the optimal solution value. For Random Uniform
Euclidean instances in particular, they conjecture that the expected gap
between the optimal tour length and the Held-Karp bound is asymptot
ically less than 0.65% and they provide extensive experimental evidence
supporting this conjecture.

Table 9.1 shows the percent by which the optimal tour length exceeds
the Held-Karp bound for all the instances in our test suite where the
optimal is known. Note that the typical excess is less than 1% and the
maximum excess observed is 1.74%. Moreover, although the optimal
tour length is not yet known for four of the largest TSPLIB instances, for
each one a tour is known that is within .54% of the Held-Karp bound.

The table also includes the normalized running times for comput
ing the optimal tour lengths and for computing the Held-Karp bounds,
which is typically much easier. When a running time is reported for
an optimal tour length computation, it represents the time taken by
Concorde using its default settings. For the random instances Concorde
was run on our 196-Mhz MIPS processors. Times for the TSPLIB in
stances are those reported by Applegate et al. on their TSP webpage
(ht tp: / /www.math.princeton.edu/tsp/) for the same 500-Mhz Alpha
processor used in our benchmark machine. For those instances with
known optima but no quoted running time, additional expertise was
needed (and running time - more than 22 CPU years for dl5112).

http://www.math.princeton.edu/tsp/

380 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Random Uniform Euclidean |
Name |
Elk.O
Elk . l
Elk.2
Elk.3
Elk.4
Elk.5
Elk.6
Elk.7
Elk.8
Elk.9
E3k.O
E3k.l
E3k.2
E3k.3
E3k.4

Rar
Clk.O '
Clk. l
Clk.2
Clk.3
Clk.4
Clk,5
Clk.6
Clk.7
Clk.8
Clk.9
C3k.O
C3k.l
C3k.2
C3k.3
C3k.4

Mlk.O
Mlk. l
Mlk.2

1 Mlk.3

%Gap

Trn
0.64
0.72
0.62
0.69
0.59
0.79
0.94
1.01
0.61
0.71
0.67
0.74
0.67
0.73

idom Clu
0:54"
0.41
0.42
0.53
0.58
0.58
0.73
0.58
0.34
0.66
0.62
0.61
0.70
0.57
0.57

ooT
0.03
0.01

1 0.01

Opttime 1
1406 |
3855
1211
956
330
233

2940
8003
4347

189
533368
425631
342370
147135

-
stered Euc]

337"
534
320
214
768
139

1247
449
140
703

16009
17754
18237
6349
4845

60~
137
151

I 169

HKtime 1

2131
2.15
2.02
1.92
1.69
2.42
1.67
1.95
1.65
2.14
9.57

10.54
9.41

10.30
8.07

idean
9:831

10.84
8.79
7.63
9.36
9.29
7.07

13.24
1 10.40

9.61
53.03

126.49
80.39
71.57
44.02
Randor

5^7"
5.51
5.63

1 5.26

Name |
dsjlOOO
prl002
sil032
ul060
vml084
pcbll73
dl291
rll304
rll323
nrwl379
fll400
ul432
fll577
dl655
vml748 i
ul817
rll889
d2103
u2152
u2319
pr2392
pcb3038
fl3795
fnl4461
rl5915
rl5934
pla7397
rlll849
usal3509
dl5112

n Matrices
1 M3k.O

M3k.l
MlOk.O

TSPLIB
%Gap 1

0M\
0.89
0.08
0.65
1.33
0.96
1.18
1.55
1.65
0.43
1.74
0.29
1.66
0.94
1.35
0.90
1.55
1.44
0.62
0.02
1.22
0.81
1.04
0.55
1.56
1.38
0.58
1.02
0.66
0.52

oW
0.01
0.00

Opttime 1
410

34
25

571
605
468

27394
189

3742
578

1549
224

6705
263

2224
449231

10023
-

45205
7068

117
80829
69886

-
-
-
-
-
-
-

6T2~
546

1377

HKtime
3SS\
2.40

11.32
3.62
2.40
1.70
4.54
4.08
4.49
2.40
9.83
2.42

38.19
6.51
4.43
5.01

11.45
8.19
8.10
3.16
5.75
7.26

123.66
12.47
42.00
56.15
55.42

102.41
120.20
90.13

40.35
39.52

367.84

Table 9.1. For instances in the Challenge test suite that have known optimal solu
tions, the percent by which the optimal tour length exceeds the Held-Karp bound and
the normalized running times in seconds for computing each using Concorde with its
default settings. ("-" indicates that the default settings did not suffice.) For random
instances, suffixes Ik, 3k, and 10k stand for 1,000, 3,162, and 10,000 cities respectively.
The number of cities in a TSPLIB instance is given by its numerical suffix.

Experimental Analysis of Heuristics for the STSP 381

The Held-Karp times reported are also for Concorde, which contains a
flag for computing the Held-Karp bound. Although the hnear program
that defines the bound involves an exponential number of "subtour"
constraints, there are simple routines for finding violated constraints
of this type, and typically not many of these need be found in order to
solve the LP exactly. This is much more effective (and accurate) than the
Lagrangean relaxation approach originally suggested by Held and Karp.
Concorde was able to compute the bound using its default settings on our
local SGI machine for all the instances in the Challenge test suite with
less than a million cities, with the maximum normalized running time
being roughly 4 hours for the 316,228-city random clustered Euclidean
instance. Using more powerful machines at Rice University, Bill Cook
used the code to compute the bound for our milhon-city instance. For
the two instances in our test suite with more than a million cities, we
relied on the empirical formula derived in [465], which was off by less
than .02% for the milhon-city instance.

3, Heuristics and Results
As noted in the Introduction, currently available heuristics for the

STSP provide a wide variety of tradeoffs between solution quality and
running time. For example. Figure 9.3 illustrates the average perfor
mance of a collection of heuristics on the three 10,000-city instances in
our testbed of Uniform instances. The underlying data is presented in
Table 9.2. Details on the heuristics/implementations represented in the
chart and table will be presented later in this section.

The normahzed running times range from 0.01 seconds to over 5 hours,
while the percentage excess over the Held-Karp bound ranges from about
35% down to 0.69% (which is probably within 0.1% of optimum). There
is not, however, a complete correlation between increased running time
and improved quality. Some heuristics appear to be dominated^ in that
another heuristic can provide equivalently good tours in less time or can
provide better tours in the same time or less. For example, Bentley's
implementation of Nearest Insertion (NI) from [103] is dominated by
his implementation of Nearest Neighbor (NN), and the Tabu Search im
plementation Tabu-SC-SC is dominated by three sophisticated iterated
variants on Lin-Kernighan (MLLK-. IN, CLK-ABCC-N, and Helsgaun-. IN).

In this chapter, we shall separately consider groups of heuristics clus
tered in different regions of this trade-off spectrum, attempting to iden
tify the most robust undominated heuristics in each class. Although we
shall concentrate primarily on undominated heuristics, we will not do
so exclusively. Dominated heuristics for which theoretical results have

382 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

10,000-City Random Uniform Euclidean Instances

ID
CO ~

O _
CO

in
CVJ ~

o
CM

m _

in —

o —

Spacefill

Strip

Karp

Nl

NN

CHCI

Greedy

Ft

Savings
AppChristo

Christo

2opt

3opt
LK

1 1

MLLK

1

CLK

1

CCA

QENI-10

Helsgaun

1

Tabu

1
0.1 1.0 10.0 100.0 1,000.0 10,000.0

NORMALIZED RUNNING TIME IN SECONDS

Figure 9.3. Average tradeoffs between tour quality and normalized running time for a
variety of heuristics applied to 10,000-city Random Uniform Euclidean Instances. The
full abbreviations for the heuristic names are given in Table 9.2 below and explained
in Table 9.19 at the end of this chapter.

Heuristic
Spacef i l l
S t r i p
Karp-20
NX
NN
CHCI
Greedy
FI
Savings
CCA

Excess
Over HK

34.56
30.75
29.34
26.50
24.79
20.73
16.42
13.35
12.03
11.73

Time 1
(Seconds) |

0.02
0.01
0.85
1.71
0.28
0.83
0.20
2.59
0.24

1129.00

Heuristic
AppChristo
Christo-S
GENI-10
2opt-JM
3opt-JM
LK-JM
Tabu-SC-SC
MLLK-.IN
CLK-ABCC-N

1 Helsgaun-.IN

Excess
Over HK

11.05
9.81
5.89
4.70
2.88
2.00
1.48
1.18
0.90
0.69

Time
(Seconds)

0.44
1.04

823.00
1.41
1.50
2.06

18830.00
12.75
63.91

1840.00

Table 9.2. Average tour quality and normalized running times for various heuristics
on the 10,000-city instances in our Random Uniform Euclidean testbed.

Experimental Analysis of Heuristics for the STSP 383

been proven or which have received significant pubhcity will also be cov
ered, since in these cases the very fact that they are dominated becomes
interesting. For example, assuming that the triangle inequality holds,
Nearest Insertion can never produce a tour longer than twice optimum,
whereas NN can be off by a factor of 9(logA^) [730], which makes the
fact that the latter can be better in practice somewhat surprising.

Moreover, domination for one class of instances need not tell the full
story. Table 9.3 summarizes the relative performances of Bent ley's im
plementations of Nearest Insertion and Nearest Neighbor as a function
of instance size for our three geometric instance classes, represented by
the shorthands U (Random Uniform Geometric instances), C (Random
Clustered Geometric instances) and T (TSPLIB instances). Figure 9.4
presents a more detailed picture, with charts that depict the relative
solution quahty and running times of the two implementations for each
of the geometric instances in our testbeds to which both could be ap
plied. (The implementations were designed to exploit geometry as much
as possible, but do not handle fractional coordinates.) Analogous ta
bles and charts for other pairs of heuristics can be generated and viewed
online via "Comparisons" page at the Challenge website. One can also
generate charts in which the running time for a single heuristic is com
pared to various growth rates, just as the running times for Greedy were
compared to NlogN in Figure 9.1.

u
c
T

U
C
T

N=1000
-0.55
-4.47
-1.41

5.5
8.5
6.2

Average Percent Excess: NI over NN

3162 lOK 31K lOOK 316K IM
-0.15 1.37 2.22 2.86 2.85 2.95
-3.89 -2.42 -2.91 -2.60 -3.04
-3.44 -2.73 -1.27 0.35

Average Running T ime Rat io: NI/NN

5.2 5.6 5.6 5.7 5.7 5.1
9.7 13.0 11.5 13.1 11.9
5.7 6.5 8.5 10.0

3M lOM

3.31 3.31

4.9 5.0

Table 9.3. Average comparisons between Nearest Insertion (NI) and Nearest Neigh
bor (NN) on our geometric testbeds. Bentley's implementations [103] of both heuristics
were used. A positive entry in the "Excess" table indicates that the NI tours are longer
by the indicated percentage on average. As in all subsequent tables of this sort, the
TSPLIB averages are over the following instances: pr l002, pcb l l73 , r l l 3 0 4 , and
nrwl379 for Â = 1,000, pr2392, pcb3038, and fnl4461 for Â = 3162, pla7397 and
bfdl4051 for Â = lOK, pla33810 for Â = 31K, and pla85900 for Â ^ lOOK. These
may not be completely typical samples as we had to pick instances that most codes
could handle, thus ruling out the many TSPLIB instances with fractional coordinates.

384 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Nl vs NN

10.0

8.0
(/)

JZ

g> 6.0
0)

O
H
c
<D
O c
(1)

0
5=

Q

c 0
O
u. (1)

a.

03
0
£

H
O)
c
c
c Q:

• D
0
N
OJ

F
o
Z

o
o
(0

QC

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

16.0

140

12.0

10.0

8.0

6.0

4.0

2.0

0.0

I

r

o

1 +

u
+ u
*

1 ¥ X

X
0

6

X
+

X

X
+

+

X

X

X X

1

%
X

•̂ X
X

+

+

. 1

0
o

X

+
+

' 1

o
o

X

+

,

• 1

Uniform points
Clustered points

TSPLIB instances

o
0 O

+

1 . 1 1 1 . •

+
X 1

H

o

H

_

1 1

1.000 10,000 100,000 10^6

1,000 10,000 100,000

Number of Cities

10^6

10^7

1

b

+

1
1 *

X

11 '

l
1 L . ,.

i

X

1̂

- , . , • • - - .

+

+

+

X

X

X X
X X

X 0 ^

1

+

X

0

T' 1 - - -

+

X

o
0

,

Uniform points
Clustered points

TSPLIB instances

+

0

o o

1

— • • r - - j

0

+
X A

]

J

o

-

• I

10^7

0

i

O
A

0

0

o
V

03
CO

Z

V

Figure 9.4. Tour length and normalized running time comparisons: Nearest Insertion
versus Nearest Neighbor.

Experimental Analysis of Heuristics for the STSP 385

As to the Nearest Insertion versus NN comparison, we see that the tour
length results for 10,000-city Uniform instances are echoed for larger in
stances from that class, but do not predict results for the other instance
classes. Indeed, NI consistently provides better tours than NN for Clus
tered instances and is also better for a majority of the TSPLIB instances.
NI does remain slower than NN (by a factor of 4 or more on the same
machine for all instances), but for certain instance classes one might be
wilhng to pay this price to get better tours. We thus cannot say that NI
is consistently dominated by NN, although we will see many examples of
consistent domination in what follows.

The body of this section is divided into seven parts, each covering a
group of related heuristics. The first three subsections cover what are
typically called tour construction heuristics, i.e., heuristics that incre
mentally construct a tour and stop as soon as a valid tour is created.
The remaining sections concern heuristics with a local search compo
nent, i.e., heuristics that repeatedly modify their current tour in hopes
of finding something better.

In Section 3.1, we consider tour construction heuristics designed more
for speed than for quality. The Strip heuristic and the Spacefilling Curve
heuristic, for example, do little more than read the instance and sort.
Sections 3.2 and 3.3 cover the remainder of the classical tour construction
heuristics, divided somewhat arbitrarily into those that build tours by
adding edges one at a time, as in NN (Section 3.2), and those where
the augmentation may involve replacing edges, as in Nearest Insertion
and Christofides (Section 3.3). Since tour construction heuristics for the
STSP are not covered in detail elsewhere in this book, we shall in these
sections summarize what is known theoretically about these heuristics
as well as discussing their empirical behavior.

The remaining sections cover local search heuristics, the subject of
Chapter 8. Section 3.4 covers simple local search heuristics like 2-Opt
and 3-Opt. Section 3.5 covers the famous Lin-Kernighan heuristic and
its variants. Section 3.6 discusses various heuristics that involve repeated
calls to a local search heuristic as a subroutine, such as the Chained Lin-
Kernighan heuristic introduced by [563]. It also covers our one set of
Tabu Search implementations, which operate in a similar fashion. The
final Section 3.7 considers heuristics that take this one step further and
use a heuristic like Chained Lin-Kernighan as a subroutine.

Although we do not have room to provide full descriptions of all the
heuristics we cover, we present at least a high-level summary of each,
mentioning relevant theoretical results and, where possible, pointers to
sources of more detailed information. If implementation details can have
a major impact on performance, we say something about these as well.

386 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

3.1. Heuristics Designed for Speed
In this section we cover heuristics for geometric instances of the STSP

that are designed for speed rather than for the quahty of the tour they
construct. In particular, we restrict attention to heuristics whose ob
served total running time is within a small factor (10 or less) of the
time simply to read the (x^y) coordinates for Â cities using standard
formatted I/O routines. The normalized times for the latter are shown
in Table 9.4. Note that one can read instances much faster than this by
using lower-level routines to exploit the fact that coordinates come in a
known format. Using such an approach, one can speedup the reading of
our 10,000,000-city instance by a factor of 80 or more [26]. This would
have a significant impact on the overall speed of our fastest heuristics,
which currently do not take this approach. The restriction to geometric
instances, i.e., ones given by tuples of coordinates, is important: If one
required the instance to be given by its full distance matrix, many of our
heuristics would satisfy the above speed criterion, but could hardly be
called "fast" given that instance reading itself would take Q{N'^) time.

At present, three heuristics meeting the above criteria have received
significant coverage in the literature: the Strip, Spacefilling Curve, and
Fast Recursive Partitioning heuristics. In this section we cover all three,
plus an obvious enhancement to the first. All are defined in terms of 2-
dimensional instances but could in principle be generalized to geometric
instances in higher dimensions. The results we report were all obtained
on the same machine (as were the reading times mentioned above), which
removes running-time normalization as an extra source of inter-heuristic
variability. All the heuristics begin by making one pass through the data
to determine minimum and maximum x and y coordinates and thus the
minimum enclosing rectangle for the point set.

Strip. In this heuristic, we begin by dividing the minimum enclosing
rectangle into \/N/3 equal-width vertical strips and sorting the cities in
each strip from top to bottom. We then construct a tour by proceeding
from the leftmost strip to the rightmost, alternately traveling up one

u
c
T

Average Normalized Running Time in Seconds: Read

N=1000 3162 lOK 31K lOOK 316K IM 3M lOM

0.00 0.01 0.02 0.06 0.13 0.25 1.0 3.4 12
0.00 0.01 0.03 0.06 0.12 0.25
0.00 0.00 0.03 0.06 0.12

Table 9.4. Average normalized times for reading instances using the standard I/O
routines of C, compiled for MIPS processors using gcc.

Experimental Analysis of Heuristics for the STSP 387

strip and down the next, with one final (long) edge back from last city
in the rightmost strip to the first in the leftmost.

This heuristic can be traced back to 1959, when Beardwood, Halton,
and Hammersley [94] introduced it as a tool in a proof about the average-
case behavior of the optimal tour length. It is easy to see that St r ip ' s
tours can be as much as ri(\/7V) times optimum in the worst case. How
ever, for points uniformly distributed in the unit square (a continuous
version of our Uniform instance class), the expected length of the S t r i p
tour length can be shown to be no more than 0.93\/iV [500]. Given that
the expected Held-Karp bound for such instances is empirically asymp
totic to 0.71\/iV [465], this means that St r ip ' s expected excess for such
instances should be less than 31%.

Results for S t r ip are summarized in Table 9.5. Note that for Uniform
instances, the upper bound on average case excess mentioned above is
close to Str ip 's actual behavior, but St r ip ' s tours are much worse for
the other two classes. S t r i p is fast, however: Even for the largest
instances, its running time averages less than 3.5 times that for just
reading the instance, and the time is basically independent of instance
class (as are the times for all the heuristics covered in this section). Since
most of St r ip ' s computation is devoted to sorting, this implementation
uses a variety of sorting routines, depending on instance size. For the
largest instances, a 2-pa5S bucket sort using 2^^ buckets is used. This
means that theoretically the implementation should run in linear time
for our instances, although in practice it appears to be a bit slower,
presumably because of memory hierarchy eff'ects.

