
Chapter 9 

EXPERIMENTAL ANALYSIS OF 
HEURISTICS FOR THE STSP 

David S. Johnson 
AT&T Labs - Research, Room C239, Florham Park, NJ 07932, USA 
dsj@research.att.com 

Lyle A. McGeoch 
Dept. of Mathematics and Computer Science, Amherst College, Amherst, MA 01002 

lam@cs.amherst.edu 

1. Introduction 
In this and the following chapter, we consider what approaches one 

should take when one is confronted with a real-world application of the 
TSP. What algorithms should be used under which circumstances? We 
are in particular interested in the case where instances are too large 
for optimization to be feasible. Here theoretical results can be a useful 
initial guide, but the most valuable information will likely come from 
testing implementations of the heuristics on test beds of relevant in
stances. This chapter considers the symmetric TSP; the next considers 
the more general and less well-studied asymmetric case. 

For the symmetric case, our main conclusion is that, for the types of 
instances that tend to arise in practice, heuristics can provide surpris
ingly good results in reasonable amounts of time. Moreover the large 
collection of heuristics that have been developed for the STSP offers a 
broad range of tradeoffs between running time and quality of solution. 
The heuristics range from those that take httle more time than that 
needed to read an instance and still get within 50% of optimum to those 
that get within a few percent of optimum for 100,000-city instances in 
seconds to those that get within fractions of a percent of optimum for 
instances of this size in a few hours. 
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The relevant level of performance will of course vary, depending on 
the application. This chapter provides a tentative characterization of 
the most promising approaches at many levels of the tradeoff hierarchy. 
In this way we hope to put previous theoretical and experimental work 
into a practical perspective. 

In order to provide an up-to-date picture of the state of the art, the 
authors of this chapter, together with Fred Glover and Cesar Rego, or
ganized a DIMACS Implementation Challenge^ on the STSP. The Chal
lenge began in June 2000 and continued through November, with addi
tional data collected through June 2001. Researchers from all over the 
world, including all the current top research groups, ran their codes on 
instances from a collection of test suites, reporting running times and 
the lengths of the constructed tours. They also reported running times 
for a special benchmark code distributed by the organizers. These times 
allowed us to estimate the speeds of their machines (as a function of 
instance size) and thus to normalize running times to what they might 
(approximately) have been had the codes all been run on the same fixed 
machine. We thus can provide detailed comparisons between a wide 
variety of heuristics and implementations with specific attention to ro
bustness, scalability, and solution quality/running time tradeoffs. In this 
way we hope to improve on earlier studies, such as those of Golden and 
Stewart [388], Bentley [103], Reinelt [710, 711], and Johnson-McGeoch 
[463], which covered fewer heuristics and instances and did not provide 
as convenient mechanisms for future comparability. 

The remainder of this chapter is organized as follows. In Section 2 we 
provide more details about the Challenge, the testbeds of instances it 
covered, its participants, our scheme for normalizing running times, and 
our methods for evaluating tour quality. In Section 3, we describe the 
various heuristics studied, divided into groups on the basis of approach 
and speed, and summarize the experimental results obtained for them. 
Section 4 then presents some overall conclusions and suggestions for 
further research. 

We should note before proceeding that certain heuristics described 
elsewhere in this book are for various reasons not covered in this chap
ter. Perhaps our foremost omission is the approximation schemes for 
geometric STSP's of Arora, Mitchell, et al. [35, 601, 696], as described 
in Chapter 5. These heuristics, despite their impressive theoretical guar-

^ DIMACS is the Center for Discrete Math and Theoretical Computer Science, a collaboration 
of Rutgers and Princeton Universities with Bell Labs, AT&;T Labs, NEC Labs, and Telcordia 
Technologies. This was the 8th in the DIMACS Implementation Challenge series. For more 
information, see h t t p : / / d imacs . ru tge r s . edu /Cha l l enges / . 

http://dimacs.rutgers.edu/Challenges/
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antees, have significant drawbacks compared to the competition we shall 
be describing. Because of the perturbation of the instances that they 
initially perform, the versions of the heuristics guaranteeing 1 + e worst-
case ratios are likely to be off by a significant fraction of e even in the 
average case. Thus, to be competitive with heuristics that typically get 
within 1 or 2 percent of optimum in practice, one probably must choose 
e < 0.05. This is likely to make the running times prohibitive, given the 
large constant factor overheads involved and the fact that the running 
times are exponential in 1/e. It would be interesting to verify that this 
is indeed the case, but as of this date we know of no attempt at a serious 
implementation of any of the schemes. 

A second hole in our coverage concerns local-search heuristics based 
on polynomial-time searchable exponential-size neighborhoods, one of 
the subjects of Chapter 6. We have results for only one such heuristic. 
Empirical study of such heuristics is still in its infancy, and so far very 
little has emerged that is competitive with the best traditional STSP 
heuristics. 

The final hole in our coverage is rather large - much of the burgeon
ing field of metaheuristics is not represented in our results. Although we 
do cover one set of tabu search implementations, we cover no heuristics 
based on simulated annealing, neural nets, classical genetic algorithms, 
GRASP, etc. The Challenge was advertised to the metaheuristic com
munity and announcements were sent directly to researchers who had 
previously published papers about heuristics of these sorts for the TSP. 
For various reasons, however, little was received. Fortunately, we may 
not be missing much of practical value in the context of the STSP. As 
reported in the extensive survey [463], as of 1997 all metaheuristic-based 
codes for the STSP were dominated by 3-Opt, Lin-Kernighan, or Iter
ated Lin-Kernighan. Metaheuristics, if they are to have a role in this 
area, are more likely to be useful for variants on the TSP. For example, 
they might well adapt more readily to handling side constraints than 
would more classical approaches. 

2. DIMACS STSP Implementation Challenge 
For a full description of the DIMACS Implementation Challenge, see 

the website at h t tp : / /www.research .a t t . co in /~ds j /ch t sp / . In ad
dition to providing input for this chapter, the Challenge is intended to 
provide a continually updated picture of the state of the art in the area 
of TSP heuristics (their effectiveness, robustness, scalabihty, etc.). This 
should help future algorithm designers to assess how their approaches 
compare with already existing TSP heuristics. 

http://www.research.att.coin/~dsj/chtsp/
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To this end, the website currently makes a variety of material available 
for viewing or downloading, including instances and instance generators, 
benchmark codes, raw data from the participants, and statistics and 
comparisons derived therefrom. Our intent is to maintain the website 
indefinitely, updating it as new results are reported and adding new 
instances/instance classes as interesting ones become available. 

This chapter presents a summary and interpretation of the available 
results as of June 2001, representing code from 15 research groups. Many 
of the groups reported on implementations of more than one heuristic 
or variant, thus providing us with fairly comprehensive coverage of the 
classical heuristics for the STSP along with several promising new ap
proaches. For additional details, the reader is referred to the website 
and to a forthcoming DIMACS Technical Report that will present the 
data in a more hnear fashion. In the remainder of this section, we de
scribe the Challenge testbeds in more detail, as well as our scheme for 
normalizing running times. 

2.1 . Testbeds 

In designing the Challenge testbeds, we have chosen to ignore in
stances with fewer than 1,000 cities. This was done for several reasons. 
First, as we shall see, currently available optimization codes, in par
ticular the publicly available Concorde package"^ of Applegate, Bixby, 
Chvatal, and Cook [29], seem to be able to solve typical STSP instances 
with fewer than 1,000 cities in quite feasible running times. Indeed, 
Concorde was able to solve all the 1,000-city instances in our random 
testbeds using its default settings. Normalized running times were typi
cally in minutes, and the longest any such instance took was just a little 
over two hours. Second, if one is only willing to spend seconds rather 
than minutes, the best of the current heuristics are hard to beat. For 
instance, the A^/10-iteration version of the publicly available LKH code 
of Keld Helsgaun [446] can get within 0.2% of optimum in no more than 
20 seconds (normalized) for each of our 1,000-city random instances and 
for the six TSPLIB^ instances with between 1,000 and 1,200 cities. Thus 
it is not clear that heuristics are needed at all for instances with fewer 
than 1,000 cities, and even if so, high quality solutions can be obtained in 
practical running times using publicly available codes. The real research 
question is how heuristic performance scales as instance sizes grow, es-

^Currently available from ht tp: / /www.math.pr inceton.edu/ tsp/concorde.htni l . 
"̂ TSPLIB is a database of instances for the TSP and related problems created and maintained at 
ht tp: / /www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ by Gerd Reinelt 
and described in [709]. 

http://www.math.princeton.edu/tsp/concorde.htnil
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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pecially since many modern applications generate instances with 10,000 
cities or more. 

Our second decision was to concentrate primarily on geometric in
stances in two dimensions. Most experimental research on the STSP to 
date has concentrated on such instances. This is largely because the ma
jor applications for the STSP, both industrial and academic, have been 
of this sort. Consequently, many codes have been written to exploit such 
structure and only work for such instances. (Limited experimentation 
with higher dimensional instances suggests that the lessons learned in 
two dimensions carry over at least to three or four [461, 465].) 

A third decision, based on common practice in the literature and an 
assumption made by many codes, was to restrict attention to instances 
in which inter-city distances are all integral. 

The Challenge test suite contains three classes of geometric instances: 

• Random Uniform Euclidean Instances ("Uniform"). Here the cities 
are points whose two coordinates are each integers chosen ran
domly from the interval [0,10^), with instance sizes increasing 
roughly by factors of yTO from N = 1,000 to Â  == 10,000,000. 
Distances are the Euclidean distance rounded to the nearest inte
ger. There are ten instances with 1,000 cities, five with 3,162, three 
of size 10,000, two each of sizes 31,623 and 100,000, and one each 
of sizes 316,228, 1,000,000, 3,162,278, and 10,000,000. Instances of 
this type have been widely studied and yield an interesting view 
on asymptotic performance. 

• Random Clustered Euchdean Instances ("Clustered"). Here we 
choose A^/100 cluster centers with coordinates chosen uniformly in 
[0,10^), and then for each of the Â  cities we randomly choose a 
center and two normally distributed variables, each of which is then 
multiplied by 10^/y/N^ rounded, and added to the corresponding 
coordinate of the chosen center. Distances are again the Euclidean 
distance rounded to the nearest integer. For this class there are ten 
instances with 1,000 cities, five with 3,162, three of size 10,000, two 
each of sizes 31,623 and 100,000, and one of size 316,228. These 
were designed to be challenging for local search heuristics. 

• All 33 geometric instances in TSPLIB with 1,000 or more cities as 
of June 2001. These instances range in size from 1,000 cities to 
85,900. All are 2-dimensional with rounded Euclidean distances 
(either rounded up or to the nearest integer). Most come either 
from geography (coordinates of actual cities, with the earth viewed 
as planar) or from industrial applications involving circuit boards, 
printed circuits, or programmable gate arrays. 
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As to applications with non-geometric instances, these tend to be 
asymmetric as well as non-geometric and hence will be covered in the 
next chapter. For the STSP Challenge, our main source of non-geometric 
instances consisted of random symmetric distance matrices, the only 
non-geometric class that has previously been widely studied in the con
text of the STSP. Although such instances have no direct relevance to 
practice, they do offer a substantial challenge to many heuristics and 
thus are useful in studying the robustness of various approaches. For 
our Random Matrix testbed, distances were independently chosen in
tegers distributed uniformly in the interval [0,10^). We include four 
instances of size 1,000, two of size 3,162, and one of size 10,000. (Since 
an instance of this type consists of roughly N'^/2 integers, storage can 
become a problem for larger A .̂) In addition, our testbed contains the 
one instance from TSPLIB that is given by its distance matrix and has 
1,000 or more cities (s i 1032). 

Although participants were encouraged to run their codes on as many 
of the testbed instances as possible, this was not always possible. There 
were four main reasons why participants could not handle the entire test 
suite: 

1. The participant's code was too slow to handle the largest instances 
on the participant's machine. 

2. The code was fast enough, but required too much memory to han
dle the largest instances on the participant's machine. 

3. The participant's code was designed to handle geometric instances 
and so could not handle instances given by distance matrices. 

4. The participant's code was not designed to handle instances with 
fractional coordinates. Despite the fact that the TSPLIB instances 
all have integral inter-city distances, 13 of the 33 geometric TSPLIB 
instances in our test suite have fractional coordinates. 