It is fairly easy to see why Str ip 's tours for Clustered instances are
poor: They jump between clusters far too frequently. For instances in
TSPLIB something similar might be going on, but one might wonder
whether some of its poor performance is just an artifact of the fact that

u
c
T

N=1000

31.94
115.61
61.33

Average Percent Excess over the HK Bound: Strip

3162 lOK 31K

32.23 30.75 30.16
160.82 174.39 190.62
36.26 73.03 91.86

lOOK 316K IM

30.36 30.22 30.10
198.05 201.76
73.28

3M

30.10
lOM

30.09

Average Normalized Running Time in Seconds

u
c
T

0.00
0.00
0.01

0.02
0.02
0.01

0.03
0.04
0.04

0.09
0.09
0.09

0.20
0.19
0.18

0.53
0.53

2.8 10.4 41

Table 9.5. Average performance of the Strip heuristic.

388 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

we chose vertical strips. To examine this question, we implemented a
composite heuristic that appUes both the original Strip heuristic and
the variant that uses horizontal strips and returns the better result {2-
Way Strip). Given that reading time is amortized across the two runs
of S t r ip , the overall running time only goes up by a factor of 1.3 to
1.7. Unfortunately the average improvements are minor, with a few
individual exceptions, such as an improvement from an excess of about
119% to one of 52% for the TSPLIB instance rl5915. Details can be
explored on the Challenge website. A more promising competitor to
S t r i p is the following.

Spacefilling Curve (Spacefi l l) . This heuristic was invented by
Platzmann and Bartholdi [671]. The cities are visited in the order in
which they would be encountered while traversing a spacefilling curve
for the minimum enclosing rectangle. As with S t r ip , most of the time
is spent simply in sorting. For full details see [671]. Platzmann and
Bartholdi prove that the Spacefilling Curve heuristic can never pro
duce tours that are worse than 0(log Â) times optimum. Bertsimas and
Grigni [108] exhibit pointsets for which Spacef i l l is this bad. Again,
however, one can get bounded average-case ratios. A probabilistic anal
ysis in [671] shows that when cities are uniformly distributed in the unit
square the asymptotic expected tour length is approximately 35% above
the empirical estimate of the expected Held-Karp bound. (Interestingly,
the ratio of the heuristic's tour length to v ^ does not go to a limit
as N —^ oc, although the liminf and limsup are extremely close [671].)
Table 9.6 presents results for the inventors' implementation.

As with S t r ip , the overall running time for Spacef i l l stays within a
factor of 3.5 of that for merely reading an instance. Moreover, although
Spacef i l l ' s average excess for Uniform instances matches the theoret
ical prediction and hence is 4-5 percentage points worse than that for

u
c
T

Average Percent Excess over the HK Bound: S p a c e f i l l

N=1000 3162 lOK 31K lOOK 316K IM 3M

32.25 33.40 34.56 34.71 34.94 35.00 35.09 35.06
41.08 60.74 72.85 95.48 76.81 51.68
45.36 40.27 36.03 40.97 37.39

lOM

35.08

Average Normalized Running Time in Seconds

u
c
T

0.00
0.00
0.00

0.01
0.01
0.01

0.04
0.04
0.04

0.11
0.11
0.11

0.24
0.24
0.23

0.64
0.62

3.0 10.6 39

Table 9.6. Average performance of the Spacefilling Curve heuristic.

Experimental Analysis of Heuristics for the STSP 389

Strip vs Spacefill

100.0

80.0

o) 60.0

40.0

20.0

0.0

-20.0

3 P

O
C

0)

c
2 -40.0 h

CL

-60.0 h

-80.0

Uniform points
Clustered points

TSPLIB instances

1,000 10,000 100,000

Number of Cities

10^6 10^7

0

0
JQ

0)
O
CO
Q.

CO

d
A

O

0

d
V

Figure 9.5. Tour quality comparisons for the Strip and Spacefilling Curve heuristics.

Str ip , it is substantially better for the other two classes. Figure 9.5
provides a more detailed picture of the comparison. Based on these re
sults, the Spacefilhng Curve heuristic would seem to be the preferred
choice, if one must choose only one of the two heuristics. It also would
be preferred over our final candidate.

Fast Recursive Partitioning (FRP). In this heuristic, proposed by
Bentley in [103], we begin by hierarchically partitioning the cities as in
a K-d tree. This starts with the minimum enclosing rectangle and then
recursively splits each rectangle containing more than B = 15 cities into
two rectangles with roughly half as many cities. If the parent rectangle is
longer than it is wide, the median x-coordinate for cities in the rectangle
is found and a vertical split is made at this x value; otherwise the median
^/-coordinate is found and a horizontal split is made at this value of
y. Call the final rectangles, all containing 15 or fewer cities, buckets.
Nearest Neighbor tours are constructed for all the buckets, and these
are then patched together to make an overall tour. FRP is effectively
dominated by Spacef i l l , which is on average 2.5-3 times faster and is
better for all but 4 instances in our testbed, usually by more than 10%.
(The four exceptions are three of the 23 clustered instances and the
TSPLIB instance dsjlOOO which is itself a clustered instance, produced
by an earlier version of our generator.)

390 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

3.2. Tour Construction by Pure Augmentation
In this section we cover heuristics that build their tours by adding one

edge at a time, making each choice based on the length of the edge to be
added. This is in contrast to S t r i p and Spacef i l l , which can be viewed
as building their tours one edge at a time, but with choices based only on
simple directional constraints. The class includes the Nearest Neighbor
heuristic as well as the Greedy heuristic and several variants, including
the lesser-known but quite effective "Savings" heuristic of [201].

As in the previous section, all the results we report were generated on
same machine (using 196-Mhz RIOOOO MIPS processors), thus ensuring
that running time comparisons will not be biased by normalization er
rors. However, it still may be dangerous to draw conclusions about the
relative speeds of closely matched heuristics, since these may be highly
implementation-dependent. We will illustrate this by presenting results
for multiple implementations of the same heuristics (implemented by dif
ferent programmers). These differ significantly in constant factors and
asymptotic growth rates even though all follow the recommendations of
Bentley's influential papers [102, 103] that promoted the use of K-d trees
(short for "i^-dimensional binary search tree" [101, 102]) and lazily up
dated priority queues for exploiting the geometric structure of instances
and avoiding unnecessary work. These two are such a significant compo
nent of many of the implementations described in this section and later
that they are worth a few more words.

K'd Trees. In defining the FRP heuristic in the previous section, we
introduced the fundamental hierarchical partition of the instance space
that underlies the K-d tree. (For K-d trees, however, we typically split
any rectangle that contains more than 8 cities, as opposed to the bound
of 15 used in FRP.) This partition is represented by a tree, with a vertex
for each rectangle. For each vertex that represents a split rectangle,
we store the coordinate of the median point that was used in splitting
the rectangle (x if the spht was left-right, y if the split was top-bottom),
together with pointers to the vertices representing the two subrectangles
into which it was spht. (In bottom-up K-d trees, we also store a pointer
to the parent of the given rectangle.) For a vertex corresponding to a
final unsplit rectangle, we store a list of the cities in that rectangle. The
partition and associated tree can be constructed in 0{N log N) time.

Simple recursive routines can be used to search a K-d tree in various
ways. We here mention three important ones. These all assume the
existence of an auxihary array present [] that tells us which of the cities
are relevant to the current search. First, there is the nearest neighbor
search: Given a city c, find the present city that is nearest to c. Second,

Experimental Analysis of Heuristics for the STSP 391

there is the fixed-radius near neighbor search: given a city c and a radius
r, return (in some order) all those present cities c' such that d{c^ c') < r.
The third is hall search from city c, which assumes an additional array
rad [] of radii for all the cities and returns all those present cities c'
for which d{c,c') < r a d [c '] , i.e., ah those cities c' for which the ball
of radius rad[c'] around c' contains c. For details on how these can be
efficiently implemented, see [101, 102]. The first two searches involve the
execution of 0(log A)̂ computer instructions for most da ta sets, while the
third may take somewhat longer, depending on the number of relevant
balls. The speed of all three can vary depending on the sophistication
of the implementation and its interaction with the memory hierarchy of
the machine on which the heuristic is run.

This section's simple heuristics require only the first of these three
operations (or a slight variant on it). The others come into play for
the more complicated heuristics of the next section. (An alternative
to K-d trees, the Delaunay triangulation, was exploited by Reinelt in
[710, 711]. This appears to be a competitive approach, but the results
presented in [710, 711] are not sufficiently comparable to ours to yield
firm conclusions. K-d trees, at any rate, offer substantially more power
and flexibility.)

Lazily U p d a t e d Prior i ty Queues . The use of this da ta structure
in TSP heuristics was first suggested in [102, 103]. A priority queue
contains items with associated values (the priorities) and supports op
erations that (1) remove the highest priority item from the queue and
deliver it to the user (a "pop"), (2) insert a new item, (3) delete an
item, and (4) modify the priority of an item (an "update") . Algorithms
textbooks contain a variety of implementations for this da ta structure,
most of which support all the operations in time 0(log A)̂ or less, but
with different tradeoffs and constant factors. The choice can have a sig
nificant effect on running time. A major additional savings is possible if
we can reduce the number of updates actually performed, which is what
happens with lazy evaluation. This technique can be used if we know
that no update will ever increase a priority. In this case, we need not
perform an update when it first takes effect, but only when the popped
(highest priority) item has an outdated priority. In this case, tha t item's
priority is reevaluated and it is reinserted into the queue.

We are now prepared to describe this section's heuristics and how
they are implemented.

N e a r e s t N e i g h b o r (NN). We start by picking a initial city CQ. Induc
tively, suppose i < N -1 and CQ, c i . . . , ĉ is the current partial tour. We
then choose Ci^i to be the nearest city to Ci among all those cities not
yet present in the tour. If i = N - 1 we add the edge {c7v_i, CQ}, thus

392 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

completing the tour. For non-geometric instances, this heuristic would
take time ©(N^), but for geometric instances the use of K-d trees can
reduce this to something like 0{N log N) in practice.

Double-Ended Nearest Neighbor (DENN). We start by picking
an initial city CQ. Inductively, suppose a and b are the endpoints of
the current partial tour and that it does not yet contain all the cities.
If a' and b' are the nearest non-tour cities to a and 6 respectively, we
choose the one that is closest to its respective endpoint and add the
corresponding edge to the tour. If all the cities are in the tour, we add
the edge {a, b} and are done. This heuristic can be implemented to run
almost as fast as NN in practice, since we only need to compute a nearest
neighbor when the tour gains a new endpoint or when an endpoint's
previous nearest neighbor is added to the other end of the tour.

Greedy. We start by sorting all the potential tour edges {c,c'} in
order of increasing length. We then build a tour, viewed as a set of
edges, by going through the edges in order, starting with the shortest,
and adding {c^c^} so long as neither c nor c' already has degree 2 and
the new edge does not complete a cycle with fewer than N vertices.

As described, the implementation would take time G(iV^logA^), and
that is the time that would be required for non-geometric instances.
For geometric instances, this can be reduced by combining K-d trees
and nearest neighbor searches with a lazily updated priority queue, as
suggested by [102, 103]. This is done as follows. After first constructing
the K-d tree, we find the nearest neighbor c' for each city c and put the
ordered pair (c, c') in the priority queue with priority —(i(c, c'). Thus the
queue contains only Â entries and the highest priority entry corresponds
to the shortest edge, i.e., the first that Greedy would add to its tour. As
we proceed, we will mark a city as present if it does not have degree 2
in the current tour. If c is a city with degree 1 in the tour, we will let
end[c] denote the city at the other end of the tour path starting with
c. Note that we could build the Greedy tour in just N — 1 pops if we
maintained the property that at all times the priority queue contained,
for each city c that is currently present, the nearest eligible neighbor,
i.e., the nearest present city other than end[c].

Unfortunately, maintaining this property might require many updates
after each pop. A single city c' can be the nearest eligible neighbor for
many other present cities. When c' attains degree 2, it will no longer be
eligible and each city c that thought c' was its nearest eligible neighbor
will have to find a new partner. Note, however, that whenever the
nearest neighbor of a city c needs to be updated, it will be replaced by
a new city that is at least as far away from c as the city it replaced.
So we can do lazy updating. When we pop the highest priority item in

Experimental Analysis of Heuristics for the STSP 393

the queue {c^c')^ there are two cases. If c already has degree 2 in the
tour, we simply discard this pair and pop the next one. If c has degree
at most 1 in the tour and c' is present and not equal to end [c], we can
add edge {c^c^} to the tour. Otherwise, we temporarily mark end[c] (if
it exists) as "not present," find a new nearest present neighbor c'' for c,
insert {c,c'') in the queue, reset end[c] (if it exists) to "present," and
pop the new highest priority pair.

Boruvka. This heuristic is a variant on Greedy devised by Applegate,
Bixby, Chvatal, and Cook in analogy with the classic minimum spanning
tree of O. Boruvka [132]. As with the above Greedy implementation, we
start by computing the nearest neighbor for each city. Instead of putting
the resulting pairs into a priority queue, however, we simply sort them
in order of increasing edge length. We then go through the hst, edge
by edge, adding each to the tour we are building so long as we legally
can do so. In other words, when a pair (c, c') is encountered where c'
is no longer eligible, we discard the pair without updating even if c still
hasn't attained degree 2. After we have gone through the whole list, we
probably won't yet have a tour, so we repeat the process again, this time
restricting attention to cities that do not yet have degree 2 and ehgible
neighbors. We continue to repeat the process until a tour is constructed.
In comparison to Greedy, this heuristic replaces priority queue overhead
with simple sorting, but may have to do more nearest neighbor searches.
It is not a priori evident whether tours should be better or worse.

Quick Boruvka (Q-Boruvka). This variant, also due to Applegate,
Bixby, Chvatal, and Cook, dispenses with the sorting step in Boruvka,
presumably trading tour quality for an increase in speed. We go through
the cities in some arbitrary fixed order, skipping a city if it already has
degree 2 and otherwise adding an edge to the nearest eligible city. At
most two passes through the set of cities will be required.

Savings. This is a specialization to the STSP of a more general vehi
cle routing heuristic proposed by Clarke and Wright in [201]. Informally,
it works by starting with a pseudo-tour, consisting of a multigraph that
has two edges from an arbitrary central city CQ to each of the other cities.
We then successively look for the best way to "shortcut" this graph by re
placing a length-2 path from one (non-central) city to another by a direct
link. In practice, the Savings heuristic works like Greedy, except with
a surrogate distance function. For any pair of cities c^c' other than CQ,
the surrogate distance function is D{c^ c') — d{c^ c') — d{c, CQ) — (i(co, c').
Given a K-d tree, nearest neighbors under this surrogate distance func
tion can be computed using a slightly more complicated version of the
standard nearest neighbor search, as shown in [461]. The only other

394 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

difference from Greedy is that CQ is not put in the priority queue, and
we stop growing the tour when it contains N — 2 edges, at which point
it must be a path, which we can complete to a tour by adding the edges
from Co to its two endpoints.

Theoretical worst-case results have been proved for several of these
heuristics, assuming the triangle inequahty, i.e., that for all triples of
cities (ci,C2,C3), (i(ci,C2) < d{ci^cs) + <i(c3,C2). For none of these
heuristics are the tours guaranteed to be within a constant factor of
optimum, but we can provide some bounds. NN can be shown never to
produce a tour longer than (1 + \\ogN])/2 times optimum, and there
are instances that force it to generate tours roughly 2/3 that long [730].
Greedy never produces a tour longer than (1 + log A^)/2 times optimum
[633] (roughly the same upper bound as for NN), but the worst instances
known only cause it to produce tours that are (log A^/3 log log N) times
optimum [325]. Savings never produces a tour longer than (1 + log Â)
times optimum [633] (a weaker bound than for the other two heuris
tics), but the worst examples known produce tours that are again only
(log iV/3 log log Â) times optimum [325]. We are unaware of worst-case
results for the relatively more recent Boruvka variants, but the bounds
for these are hkely to be no better than those for Greedy.

Figure 9.6 graphs the average tour quality as a function of TV for the
six heuristics described in this section and our two classes of random ge
ometric instances. For both classes it is typical of most of the heuristics
we cover that the average percentage excess over the Held-Karp bound
appears to approach an asymptotic limiting value, although those lim
its are usually different for the two classes. For Uniform instances, the
limiting values for NN and DENN appear to be roughly 23% above the
Held-Karp bound, compared to 15% for Q-Boruvka, 14% for Greedy
and Boruvka, and 12% for Savings. DENN appears to yield slightly bet
ter averages than NN for the smaller instances but its advantage vanishes
once Â > 10,000. (Variations after that point are attributable to the
small number of instances in our samples). Greedy appears to be slightly
better than Boruvka for the smaller instances, but this advantage disap
pears by the time N = 100,000. All the heuristics perform significantly
more poorly for the Clustered instances, but the relative asymptotic
ranking remains the same. For TSPLIB instances, the tour quality tends
to lie between these two extremes, except that Savings is typically 1-
2% better on the larger TSPLIB instances than it is even for Uniform
instances of similar size.

When we order the heuristics by running time, they appear in roughly
reverse order, which implies that no one of them is dominated by any
of the others. Table 9.7 lists normalized running times for Uniform in-

Experimental Analysis of Heuristics for the STSP 395

Random Uniform Euclidean Instances

c
o

Q.

CO

"^
!2
0
X

k _

CD >
o
CO
CO
(D
o
X
LU
"c
0

^
CD

Q _

32

30

28

26

24

22

20

18

16

14

12

10

NN
DENN

Q-Boruvka
Boruvka
Greedy
Savings

1,000 10,000 100,000 10^6

32

30

28

26

24

22

20

18

16

i ^^
] 12

10 10^7

Random Clustered Euclidean Instances

1,000

32

Y 30
ID

,2 28
Q.

^ 26

^ 24
CD ^ ^

X
»- 22
> ° 20
CO ^ ^ CO

i 18
X

LU
? 16
0

- 14
CL

12

- i . • — . — . — 1 — • • I 1

- • ^ . - • " " - - . : : v . . . v . — ^ "

- 1 1 1 . 1 1 1 • • 1

J

^
-J

-

" " • • • • . . , . . , . , -

-

"̂

-
-

10,000
Number of Cities

100,000

32

30

28

26

24

22

20

18

16

14

12

10

Figure 9.6. Average percentage excess for pure augmentation heuristics. (For an
explanation of the abbreviations, see the text or Table 9.19.) Note that the ranges of
N are different for the two classes of instances.

396 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

stances as a function of N. Times for Clustered instances are roughly
the same. Those for TSPLIB instances tend to be faster, possibly be
cause the added structure of these instances limits the breadth of the
K-d tree nearest-neighbor searches. The table covers three families of
implementations: Bentley's (-B) implementations of NN and Greedy, the
Johnson-McGeoch (-JM) implementations of the same heuristics plus
Savings, and the Concorde (-ABCC) implementations of those two plus
the two Boruvka variants. (The suffixes are the implementers' initials.)

For codes with common implementers, the code that produces better
tours typically takes longer time for all values of A ,̂ with two excep
tions: DENN takes about the same time as NN (as predicted), and the
Johnson-McGeoch implementation of Savings sometimes beats their
implementation of Greedy. Although the nearest-neighbor searches are
more complicated under Savings than under Greedy, this is balanced by
the fact that far fewer of them need to be made and the two heuristics
end up taking roughly the same overall time. Generally, the time for
Greedy/Savings is 2 to 5 times that for NN, with the biggest differences
occurring for the Concorde implementations.