Not all of these need be defects of the underlying heuristic. In particu
lar, (4) can typically be circumvented by additional coding, as several of 
our participants have shown, and (1) and (2) can often be ameliorated 
by cleverer code-tuning and memory management (or more powerful 
machines). Reason (3) may be less forgiving, however: Some heuristics 
are geometric by definition (e.g.. Convex Hull Cheapest Insertion), and 
others will experience substantial slowdowns if they are unable to ex
ploit geometric structure. In any case, we can only report on the results 
for the implementations we have, although where relevant we will try to 
identify those heuristics for which faster or more robust implementations 
may well be possible. 
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2-2. Running Time Normalization 
Running time comparisons are notoriously difficult to make with any 

precision, even when all codes are compiled using the same compiler and 
compiler options and run on the same machine. By allowing participants 
to compile their own codes and run them on their own machines, we have 
made the problem substantially more difficult. However, since we did 
not wish to restrict participation to those who were willing to share their 
source codes, and we wanted to establish a record of the state of the art 
that might still be meaningful after the machines we currently have are 
obsolete and forgotten, there seemed to be no other choice. 

In order to provide some basis for comparison, we thus have dis
tributed a benchmark STSP code, an implementation of the Greedy 
(or Multi-Fragment) heuristic that uses K-d trees to speed up its opera
tion on geometric instances. Participants were asked to run this code on 
their machines for a set of instances covering the whole range of sizes in 
the Challenge test suite and to report the resulting running times. Note 
that one cannot accurately quantify the difference in speeds between 
two machines by a single number. Because of various memory hierarchy 
effects, the relative speeds of two machines may vary significantly as a 
function of the size of the input instances. Figure 9.1, which graphs the 
running time of the benchmark code as a function of instance size for a 
variety of machines, shows how widely relative machine speeds can vary 
as a function of A .̂ (In the chart, running times are divided by NlogN^ 
the approximate number of basic operations performed by the heuristic.) 

Using these reports, we can normalize running times to approximately 
what they would have been on a specific benchmark machine: a Compaq 
ES40 with 500-Mhz Alpha processors and 2 Gigabytes of main memory. 
The basic plan is to compute a normalization factor as a function of A .̂ 
For Â  equal to one of the instance sizes in our Uniform test suite, we 
simply use the ratio between the benchmark code's time on the source 
machine and on the ES40 for the test instance of that size (assuming 
the benchmark code could be run on the source machine for instances 
that large). For other values of N, we interpolate to find the appropriate 
normalization factor. 

There are multiple sources of potential inaccuracy in this process. 
Linear interpolation is an inexact approach to getting intermediate nor
malization factors. A particular code may require more (or less) memory 
for a given value of Â  than does the benchmark Greedy code. It may 
make more (or less) efficient use of instruction and data caches than 
the benchmark code. Also, our normahzation process de-emphasizes the 
time to read an instance. Reading times do not necessarily differ by the 
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MACHINE SPEEDS 

CO 

8 
8 

Z 
o 
o 

CO 
Q z o o 
lU 
CO 

o 

d 

135 Mhz PowerPC 
196 Mhz MIPS 
300 Mhz MIPS 
400 Mhz MIPS 
440 Mhz Sparc 
500 Mhz Pentium 
500 Mhz Alpha 

/ 
/ ^ 

^,/ 

/ 
/ 
/ 

/ 1 
/ 
/ 
/ 

/ / / 
/ -'— // 

1 - ' /•••••• 

/ / 

/ — 7 " / / 
/-" / / •• 

/ / / ' / 

/ ,^-^' y ..-••' ^y""^ 

Zz:i:srj:z.—-'^^^7-----y-^\-:^^ 
_^' 

1 1 1 1 1 
10^3 10̂ 4 10̂ 5 10̂ 6 

NUMBER OF CITIES N 

10^7 

Figure 9.1. Running times for benchmark greedy code as a function of instance size 
for a variety of microprocessor-baised machines. The microprocessors are listed in the 
order of their average times for 1000-city instances. 

same factors as do CPU times, and they can be a significant compo
nent of the running time for the faster codes in our study, especially on 
smaller instances and on instances given by full distance matrices. 

The de-emphasis arises because of the way we deal with the fact that 
systems typically only report running times in increments of 0.01 sec
onds. The benchmark Greedy code is so fast that its running time is 
typically 0.00, 0.01, or 0.02 for 1,000-city instances. This makes it diffi
cult to derive precise normalization factors based on a single run. Thus, 
when we perform the benchmark runs on the smaller instances, we re-
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port the total time over a series of runs on the same instance. The 
number of runs is chosen so that the product of the number of runs and 
N is roughly 1,000,000, with just one run performed for each instance 
with 1,000,000 or more cities. Although the basic data structures are 
rebuilt in each run, the instance itself is read only once. A single read 
makes sense since the heuristics we are testing only read the instance 
once. However, by reducing the proportion of the total time devoted to 
reading, this approach may misrepresent the impact of reading time on 
heuristics for which it is a major component of the total time. 

To get a feel for the typical accuracy of our normalization proce
dure, see Figure 9.2 which charts, for the benchmark Greedy code and 
a Johnson-McGeoch implementation of the Lin-Kernighan heuristic the 
ratio between the actual time on the target ES40 machine and the nor
malized time based on compiling the code and running it on a 196-Mhz 
MIPS RIOOOO processor in an SGI Challenge machine. Note that for 
each heuristic, the error is somewhat systematic as a function of A ,̂ but 
the error is not consistent between heuristics. For Greedy the tendency 
is to go from underestimate to overestimate as N increases, possibly 
reflecting the reading time underestimate mentioned above. For Lin-
Kernighan, on the other hand, read time is not a major component of 
running time on geometric instances, and for these the tendency is to 
go from overestimate to underestimate, possibly because this code needs 
substantially more memory than Greedy and because the MIPS machine 
has larger 2nd level caches than does the ES40. It is worth noting, how
ever, that for both codes the estimate is still typically within a factor of 
two of the correct time. 