Cross-family comparisons are more problematic, presumably because
of implementation differences. The Bentley and Concorde implemen
tations exploit up-pointers in their K-d trees, whereas the Johnson-
McGeoch implementations do not. Up-pointers add constant-factor over
head but can greatly reduce the depth of searching. As a result, the
Johnson-McGeoch implementations are faster than other two when N <
100, 000 but slower when N is larger. Bentley's implementations are in
C++ while the other two are in C, which might explain in part why Bent
ley's implementations lose to Concorde on both NN and Greedy.

The observed running times for all the implementations appear to
have two components: one that grows more slowly than NlogN and

N==
NN-ABCC
NN-B

1 NN-JM

DENN-B

Q-Boruvka-ABCC
1 Boruvka-ABCC

1 Greedy-ABCC
Greedy-B

1 Greedy-JM

Savings-JM

1000

0.01
0.02
0.01

0.02

0.01

0.02

0.02
0.05
0.02

0.02

3162

0.03
0.10
0.02

0.10

0.04

0.05

0.07
0.19
0.06

0.08

lOK

0.10
0.32
0.08

0.32

0.12
0.18

0.27
0.62
0.20

0.26

31K

0.27
0.82
0.22

0.83

0.31
0.65

1.12
1.77
0.81

0.83

lOOK

0.88
2.17
0.53

2.08

1.13

2.60

4.55
5.14
4.05

3.13

316K

2.73
5.13
5.34

5.18

4.02
7.46

12.64
12.77
21.28

21.02

IM

14.2
25.5
25.6

25.8

22.4

36.9

59.2
60.4

100.8

99.6

3M

58.6
100.9
103.5

102.2

96.2

151.4

221.8
232.5
357.3

385.5

lOM

247
400
453

405

404
597

863
930

1450

1604

Table 9.7. Normalized running times in seconds for Pure Augmentation heuristics
and Random Uniform Euclidean instances.

Experimental Analysis of Heuristics for the STSP 397

dominates when N < 100,000, and one that grows faster than NlogN
and dominates once Â > 100,000. This latter component in fact appears
to be growing faster than Nlog^ N, although no worse than 0{N^-'^^).
The relative importance of these two components and their crossover
point depend on the heuristic and the implementation. Determining the
causes of this behavior is an interesting question for future research.

With respect to tour quality, there is no appreciable difference between
the various implementations of NN and Greedy. This is as should be
expected, given the well-defined nature of those heuristics. Different
implementations do not, however, always yield the same tours. This
is because of different tie-breaking rules and because the output of M
depends on the starting city chosen.

Our overall conclusion is that , although there are few cases of pure
domination here, three of the six heuristics adequately cover the range of
trade-offs: DENN, Boruvka, and Savings (with the K-d tree implementa
tion chosen based on the expected size of the instances to be handled).
In most real-world applications, we would expect Savings to be fast
enough to supplant the other two. The above conclusions assume tha t
one is looking for a stand-alone heuristic. As we shall see in Sections 3.4
and 3.5, different conclusions may hold if one is choosing a method for
generating starting tours in a local search heuristic.

The story for non-geometric applications may also differ, and we are
less able to provide insight here. The only non-geometric implementa
tions we have are for Greedy and NN, and our testbed of non-geometric
instances consists mostly of Random Matrices, whose relevance to prac
tice is suspect. For what it is worth. Greedy continues to provide sub
stantially better tours than NN for these instances and now takes roughly
the same time. Unfortunately, that time is now 0(A^^), and both heuris
tics produce tour lengths whose average ratio to the optimum appears
to grow with Â and exceeds 2 by the time N = 10,000. See [461].

3.3. More Complex Tour Construction
In this section we consider somewhat more complicated heuristics, but

ones tha t still build tours incrementally. Many of these heuristics, even
ones with appealing theoretical performance guarantees, are dominated
by Savings . Results for the dominated heuristics will not be covered in
full detail here, although they can be viewed at the Challenge website.

N e a r e s t I n s e r t i o n a n d i t s V a r i a n t s (NI,NA,NA+). Start with a
partial tour consisting of some chosen city and its nearest neighbor.
Then repeatedly choose a non-tour city c whose distance to its nearest
neighbor among the tour cities is minimum, and insert it as follows:

398 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

• Insertion Rule (NI). Insert c between the two consecutive tour
cities for which such an insertion causes the minimum increase in
tour length.

• Addition Rule (NA). Insert c next to its nearest neighbor in the
tour on the side (before or after) that yields the minimum increase
in the tour length.

• Augmented Addition Rule (NA"̂). Insert c as in NI, but restrict
attention to pairs of consecutive tour cities at least one of which is
no further from c than twice the distance to c's nearest neighbor
in the tour.

NI NA, and NA"̂ are all guaranteed to produce tours that are no longer
than (2— -^) times optimum assuming the triangle inequality holds, and
all can produce tours that bad [730]. As explained by Bentley in [103],
which introduced the augmented addition rule, they can all be imple
mented to exploit geometry, although the process is complicated. (NI re
quires a ball search and NA"̂ requires a fixed-radius near neighbor search.)
As might be expected, this added complexity (even for NA) means that
Bentley's implementations of all three heuristics are substantially slower
than Savings. They also produce worse tours for all instances in our
geometric testbeds. For Uniform instances NI and NA~̂ have an average
percentage excess over the Held-Karp bound that approaches 27% as
compared to 12% for Savings, while the limiting percentage for NA is
32.5%. Thus all three variants are dominated by Savings. The same
holds for the following family of theoretically interesting heuristics.

Cheapest Insertion and its Variants (CI,CHCI). In Cheapest In
sertion (CI), we start with a partial tour consisting of a chosen city and
its nearest neighbor. We then repeatedly choose a triple a, fe, c of cities
such that a and b are adjacent in the current tour, c is a non-tour city,
and the increase in tour length that would occur if c were inserted be
tween a and b is minimized, and perform that insertion. Assuming the
triangle inequality, CI obeys the same 2 — {2/N) times optimum bound
as Nearest Insertion. The "Convex Hull" variant CHCI starts by comput
ing the convex hull of the cities and creating a starting tour consisting
of these in radial order. CHCI trivially obeys a 3 — {2/N) bound, given
the result for CI.

Implementations can again take advantage of geometry, as explained
in [461]. For CHCI, the convex hull can be found by a linear-time al
gorithm such as Graham's [394]. Even so, the Johnson-McGeoch im
plementations of CI and CHCI remain substantially slower than their
implementation of Savings and are almost universally worse. (CHCI is

Experimental Analysis of Heuristics for the STSP 399

slightly better than Savings on one 1,000-city Clustered instance.) CHCI
tends to produce better tours than CI, but the advantage shrinks as Â
grows. For Uniform instances, the average percentage excess over the
Held-Karp bound for both CHCI and CI tends to about 22% versus 12%
for Savings .

D o u b l e M i n i m u m Spanning Tree (DMST). Construct a multigraph
consisting of two copies of a minimum spanning tree for the cities. This
graph must have an Euler tour, i.e., a (not necessarily simple) cycle that
includes every edge exactly once. Construct one and convert it into a
Hamiltonian cycle by taking shortcuts to avoid visiting cities more than
once. Assuming the triangle inequahty holds, this heuristic obeys the
same 2 — {2/N) worst-case bound as do Nearest and Cheapest Insertion.

Again, geometry can be exploited in implementing DMST, in particular
for constructing the initial MST. The Euler tour can be found in hnear
time, as can the shortcuts needed to produce the tour. Unfortunately,
we still end up slower than Savings , and even if we use the "greedy
shortcut" procedure described below in the context of the Christofides
heuristic, DMST still produces substantially worse tours than those for
Savings . For Uniform instances the average percentage excess tends
toward 40%, and the results for the other classes are comparable.

Karp's Par t i t i on ing Heuris t ic (Karp). As in K-d tree construc
tion (and in the FRP heuristic of Section 3.1), we begin by recursively
partitioning the cities by horizontal and vertical cuts through median
cities, although now the median city is included in both of the subsets
of cities created by the cut through it. This process is continued until
no more than C cities are in any set of the partition (C is a parameter) .
Using the dynamic programming algorithm of Bellman [95], we then op
timally solve the subproblems induced by the sets of cities in the final
partition. Finally, we recursively patch the solutions together by means
of their shared medians. For fixed C, this takes 0{N log N) time.

This heuristic was proposed by Karp in his paper [497], which ana
lyzed the average-case behavior of a closely related, non-adaptive heuris
tic. For this non-adaptive variant and any 6 > 0, there exists a C^ such
that for Uniform instances the expected ratio of the heuristic's tour
length to the optimal tour length is asymptotically no more than 1 + e.
Unfortu^],ately, C^ grows linearly with 1/6, and the running time and
space r^qijirements of the dynamic programming subroutine are both
exponential in C. (See also [500] and Chapter 7.)

The adaptive version of the heuristic we test here is likely to produce
better tours and be more robust in the presence of non-uniform data, but
this has not been rigorously proved. It suff'ers from the same drawbacks
as far as C is concerned, however, with the largest value that has proved

400 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

feasible being C = 20. Given that the average number of cities in the
final partitions can vary from 10 to 20 depending on the value of AT,
this heuristic has a wildly varying running time as a function of N.
The average quality of the tours it produces for Uniform instances also
fails to go to a hmit as Â -^ oc. As might be expected, the best
results correspond to the worst running times, which themselves can
be hundreds of times worse than those for Savings. However, even
those best results are far worse than those for Savings: the liminf of
the Uniform instance excesses is larger than 20% and the results for
Clustered and TSPLIB instances are substantially worse.

The failings of this approach can be ameliorated if one settles for near-
optimal rather than optimal solutions to the final subproblems. This was
the approach taken by FRP, but it used a small value for C and a poor
heuristic (NN). If one instead uses a large value for C and one of the much
more powerful heuristics we describe later in this chapter, one could do
much better. Indeed, this might be a plausible first choice for coping
with instances that are too big to handled all-at-once in main memory.

Many other tour construction heuristics that have been proposed in
the literature are also dominated by Savings (for example, Litke's recur
sive clustering heuristic [564] and the Greatest Angle Insertion heuristic
of Golden and Stewart [388], both implemented to exploit geometry in
[461] and covered on the Challenge website). However, none of these are
of independent theoretical interest. For the remainder of this section, we
concentrate on heuristics that are not dominated by Savings. We first
consider variants on Nearest Insertion that lack its strong theoretical
guarantees but perform much better in practice.

Random and Farthest Insertion Variants (RI,RA,RA+,FI,FA,FA+).
These heuristics differ from their "Nearest" variants mainly in the choice
of city to add. In the "Random" variants the city is simply chosen ran
domly. In the "Farthest" variants we add the city c with the largest
value of min{d(c, c') : c' is in the tour}. For both sets of variants, we
start with a tour consisting of the two maximally distant cities.

The best guarantee currently provable for these heuristics (assuming
the triangle inequality) is that all provide tours that are no more than
0(log N) times optimum. At present we do not know whether this bound
is tight. The worst examples known for the Random variants were ob
tained by Azar [50]: Euclidean instances for which with high probability
the heuristics produce tours of length 0(loglog A^/logloglog A)̂ times
optimum. The worst examples known for the Farthest variants were ob
tained by Hurkens [455] and only yield ratios to optimum that approach
6.5 (triangle inequahty) or 2.43 (2-dimensional Euchdean).

Experimental Analysis of Heuristics for the STSP 401

As with the Nearest variants, these heuristics can be implemented to
exploit K-d trees. The Random variants save work in identifying the
city to insert and so are fastest. The Farthest variants require addi
tional work in order to find the point to be inserted, but this can be
done using a K-d tree on the tour cities and a lazily updated priority
queue that for each non-tour city lists the distance to the closest tour
city (at the time the entry was computed). As an indication of the rel
ative asymptotic performance of all these variants, see Table 9.8 which
summarizes the average results for Bentley's implementations of them
on 100,000 Uniform instances. For comparison purposes the results for
the Johnson-McGeoch implementation of Savings are also included.

Note first that in each family Augmented Addition takes less than
twice as much time as Addition, but provides substantially better tours,
especially in the cases of the Random and Farthest families. Second, note
that in each family the Augmented Addition variants produce nearly as
good tours as do their Insertion siblings at a fraction of the running
time cost. Unfortunately, the only one of these heuristics that is clearly
competitive with Savings in running time (RA) produces very poor tours.

Uniform instances, however, don't tell the full story. As an illus
tration of the total picture, see Figure 9.7, which for all instances in
our geometric testbeds without fractional coordinates compares the tour
lengths found by FI and Savings. Although Savings typically has an
even greater advantage for TSPLIB instances than for Uniform ones, a
diff'erent story holds for the Clustered instance class. For these instances,
RA"̂ , RI, FA"̂ , and FI all find better tours on average than does Savings,
ranging from roughly a 1.5% improvement under RA"̂ to 3.0% under RI
and 3.5% improvement under FA~̂ and FI. We should also point out that
RA"̂ has another advantage. Although it is slower than Savings when
N < 100,000, its running time is similar to that of Bentley's implemen
tation of Greedy, in that it becomes faster than Savings for larger Â
(for roughly the same implementation-dependent reasons).

Heuristic
Excess %
Seconds

NA
32.5

6.6

NA+
27.1

8.6

NI
27.1
12.3

RA
40.5

3.2

RA+
15.4
5.7

RI
15.0
20.3

FA
43.7
10.7

FA+
13.6
13.6

FI
13.4
27.7

Sav
12.1
3.1

Table 9.8. Average percentage excesses over the Held-Karp bound and normalized
running times for Bentley's implementations of Insertion, Addition, and Augmented
Addition heuristics applied to 100,000-city Random Uniform Euclidean instances.
For comparison purposes, the last column gives results for the Johnson-McGeoch
implementation of Savings.

402 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Fl vs Savings

O)
c
CD

0
it:

c
<D
O

a.

12.0

10.0

8.0

6.0

4.0

2.0

0.0

-2.0

-4.0

-6.0

1 • • •

X

X

\-

X

1 X
X ^

t X X g

1̂ '̂
1 +

*
+

1 1

—1 r—1 T

X

X

X

X ^
X

t

+
I I I I

X

$

+
+

• 1

X

$

+
+

1 i

Uniform points
Clustered points

TSPLIB instances

0 0 O

+

. 1

' ' 1
o
+
X 1

J
\

0

1 1

1,000 10,000 100,000

Number of Cities

10^6 10^7

0

0

CO
O)
c
>
CC

CO

0
ti
0

O
V

Figure 9.7. Tour quality comparisons for Farthest Insertion and Savings heuristics.

We thus can conclude that these heuristics and Savings are all tech
nically incomparable in that none totally dominates any of the others.
Given the artificial nature of the Clustered instances, however, one would
probably still choose Savings if one could use only one heuristic.

CCA. This is an abbreviation for "Convex Hull, Cheapest Insertion,
Angle Selection," a heuristic proposed by Golden and Stewart in [388]
and claimed to be the best tour construction heuristic in that study.
As in CHCI, one starts by constructing the convex hull of the cities and
proceeds by successively inserting the remaining cities. The choice of
insertion is more complicated however. For each non-tour city c, one
determines the pair {ac, be) of adjacent tour cities between which c could
be inserted with the least increase in overall tour length. We then select
that c that maximizes the angle between the edges {ac^ c} and {c, be}
and insert it between QC and be in the tour.

Nothing is known theoretically about this heuristic, and its complex
ity makes it difficult (if not impossible) to exploit geometry when im
plementing it. However, the results reported in [388] were impressive,
even if the largest instance considered had only 318 cities. To see how it
handles larger instances, Johnson and McGeoch [461] constructed a non-
geometric implementation, which we tested. Running times as expected
are non-competitive, growing at a rate somewhere between @{N'^) and

Experimental Analysis of Heuristics for the STSP 403

CCA vs Savings

O) c
0)

o

O
C

Q
c
0

CD
QL

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0

-7.0

-8.0

Uniform points
Clustered points

TSPLIB instances

-yr-y

X 0 X
'J—7^^

0)
ti
CD

JD
w
U)
c

• >

CO

(/)
CD
A

0

0

<
O o
d
V

1,000 10,000 100,000

Number of Cities

10^6 lO'^y

Figure 9.8. Tour quality comparisons for CCA and Savings heuristics.

Q{N'^-^) and taking over 3 normalized hours for N =^ 33, 810 cities (the
largest instance we tried) versus 0.44 seconds for Savings. However, as
seen in Figure 9.8, CCA does find better tours for instances of all three
types, even if its advantage for Uniform and TSPLIB instances seems to
be vanishing as N grows. In particular, the limiting value for the average
percentage excess on Uniform instances seems likely to exceed 12.5% (its
value at Â == 31, 623), whereas that for Savings is 12.1%

The Christofides Heurist ic and its Variants. For our final collec
tion of tour construction heuristics, we consider variants on the famous
heuristic of Christofides [189], which currently has the best worst-case
guarantee known for any polynomial-time TSP heuristic, assuming only
the triangle inequality.

The Christofides heuristic is a clever improvement on the Double Min
imum Spanning tree (DMST) heuristic described earlier. In the standard
version of Christofides (Christo-S), we start by computing a minimum
spanning tree, as in DMST. However, instead of adding a second copy of
the MST to get an Eulerian multigraph, here we add a minimum weight
matching on the odd-degree vertices of the MST, which optimally grows
the MST to an Eulerian multigraph. We then find an Euler tour and
traverse it, shortcutting past previously visited vertices as in DMST. This
leads to an improved guarantee: assuming the triangle inequality, the
tour produced will never be more than 3/2 times the optimal tour length

404 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

I

>
O
W
W
<D
O
X

LU

"c
o

Q.

12.0

11.0

10.0

9.0

8.0

7.0

1

o

$
$

-o X

X
X

4 ^
+

+

o
+

• X

1
+

X +

+

X

X

Christofides with Greedy Shortcuts
1 y- - - 1 — • — — 1

O 0

* . i
X

+
+

X

X

I 1

o
0

x+

1 1—, 1

Uniform points
Clustered points

TSPLIB instances

o o 0
+

. 1

1 p—1 1

o
+
X

J

. 1

1,000 10,000 100,000 lO'̂ e
Number of Cities

10^7

Figure 9.9. Tour quality for Christofides with greedy shortcuts.

(a bound that is asymptotically attainable by 2-dimensional Euclidean
instances, as shown by Cornuejols and Nemhauser [222]).

Unfortunately, this improvement in worst-case behavior comes at a
price. The running time for Christofides is dominated by that for com
puting the minimum weight matching, and the best algorithms known
for this have O(N^) running times, as compared to the (non-geometric)
worst-case running time of 0{N'^ log N) for Savings. Fortunately, in
practice we can use matching codes that exploit geometry to run much
more quickly. For the implementations of Christofides studied here, we
used the code of Cook and Rohe [207], together with a K-d tree based
minimum spanning tree algorithm. With these, the observed running
time appeared to be 0{N^''^^) and we were able to handle instances
with 3 milhon cities in normalized time of about an hour, only 10 times
longer than for Savings. (Memory problems prevented us from success
fully running the Christofides code on larger instances.)