Unfortunately, even if we can estimate running times for specific codes 
to within a factor of two, this may not imply anything so precise when 
talking about heuristics. Diff'ering amounts of low-level machine-specific 
code tuning can yield running time differences of a factor of two or more, 
even for implementations that supposedly use the same data structures 
and heuristic speedup tricks. And the latter can cause even greater 
changes in speed, even though they are not always specified in a high-
level description of a heuristic. Thus, unless one sees order-of-magnitude 
differences in running times, or clear distinctions in running time growth 
rates, it is difficult to draw definitive conclusions about the relative ef
ficiency of heuristics implemented by different people on different ma
chines. Fortunately, there are orders-of-magnitude differences in running 
time within the realm of TSP heuristics, so some conclusions about rel
ative efficiency will be possible. 
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Errors in Running T ime Normal izat ion: Benchmark Greedy Code 
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2.3. Evaluating Tour Quality 
The gold standard for tour quality is of course the distance from the 

optimal solution, typically measured as the percentage by which the 
tour's length exceeds the length of an optimum tour. In order to use 
this standard, one unfortunately must know the optimal solution value. 

Modern optimization technology is surprisingly effective: provably op
timal solutions have been found for all but one of the instances in TSPLIB 
with 15,112 cities or fewer, and the Concorde code of Applegate, Bixby, 
Chvatal, and Cook [29] is able to solve all the random instances in the 
Challenge test suite with 3,162 or fewer cities (and the one 10,000-city 
Random Matrix instance). However, a prime reason for using heuristics 
is to get reasonable results for instances that are too difficult for current 
optimization algorithms to work. For this reason our test suite contains 
many instances for which optimal tour lengths are not yet known. 

In order to provide a point of reference that is similar across all in
stances, our default comparison is thus to the Held-Karp lower bound 
on the optimal solution [444, 445]. This is the hnear programming re
laxation of the standard integer programming formulation for the STSP, 
as described in Chapter 2. Johnson et al. [465] argue that this bound is 
a good surrogate for the optimal solution value. For Random Uniform 
Euclidean instances in particular, they conjecture that the expected gap 
between the optimal tour length and the Held-Karp bound is asymptot
ically less than 0.65% and they provide extensive experimental evidence 
supporting this conjecture. 

Table 9.1 shows the percent by which the optimal tour length exceeds 
the Held-Karp bound for all the instances in our test suite where the 
optimal is known. Note that the typical excess is less than 1% and the 
maximum excess observed is 1.74%. Moreover, although the optimal 
tour length is not yet known for four of the largest TSPLIB instances, for 
each one a tour is known that is within .54% of the Held-Karp bound. 

The table also includes the normalized running times for comput
ing the optimal tour lengths and for computing the Held-Karp bounds, 
which is typically much easier. When a running time is reported for 
an optimal tour length computation, it represents the time taken by 
Concorde using its default settings. For the random instances Concorde 
was run on our 196-Mhz MIPS processors. Times for the TSPLIB in
stances are those reported by Applegate et al. on their TSP webpage 
(ht tp: / /www.math.princeton.edu/tsp/) for the same 500-Mhz Alpha 
processor used in our benchmark machine. For those instances with 
known optima but no quoted running time, additional expertise was 
needed (and running time - more than 22 CPU years for dl5112). 

http://www.math.princeton.edu/tsp/
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0.94 
1.35 
0.90 
1.55 
1.44 
0.62 
0.02 
1.22 
0.81 
1.04 
0.55 
1.56 
1.38 
0.58 
1.02 
0.66 
0.52 

oW 
0.01 
0.00 

Opttime 1 
410 

34 
25 

571 
605 
468 

27394 
189 

3742 
578 

1549 
224 

6705 
263 

2224 
449231 

10023 
-

45205 
7068 

117 
80829 
69886 

-
-
-
-
-
-
-

6T2~ 
546 

1377 

HKtime 
3SS\ 
2.40 

11.32 
3.62 
2.40 
1.70 
4.54 
4.08 
4.49 
2.40 
9.83 
2.42 

38.19 
6.51 
4.43 
5.01 

11.45 
8.19 
8.10 
3.16 
5.75 
7.26 

123.66 
12.47 
42.00 
56.15 
55.42 

102.41 
120.20 
90.13 

40.35 
39.52 

367.84 

Table 9.1. For instances in the Challenge test suite that have known optimal solu
tions, the percent by which the optimal tour length exceeds the Held-Karp bound and 
the normalized running times in seconds for computing each using Concorde with its 
default settings. ("-" indicates that the default settings did not suffice.) For random 
instances, suffixes Ik, 3k, and 10k stand for 1,000, 3,162, and 10,000 cities respectively. 
The number of cities in a TSPLIB instance is given by its numerical suffix. 
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The Held-Karp times reported are also for Concorde, which contains a 
flag for computing the Held-Karp bound. Although the hnear program 
that defines the bound involves an exponential number of "subtour" 
constraints, there are simple routines for finding violated constraints 
of this type, and typically not many of these need be found in order to 
solve the LP exactly. This is much more effective (and accurate) than the 
Lagrangean relaxation approach originally suggested by Held and Karp. 
Concorde was able to compute the bound using its default settings on our 
local SGI machine for all the instances in the Challenge test suite with 
less than a million cities, with the maximum normalized running time 
being roughly 4 hours for the 316,228-city random clustered Euclidean 
instance. Using more powerful machines at Rice University, Bill Cook 
used the code to compute the bound for our milhon-city instance. For 
the two instances in our test suite with more than a million cities, we 
relied on the empirical formula derived in [465], which was off by less 
than .02% for the milhon-city instance. 

3, Heuristics and Results 
As noted in the Introduction, currently available heuristics for the 

STSP provide a wide variety of tradeoffs between solution quality and 
running time. For example. Figure 9.3 illustrates the average perfor
mance of a collection of heuristics on the three 10,000-city instances in 
our testbed of Uniform instances. The underlying data is presented in 
Table 9.2. Details on the heuristics/implementations represented in the 
chart and table will be presented later in this section. 

The normahzed running times range from 0.01 seconds to over 5 hours, 
while the percentage excess over the Held-Karp bound ranges from about 
35% down to 0.69% (which is probably within 0.1% of optimum). There 
is not, however, a complete correlation between increased running time 
and improved quality. Some heuristics appear to be dominated^ in that 
another heuristic can provide equivalently good tours in less time or can 
provide better tours in the same time or less. For example, Bentley's 
implementation of Nearest Insertion (NI) from [103] is dominated by 
his implementation of Nearest Neighbor (NN), and the Tabu Search im
plementation Tabu-SC-SC is dominated by three sophisticated iterated 
variants on Lin-Kernighan (MLLK-. IN, CLK-ABCC-N, and Helsgaun-. IN). 

In this chapter, we shall separately consider groups of heuristics clus
tered in different regions of this trade-off spectrum, attempting to iden
tify the most robust undominated heuristics in each class. Although we 
shall concentrate primarily on undominated heuristics, we will not do 
so exclusively. Dominated heuristics for which theoretical results have 
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10,000-City Random Uniform Euclidean Instances 
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Figure 9.3. Average tradeoffs between tour quality and normalized running time for a 
variety of heuristics applied to 10,000-city Random Uniform Euclidean Instances. The 
full abbreviations for the heuristic names are given in Table 9.2 below and explained 
in Table 9.19 at the end of this chapter. 

Heuristic 
Spacef i l l 
S t r i p 
Karp-20 
NX 
NN 
CHCI 
Greedy 
FI 
Savings 
CCA 

Excess 
Over HK 

34.56 
30.75 
29.34 
26.50 
24.79 
20.73 
16.42 
13.35 
12.03 
11.73 

Time 1 
(Seconds) | 

0.02 
0.01 
0.85 
1.71 
0.28 
0.83 
0.20 
2.59 
0.24 

1129.00 

Heuristic 
AppChristo 
Christo-S 
GENI-10 
2opt-JM 
3opt-JM 
LK-JM 
Tabu-SC-SC 
MLLK-.IN 
CLK-ABCC-N 

1 Helsgaun-.IN 

Excess 
Over HK 

11.05 
9.81 
5.89 
4.70 
2.88 
2.00 
1.48 
1.18 
0.90 
0.69 

Time 
(Seconds) 

0.44 
1.04 

823.00 
1.41 
1.50 
2.06 

18830.00 
12.75 
63.91 

1840.00 

Table 9.2. Average tour quality and normalized running times for various heuristics 
on the 10,000-city instances in our Random Uniform Euclidean testbed. 
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been proven or which have received significant pubhcity will also be cov
ered, since in these cases the very fact that they are dominated becomes 
interesting. For example, assuming that the triangle inequality holds, 
Nearest Insertion can never produce a tour longer than twice optimum, 
whereas NN can be off by a factor of 9(logA^) [730], which makes the 
fact that the latter can be better in practice somewhat surprising. 

Moreover, domination for one class of instances need not tell the full 
story. Table 9.3 summarizes the relative performances of Bent ley's im
plementations of Nearest Insertion and Nearest Neighbor as a function 
of instance size for our three geometric instance classes, represented by 
the shorthands U (Random Uniform Geometric instances), C (Random 
Clustered Geometric instances) and T (TSPLIB instances). Figure 9.4 
presents a more detailed picture, with charts that depict the relative 
solution quahty and running times of the two implementations for each 
of the geometric instances in our testbeds to which both could be ap
plied. (The implementations were designed to exploit geometry as much 
as possible, but do not handle fractional coordinates.) Analogous ta
bles and charts for other pairs of heuristics can be generated and viewed 
online via "Comparisons" page at the Challenge website. One can also 
generate charts in which the running time for a single heuristic is com
pared to various growth rates, just as the running times for Greedy were 
compared to NlogN in Figure 9.1. 

u 
c 
T 

U 
C 
T 

N=1000 
-0.55 
-4.47 
-1.41 

5.5 
8.5 
6.2 

Average Percent Excess: NI over NN 

3162 lOK 31K lOOK 316K IM 
-0.15 1.37 2.22 2.86 2.85 2.95 
-3.89 -2.42 -2.91 -2.60 -3.04 
-3.44 -2.73 -1.27 0.35 

Average Running T ime Rat io: NI/NN 

5.2 5.6 5.6 5.7 5.7 5.1 
9.7 13.0 11.5 13.1 11.9 
5.7 6.5 8.5 10.0 

3M lOM 

3.31 3.31 

4.9 5.0 

Table 9.3. Average comparisons between Nearest Insertion (NI) and Nearest Neigh
bor (NN) on our geometric testbeds. Bentley's implementations [103] of both heuristics 
were used. A positive entry in the "Excess" table indicates that the NI tours are longer 
by the indicated percentage on average. As in all subsequent tables of this sort, the 
TSPLIB averages are over the following instances: pr l002, pcb l l73 , r l l 3 0 4 , and 
nrwl379 for Â  = 1,000, pr2392, pcb3038, and fnl4461 for Â  = 3162, pla7397 and 
bfdl4051 for Â  = lOK, pla33810 for Â  = 31K, and pla85900 for Â  ^ lOOK. These 
may not be completely typical samples as we had to pick instances that most codes 
could handle, thus ruling out the many TSPLIB instances with fractional coordinates. 
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Nl vs NN 
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Figure 9.4. Tour length and normalized running time comparisons: Nearest Insertion 
versus Nearest Neighbor. 
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As to the Nearest Insertion versus NN comparison, we see that the tour 
length results for 10,000-city Uniform instances are echoed for larger in
stances from that class, but do not predict results for the other instance 
classes. Indeed, NI consistently provides better tours than NN for Clus
tered instances and is also better for a majority of the TSPLIB instances. 
NI does remain slower than NN (by a factor of 4 or more on the same 
machine for all instances), but for certain instance classes one might be 
wilhng to pay this price to get better tours. We thus cannot say that NI 
is consistently dominated by NN, although we will see many examples of 
consistent domination in what follows. 

The body of this section is divided into seven parts, each covering a 
group of related heuristics. The first three subsections cover what are 
typically called tour construction heuristics, i.e., heuristics that incre
mentally construct a tour and stop as soon as a valid tour is created. 
The remaining sections concern heuristics with a local search compo
nent, i.e., heuristics that repeatedly modify their current tour in hopes 
of finding something better. 