The tour quality results for this standard version of Christofides are
disappointing, however. Like Farthest Insertion it beats Savings on the
Clustered instances, but it does worse for Uniform instances and most of
the TSPLIB instances. Indeed, its average percentage excess for Uniform
instances appears to approach 14.5%, which is worse than the limits for
FA and FI as well as the 12.1% for Savings.

Experimental Analysis of Heuristics for the STSP 405

This is not the end of the story, however. A natural question is
whether we might somehow do a better job of shortcutting in the fi
nal phase of the heuristic. As shown by Papadimitriou and Vazirani in
[657], it is NP-hard to find the optimal way to shortcut the Euler tour.
However, there are heuristics that do significantly better than the naive
approach taken in the standard implementation. The "greedy shortcut"
version of Christofides (Chr is to-G) examines the multiply visited cities
in some arbitrary order and for each chooses the current best of the
possible shortcuts. This version runs in essentially the same time as the
standard one and yet finds better tours than both Savings and Far
thest Insertion on all but one instance each (and on those two instances,
it is only 0.06% worse). It is also more consistent. Figure 9.9 plots
the percentage excess above the Held-Karp bound for Ch r i s t o -G on all
the integral-coordinate geometric instances in our testbeds (except the
10,000,000-city instance which we couldn't run). For all three classes
Chr i s to -G ' s excesses for larger instances lie between 9 and 10%. The
hmiting percentage for Uniform instances appears to be about 9.8%, a
substantial improvement over any of the other heuristics we have cov
ered. Chr i s to -G also outperforms CCA on all instances with more than
3,162 cities and performs better on average except in the case of Clus
tered instances with 1,000 or 3,162 cities (and is of course much faster).

Another modification of Christofides that has been proposed is to
replace the initial MST with the one-tree obtained in the process of
computing the Held-Karp bound using Lagrangean relaxation [444, 445].
This approach was combined with greedy shortcuts by Andre Rohe [729]
in an implementation we shall call Christo-HK. The Lagrangean relax
ation scheme used by Rohe involves many spanning tree computations
over weighted sparse graphs derived from the Delaunay triangulation of
the cities. Although no at tempt is made to run this process to conver
gence, it still takes substantially longer than simply computing a single
MST for the cities, so that asymptotically Christo-HK seems to be some
4-8 times slower than Chr i s to -G. It does find significantly better tours,
however: Its average excess over the HK bound appears to go toward
6.9% for Uniform instances and 8.6% for Clustered instances.

If one is unwilling to pay the running time penalty of Ch r i s t o -G
(much less that of Christo-HK), it is natural to ask how well one might
do if one sped up the bottleneck matching phase of Christofides' algo
rithm by using a fast heuristic to get a good but not-necessarily-optimal
matching (while still using greedy shortcuts). We have implemented such
a heuristic using a K-d tree based greedy matching procedure followed
by 2-opting, i.e., looking for pairs {a, 6}, {c, d} of matched cities for
which changing partners (to {a^c}^ {^^d}) shortens the matching, until

406 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

N -
RA+
Chr-S
FI
CCA
Sav
ACh
Chr-G

1 Chr-HK

Average

1000
13.96
14.48
12.54
10.11
11.38
11.13
9.80
7.55

Percent Excess over the HK Bound: Uniform Instances

3162
15.25
14.61
12.47
11.47
11.78
11.00
9.79
7.33

lOK
15.04
14.81
13.35
11.73
11.82
11.05
9.81
7.30

31K
15.49
14.67
13.44
12.46
12.09
11.39
9.95
6.74

lOOK
15.43
14.70
13.39

-
12.14
11.24
9.85
6.86

316K
15.42
14.49
13.43

-
12.14
11.19
9.80
6.90

IM
15.48
14.59
13.47

-
12.14
11.18
9.79
6.79

3M
15.47
14.51
13.49

-
12.10
11.11
9.75

-

lOM
15.50

-
13.49

-
12.10
11.11

-
-

RA+
Chr-S
FI
CCA
Sav
ACh
Chr-G

1 Chr-HK

0.06
0.06
0.19
4.88
0.02
0.03
0.06
1.00

Average

0.23
0.26
0.76

82.09
0.08
0.12
0.27
3.96

Normalized Running Time

0.71 1.9 5.7
1.00 4.8 21.3
2.62 9.3 27.7

1129.85 14015
0.26 0.8 3.1
0.44 1.3 3.8
1.04 5.1 21.3

14.73 51.4 247.2

in Seconds

13 60
99 469
65 316
-

21 100
28 134

121 423
971 3060

222
3636
1301

-
386
477

3326
-

852 i
-

5345
-

1604
2036

-
-

Table 9.9. Results for the more powerful tour construction heuristics on Random
Uniform EucUdean instances. Sav, ACh, and Chr stand for Savings, AppChristo, and
Christo, respectively.

no more can be found. Our 2-opting procedure uses the speedup tricks
for the 2-opt TSP heuristic described in the next section. The resulting
"Approximate Christofides" heuristic (AppChristo) is from 2 to 7 or
more times faster than Christo-G, with average tour lengths increasing
between 1 and 2%, the higher figure being for Clustered instances. For
Uniform instances, the hmiting percentage excess for AppChristo ap
pears to be 11.1%, compared to 12.1% for Savings, and AppChristo is
typically only 1.2 to 3 times slower.

Table 9.9 summarizes the tour quality and running time results on
Uniform instances for the best of the "more complex tour construction
heuristics" of this section, with Savings included for comparison pur
poses. Times for similarly sized instances of the other two geometric
classes are roughly the same except in the case of Clustered instances.
AppChristo is typically almost twice as slow for such instances, while
Christo-S and Christo-G are almost 3 times slower for the smaller
ones, improving to 25-50% slower when Â — 316, 228.

Experimental Analysis of Heuristics for the STSP 407

3.4. Simple Local Search Heuristics
In this and the next three sections we cover various local search heuris

tics for the STSP, many of which are described in more detail in Chapter
8. In a local search heuristic for the TSP, one defines a neighborhood
structure on the set of tours, where a tour T' is declared to be a neigh
bor of a tour T if it differs from it in some specified way. The classic
neighborhoods of this type are the fc-Opt neighborhoods, where V is
obtained from T by deleting k edges and replacing them with a different
set of k edges (a k-Opt move). For /c > 2, the sets need not be disjoint,
so in particular a k-Opt move is a special case of a (/c + l)-Opt move.

Given a neighborhood structure, a standard local search heuristic op
erates in two phases. First, it uses some tour construction heuristic to
generate a starting tour. Then it repeatedly replaces its current tour by
a neighboring tour of shorter length until no such tour can be found (ei
ther because none exists, in which case the tour is "locally optimal," or
because the heuristic does not explore its neighborhoods exhaustively).
A local search heuristic that uses the k-Opt neighborhood is usually
called simply "fc-Opt," and in this section we study various pure and
restricted heuristics of this kind.

Currently, 2-Opt and 3-Opt are the main k-Opt heuristics used in
practice, introduced respectively by Flood and Croes [314, 228] and by
Bock [115]. In Shen Lin's influential 1965 study of 3-Opt [562], he con
cluded that the extra time required for 4-Opt was not worth the small
improvement in tour quality it yielded, and no results have appeared
since then to contradict this conclusion. In contrast, there have been
several attempts to trade tour quality for improved running time in 3-
Opt by exploiting restricted versions of the 3-Opt neighborhood, as in
the Or-Opt heuristic of Or [635] and the 2.5-Opt heuristic of Bentley
[103].

Implementation Details. Simply stating the neighborhood struc
ture used does not completely specify a local search heuristic. In order
to determine the tours generated by the heuristic one needs to provide
such additional details as (a) the tour construction heuristic used, (b)
the rule for choosing the improving move to make when there are more
than one, and (c) the method used to look for improving moves (when
the rule specified in (b) depends on the order in which moves are exam
ined). Moreover, the heuristic's running time will depend on additional
implementation details. Although naively one might expect 2-Opt and
3-Opt to require Q.{N'^) and ^(A^^) time respectively, in practice they
can be implemented to run much more quickly for geometric instances.
3-Opt can be implemented to run much more quickly than ft{N^) even

408 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

for non-geometric instances. Although many factors are involved in these
speedups, there are perhaps four key ones.

1. Avoiding Search Space Redundancy

2. Bounded Neighbor Lists

3. Don't-Look Bits

4. Tree-Based Tour Representation

The second and third of these trade a potential slight degradation in
tour quahty for improvements in running time. In particular, their use
leaves open a slight possibility that the final tour may not be 2-Optimal
(3-Optimal), i.e., it may have a better neighboring tour that we failed
to notice. We now describe each of the four factors individually, as they
are relevant not only the simple local search heuristics of this section
but to the more sophisticated heuristics of later sections as well.

Avoiding Search Space Redundancy. We illustrate this in the
context of 2-Opt. Each possible 2-Opt move can be viewed as corre
sponding to a 4-tuple of cities (a, 6, c, d), where {a, 6} and {c, d] are tour
edges deleted and {a, c} and {6, d} are the edges that replace them. Sup
pose we intend to search through all the possibilities as follows: Let ti
range over the N possibilities for a; given ti , let 2̂ range over the two
possibihties for b] and given ti and ^2, let 3̂ range over the possibili
ties for c (the choice of d is then forced). Note that, as stated, a given
move would be examined four times, depending on whether (^1,̂ 2) is
(a, 6), (6, a), (c, d), or (d^c). This redundancy can be exploited as fol
lows: Never consider a city t for 3̂ unless d(ti^t) < d{ti^t2). Note that
if (a, 6, c, d) is never examined under this regimen, we must have both
d{a^c) > d{a^b) and d{b^d) > d{c^d)^ and so it cannot be an improving
move. Hence no improving move will be missed. This restriction typi
cally strongly limits the possibihties for 3̂ as the heuristic proceeds. A
generalization to 3-Opt limits choices for both 3̂ and the analogous final
choice ^5.

For geometric instances, this restriction can be implemented using
K-d trees and a fixed-radius near neighbor search, as described in [103].
For non-geometric instances, one could simply precompute for each city
an ordered list of the other cities by increasing distance. However, a
quicker option is the following.

Bounded Neighbor Lists. Instead of creating for each city an
ordered list of all the other cities, create a truncated hst of the nearest
k cities, ordered by increasing distance, on the assumption that more
distant cities are unlikely to yield improving moves. In general, such lists
can be computed in overall time 0{N'^\ogk). For geometric instances

Experimental Analysis of Heuristics for the STSP 409

this can be reduced to something more hke 0{NlogN) using K-d trees.
A possibly more robust version of this approach is to include for each
city c the [k/A\ cities closest to c in each of the four quadrants of the
coordinate system with c at (0,0). If these total fewer than k cities,
we augment the set by the nearest remaining cities overall to bring the
total up to /c. This will be referred to in what follows as a quad-neighbor
list. Another possibility for geometric instances, suggested by Reinelt
[710, 711], is to construct a neighbor list from the cities closest to c in
the Delaunay triangulation of the city set.

Don't-Look Bits. This idea was introduced by Bentley in [103]
to help avoid the repetition of fruitless searches. Suppose our search for
improving moves is as described above, with an outer loop that considers
all Â possible choices for ti. Suppose we are considering the case where
ti = a and that (i) the last time we searched with ti = a, we didn't find
an improving move and (ii) a has the same tour neighbors as it had that
last time. Then it might seem unlikely that we will find an improving
move this time either. Bentley proposed not searching in this case, being
willing to risk the possibility that occasionally an improving move might
be missed. In order to keep track of the cities for which searches could be
skipped, he suggested maintaining an array of Don^t-Look bits. Initially,
the bits are all set to 0. Thereafter, the bit for a is set to 1 whenever a
search with ti = a is unsuccessful. Conversely, if an edge of the tour is
deleted when an improving move is made, both its endpoints get their
don't-look bits set back to 0. Note that as the local search procedure
continues, the number of bits that are set to 0 will decline, so it may
make sense to simply keep the cities with 0-bits in a queue, ordered by
the length of time since they were last examined, rather than keeping an
explicit array of don't-look bits. In this way we not only avoid searches,
but spend no time at all considering cities that are to be skipped.

Tree-Based Tour Representation. Empirical measurements re
ported in [103, 322] suggest that for Uniform instances both 2-Opt and
3-Opt typically make G(A)̂ improving moves. Bentley in [103] observed
that as N increases, the time spent performing these moves came to
dominate the overall time for his implementations. This was because
of the way he represented the tour. A 2-Opt move basically involves
cutting the tour in two places and reversing the order of one of the two
resulting segments before putting them back together. If the tour is
stored in a straightforward way (either as an array or a doubly linked
list), this means that the time for performing the 2-Opt move must be
at least proportional to the length of the shorter segment. Bentley's
empirical data suggested that for Uniform instances the average length
of this shorter segment was growing roughly as A^̂ '̂ , as was the average

410 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

work for performing each move. If we consider alternative tree repre
sentations, this can be reduced to y/N using the 2-level trees of [322]
or to logA^ using the splay tree data structure of [764]. For a study
of the tradeoffs involved and the crossover points between various tour
representations, see [322].

Results for 2-Opt, 2.5-Opt, and 3-Opt. Implementation choices
can make a difference, both in tour quality and running time. We con
sider three sets of implementations.

• 2-Opt and 3-Opt implementations by Johnson and McGeoch (-JM).

• 2-Opt, 3-Opt and "2.5-Opt" implementations by Bentley (-B). The
third heuristic is a restricted version of 3-Opt in which the 2-Opt

neighborhood is augmented only by those 3-Opt moves that delete
a single city from the tour and reinserted it elsewhere.

• 2-, 2.5-, and 3-Opt implementations by Applegate, Bixby, Chvatal,
and Cook (-ABCC). These are included as options in the edgegen
program of the Concorde software release.

The three sets of implementations are similar in that all exploit don't-
look bits, but differ in many other respects. Concorde's implementations
use Nearest Neighbor to generate starting tours, whereas the Bentley and
Johnson-McGeoch implementations both use the Greedy heuristic (al
though Johnson and McGeoch use a randomized variant that picks the
shortest edge with probability 2/3 and the second shortest with proba
bility 1/3). For all three heuristics Concorde considers only one of the
two neighbors of ti as a choice for 2̂ whereas the Bentley and Johnson-
McGeoch implementations consider both. Another difference has to do
with move selection. For each choice of ti , the Johnson-McGeoch and
Concorde implementations apply the first improving move found (ex
cept that in the JM implementations an improving 2-Opt move is not
performed in 3-Opt unless no way is found to extend it to an even bet
ter 3-Opt move). In contrast, for each choice of ti , the Bentley imple
mentations keep looking for improving moves until it has seen 8 (or run
out of possibilities) and then performs the best of these. The Bentley
and Concorde implementations also have more chance of finding improv
ing moves, since they use fixed-radius near-neighbor searches to find all
possible candidates for ts (and 5̂ in the case of 3-Opt), whereas the
JM implementations restrict the choices to quad-neighbor lists of length
20. On the other hand, in the case of 3-Opt, Bentley's implementation
examines fewer classes of potential 3-Opt moves, omitting for example
those 3-Opt moves that permute but do not reverse any of the three

Experimental Analysis of Heuristics for the STSP 411

Algorithm
Christo-G
Christo-HK
2opt-B
2opt-JM
2opt-ABCC
2.5opt-B
2.5opt-ABCC
3opt-B
3opt-JM
3opt-ABCC

Percent Excess
U

9.9
6.9
5.7
4.8

14.4
4.7

12.6
3.6
3.0
8.4

C
9.6
8.4
9.6

10.7
19.6
8.2

17.3
5.5
6.9

11.2

T
9.5
7.4
5.8
6.0

14.7
4.8

13.0
3.8
4.2
9.2

Time (Seconds)
U

21.3
247.2

8.8
10.7
3.7

10.2
4.3

15.5
12.3
6.1

C
37.8

197.0
9.7

12.4
2.9

12.0
3.2

176.8
14.9
12.5

T
29.5

177.9
5.6
6.5
1.9
7.5
2.4

17.8
6.9
3.7

Table 9.10. Average percent excess over the HK bound and normalized running times
for 100,000-city Uniform and Clustered instances and for TSPLIB instance pla85900.
All codes were run on the same machine.

segments created when 3 tour edges are deleted. A final difference is
that the Bentley and Concorde implementations represent the tour with
an array whereas Johnson and McGeoch use the 2-level tree of [322].

Table 9.10 summarizes average heuristic performance of these imple
mentations on the instances of approximately 100,000 cities in our three
geometric classes. A first observation is that the Concorde (-ABCC) im
plementations are much faster and produce much worse tours than their
-B and -JM counterparts. This is a reasonable tradeoff in the context of
the intended use for the Concorde implementations, which is to quickly
generate sets of good edges for use with other Concorde components.
It does, however, illustrate the danger of Concorde's restriction to one
choice for city t2, which is the primary cause for this tradeoff: Applying
the same restriction to the JM implementations yields similar improve
ments in running time and degradations in tour quality.

As to comparisons between the Bentley and JM implementations, the
latter produce better results for Uniform instances but are worse for
Clustered instances. For these, Bentley's more complete examination
of candidates for ts may be paying off, although there is a substantial
running time penalty in the case of 3-Opt. For TSPLIB instances, the
results are mixed, with the JM implementations more often producing
better tours, although not for pla85900 as shown in the table. Also not
evident in the table is the running time penalty that the Bentley and
Concorde implementations experience once Â > 100,000, due to their
use of the array representation for tours. Their observed running times
have rt{N^-^) growth rates, whereas the JM implementations, with their
tree-based tour representations, have observed running times that ap
pear to be 0(A^log^ A)̂. As a consequence, 2.5opt-B is 5 times slower
than the JM implementation of full 3-Opt when N = 3,162, 278 and

412 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Algorithm
NN-ABCC
Greedy-JM
2opt-JM
3opt-JM

Percent Excess
1,000

224
163
66
31

3,162
321
198
92
43

10,000
337
250
114
63

Time (Seconds)
1,000

0.8
0.7
1.0
1.1

3,162 10,000
9.7 112
8.8 107

12.2 157
12.3 150

Table 9.11. Average percent excesses over the HK bound and normalized running
times for Random Matrix instances of sizes from 1,000 to 10,000 cities. All codes
were run on the same machine.

2opt-ABCC and 3opt-ABCC are both 5-10 times slower than the corre
sponding JM implementations once N = 1,000,000.