In Section 3.1, we consider tour construction heuristics designed more 
for speed than for quality. The Strip heuristic and the Spacefilling Curve 
heuristic, for example, do little more than read the instance and sort. 
Sections 3.2 and 3.3 cover the remainder of the classical tour construction 
heuristics, divided somewhat arbitrarily into those that build tours by 
adding edges one at a time, as in NN (Section 3.2), and those where 
the augmentation may involve replacing edges, as in Nearest Insertion 
and Christofides (Section 3.3). Since tour construction heuristics for the 
STSP are not covered in detail elsewhere in this book, we shall in these 
sections summarize what is known theoretically about these heuristics 
as well as discussing their empirical behavior. 

The remaining sections cover local search heuristics, the subject of 
Chapter 8. Section 3.4 covers simple local search heuristics like 2-Opt 
and 3-Opt. Section 3.5 covers the famous Lin-Kernighan heuristic and 
its variants. Section 3.6 discusses various heuristics that involve repeated 
calls to a local search heuristic as a subroutine, such as the Chained Lin-
Kernighan heuristic introduced by [563]. It also covers our one set of 
Tabu Search implementations, which operate in a similar fashion. The 
final Section 3.7 considers heuristics that take this one step further and 
use a heuristic like Chained Lin-Kernighan as a subroutine. 

Although we do not have room to provide full descriptions of all the 
heuristics we cover, we present at least a high-level summary of each, 
mentioning relevant theoretical results and, where possible, pointers to 
sources of more detailed information. If implementation details can have 
a major impact on performance, we say something about these as well. 
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3.1. Heuristics Designed for Speed 
In this section we cover heuristics for geometric instances of the STSP 

that are designed for speed rather than for the quahty of the tour they 
construct. In particular, we restrict attention to heuristics whose ob
served total running time is within a small factor (10 or less) of the 
time simply to read the (x^y) coordinates for Â  cities using standard 
formatted I/O routines. The normalized times for the latter are shown 
in Table 9.4. Note that one can read instances much faster than this by 
using lower-level routines to exploit the fact that coordinates come in a 
known format. Using such an approach, one can speedup the reading of 
our 10,000,000-city instance by a factor of 80 or more [26]. This would 
have a significant impact on the overall speed of our fastest heuristics, 
which currently do not take this approach. The restriction to geometric 
instances, i.e., ones given by tuples of coordinates, is important: If one 
required the instance to be given by its full distance matrix, many of our 
heuristics would satisfy the above speed criterion, but could hardly be 
called "fast" given that instance reading itself would take Q{N'^) time. 

At present, three heuristics meeting the above criteria have received 
significant coverage in the literature: the Strip, Spacefilling Curve, and 
Fast Recursive Partitioning heuristics. In this section we cover all three, 
plus an obvious enhancement to the first. All are defined in terms of 2-
dimensional instances but could in principle be generalized to geometric 
instances in higher dimensions. The results we report were all obtained 
on the same machine (as were the reading times mentioned above), which 
removes running-time normalization as an extra source of inter-heuristic 
variability. All the heuristics begin by making one pass through the data 
to determine minimum and maximum x and y coordinates and thus the 
minimum enclosing rectangle for the point set. 

Strip. In this heuristic, we begin by dividing the minimum enclosing 
rectangle into \/N/3 equal-width vertical strips and sorting the cities in 
each strip from top to bottom. We then construct a tour by proceeding 
from the leftmost strip to the rightmost, alternately traveling up one 

u 
c 
T 

Average Normalized Running Time in Seconds: Read 

N=1000 3162 lOK 31K lOOK 316K IM 3M lOM 

0.00 0.01 0.02 0.06 0.13 0.25 1.0 3.4 12 
0.00 0.01 0.03 0.06 0.12 0.25 
0.00 0.00 0.03 0.06 0.12 

Table 9.4. Average normalized times for reading instances using the standard I/O 
routines of C, compiled for MIPS processors using gcc. 
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strip and down the next, with one final (long) edge back from last city 
in the rightmost strip to the first in the leftmost. 

This heuristic can be traced back to 1959, when Beardwood, Halton, 
and Hammersley [94] introduced it as a tool in a proof about the average-
case behavior of the optimal tour length. It is easy to see that St r ip ' s 
tours can be as much as ri(\/7V) times optimum in the worst case. How
ever, for points uniformly distributed in the unit square (a continuous 
version of our Uniform instance class), the expected length of the S t r i p 
tour length can be shown to be no more than 0.93\/iV [500]. Given that 
the expected Held-Karp bound for such instances is empirically asymp
totic to 0.71\/iV [465], this means that St r ip ' s expected excess for such 
instances should be less than 31%. 

Results for S t r ip are summarized in Table 9.5. Note that for Uniform 
instances, the upper bound on average case excess mentioned above is 
close to Str ip 's actual behavior, but St r ip ' s tours are much worse for 
the other two classes. S t r i p is fast, however: Even for the largest 
instances, its running time averages less than 3.5 times that for just 
reading the instance, and the time is basically independent of instance 
class (as are the times for all the heuristics covered in this section). Since 
most of St r ip ' s computation is devoted to sorting, this implementation 
uses a variety of sorting routines, depending on instance size. For the 
largest instances, a 2-pa5S bucket sort using 2^^ buckets is used. This 
means that theoretically the implementation should run in linear time 
for our instances, although in practice it appears to be a bit slower, 
presumably because of memory hierarchy eff'ects. 

It is fairly easy to see why Str ip 's tours for Clustered instances are 
poor: They jump between clusters far too frequently. For instances in 
TSPLIB something similar might be going on, but one might wonder 
whether some of its poor performance is just an artifact of the fact that 

u 
c 
T 

N=1000 

31.94 
115.61 
61.33 

Average Percent Excess over the HK Bound: Strip 

3162 lOK 31K 

32.23 30.75 30.16 
160.82 174.39 190.62 
36.26 73.03 91.86 

lOOK 316K IM 

30.36 30.22 30.10 
198.05 201.76 
73.28 

3M 

30.10 
lOM 

30.09 

Average Normalized Running Time in Seconds 

u 
c 
T 

0.00 
0.00 
0.01 

0.02 
0.02 
0.01 

0.03 
0.04 
0.04 

0.09 
0.09 
0.09 

0.20 
0.19 
0.18 

0.53 
0.53 

2.8 10.4 41 

Table 9.5. Average performance of the Strip heuristic. 