Table 9.10 also addresses the question of how these simple local search
heuristics compare to the best of the tour construction heuristics in
our study: greedy-shortcut Christofides (Christo-G) and its Held-Karp-
based variant Christo-HK. Based on the results in the table, it would
appear that both are dominated by the 2.5opt-B and 3opt-JM, and
the first is also dominated by 2opt-B. The situation is a bit more com
plicated, however, if one looks at the Challenge testbeds as a whole.
Christo-G tends to produce better tours than 2opt-B for many Clus
tered instances and to be faster than all the Bentley and JM implemen
tations for Uniform and TSPLIB instances with 10,000 or fewer cities.
2.5opt-B and 3opt-JM, however, produce better tours than Christo-G
and Christo-HK for almost all the instances in the Challenge testbeds
on which the latter two could be run. (3opt-JM loses only on two in
stances.) Since the running time advantage for Christo-G is never more
than a factor of 3 on the smaller instances, all of which can be han
dled by the 3opt-JM in normahzed time of less than 10 seconds (usually
less than 2), and since the running time for Christo-HK is substantially
worse than that for 3opt-JM across the board, there is probably no real
reason to use either Christofides variant in practice, assuming one has a
good implementation of 3-Opt.

The JM implementations of 2-Opt and 3-Opt can handle non-geometric
instances, and so we also ran them on our Random Matrix testbed. The
results are summarized in Table 9.11, which for comparison purposes
also includes results for two tour construction implementations that can
handle such instances: the benchmark Greedy code, which provides a
good estimate for the lengths of the starting tours used by 2opt-JM and
3opt-JM, and Concorde's implementation of NN.

Observe that all the heuristics produce much poorer tours for Random
Matrix instances than they do for geometric instances. Even the best
of them, 3-Opt, has percentage excesses that are worse by a factor of
10 or more. Also note that tour quality declines substantially as N

Experimental Analysis of Heuristics for the STSP 413

increases. The results for all four heuristics are consistent with the
conjecture that the average percentage excess grows as log N^ whereas
for the geometric instances in our testbeds, all of our heuristics seem
to have average percentage excesses that are bounded, independent of
A .̂ The running time for Random Matrices is also much worse, growing
somewhat more rapidly than A^̂ , the nominal growth rate for simply
reading the instance. An interesting side effect of this is that the time
for performing local search becomes a much less significant component
of the overall running time. 3opt-JM takes only about 50% more time
than NN-ABCC and the running time difference between 2opt-JM and
3opt-JM is inconsequential. (This is because most of the local search
speedup tricks mentioned above continue to be applicable, so that the
local search phase does not take much longer for Random Matrices than
it did for geometric instances.) Given how much better 3opt-JM's tours
are than those of the other heuristics, it is the obvious choice among the
four, should one want to solve this kind of instance.

More on Starting Tours and Neighbor Lists. As noted above,
all the Bentley and the JM implementations used the Greedy heuristic to
generate starting tours. This decision was based on the extensive exper
iments reported in [103, 461], which showed that Greedy tours tended
to yield the best results, both in comparison to worse tour construction
heuristics such as NN or the infamous "generate a random tour" heuristic,
and to better ones such as FI or Savings. It appears that the starting
tour needs to have some obvious defects if a simple local search heuristic
is to find a way to make major improvements, but it can't be too bad or
else the heuristic will not be able to make up the full difference. Ran
dom starting tours have the additional disadvantage that they lead to
increased running times because more moves need to be made to reach
local optimality.

The JM implementations for which results were reported above used
neighbor lists of length 20. Many authors have suggested using substan
tially shorter lists, but at least in the context of these implementations,
20 seems a reasonable compromise. Using lists of length 10 saves only
10-20% in running time but on average causes tour lengths to increase by
1% or more for both 2opt-JM and 3opt-JM and all four instance classes.
Increasing the list length to 40 increases running time by 40-50% and
for 3opt-JM on average improves tour length by less than 0.3% on all
but the Clustered instances. The average improvements for Clustered
instances are more variable, but appear to average roughly 0.6% overall.
For 2opt-JM the tour length improvements due to increasing the neigh
bor list length to 40 are slightly larger, but the running time becomes

414 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

greater than that for 3opt-JM with 20 neighbors, and the latter finds
much better tours. For full details, see the Challenge website.

Other Simple Local Search Heuristics. 2.5-Opt is not the only
restricted version of a k-Opt heuristic that has been seriously studied.
Much early attention was devoted to the Or-Opt heuristic of [635], which
uses a neighborhood intermediate between that of 2.5-Opt and full 3-
Opt. In 2.5-Opt, we consider those 3-Opt moves in which one of the three
segments into which the tour is initially broken contains just one city;
Or-Opt expands this to segments of as many as 3 cities. It was originally
proposed as a way of reducing the running time overhead of the naive
Q{N^) implementation of 3-Opt, before the existence of the speedup
tricks mentioned above was widely known. Although these tricks should
be adaptable to Or-Opt as well, it seems unhkely that the latter would
retain much speed advantage over a more complete 3-Opt implemen
tation. Thus the probable tour degradation due to the much smaller
Or-Opt neighborhood is not hkely to be justified, and Or-Opt no longer
appears to be a serious competitor. No implementations were submitted
to the Challenge.

Researchers have recently also considered putting restrictions on the
/c-Opt neighborhood when fc > 4, with the intent of getting better tours
than 3-Opt without paying the full running time penalty for fc-Opt itself.
Two families of heuristics of this type were submitted to the Challenge:
the GENI/GENIUS heuristics of Gendreau, Hertz, and Laporte [351] and
the HyperOpt heuristics of Burke, Cowling, and Keuthen [149].

From one point of view GEN I can be viewed as a tour construction
heuristic, in that the tour is augmented one city at a time. However,
each augmentation is equivalent to a simple insertion followed by a 4-
or 5-Opt move, so we have chosen to consider it here in the section
on local search. GENIUS uses GENI to construct its starting tour, and
then attempts to improve it by a "stringing-unstringing" procedure that
technically is a restricted version of 8-, 9-, or 10-Opt. In addition, the
heuristics use truncated nearest neighbor lists to restrict their choices,
with the heuristic being parameterized by the length p of these lists.

We tested implementations of GENI and GENIUS provided to us by
Gendreau et al., which we fine-tuned by improving their handling of
memory allocation and by removing some redundant operations. This
fine-tuning did not change the output tours but does result in substantial
running-time improvements. The implementations still do not, however,
exploit the full set of speedup tricks listed above, and with p = 10 GENI
is 100 times slower for 10,000-city instances than 3opt-JM (on the same
machine), and GENIUS is over 300 time slower. Moreover, although both
GENI and GENIUS find better tours than 3-Opt for Clustered instances,

Experimental Analysis of Heuristics for the STSP 415

they are worse for Uniform instances and most TSPLIB instances. In
creasing p to 20 does not yield a significant improvement in the tours
but causes substantial increases in running time. It is possible that a
reimplementation of the heuristics to take advantage of more speedup
tricks might make them more competitive timewise. It seems unlikely,
however, that we could speed up the heuristics sufficiently to make them
competitive with implementations of Lin-Kernighan to be described in
the next section, and those find better tours across the board. (Based
on comparisons to GENIUS in [713], the I*̂ heuristic of Renaud, Doctor,
and Laporte [713], which uses a restricted 4-Opt neighborhood, would
not seem to be competitive either.)

The HyperOpt heuristics of [149] also come in parameterized form,
with the the neighborhood structure for /c-HyperOpt being a restricted
version of the 2A:-0pt neighborhood. To construct a neighboring tour,
one first deletes two disjoint sets of k consecutive tour edges. This breaks
the tour into two subtours and 2{k — 1) isolated cities. These are then
recombined optimally into a tour using dynamic programming. The
implementations of Burke et al. are substantially faster than those for
GENI/GENIUS, even taking into account possible normalization errors.
The normalized times for 2-HyperOpt are comparable to those for the
3opt-JM until they start to degrade around N = 100,000. Unfortu
nately, 2-HyperOpt's average tour quahty is worse than that of 3opt-JM
for all three geometric instance classes. 4-HyperOpt might be slightly
better than 3opt-JM on Clustered instances, but it is a close call, and
3opt~JM is 50 times faster.

Thus as of now it does not appear that restricted fc-Opt heuristics,
A: > 4, off*er a promising avenue to cost-eff'ective improvements on 3-
Opt. As was first shown in 1973 by Lin and Kernighan [563], a much
better generalization is the concept of variable-depth search. We cover
heuristics based on this concept in the next section.

3.5. Lin-Kernighan and Variants
The Lin-Kernighan heuristic of [563] does not limit its search to moves

that change only a bounded number of edges. In principle it can change
almost all the edges in the tour in a single move. However, the moves
have a specific structure: each can be viewed as a 3-Opt move followed by
a sequence of 2-opt moves, although only the full final move need actually
improve the tour. The heuristic keeps running time under control by
restricting the "LK-Search" to moves that are grown one 2-Opt move at
a time, without backtracking beyond a fixed level. In addition, it uses
neighbor lists to restrict the number of growth alternatives it considers,

416 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

locks edges that have aheady been changed by the move so that the
changes won't subsequently be undone, and aborts the search if a strict
gain criterion based on the best tour seen so far is not met. More details
can be found in Chapter 8.

In implementing Lin-Kernighan, one has far more choices to make
than for simple heuristics hke 2-Opt and 3-Opt, and the literature con
tains reports on many implementations of Lin-Kernighan with widely
varying behavior. In addition to such standard choices as (a) what tour
construction heuristic to use, (b) when to continue looking for better
improving moves after one has been found, (c) how long neighbor lists
should be and how they should be constituted, (d) what tour represen
tation should be used, and (e) whether to use don't look-bits, here are
some of the new choices:

• How broad should the search be? The original Lin-Kernighan im
plementation restricted attention to neighbor lists of length 5 at
all levels of the search.

• How much backtracking is allowed? The original Lin-Kernighan
implementation considered all 3-Opt moves that met the gain cri
terion (together with a restricted class of 4-Opt moves) as starting
points for the LK-search.

• Should one consider just one or the standard two choices for ^2?

• Does one lock both deleted and added edges, or only one of the
two classes? (The original LK implementation locked both, but
locking either of the two classes separately is enough to insure
that the search runs in polynomial time.)

• Does one tighten the gain criterion in the middle of the LK-search
if a better tour is discovered along the way?

• Should one extend the partial move that yields the best tour, or
the one that has the best gain criterion?

• Should one impose a constant bound on the depth of the LK-
search?

• Should one augment the moves constructed by LK-search with
non-sequential "double-bridge" 4-Opt moves, as proposed by Lin
and Kernighan (but not used in their own implementation)?

Moreover, one can consider topological variants on the way that moves
are grown and the reference structure maintained at each level of the
search. Lin and Kernighan's reference structure is a path with one end

Experimental Analysis of Heuristics for the STSP 417

fixed, and the changes considered in growing the move all consist of
adding an edge from the unfixed end of the path to a city on its neighbor
hst, and then deleting the one edge that will take us back to a path.
Other possible reference structures have been implemented, such as the
unanchored path of Mak and Morton [576] or the "stem-and-cycle" of
Glover [373, 374]. In addition, alternative ways of extending an LK-
search (besides the standard 2-Opt move) have been considered, as in
the variant due to Helsgaun [446] that augments via 5-Opt moves.

We do not have space to go into full detail on how all the tested imple
mentations differ. Indeed, many implementers' written descriptions of
their implementations do not provide all the answers. So we concentrate
in what follows on key differences (and similarities) and our conclusions
about the effects of various choices are necessarily tentative.

Basic Lin-Kernighan. We start with implementations that do not
depart in major ways from the original heuristic, i.e., implementations
that use a path as reference structure, use 2-Opt moves as the augmen
tation method in LK-search, and do not perform double-bridge moves.
Four such implementations were submitted to the Challenge:

1. LK-JM (Johnson and McGeoch [461, 463]). The main results re
ported here for this implementation use Greedy starting tours,
length-20 quad-neighbor lists for all levels of the search, don't-
look bits, and the 2-Level Tree tour representation [322]. In the
LK-search, this C implementation uses an anchored path as its
reference structure, locks only the added edges, updates the gain
criterion when a better tour is found in mid-search, does not bound
the depth of the searches, and otherwise follows the original Lin-
Kernighan Fortran code, from which it is derived.

2. LK-Neto (Neto [626]). This implementation is based on the original
Lin-Kernighan paper [563] and on the Johnson-McGeoch chapter
[463]. It differs from the Johnson-McGeoch implementation in that
neighbor lists consist of 20 quadrant neighbors unioned with the 20
nearest neighbors, LK-searches are bounded at 50 moves, and spe
cial cluster compensation routines are used with the hopes of im
proving performance for instances in which the cities are grouped
in widely separated clusters, presumably as in our Clustered in
stances. Source code for this implementation (in CWEB) is available
from h t t p : //www. cs . to ron to . edu /~ne to / r e sea rch / lk / .

3. LK-ABCC (Applegate, Bixby, Chvatal, and Cook [27]). This is the
default Lin-Kernighan implementation in Concorde. Based on re
marks in [27], it would appear that this implementation differs

418 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

from the Johnson-McGeoch implementation mainly as follows: It
uses Q-Boruvka starting tours, length-12 quad-neighbor lists, an
unanchored path as reference structure, a narrower (but slightly
deeper) backtracking strategy with just one choice for ^2, and LK-
searches bounded at 50 moves. Source code is available from the
Concorde website.

4. LK-ACR (Applegate, Cook, and Rohe [32]). Based on remarks in
[27, 32], it would appear that this implementation differs from
Concorde's in that it uses a slightly broader and deeper back
tracking strategy and bounds the depth of the LK-search at 25
moves.

Both of the latter two implementations were optimized for use in the
context of Chained Lin-Kernighan, where the speed of a single invoca
tion of LK may be more important than saving the last few fractions
of a percent in tour length. Results confirm this. See Table 9.12 which
presents average tour qualities and running times for the four implemen
tations. For comparison purposes, the corresponding results for 3opt-JM
are also included.

Note that LK-JM and LK-Neto provide roughly equivalent tours except
for the Clustered instances. These tours are typically substantially bet
ter than those for LK-ABCC and LK-ACR, although LK-ABCC and LK-ACR
are significantly faster for Clustered and TSPLIB instances and for Uni
form instances when N < 10,000. As in the case of the ABCC imple
mentations of 2-, 2.5-, and 3-Opt, a major reason for this disparity is
probably the restriction in LK-ABCC and LK-ACR to a single choice for
t2. A second but lesser reason is the fact that the latter two heuristics
construct shorter neighbor lists and do so more quickly. The fact that
they bound the depth of the LK-search would not seem to be a major
factor, however, since LK-Neto also bounds the depth. Moreover, if one
imposes a depth bound of 50 on LK-JM, neither tour quahty nor running
time is typically affected significantly. As to asymptotic growth rates,
the observed running times for LK-JM and LK-ACR appear to be 0(A^^'^^),
while those for LK-Neto and LK-ABCC may be somewhat worse.

Between LK-ABCC and LK-ACR, the former tends to yield slightly better
tours and take slightly longer, but the results for both are closer to
those for 3opt-JM than to those for LK-JM. Indeed, for the three smallest
TSPLIB sizes, 3opt-JM on average finds better tours than LK-ACR. This
becomes less surprising when we look at running times, since LK-ACR
actually appears (subject to normalizing errors) to use less time than
3opt-JM for these instances. LK-ABCC is almost as fast.

Experimental Analysis of Heuristics for the STSP 419

N

LK:

3opt:

LK:

3opt:

LK:

3opt:

=

JM
Neto
ABCC

ACR
JM

JM

Neto
ABCC

ACR

JM

JM

Neto
ABCC

ACR

JM

Average Percent Excess over the HK Bound

1000

1.92
1.91
2.22
2.36
2.96

1.75
2.52
3.77
3.89
4.08

2.38
2.40
3.54
4.48
3.93

3162 lOK 31K lOOK 316K

Random Uniform Euclidean Instances
1.99 2.02 2.02 1.97 1.96
1.97 1.99 1.89 1.95 1.97
2.43 2.60 2.48 2.54 2.67
2.90 2.72 2.73 2.74 2.75
2.84 3.06 3.02 2.97 2.93

Random Clustered Euclidean Instances
2.95 3.41 3.71 3.63 3.67
4.19 4.76 4.42 4.78
6.23 5.70 6.38 5.31 5.45
6.13 5.93 6.28 5.54 5.54
6.06 6.89 7.48 6.88 7.08

TSPLIB Instances
2.16 1.92 1.73 1.61
2.32 1.88 2.00
3.29 2.39 2.16 1.60
3.48 3.72 2.91 2.40
3.67 3.17 3.99 4.20

IM

1.96
1.92
2.68
2.77
2.96

3M

1.92
1.88
2.55
2.67
2.88

lOM

-
-

2.54
2.49

-

LK:

3opt:

LK:

3opt:

LK:

3opt:

JM

Neto
ABCC

ACR
JM

JM
Neto
ABCC

ACR
JM

JM
Neto
ABCC

ACR
JM

Average Normalized Running Time in Seconds

0.20

0.19
0.09
0.07
0.13

1.66
4.35
0.19
0.10
0.15

0.34
0.40
0.10
0.08
0.14

Random Uniform Euclidean Instances
0.69 2.32 7.2 22.8 61

0.87 3.35 14.4 89.6 574
0.34 1.49 6.0 21.4 61
0.29 0.93 3.0 16.4 76
0.45 1.44 4.2 12.3 33

Random Clustered Euclidean Instances
4.97 15.37 59.3 173.1 495

15.04 51.17 138.6 558.1
0.72 2.55 11.0 37.9 108
0.45 1.40 4.5 25.0 114
0.54 1.77 5.0 14.9 38

TSPLIB Ins tances

0.64 4.29 13.0 24.3
1.08 10.26 47.1
0.29 1.21 3.5 8.8
0.23 0.74 1.7 5.4
0.38 1.42 3.4 6.9

323

3578
307
318

162

1255

17660

1330 6980
1290 5760
600

Table 9.12. Results for 3-Opt and four implementations of Lin-Kernighan. Averages
for TSPLIB are taken over the same instances as in Figure 9.3.

420 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Turning now to the relationship between LK-JM and LK-Neto, a first
observation is that the algorithmic descriptions in [563, 463] (on which
the LK-Neto implementation was based) seem to be adequate to define
a reproducible Lin-Kernighan implementation, at least as far as tour
quality on Uniform and most TSPLIB instances is concerned. The two
implementations do differ significantly on Clustered instances, but this
is presumably because Neto has added innovations designed to handle
clustered instances more effectively. Unfortunately, for this particular
class of Clustered instances, the innovations do not appear to be effec
tive. LK-Neto provides significantly worse tours than LK-JM and the
ratio of its normalized running time to that of LK-JM is higher for Clus
tered instances than it is for Uniform instances. There also appears to
be some as-yet-unidentified difference in the two implementations that
has an asymptotic effect on running times: For Uniform instances the
normahzed running times for LK-Neto start to diverge from those for
LK-JM when Â gets large.