388 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

we chose vertical strips. To examine this question, we implemented a 
composite heuristic that appUes both the original Strip heuristic and 
the variant that uses horizontal strips and returns the better result {2-
Way Strip). Given that reading time is amortized across the two runs 
of S t r ip , the overall running time only goes up by a factor of 1.3 to 
1.7. Unfortunately the average improvements are minor, with a few 
individual exceptions, such as an improvement from an excess of about 
119% to one of 52% for the TSPLIB instance rl5915. Details can be 
explored on the Challenge website. A more promising competitor to 
S t r i p is the following. 

Spacefilling Curve (Spacefi l l ) . This heuristic was invented by 
Platzmann and Bartholdi [671]. The cities are visited in the order in 
which they would be encountered while traversing a spacefilling curve 
for the minimum enclosing rectangle. As with S t r ip , most of the time 
is spent simply in sorting. For full details see [671]. Platzmann and 
Bartholdi prove that the Spacefilling Curve heuristic can never pro
duce tours that are worse than 0(log Â ) times optimum. Bertsimas and 
Grigni [108] exhibit pointsets for which Spacef i l l is this bad. Again, 
however, one can get bounded average-case ratios. A probabilistic anal
ysis in [671] shows that when cities are uniformly distributed in the unit 
square the asymptotic expected tour length is approximately 35% above 
the empirical estimate of the expected Held-Karp bound. (Interestingly, 
the ratio of the heuristic's tour length to v ^ does not go to a limit 
as N —^ oc, although the liminf and limsup are extremely close [671].) 
Table 9.6 presents results for the inventors' implementation. 

As with S t r ip , the overall running time for Spacef i l l stays within a 
factor of 3.5 of that for merely reading an instance. Moreover, although 
Spacef i l l ' s average excess for Uniform instances matches the theoret
ical prediction and hence is 4-5 percentage points worse than that for 

u 
c 
T 

Average Percent Excess over the HK Bound: S p a c e f i l l 

N=1000 3162 lOK 31K lOOK 316K IM 3M 

32.25 33.40 34.56 34.71 34.94 35.00 35.09 35.06 
41.08 60.74 72.85 95.48 76.81 51.68 
45.36 40.27 36.03 40.97 37.39 

lOM 

35.08 

Average Normalized Running Time in Seconds 

u 
c 
T 

0.00 
0.00 
0.00 

0.01 
0.01 
0.01 

0.04 
0.04 
0.04 

0.11 
0.11 
0.11 

0.24 
0.24 
0.23 

0.64 
0.62 

3.0 10.6 39 

Table 9.6. Average performance of the Spacefilling Curve heuristic. 
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Strip vs Spacefill 

100.0 

80.0 

o) 60.0 

40.0 

20.0 

0.0 

-20.0 

3 P 

O 
C 

0) 

c 
2 -40.0 h 

CL 

-60.0 h 

-80.0 

Uniform points 
Clustered points 

TSPLIB instances 

1,000 10,000 100,000 

Number of Cities 

10^6 10^7 

0 

0 
JQ 

0) 
O 
CO 
Q. 

CO 

d 
A 

O 

0 

d 
V 

Figure 9.5. Tour quality comparisons for the Strip and Spacefilling Curve heuristics. 

Str ip , it is substantially better for the other two classes. Figure 9.5 
provides a more detailed picture of the comparison. Based on these re
sults, the Spacefilhng Curve heuristic would seem to be the preferred 
choice, if one must choose only one of the two heuristics. It also would 
be preferred over our final candidate. 

Fast Recursive Partitioning (FRP). In this heuristic, proposed by 
Bentley in [103], we begin by hierarchically partitioning the cities as in 
a K-d tree. This starts with the minimum enclosing rectangle and then 
recursively splits each rectangle containing more than B = 15 cities into 
two rectangles with roughly half as many cities. If the parent rectangle is 
longer than it is wide, the median x-coordinate for cities in the rectangle 
is found and a vertical split is made at this x value; otherwise the median 
^/-coordinate is found and a horizontal split is made at this value of 
y. Call the final rectangles, all containing 15 or fewer cities, buckets. 
Nearest Neighbor tours are constructed for all the buckets, and these 
are then patched together to make an overall tour. FRP is effectively 
dominated by Spacef i l l , which is on average 2.5-3 times faster and is 
better for all but 4 instances in our testbed, usually by more than 10%. 
(The four exceptions are three of the 23 clustered instances and the 
TSPLIB instance dsjlOOO which is itself a clustered instance, produced 
by an earlier version of our generator.) 
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3.2. Tour Construction by Pure Augmentation 
In this section we cover heuristics that build their tours by adding one 

edge at a time, making each choice based on the length of the edge to be 
added. This is in contrast to S t r i p and Spacef i l l , which can be viewed 
as building their tours one edge at a time, but with choices based only on 
simple directional constraints. The class includes the Nearest Neighbor 
heuristic as well as the Greedy heuristic and several variants, including 
the lesser-known but quite effective "Savings" heuristic of [201]. 

As in the previous section, all the results we report were generated on 
same machine (using 196-Mhz RIOOOO MIPS processors), thus ensuring 
that running time comparisons will not be biased by normalization er
rors. However, it still may be dangerous to draw conclusions about the 
relative speeds of closely matched heuristics, since these may be highly 
implementation-dependent. We will illustrate this by presenting results 
for multiple implementations of the same heuristics (implemented by dif
ferent programmers). These differ significantly in constant factors and 
asymptotic growth rates even though all follow the recommendations of 
Bentley's influential papers [102, 103] that promoted the use of K-d trees 
(short for "i^-dimensional binary search tree" [101, 102]) and lazily up
dated priority queues for exploiting the geometric structure of instances 
and avoiding unnecessary work. These two are such a significant compo
nent of many of the implementations described in this section and later 
that they are worth a few more words. 