All the above LK implementations use variants on the Greedy heuris
tic to generate starting tours and so do not provide much of an oppor
tunity to analyze the effects of different starting heuristics on the final
LK results. (Analyses of this sort can be found in [32, 461].) How
ever, one question is hard to resist: What would happen if we combined
Lin-Kernighan with the very best (and slowest) of our tour generation
heuristics, Christo-HK? Andre Rohe submitted results for just such a
combination, and although his Lin-Kernighan implementation was an
early one that lacks the detailed tuning of LK-ABCC and LK-ACR, the
results are intriguing. For Â > 1,000 the total running time is domi
nated by that simply to generate the starting tour and for Uniform and
TSPLIB instances averages from 3 to 10 times slower than that for LK-JM.
However, the final tours are significantly better. For Uniform instances
the limiting ratio to the HK bound appears to be about 1.5% versus
the 1.9% for LK-JM and the average improvement over LK-JM on TSPLIB
instances ranges from 0.2% to 0.5%. For the larger Clustered instances
the improvement over LK-JM is roughly 1.3% and there is essentially no
running time penalty. Although even bigger improvements are possi
ble using the repeated local search heuristics of the next section, those
heuristics typically take even more time. Thus combining Lin-Kernighan
with Christo-HK could sometimes be an appealing option.

To complete the Lin-Kernighan picture, Table 9.13 covers Random
Matrix instances. Since the results for LK-Neto do not cover the 10,000-
city instance, we also include a version of LK-JM with LK-search depth
bounded at 50 (LK-JM-BD). (Note that because the triangle inequahty
does not hold, Christo-HK starting tours are no longer relevant.)

Experimental Analysis of Heuristics for the STSP 421

Algorithm

LK: JM
JM-BD
Neto
ABCC
ACR

3opt: JM

Percent Excess
1,000

3.5
3.5
3.0
4.0
5.3

31.2

3,162
4.4
4.8
4.1
6.0
7.6

42.6

10,000
5.9
6.2

-
9.0

10.3
62.7

Time (Seconds)
1,000

1.2
1.1
1.2
1.1
0.3
1.1

3,162
12.8
12.4
16.9
12.6
3.6

12.3

10,000
161
154

-
151
32

150

Table 9.13. Average percent excesses over the HK bound and normalized running
times for Random Matrix instances of sizes from 1,000 to 10,000 cities.

Once again LK-ACR is faster than 3opt-JM (in this case significantly
so), but now it also finds much better tours. Its tours are however worse
than those for LK-ABCC, and both produce significantly worse tours than
LK-JM and LK-Neto. Once again it is not clear if any of this difference can
be attributed to bounding the depth of the LK-search. Indeed, LK-Neto,
with bounding, finds significantly better tours than the LK-JM, with or
without bounding (for reasons unknown to us and in contrast to the re
sults for the geometric case). Running times for all the implementations
except LK-ACR are comparable, being dominated by the time to read
and preprocess the instance. As to the difficulty of this instance class
in general, note that for all the implementations, the percentage above
the Held-Karp bound again appears to be growing with Â (possibly at
a log Â rate), something that doesn't happen for the geometric classes.

We now turn to variants on basic Lin-Kernighan that involve more
substantial changes to the basic design of the heuristic.

Stem-and-Cycle Variants. These variants differ primarily in their
choice of reference structure for the LK-search. Here the structure con
sists of a cycle with a path connected to one of its vertices, as described
in more detail in Chapter 8. The implementation for which we report
results is due to Rego, Glover, and Gamboa and is based on the heuristic
described in [704]. It makes use of the 2-Level Tree tour representation,
but does not use don't-look bits. (As we shall see, this probably exacts
a severe running time penalty.) Variants using random starting tours
(SCLK-R) or Boruvka starting tours (SCLK-B) yield roughly comparable
tours, although the latter is usually at least twice as fast.

Figure 9.10 shows the relative tour-quality performance on our geo
metric testbed for SCLK-B and LK-JM. Note that the two are consistently
close, usually well within 1% of each other. Neither implementation
has tours that are consistently better than the other's, although LK-JM
wins more often than it loses. The normalized running time for SCLK-B
ranges from 4 times slower than LK-JM on 1,000-city Clustered instances

422 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

SCLK-B vs LK-JM

(fi

• ^

O)
c
0)

_̂ 3

,2
C

0)

o c
a)
0

3=
Q

c 0)
C)

Q)
Q-

2.0

1.5

1.0

O.b

0.0

-0.5

-1.0

-1.5

-2.0

1

+
_ +

X

+ X

1 . >< ^

M^ X +

U X

X

1 X X

1 ^

1 1

X
X

X

+

+ x

8 x^x
X

+

1 . 1 i

x̂

0

• 1

+
+

x'^

• 1

Uniform points
Clustered points

TSPLIB instances

+

1 I . I 1

' ' 1

o

+

X H

H

J

-J

• 1

0)

0

0)

CO
I

-J
o
CO

d
V

1,000 10,000 100,000
Number of Cities

10^6 10^7

Figure 9.10. Tour quality comparisons between the Rego-Glover-Gamboa implemen
tation of the Stem-and-Cycle variant of Lin-Kernighan with Boruvka starting tours
and the Johnson-McGeoch implementation of basic Lin-Kernighan.

to 1300 times slower on the 316,228-city Uniform instance (the largest
on which SCLK-B was run). It is possible that incorporating don't-look
bits into the implementation will make up much of this gap, but for now
there does not seem to be any significant advantage to this approach
over basic Lin-Kernighan.

The Helsgaun Variant (Helsgaun). This variant, described in
[446], offers several major innovations. First, the augmentation step
in the LK-search is not a 2-Opt move but a sequential 5-Opt move. To
keep running time under control, search at all levels is limited to length-5
neighbor lists. These are constructed in an innovative fashion.

We begin as if we were going to compute an estimate of the Held-
Karp bound using the Lagrangean relaxation approach of [444, 445]
augmented with techniques from [230, 442]. This yields a vector of
"TT-values" (TTI, . . . , TTJV) such that the minimum one-tree (spanning tree
plus an edge) under the distance function (i7r(ci, Cj) = d{ci, Cj) + TT̂ + TTJ
is a close lower bound on the Held-Karp bound. Based on this new
distance function, the "a-value" a(i, j) for each edge {Q,CJ} is defined
to be the diff"erence between the length of the minimum one-tree (under
dyr) that is required to contain {ci.Cj} and the length of the minimum
unconstrained one tree (under ^7)̂. Given the vector of TT-values, the

Experimental Analysis of Heuristics for the STSP 423

Helsgaun vs LK-JM

O)
c
CD

0)
O

c
0
k_

CD

b

CD
CL

5.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0

1 ' ' • 1

X

~ +

r
% '^ "" i

X
+

X
D

"a

s

n
... 1. . . . 1

+

^
«

• 1

X

. 1

Uniform points
Clustered points

TSPLIB instances
Random matrices

. 1

' 1

o
+
X

•

-

-

-

• 1

1,000 10,000 100,000

Number of Cities

10^6 10^7

CD

0

o
A

CD

(D

CO

0)
I
o
V

Figure 9.11. Tour quality comparisons between the Helsgaun variant on
Kernighan and the Johnson-McGeoch implementation of basic Lin-Kernighan.

Lin-

a-values for all edges can be computed in linear space and 0(N'^) time
[446]. The neighbor list for Q then consists of the 5 cities Cj with smallest
values of a[i^j). These are initially ordered by increasing a-value, but
are subsequently dynamically reordered to give priority to edges shared
by the current best tour and its predecessor.

In addition, the implementation alternates between searching its "LK-
search-with-scqucntial-5-Opt-augmentations" neighborhood and search
ing a second neighborhood defined by a set of non-sequential moves that
includes not only double-bridge 4-Opt moves but also some specially
structured 5-Opt moves as well. Given the power of its search strategy,
the implementation needs only to backtrack at the first (ti) level. For its
starting tours it uses a special heuristic tha t exploits the a-values. The
reader intc^n^sted in this and the other details of the heuristic is referred
to Helsgaun's pajx^r [446]. The C source code for Helsgaun is currently
available; from h t t p : / / w w w . d a t . r u c . d k / ~ k e l d / .

Tlu; tour-cjuality results for this variant are impressive. See Figure
9.11, which corri[)a,r(;s Helsgaun to LK-JM. Note that Helsgaun finds
bcittc^r tours For a, huge; majority of the instances in our testbed, usu
ally \)()\,U)v by 1% or more for Uniform and TSPLIB instances, a large
amount, in llio contcixt of the differences between LK-variants. The dif-
icnmco is (jvcni gr(ia,t(ir for our Random Matrix instances. The detailed

http://www.dat.ruc.dk/~keld/

424 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Average Percent Excess over the HK Bound

u

c
T

M

U

c
T

M

N =

LK-JM
Helsgaun

LK-JM
Helsgaun

LK-JM
Helsgaun

LK-JM
Helsgaun

LK-JM
Helsgaun

LK-JM
Helsgaun

LK-JM
Helsgaun

LK-JM
Helsgaun

1000

1.92
0.90
1.75
1.25
2.38
1.20
3.52
0.04

3162
1.99
0.89
2.95
2.00
2.16
1.01
4.35
0.02

lOK

2.02
0.83
3.41
3.32
1.92
0.77
5.91
0.03

31K

2.02
0.83
3.71
3.58
1.73
0.96

Average Normalized Runn ing

0.20
5.64
1.66
7.02

0.34
7.82

1.15
7.78

0.7
71.5

5.0
70.3

0.6
73.3

12.8
100.6

2
862

15
768

4
1060

161
1270

7
7820

59
12800

13
7980

lOOK
1.97

3.63

1.61
1.25

T ime in

23

173

24
48200

316K IM 3M lOM 1

1.96 1.96 1.92

3.67

Seconds

61 323 1255

495

Table 9.14- Results for the Helsgaun variant on Lin-Kernighan as compared to those
for the Johnson-McGeoch implementation of basic Lin-Kernighan.

averages are shown in Table 9.14, which indicates that for Random Ma
trices, Helsgaun finds tours that are essentially optimal. The table also
reports on average running times, which show that Helsgaun pays a
significant running time penalty for its improved tour quality. In some
cases Helsgaun takes as much as 1,000 times longer than LK-JM, and
its running time growth rate appears to be Q{N'^) versus the observed
Q^^i.25^ rate for LK-JM. In certain apphcations such a price may be
worth paying of course. The most active and interesting research on
STSP heuristics today concerns how best to use a large amount of com
putation time to help narrow the small gap above optimal tour length
left by Lin-Kernighan. In the next section we consider other ways of
buying better tours by spending more time.

3.6. Repeated Local Search Heuristics
One way to invest extra computation time is to exploit the fact that

many local improvement heuristics have random components, even if
only in their initial tour construction. Thus if one runs the heuristic
multiple times one will get different results and can take the best. Un
fortunately, as noted by many authors and aptly illustrated in [463],

Experimental Analysis of Heuristics for the STSP 425

the value of the straightforward repeated-run approach diminishes as
instance size increases.

A much more effective way to use repeated runs has received wide
attention in the last decade. The idea is basically this: Instead of us
ing independently generated starting tours, derive the starting tours by
perturbations of the output tours of previous runs. This idea was sug
gested by Baum in 1986 [93] and is in a sense implicit in the operation
of the Tabu Search approach of Glover [369, 370]. However, its first
effective reahzation in the context of the TSP is due to Martin, Otto,
and Felten, who in [587, 588] proposed generating a new starting tour
by perturbing the current best tour with a "kick" consisting of a random
double-bridge 4-Opt move. Their original implementation used 3-Opt as
the local search engine, but this was quickly upgraded to Lin-Kernighan
in their own work and that of Johnson [460].

If the underlying Lin-Kernighan (or 3-Opt) variant uses don't-look
bits, this approach has an additional advantage. At the end of a run
of Lin-Kernighan, all the don't-look bits will typically be on since no
improving moves have been found for any choice of t i . Performing one
4-Opt move to get a new starting tour only changes the tour neighbors
for at most 8 cities. This suggests that, instead of starting with all the
don't-look bits off, as in a stand-alone run, we might want to start with
the don't-look bits on for all but these 8 or fewer cities, i.e., we place only
these cities in the initial priority queue of candidates for t i . In practice,
this can lead to sublinear time per iteration if other data structures are
handled appropriately, which more than makes up for any loss in the
effectiveness of individual iterations.

Martin, Otto, and Felten referred to their approach as "chained local
optimization" since one could view the underlying process as a Markov
chain. They also attempted to bias their choice of 4-Opt move toward
better than average moves, and incorporated a fixed-temperature sim
ulated annealing component into the heuristic. Results for five descen
dants of this approach were submitted to the Challenge, differing both
in the underlying local search heuristic used and in the methods used for
generating the double-bridge kicks. (Variants using more elaborate kicks
have been studied [205, 452], but none have yet proved competitive on
large instances with the best of the heuristics presented here.) Together,
these five include all the current top performers known to the authors
for this region of the time/quality tradeoff space. None of the imple
mentations use simulated annealing, and the first three call themselves
"Iterated" 3-Opt/Lin-Kernighan to mark this fact.

1. Iterated 3-Opt (Johnson-McGeoch) (ISopt) [463]. This uses
3opt-JM and random double-bridge kicks.

426 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

2. Iterated Lin-Kernighan (Johnson-McGeoch) (ILK-JM) [463].
This uses LK-JM-BD and random double-bridge kicks.

3. Iterated Lin-Kernighan (Neto) (ILK-Neto) [626]. This uses
LK-Neto with random double-bridge kicks.

4. Chained Lin-Kernighan (Applegate-Bixby-Chvatal-Cook)
(CLK-ABCC). This uses LK-ABCC and the sophisticated method for
generating promising kicks described in [27].

5. Chained Lin-Kernighan (Applegate-Cook-Rohe) (CLK-ACR)
[32]. This uses LK-ACR together with a new method of generated
biased kicks based on random walks, with the number of steps in
the random walk doubling after the A t̂h iteration.

Given the huge running times for Helsgaun's variant on Lin-Kernighan,
the above variants on Chained Lin-Kernighan can all perform many it
erations and still not take as much time as Helsgaun does. However, if
one has time to spare, one can also perform the latter repeatedly. For
this, Helsgaun [446] has devised a different way of exploiting informa
tion about previous runs. Instead of using a kick to perturb his current
champion into a new starting tour, he uses his standard tour construc
tion heuristic to generate the new starting tour, but biases its choices
based on the edges present in the current champion tour. He gets a per-
iteration speedup because he doesn't have to recompute the TT-vector and
the a-values after the first iteration, although his running times remain
substantial. We shall refer to this heuristic as Helsgaun-/c, where k is
the number of iterations.

Tables 9.15 and 9.16 summarize results for the various repeated-run
heuristics described above. Results for ILK-Neto are omitted because
of its similarity to the ILK-JM implementation and the fact that the
results reported for it were less complete. As with the corresponding base
implementations, ILK-JM and ILK-Neto seem to produce similar results,
except that ILK-Neto is somewhat slower and does better on Random
Matrices. The tables are divided into four sections, one for each class
of instances in the Challenge testbed. Within each section, heuristics
are ordered and grouped together according to the tour quality they
provide. The grouping is somewhat subjective, but attempts to reflect
performance over all instance sizes within a clgiss. Thus for example for
Clustered instances (C) we group CLK-ABCC-N and I3opt-10N together
even though the latter is much better for small N^ because it is worse for
large N. These groupings are carried over from the tour quality table to
the running time table, so that the most cost-effective heuristic in each
group can be identified.

Experimental Analysis of Heuristics for the STSP 427

The performance of a repeated-run heuristic naturally depends on how
many iterations are performed. In practice one may simply run for as
many iterations as can be handled within some fixed time limit or until
a satisfactory solution is reached, and several of these implementations
were designed with this usage in mind. For a scientific study, however,
one needs results that are more readily reproducible, and hence a combi
natorial stopping criterion is to be preferred. Here we bound the number
of iterations by a function of the number Â of cities. Typical bounds are
N/10, N, or lOA ,̂ as indicated by the suffix on the heuristic's name in
the tables. For comparison purposes, the tables also include the results
for both LK-JM and Helsgaun.

A first observation is that none of the heuristics in the table is consis
tently dominated by any other in both tour quality and running time.
However, if running time is no object, then the the iterated versions of
Helsgaun's heuristic appear to be the way to go. Although Table 9.15
does not include rows for the optimal solution quality (which itself has
a gap above the Held-Karp bound), the row for Helsgaun-N serves that
purpose fairly well. The average excess for the optimal solution is known
for all testbed instances with 3,162 or fewer cities, and all TSPLIB and
Random Matrix instances with 10,000 cities or fewer. Helsgaun-N's av
erage excess is within 0.01% of this value in all these cases except for
the "1,000-city" TSPLIB instances, for which it is 0.04% above the opti
mal excess. Moreover, for no instance in the Challenge testbed with a
known optimal solution is the Helsgaun-N tour more than 0.18% longer
than optimum. Much of this quality is retained by the iV/10-iteration
version, which uses substantially less time and can feasibly be applied to
larger instances (although for instances with 10,000 or fewer cities even
Helsgaun-N never takes more than four hours of normalized running
time, which should be feasible in many applications). Both variants
have running time growth rates that appear to be Q{N'^-^) or worse,
however, and so computers will have to be a lot faster before they can
be applied to million-city instances.

The basic Helsgaun heuristic is itself a strong performer in three of the
four classes, although it does fall down seriously on Clustered instances
and is probably not cost-effective compared to CLK-ACR-N on Uniform
and TSPLIB instances. For Random Matrix instances, none of the other
heuristics come close to Helsgaun and its iterated versions, and their
running times are moreover quite reasonable. If there were ever a reason
to solve instances like these in practice, however, optimization should
be considered an option. Concorde was able to solve all the Random
Matrix instances in our testbed to optimality using its default settings.
The average normalized running times were also quite reasonable: For

428 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Average Percent Excess over the HK Bound

N -

nrr

rc~]

pT"

riT

LK-JM 1
I3opt-10N

ILK-JM-.IN 1
CLK-ABCC-N

CLK-ACR-N

ILK-JM-N

CLK-ABCC-ION

H e l s g a u n |

H e l s g a u n - . I N

Helsgaun-N

LK-JM

H e l s g a u n

CLK-ABCC-N

I 3 o p t - 1 0 N

CLK-ABCC-ION

CLK-ACR-N

ILK-JM-.IN

ILK-JM-N

H e l s g a u n - . I N

He l sgaun-N

LK-JM

l o p t - l O N

ILK-JM-.IN

CLK-ABCC-N

CLK-ACR-N

ILK-JM-N

CLK-ABCC-ION

H e l s g a u n

H e l s g a u n - . I N

He l sgaun-N

I 3 o p t - 1 0 N

LK-JM

ILK-JM-.IN

CLK-ABCC-N

CLK-ACR-N

ILK-JM-N

CLK-ABCC-ION

H e l s g a u n

H e l s g a u n - . I N

He l sgaun-N

1000

1.92
1.16
1.25
1.02
0.84
0.90
0.91
0.90
0.75
0.74

1.75
1.25
1.63
0.82
1.21
0.62
0.87
0.60
0.57
0.54

2.38
1.29
1.62
1.40
1.12
1.20
1.47
1.20
1.05
1.00

6.25
1 3.52

2.12
1.82
1.50
1.11
1.18
0.04
0.02

1 0.02

3162

1.99
1.21
1.19
0.98
0.93
0.87
0.82
0.89
0.72
0.71

2.95
2.00
2.83
1.43
1.93
1.27
1.33
0.78
0.65
0.62

2.16
1.53
1.33
1.31
1.21
1.06
1.12
1.01
0.87
0.86

11.85
4.35
2.88
3.26
3.04
2.30
2.39
0.02
0.01
0.01

lOK

2.02
1.29
1.24
0.90
0.92
0.89
0.83
0.83
0.69
0.68

3.41
3.32
2.09
1.62
1.83
1.82
1.19
0.91
1.05
0.83

1.92
1.04
1.05
1.01
0.76
0.73
0.71
0.77
0.55
0.53

16.81
5.91
4.62
4.89
3.92
3.60
3.74
0.03
0.01
0.01

31K

2.02
1.37
1.36
0.89
0.91
1.01
0.79
0.83
0.68
0.67

3.71
3.58
2.37
2.19
1.75
1.73
1.91
1.33
0.54
0.53

1.73
1.12
1.07
0.92
0.88
0.76
0.89
0.96
0.60

-

lOOK

1.97
1.35
1.29
0.92
0.92
0.94
0.81

-
-
-

3.63
-

1.93
2.02
1.68
1.78
1.69
1.16

-
-

1.61
1.18
0.96
0.69
0.59
0.66
0.52
1.25
0.57

-

316K IM 3M 1

1.96 1.96 1.92 1
1.37 1.37
1.31 1.32
0.95 0.91
0.95 0.90 0.86 |
0.94
0.84

-
-
-

3.67
-

1.96
2.29

-
1.70
1.79

-
-
-

-
-
-
-

- 1

Table 9.15. Tour quality results for repeated local search heuristics, with Helsgaun
and LK-JM included for comparison purposes.

Experimental Analysis of Heuristics for the STSP 429

Average Normalized Running Time in Seconds

N =

U

c

rT~

vw

LK-JM

I3opt-10N

ILK-JM-.IN

CLK-ABCC-N

CLK-ACR-N

ILK-JM-N

CLK-ABCC-ION

Helsgaun

Helsgaun-.IN

Helsgaun-N

LK-JM

Helsgaun

CLK-ABCC-N

I3opt-10N

CLK-ABCC-ION

CLK-ACR-N

ILK-JM-.IN

ILK-JM-N

Helsgaun-.IN

Helsgaun-N

LK-JM

I3opt-10N

ILK-JM-.IN

CLK-ABCC-N

CLK-ACR-N

ILK-JM-N

CLK-ABCC-ION

Helsgaun

Helsgaun-.IN

Helsgaun-N

I3opt-10N

LK-JM

ILK-JM-.IN

CLK-ABCC-N

CLK-ACR-N

ILK-JM-N

CLK-ABCC-ION

Helsgaun

Helsgaun-.IN

Helsgaun-N

1000

0.20

4.41

0.88

2.22

3.19

6.16

20.09

5.64

6.89

18.00

1.66

7.02

9.32

7.32

90.31

9.99

17.03

167.93

12.0

67.47

0.34

5.52

1.70

2.39

3.18

11.43

22.12

7.82

9.61

21.57

8.12

1.15

3.30

33.90

140.29

13.14

303.00

7.78

8.11

13.67

3162

0.7

17.3

4.2

11.1

14.6

32.4

98.4

71.5

113.7

468.0

5.0

70.3

42.1

27.1

387.0

45.0

74.7

698.4

119.0

727.0

0.6

16.5

3.7

8.3

9.3

31.5

73.9

73.3

104.9

404.0

57.0

12.8

32.0

377.0

1410.0

119.2

3040.0

100.6

101.3

237.3

lOK

2

73

22

64

49

169

597

862

1830

9390

15

768

206

102

2010

142

258

2320

1780

11900

4

74

50

53

35

360

489

1060

4900

17600

394

161

354

3820

9650

1250

29800

1270

1540

4580

31K

7

255

117

267

164

920

2480

7820

35400

229000

59

12800

899

327

8810

490

1260

9600

26700

89500

13

216

358

173

73

2590

1740

7980

120000

-

lOOK

23

868

553

912

933

4530

8500

-

-

-

173

-

3110

948

29900

2830

4160

33500

-

-

24

582

663

442

222

6130

4180

48200

303000

-

316K

61

2660

2240

2590

4230

18500

24300

-

-

-

495

-

9230

2380

-

13000

14100

-

-

-

IM

323

16200

18600

16000

19200

-

-

-

-

-

Table 9.16. Normalized running times for repeated local search heuristics. The "3M"
column was omitted so the table would fit on a page. The missing entries are 1255
seconds for LK-JM and 94700 seconds for CLK-ACR-N.

430 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

10,000 cities the normalized optimization time was 1,380 seconds, only
marginally more than that for Helsgaun.

At the other end of the spectrum, consider I3opt-10N. Although it
does very poorly on Random Matrix instances, it finds significantly bet
ter tours than LK-JM for the other three classes, with its much greater
running time balanced by the fact that it should be much easier to
implement than any of the other heuristics in the table. Moreover, it
substantially outperforms Helsgaun on large Clustered instances, beats
CLK-ABCC-N for the smaller ones, and is fairly close to ILK-JM-. IN for
Uniform and TSPLIB instances, with similar running times when Â is
large. However, if one looks at the details of its runs, it would appear
that not much would be gained by providing I3opt more iterations.
On average there were no further improvements in the last 15% of the
lOA^ iterations. Thus it would appear that the tour quality achieved
by ILK-JM-N, CLK-ACR-N and CLK-ABCC-ION is beyond the capabilities
of ISopt. Note that the running time growth rate for I3opt-10N ap
pears to be 0(A/'^-^^), indicating that the use of don't-look bits is paying
off asymptotically. A similar effect is observed for Lin-Kernighan based
variants, and so faster computers will extend the range of these heuristics
more readily than they will Helsgaun and its repeated-run variants.

Turning to the Lin-Kernighan-based variants, we see the effect of the
fact that ILK-JM is based on a more powerful but slower Lin-Kernighan
engine than CLK-ABCC and CLK-ACR. Even though ILK-JM-N performs
only one tenth as many iterations as CLK-ABCC-ION, the running times
for the two are (roughly) comparable. So are the tour lengths, with
the exception of the Clustered instances. Here ILK-JM-N finds distinctly
better tours, possibly because of its use of longer neighbor hsts. As
to CLK-ACR, note that CLK-ACR-N produces distinctly better tours than
CLK-ABCC-N in all but the Uniform class (where they are comparable),
so it is possible that results for CLK-ACR-ION, if we had them, would
show better tours than ILK-JM-N, again in comparable time. Results
for ILK-JM-ION are not included in the table for space reasons, but tend
to yield an average tour-length improvement of 0.1% over ILK-JM-N for
the three geometric classes (at the price of taking 10 times as long). For
Random Matrix instances the improvement is closer to 1%.

At some point, however, simply running for more iterations may not
be the best use of computation time. In our next section we consider
other possibilities for getting the last e improvement in tour quality:
heuristics that use Chained Lin-Kernighan as a subroutine. But first,
a brief digression to follow up our earlier remark about the relation
between Tabu Search and Chained Lin-Kernighan.

Experimental Analysis of Heuristics for the STSP 431

Tabu Search. In its simplest form, a Tabu Search heuristic operates
as follows. As with other local search variants, it assumes a neighbor
hood structure on solutions. Given the current solution, we find the the
best neighbor (or the best of a random sample of neighbors) subject to
certain "Tabu" restrictions needed to avoid cycling. One then goes to
that neighbor, whether it is an improving move or not. Note that in effect
this breaks the search into alternating phases. First we make improving
moves until a local optimum (or at least an apparent local optimum) is
found, then we perform a "kick" consisting of one or more uphill moves
until we reach a solution from which we can once again begin a descent.
A full Tabu Search heuristic is usually much more complicated than this,
using various strategies for "diversification" and "intensification" of the
search, as well as parameters governing lengths of Tabu lists and "as
piration levels," etc., for which see [369, 370]. However, the underlying
similarity to chained local optimization remains.

And note that, in the case of the STSP at least. Tabu Search comes
with extra overhead: Whereas in most of the local search irnplementa-
tions studied above, one performs one of the first improving moves seen,
in a Tabu Search heuristic one typically must generate a sizable collection
of moves from which the best is to be picked. This perhaps partially ex
plains the results observed for the one collection of Tabu Search variants
submitted to the challenge, implemented by Dam and Zachariasen [238].
Their implementations allow for the possibility of using different neigh
borhood structures for the downhill and uphill phases with the choices
being the 2-Opt neighborhood, the double bridge neighborhood (DB), the
standard LK-search neighborhood (LK), and the Stem-and-Cycle variant
on it, called "flower" in [238] (SC). Interestingly, the best tours are most
often found by the variants closest to Chained Lin-Kernighan: those that
use standard LK-search or the Stem-and-Cycle variant for the downhill
phase and double-bridge moves for the uphill phase, with the LK-search
variant being substantially faster.

Unfortunately the running times even for this version are sufficiently
slow that it is almost totally dominated by ILK-JM-N and CLK-ACR-N.
The latter almost always finds better tours and averages between 35
and 200-h times faster (normalized running time) depending on instance
class and size. Details can be viewed at the Challenge website. Although
the Tabu Search implementations did not use all the available speedup
tricks and is not as highly optimized as ILK-JM-N and CLK-ACR-N, it
seems unlikely that more programming effort would bridge this gap.

432 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

3.7. Using Chained LK as a Subroutine
Just as we were able to get improved results out of Lin-Kernighan by

using it as a subroutine in Chained Lin-Kernighan, one might consider
improving on Chained LK by using it in more complicated procedures.
One simple possibility would be to use Chained LK to generate starting
tours for a second local search heuristic. Given how effective Chained
LK already is, the second heuristic would probably need a neighborhood
structure that is quite different from that used by Chained LK. Balas
and Simonetti have proposed a likely candidate in [80].

Balas and Simonetti Dynamic Programming. This approach
starts by identifying a home city ci and without loss of generality rep
resents all tours as ordered sequences of the cities starting with ci. For
any fixed fc, we say that such a tour T' is a k-bounded neighbor of a
tour r = c^[i],c^i2]i • • •, c^[N] if for no i, j with i> j + k does city ĉ [̂]
occur after c^^^^ in T'. Note that in this neighborhood structure, two
tours can be neighbors even if they have no edges in common. This is
in sharp contrast to the k-Opt neighborhood structure, in which neigh
boring tours differ in at most k edges. Moreover, the new neighborhood
can be searched much more effectively. For each k there is a linear-time
dynamic programming algorithm that for any tour T finds its best k-
bounded neighbor [80]. The running time is exponential in fc, but this
is not a major problem for small k. One thus can use this algorithm
to perform steepest-descent local search under the /c-bounded neighbor
hood structure.

Simonetti submitted results to the Challenge using this approach with
k G {6,8,10} and with CLK-ABCC-N used to generate starting tours. The
combination was run on all benchmark instances with one million or
fewer cities except the 10,000-city Random Matrix instance. Improve
ments over the starting tour were found on 20 of these 87 instances when
fc = 6, on 22 when fc = 8 and on 25 when k = 10. On larger instances,
improvements were found at a significantly higher rate. For problems
over 30,000 nodes, improvements over the starting tour were found on 11
of 13 instances when using fc = 6, and on 12 of 13 instances with k = 8
and 10. Improvements were small, however. Even for k = 10 there were
only six improvements larger than 0.01% and only one larger than 0.02%.
This was an improvement of 0.07% for r l l 323 and was already found
with k = 6. In a sense this last improvement is quite substantial, since it
reduced the tourlength from 0.60% above optimum to 0.53%. Moreover,
even tiny improvements can be worthwhile if they can be obtained rel
atively inexpensively, which in this case they can. For A: == 8 the added
overhead for applying this algorithm to the tour output by CLK-ABCC-N

Experimental Analysis of Heuristics for the STSP 433

is minimal, ranging from 5 to 20%, and even for k = 10 the total run
ning time was increased by at most a factor of 2.4. Thus this approach
might make a worthwhile low-cost general post-processor to any heuris
tic, especially for the larger instances where it appears to be more suc
cessful. The code is currently available from Simonetti's TSP webpage,
h t t p : //www. con t r ib . andrew. emu. edu /~ne i l s / t sp / index .h tml .

The second heuristic we cover also uses Chained LK to generate start
ing tours, but in a more sophisticated framework.

A Multi-Level Approach (Walshaw [818]). The idea is to recur
sively apply Chained LK (or any other local search heuristic) to a smaller
"coalesced" instance in order to generate a starting tour for the full in
stance. A coalesced instance is created by matching nearby cities and
requiring that the edge between them be included in all generated tours
{fixing the edge). If the instance to be coalesced already has fixed edges,
then the only cities that can be matched must have degree 0 or 1 in the
graph of fixed edges and can't be endpoints of the same path in that
graph. Note that a coalesced instance containing a fixed path can be
modeled by a smaller instance in which that path is replaced by a sin
gle fixed edge between its endpoints and the internal cities are deleted.
Starting with the original instance, we thus can create a sequence of
smaller and smaller instances by repeatedly applying this approach un
til we reach an instance with four or fewer cities.

Having constructed this hierarchical decomposition, we then proceed
as follows, assuming our base heuristic has been modified so that it al
ways outputs a tour containing all fixed edges. We start by applying
the heuristic to the last (smallest) instance created, using the heuristic's
native starting tour generator. Thereafter, as we progress back up the
hierarchy, we use the result of running the heuristic on the previous in
stance as the starting tour for the current instance. We end up running
the base heuristic G(logA^) times, but most of the runs are on small
instances, and overall running time is no more than 2 to 3 times that
for running the base heuristic once on the full instance. See [818] for
more details, including the geometry-based method for matching cities
during the coalescing phase. Walshaw submitted results for two instan
tiations of the Multi-Level approach. The first (MLLK) used LK-ABCC as
its base heuristic and the second (MLCLK-N) used CLK-ABCC-N. The base
heuristics were forced to obey fixed-edge constraints by setting the costs
of required edges to a large negative value.

MLLK could well have been discussed in the previous section. Al
though it can't compete with CLK-ABCC-N on average tour quality, for
large instances it is 15 to 35 times faster, and it did find better tours
for a significant number of Clustered instances. When compared to

434 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

LK-ABCC, it found better tours on average for all three geometric classes,
with the advantage averaging 3% for Clustered instances. MLCLK-N did
not obtain significant tour-length improvements over its base heuristic
(CLK-ABCC-N) for Uniform instances, but it did find better tours for
over half the TSPLIB instances and almost all the Clustered instances.
Its tours averaged 1% better for this latter class.

The two approaches considered so far in this section needed little more
than twice the time for running Chained LK. In the remainder of the
section, we consider what one might do if one wants even better tours
and is wilhng to spend substantially more computational resources to
get them. Currently the people willing to pay this price are mainly re
searchers interested in testing the ultimate limits of heuristic techniques
and in generating better upper bounds on unsolved testbed instances,
but this is an active community. Work in this area has also followed the
paradigm of using Chained LK as a subroutine, but now the key factor
being exploited is the randomization inherent in the heuristic.

Multiple Independent Runs. Chained Lin-Kernighan is a ran
domized heuristic, not only because of possible randomization in its
starting tour generation, but also because the kicks are randomly gen
erated. If one runs it several times with different seeds for the random
number generator, one is likely to get different tours. This fact can be

Best of Ten N-lteration Runs vs One 10N-lteration Run

c
<D
-J

O

c
CD
O

c
0

0

C
0)

o
CD

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

• 1 • • ' I • - 1 1

D

L °

1 ^ M KK 4 ^

Y ^ ^ X
X

X

X

X

+

1 . +

V
X

Uniform points
Clustered points

TSPLIB instances
Random matrices

g X ^^X

+

. 1

I 1 1 1 1
O

+ J
X

-̂

J

• • • 1

1,000 10,000

Number of Cities

100,000

0
ti
0

W
C

o

0

o
A

0

0

c
0

W
0

CD

d
V

Figure 9.12. Tour quality comparisons between taking the best of ten runs of
CLK-ABCC-N and taking the result of a single run of CLK-ABCC-ION.

Experimental Analysis of Heuristics for the STSP 435

exploited once one reaches the point where added iterations no longer
seem to be helping, that is, it might be more effective to take the best of
ten A^-iteration runs instead of just performing one lOA^-iteration run,
which would take roughly the same time. See Figure 9.12, which for all
the instances in our testbeds with 100,000 or fewer cities compares the
best tour length over ten runs of CLK-ABCC-N (a composite heuristic we
shall denote by CLK-ABCC-N-blO) with the tour length for one run of
CLK-ABCC-ION. Although the "best of ten" strategy falls down for Ran
dom Matrix instances, it never loses by much on any instance from the
other three classes, and it wins by significant amounts on many of the
smaller Clustered and TSPLIB instances.

Note that taking the best of ten runs of a heuristic may not be enough
to make up the gap between that base heuristic and a better heuristic.
For example, Walshaw's Multi-Level Approach using CLK-ABCC-N does
even better on Clustered instances than does CLK-ABCC-N-blO and takes
only 1/5 as much time. Furthermore, Helsgaun's variant on Chained LK
is so good that, even with just 0.1 Â iterations it consistently outperforms
CLK-ABCC-N-blO, as shown in Figure 9.13. Moreover, Helsgaun-.IN is
typically faster for the smaller instances, although its running time grows
much more rapidly with N, so that by the time one reaches 30,000
cities it is more than 10 times slower than the best-of-ten approach.

c

^

0
O
C
0)
Q)

3=

c
0) o
V .

0

1.5

1.0

0.5

0.0

Helsgaun[.1N] vs CLK-ABCC-N-blO
— I , — . — , — , — I — m - ,

Uniform points
Clustered points

TSPLIB instances
Random matrices

o
1 —

JD
2

I
O
O
CD <
_ J

o
d
A

CD

(D
JD

c
CT3
O)

JO
0
X
d
V

1,000 10,000

Number of Cities

100,000

Figure 9.13. Tour quality comparisons between a 0.1 A'' iteration run of Helsgaun's
LK variant and taking the best of ten runs of CLK-ABCC-N.

436 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

This doesn't, however, totally rule out the value of the simple best-
of-ten approach. The best of ten runs of Helsgaun-.IN might be an
interesting competitor for Helsgaun-N, assuming the running time is
available. There are, however, more creative approaches to exploit the
randomization involved in our heuristics.

Tour Merging (Applegate, Bixby, Chvatal, and Cook [27]). This
approach is based on the observation that tours that are very close to
optimal share many common edges. Moreover, if one takes the union of
all the edges in a small set of such tours, one typically obtains a graph
with low "branch-width," a graph parameter introduced by Robertson
and Seymour [724] that in a sense quantifies how "treehke" a graph is.

This can be exploited algorithmically as follows. First, although it
is NP-hard to determine the precise branch-width of a graph, there are
effective heuristics for finding near-optimal branch-width decompositions
of low branch-width graphs. Second, there is a dynamic programming
algorithm due to Cook and Seymour [208] that, given an edge-weighted
Hamiltonian graph G and a branch decomposition for it with branch-
width A:, finds the shortest Hamiltonian cycle in G in time linear in N.
The running time is exponential in k but is quite feasible for small values.
Thus one can typically take the results of several runs of Chained LK and
find the optimal tour contained in the union of their edges. During the
last few years, this technique has helped Applegate, Bixby, Chvatal, and
Cook solve many previously unsolved TSPLIB instances. Note that in this
approach one needn't restrict oneself to Chained LK tours. Applegate et
al. typically performed many tour-merging runs, often using the result of
one run as one of the tours to be merged in a subsequent run. Moreover,
the recent solution of dl5112 was aided by improved upper bounds that
were obtained by applying tour-merging to Iterated Helsgaun tours in
addition to Chained LK tours.

Although tour-merging has most typically been used in a hands-on
fashion, with manual choice of tours to be merged, etc., it is possible
to run it in a stand-alone manner. Cook submitted results to the Chal
lenge for a heuristic of this sort (Tourmerge), in which the tour-merging
process is applied to the results of ten runs of CLK-ABCC-N. Five runs of
Tourmerge were performed on the set of all testbed instance with fewer
than 10,000 cities. The heuristic was not always successful. For none
of the runs on Random Matrix instances did the combined graph for
the 10 tours have low enough branch-width for tour-merging to be feasi
ble. Similar failures occurred in all runs on the TSPLIB instances u2319,
fnl4461, and pla7397 and in one or two runs on each of the 3162-city
Uniform instances. Nevertheless, results were generated for most of the
instances attempted and were substantially better than those for sim-

Experimental Analysis of Heuristics for the STSP 437

ply taking the best of the ten runs of CLK-ABCC-N. Moreover, if we take
the best of the five tour-merging runs (a composite heuristic we shall
denote by Tourmerge-b5), we now become competitive with Helsgaun's
heuristic, even if the latter is allowed N rather than 0.1 AT iterations.

Figure 9.14 compares the results of Tourmerge-b5 and Helsgaun-N
on all instances for which Tourmerge-b5 generated tours. Note first the
much narrower range in differences. Tourmerge-b5 is never more than
0.05% worse (when it actually produces a solution) and is never more
than 0.20% better. This is in comparison to the -4 .5% to +1.5% range
in Figure 9.13. The biggest variation is on TSPLIB instances, where
Tourmerge-b5 does better more often than it does worse.

The normalized running time for performing all five tour-merging runs
can however be substantially worse than that for one run of Helsgaun-N,
typically some 5 times slower but occasionally as much â 100. (For the
instances where some of the runs had to be aborted because of high
branch-width, no times were reported, so we estimated the running time
for the failed run as the average of those for the successful runs.) More
over, for 14 of the 54 instances on which Tourmerge-b5 was successfully
run, its normalized time was greater than that for finding the optimal so
lution and proving optimality using Concorde's default settings. In five
cases Concorde was faster by a factor of 4 or more. (Helsgaun-N was

Tourmerge-b5 vs Helsgaun-N

0.20

^ 0.15

o
I-
0) o c
0)

c

CL

0.10

0.05

0.00

-0.05

• 1

X X
X

X X
X

• X
X

ox

X X

O X

+
1 1 , . - l

X

o

•

p , , , . „ , , . , . , ,

X

X

_ 1 . 1 L__.

Uniform points
Clustered points

TSPLIB instances
Randonn matrices

.

' • • 1 1

o
+
X

• I

-

.

. . . 1

1,000 10,000

Number of Cities

100,000

0)

n

0)

E
p
o
A

0

cd
O)

0

X

Figure 9.14. Tour quality comparisons between an A^-iteration run of Helsgaun's LK
variant and taking the best of five tour-merges, each involving ten CLK-ABCC-N tours.

438 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

slower than Concorde-optimization on only two instances.) Neverthe
less, the time for Tourmerge-b5 would probably be manageable in many
applications. With the exception of the 3,162-city Uniform instances,
no instance with less than 10,000 cities required more than an hour of
normalized time, and even the slowest 3,162-city instance took just 16
hours (and for this instance Tourmerge-b5 found an optimal solution,
whereas full optimization via Concorde under default settings was still
far from complete when terminated after several days).

The fact that neither Tourmerge-b5 nor Helsgaun-N beats the other
on all instances suggests a final "heuristic" for getting improved results
at the cost of increased running times: Run both and take the best tour
found. Better yet, run both plus the several other effective heuristics
from this and the previous section and take the best tour found. Table
9.17 summarizes how that approach would work on the subset of the 71
Challenge testbed instances for which optimal solution values are known,
using the four heuristics Tourmerge-b5, Helsgaun-N, ILK-JM-ION, and
ILK-JM-N-blO (the best of ten runs of ILK-JM-N).

Running times for large instances would of course be huge, but this
approach might well be the method of choice when Concorde is unsuc
cessful in optimizing within the large number of hours or days one is
willing to spend. Recall from Table 9.1 that for a significant subset of
the instances with fewer than 10,000 cities Concorde under its default
settings took more than 100 (normalized) hours if it succeeded at all,
and it failed for all our geometric instances with more than 4,000 cities.

4. Conclusions and Further Research
In this chapter we have discussed a wide variety of heuristics occupying

many positions on the tradeoff curve for tour quality and running time.
Moreover, we have compared their performance on a wider range of
instance types and sizes than in previous studies. In order to get such
broad coverage, however, we have had to accept some compromises, and
it is appropriate to remind the reader about these.

First, for many of the codes we cover, the results we include come
from unverified reports submitted by the implementers, based on runs
on a variety of machines. As discussed in Section 2.2, our methodology
for normalizing reported running times is necessarily inexact. Second,
as seen in many places in this chapter, two implementations of the same
heuristic can have markedly different running times, even on the same
machine, depending on the data structures and coding expertise used.
For local search heuristics, even the tour lengths can differ depending
on implementation choices. Thus the conclusions we draw are often as

Experimental Analysis of Heuristics for the STSP 439

Ins tance

Elk.O
E l k . l
E l k . 2
E l k . 3
E l k . 4
E l k . 5
E l k . 6
E l k . 7
E l k . 8
E l k . 9
E3k.O
E3k . l
E3k.2
E3k.3
E3k.4
Clk.O
C l k . l
C l k . 2
C l k . 3

C l k . 4
C l k . 5
C l k . 6
C l k . 7
C l k . 8
C l k . 9
C3k.O
C3k . l
C3k.2
C3k.3
C3k.4
Mlk.O
M l k . l
M l k . 2
M l k . 3

Percent
Above

Opt imal

~
-
-
-
-
-
-
-

0.0012

-
0.0034

-
-

0.0174
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Heurist ic

1 i
h,m
h,m
m, i lO
h,m
h , m , i b
h
m
m
h , m , i b
h
h
h
m
m
h,m
h , m , i b , i l O
h , i b
h , i n , i b , i l O
i l O
i b , i l O
h
h , i b
h , m , i b , i l O
m , i b , i l O
h , i l O
h
i l O
m
h,m
h
h
h
h

Ins tance

M3k.O
M3k . l
MlOk.O
dsjlOOO
p r l 0 0 2
s i l032
u l 0 6 0
v m l 0 8 4
p c b l l 7 3
d l 2 9 1
r l l304
r l l323
n r w l 3 7 9
111400
u l 4 3 2
fll577
d l 6 5 5
v m l 7 4 8
u l 8 1 7
r l l889
d2103
u2152
u2319
pr2392
pcb3038
fl3795
fnl4461
rI5915
rl5934
pla7397
r l l l 8 4 9
usa l3509
d l5112

Percent
Above

Op t ima l
_
-

0.0033

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0.0013
-
-
-
-
-
-

0.0027
0.0057
0.0023

-
0.0610
0.0065
0.0186

Heurist ic

" h
h
h

h
h , m , i l O
m , i b
m , i l O
h,m
m 1
i b
h , i b , i l O
h , i b
h,m
m , i b , i l O
h,m
m , i b
h,in
m , i b , i l O

h
h
i b , i l O
h
m
h,in
h
in , i lO
h
m
m
h
h
h
h

Table 9.17. Best results obtained for all testbed instances whose optimal solutions are
known. Four heuristics sufficed to generate these results: Helsgaun-N (abbreviated in
the table as h), Tourmerge-b5 (m), ILK-JM-ION (ilO), and best often runs of ILK-JM-N
(ib). Where more than one heuristic found the best solution, we list all that did.

440 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

much about the implementation as about the heuristics implemented.
Finally, most of our results only cover one run of the given heuristic on
each instance, which for heuristics that incorporate randomization can
lead to very noisy data. For this reason we have tried to concentrate on
averages over similarly sized instances and on observable patterns in the
data, rather than results for particular instances.

Time constraints have also had their effect, forcing us to concentrate
on just four instance classes with an emphasis on 2-dimensional geo
metric instances, the type that occur most often in practice. We also
have not considered in detail the dependence of heuristic performance
on parameter settings (for example the lengths of neighbor lists, the
choice of starting tour, or the nature of the "kick" in Chained Lin-
Kernighan). Such questions should more naturally fall in the domain
of individual papers about the heuristics in question, and we hope the
Challenge testbeds and benchmarks will facilitate such work in the fu
ture. We intend to provide just such detailed experimental analysis for
the Bentley and Johnson-McGeoch implementations discussed here in
the forthcoming monograph [461]. As mentioned earlier, we also plan to
maintain the Challenge website indefinitely as a resource and standard
of comparison for future researchers.

If the reader is to take one lesson away from this chapter, it should
be the high level of performance that can be attained using today's ex
isting heuristics, many of them with publicly available implementations.
A second major lesson concerns the large extent to which a heuristic's
performance (both running time and tour quality) can depend on im
plementation details, as we have seen many times in this chapter.

As a final lesson, let us review once more the wide range of trade-offs
to which we referred above. Recall that we have already provided one
illustration of this in Section 3. In that section. Figure 9.3 and Table
9.2 showed the range of performance possibilities for Random Uniform
Geometric instances. For such instances and most heuristics, the percent
excess over the Held-Karp bound appears to approach a rough limiting
bound, which typically has almost been reached by the time Â = 10,000.
The table and figure presented average results for selected heuristics on
Uniform instances of that size, covering a wide range of behavior.

Results can be more instance-dependent for structured instances such
as those in TSPLIB. To put the earlier table in perspective (while par
tially ignoring the above-mentioned proviso about drawing detailed con
clusions from single runs on individual instances), we conclude our dis
cussion with Table 9.18, which considers the currently largest solved
TSPLIB instance dl5112, and gives both the percentage excess above
optimum and the normalized running time obtained for it by all the key

Experimental Analysis of Heuristics for the STSP 441

implementations covered in the chapter, as well as a few related ones.
The abbreviated heuristic names used in the table and elsewhere in this
chapter are explained in Table 9.19. Analogous tables for other instances
can be generated from the Comparisons page at the Challenge website.

Acknowledgment. The authors thank Jon Bentley, Gregory Gutin,
and Cesar Rego for helpful comments on drafts of this chapter and all
the Challenge participants for their participation and feedback.

442 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Percent
Above

Op t ima l

-0.5215
0.0000
0.0186
0.0236
0.1051
0.1266
0.1358
0.1744
0.1810
0.1952
0.1988
0.2013
0.2114
0.2259
0.2447
0.3359
0.4451
0.5232
0.6138
0.6282
0.6464

0.6747
0.7579
0.9739
1.0929
1.1038
1.1418
1.1443
1.1620
1.1975
1.2170
1.2549
1.2678

1.3357
1.3422
1.4427
1.8178
1.8456
1.8761
2.1715
2.3504
2.5974

1 2.7254

Running
T ime

(Seconds)

90.13

-
26322.93

7896.88
1515.99

980.66
8738.10
1046.75

102.55
154.79

3408.07
65.36
89.59

542.61
332.16
108.29

21.53
42.07

6.55
69.52

112.96

15.64
38531.28

2203.88
4.96
3.03
5.70

11.74
2.98

35660.20
2.61
4.23

498.12
134.58

2.01
4.97
2.38
1.53
1.46
1.90
2.73

136.37

1.70

Heurist ic 1

HeldKarp 1
Optva l
Helsgaun-N
H e l s g a u n - . I N
Helsgaun
CLK-ABCC-ION
ILK-JM-ION
CLK-ABCC-N-blO
CLK-ABCC-N
MLCLK-N
ILK-JM-N-blO
CLK-ACR-N
MLCLK-.5N
ILK-Neto-N
ILK-JM-N
ILK-JM-.3N
MLCLK-.IN
ILK-JM-.IN
CLK-ACR-1000
ILK-Neto- . IN
I3op t -10N

LK-HK
Tabu-SC-SC
Tabu-LK-DB
LK-JM-40
LK-JM-20
LK-Neto-20
LK-Neto-40
LK-JM-20a
Tabu-SC-DB
LK-JM-10
LK-Neto-12

SCLK-R

SCLK-B
CLK-ACR-100
MLLK

LK-ABCC

CLK-ACR-10

LK-ACR

3opt -JM-20
3opt - JM-40
Hyper-4
3opt -JM-10

Percent
Above

Opt imal

2.8124
3.0729
3.1389
3.7261
4.0234
4.2518
4.2704
4.3852
4.5620
4.7515
5.1630
5.2668
6.2298
8.9277

10.4116
10.7438
11.0510
11.7303
11.8092
12.9387
13.6291

13.6803
13.6803
14.5281
14.7968
15.9946
17.1529
17.3106
22.3039
22.3094
23.1644
24.6647

28.5153
31.0319
32.0524
36.1238
37.0620
42.1799
42.8104
42.8104
49.2882
59.2344

-

Running
T ime

(Seconds)

JW
16.12

2773.49
1.94
2.53
1.73
1.81
2.53
2.47

325.66
1.56
1.81

14.14
1.65
0.73

2578.46
0.41
4.67
2.33
3.38
1.65

1.13
0.17
0.26
0.44

31.09
1.31
1.38
2.84
2.01
0.49
0.14

1.59

100.03
0.06
0.55
0.60
1.77
0.05
0.07
0.17
0.26

0.03

Heurist ic

3op t -B
Hyper -3
GENIUS-10
2 . 5 o p t - B
2op t - JM-40
2op t - JM-20
2op t - JM-20a
2op t - JM-40a

Hyper -2
GENI-10
2op t - JM-10
2 o p t - B
Chr i s to -HK
C h r i s t o - G
AppChr i s to
CCA
S a v i n g s
FI
FA+
RI

C h r i s t o - S
RA"^

Q-Boruvka
Boruvka
Greedy-ABCC
L i t k e - 1 5
CI
CHCI
NI
NA+
DENN

NN-ABCC

NA

Karp-20
S p a c e f i l l
DblMST
RA
FA
S t r i p
S t r i p 2
FRP
Karp-15
Read

Table 9.18. Tour quality and normalized running times for TSPLIB instance dl5112.
General conclusions should not be drawn from small differences in quality or time.

Experimental Analysis of Heuristics for the STSP 443

Abbrev Short Description of Heuristic

AppChristo Approximate Christofides (JM)
{Q-}Boruvka Concorde's implementation of (Quick) Boruvka
CCA The Golden-Stewart CCA heuristic (JM)
{CH}CI The JM implementations of (Convex Hull) Cheapest Insertion
CLK-X'k The X version of Chained LK with k iterations
Christo-{S,G} The Christofides heuristic with {standard,greedy} shortcuts (JM)
Christo-HK Christofides using Held-Karp one-trees instead of MST's (Rohe)
Concorde Concorde used for optimization with default settings
DblMST The Double Minimum Spanning Tree heuristic (JM)
FJIjAjA"^} Bentley's farthest {insertion,addition,augmented addition}
FRP Bentley's implementation of the Fast Recursive Partitioning heuristic
GENI{US}-p The Gendreau-Hertz-Laporte GENI(US) heuristic with p neighbors
Greedy{-X} The X implementation of Greedy (Default: JM implementation)
HeldKarp Held-Karp bound as computed by Concorde
Helsgaun{-/c} Helsgaun's heuristic (with k iterations)
Hyper-/c The Burke-Cowling-Keuthen implementation of /c-Hyperopt
I3opt-/c The JM implementation of Iterated 3-Opt with k iterations
ILK-X-k The X version of Iterated LK with k iterations
Karp-n Karp's Partitioning heuristic for maximum subproblem size k (JM)
kopt-X The X implementation of fc-Opt, k G {2, 2.5,3}
/copt-JM{-p} The JM implementation of /e-Opt with p quad neighbors
Litke-/c Litke's Clustering heuristic for maximum subproblem size k (JM)
LK-X-p The X version of basic Lin-Kernighan with p quad neighbors
LK-X{-BD} The X version of basic Lin-Kernighan with default neighbor lists

(and bounded depth LK-searches if that is not the default)
LK-HK Lin-Kernighan using Christo-HK starts (Rohe)
MLCLK-/c Walshaw's implementation of Multi-Level /c-iteration Chained LK
MLLK Walshaw's implementation of Multi-Level Lin-Kernighan
N{I,A,A'''} Bentley's nearest {insertion,addition,augmented addition}
NN{-X} The X implementation of Nearest Neighbor (Default: B)
Optval Optimal solution lengths (from a variety of sources)
R{I,A,A'*'} Bentley's random {insertion,addition,augmented addition}
Read Time to simply read the instance using standard I/O routines
Savings The JM implementation of the Clarke-Wright "Savings" heuristic
SCLK-{R,B} The Glover-Rego implementation of a Stem-and-Cycle variant of Lin-

Kernighan with {random,boruvka} starts
Spacef i l l The Bartholdi-Platzmann implementation of Spacefilling Curve
Strip{2} The JM implementation of the Strip (2-Way Strip) heuristic
labu-D-U The Dam-Zachariasen implementation of Tabu Search using the D

(U) neighborhood for downhill (uphill) moves
Tourmerge The tour-merging heuristic of ABCC applied to 10 runs of CLK-ABCC-N

Table 9.19. Abbreviated names used in this chapter. The symbol X stands for an
abbreviation of the implementers' names: "ABCC" for Applegate, Bixby, Chvatal, and
Cook (Concorde), "ACR" for Applegate, Cook, and Rohe, "B" for Bentley, "JM" for
Johnson-McGeoch, "Neto" for Neto, and "R" for Rohe. Adding the suffix "-bn" to
any name means that one is taking the best of n runs.

	Chapter 9 EXPERIMENTAL ANALYSIS OFHEURISTICS FOR THE STSP
	1. Introduction
	2. DIMACS STSP Implementation Challenge
	2.1. Testbeds
	2.2. Running Time Normalization
	2.3. Evaluating Tour Quality

	3. Heuristics and Results
	3.1. Heuristics Designed for Speed
	3.2. Tour Construction by Pure Augmentation
	3.3. More Complex Tour Construction
	3.4. Simple Local Search Heuristics
	3.5. Lin-Kernighan and Variants
	3.6. Repeated Local Search Heuristics
	3.7. Using Chained LK as a Subroutine

	4. Conclusions and Further Research