K'd Trees. In defining the FRP heuristic in the previous section, we 
introduced the fundamental hierarchical partition of the instance space 
that underlies the K-d tree. (For K-d trees, however, we typically split 
any rectangle that contains more than 8 cities, as opposed to the bound 
of 15 used in FRP.) This partition is represented by a tree, with a vertex 
for each rectangle. For each vertex that represents a split rectangle, 
we store the coordinate of the median point that was used in splitting 
the rectangle (x if the spht was left-right, y if the split was top-bottom), 
together with pointers to the vertices representing the two subrectangles 
into which it was spht. (In bottom-up K-d trees, we also store a pointer 
to the parent of the given rectangle.) For a vertex corresponding to a 
final unsplit rectangle, we store a list of the cities in that rectangle. The 
partition and associated tree can be constructed in 0{N log N) time. 

Simple recursive routines can be used to search a K-d tree in various 
ways. We here mention three important ones. These all assume the 
existence of an auxihary array present [ ] that tells us which of the cities 
are relevant to the current search. First, there is the nearest neighbor 
search: Given a city c, find the present city that is nearest to c. Second, 
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there is the fixed-radius near neighbor search: given a city c and a radius 
r, return (in some order) all those present cities c' such that d{c^ c') < r. 
The third is hall search from city c, which assumes an additional array 
rad [ ] of radii for all the cities and returns all those present cities c' 
for which d{c,c') < r a d [ c ' ] , i.e., ah those cities c' for which the ball 
of radius rad[c'] around c' contains c. For details on how these can be 
efficiently implemented, see [101, 102]. The first two searches involve the 
execution of 0( log A )̂ computer instructions for most da ta sets, while the 
third may take somewhat longer, depending on the number of relevant 
balls. The speed of all three can vary depending on the sophistication 
of the implementation and its interaction with the memory hierarchy of 
the machine on which the heuristic is run. 

This section's simple heuristics require only the first of these three 
operations (or a slight variant on it). The others come into play for 
the more complicated heuristics of the next section. (An alternative 
to K-d trees, the Delaunay triangulation, was exploited by Reinelt in 
[710, 711]. This appears to be a competitive approach, but the results 
presented in [710, 711] are not sufficiently comparable to ours to yield 
firm conclusions. K-d trees, at any rate, offer substantially more power 
and flexibility.) 

Lazily U p d a t e d Prior i ty Queues . The use of this da ta structure 
in TSP heuristics was first suggested in [102, 103]. A priority queue 
contains items with associated values (the priorities) and supports op
erations that (1) remove the highest priority item from the queue and 
deliver it to the user (a "pop"), (2) insert a new item, (3) delete an 
item, and (4) modify the priority of an item (an "update") . Algorithms 
textbooks contain a variety of implementations for this da ta structure, 
most of which support all the operations in time 0( log A )̂ or less, but 
with different tradeoffs and constant factors. The choice can have a sig
nificant effect on running time. A major additional savings is possible if 
we can reduce the number of updates actually performed, which is what 
happens with lazy evaluation. This technique can be used if we know 
that no update will ever increase a priority. In this case, we need not 
perform an update when it first takes effect, but only when the popped 
(highest priority) item has an outdated priority. In this case, tha t item's 
priority is reevaluated and it is reinserted into the queue. 

We are now prepared to describe this section's heuristics and how 
they are implemented. 

N e a r e s t N e i g h b o r (NN). We start by picking a initial city CQ. Induc
tively, suppose i < N -1 and CQ, c i . . . , ĉ  is the current partial tour. We 
then choose Ci^i to be the nearest city to Ci among all those cities not 
yet present in the tour. If i = N - 1 we add the edge {c7v_i, CQ}, thus 
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completing the tour. For non-geometric instances, this heuristic would 
take time ©(N^), but for geometric instances the use of K-d trees can 
reduce this to something like 0{N log N) in practice. 

Double-Ended Nearest Neighbor (DENN). We start by picking 
an initial city CQ. Inductively, suppose a and b are the endpoints of 
the current partial tour and that it does not yet contain all the cities. 
If a' and b' are the nearest non-tour cities to a and 6 respectively, we 
choose the one that is closest to its respective endpoint and add the 
corresponding edge to the tour. If all the cities are in the tour, we add 
the edge {a, b} and are done. This heuristic can be implemented to run 
almost as fast as NN in practice, since we only need to compute a nearest 
neighbor when the tour gains a new endpoint or when an endpoint's 
previous nearest neighbor is added to the other end of the tour. 

Greedy. We start by sorting all the potential tour edges {c,c'} in 
order of increasing length. We then build a tour, viewed as a set of 
edges, by going through the edges in order, starting with the shortest, 
and adding {c^c^} so long as neither c nor c' already has degree 2 and 
the new edge does not complete a cycle with fewer than N vertices. 

As described, the implementation would take time G(iV^logA^), and 
that is the time that would be required for non-geometric instances. 
For geometric instances, this can be reduced by combining K-d trees 
and nearest neighbor searches with a lazily updated priority queue, as 
suggested by [102, 103]. This is done as follows. After first constructing 
the K-d tree, we find the nearest neighbor c' for each city c and put the 
ordered pair (c, c') in the priority queue with priority —(i(c, c'). Thus the 
queue contains only Â  entries and the highest priority entry corresponds 
to the shortest edge, i.e., the first that Greedy would add to its tour. As 
we proceed, we will mark a city as present if it does not have degree 2 
in the current tour. If c is a city with degree 1 in the tour, we will let 
end[c] denote the city at the other end of the tour path starting with 
c. Note that we could build the Greedy tour in just N — 1 pops if we 
maintained the property that at all times the priority queue contained, 
for each city c that is currently present, the nearest eligible neighbor, 
i.e., the nearest present city other than end[c]. 

Unfortunately, maintaining this property might require many updates 
after each pop. A single city c' can be the nearest eligible neighbor for 
many other present cities. When c' attains degree 2, it will no longer be 
eligible and each city c that thought c' was its nearest eligible neighbor 
will have to find a new partner. Note, however, that whenever the 
nearest neighbor of a city c needs to be updated, it will be replaced by 
a new city that is at least as far away from c as the city it replaced. 
So we can do lazy updating. When we pop the highest priority item in 
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the queue {c^c')^ there are two cases. If c already has degree 2 in the 
tour, we simply discard this pair and pop the next one. If c has degree 
at most 1 in the tour and c' is present and not equal to end [c], we can 
add edge {c^c^} to the tour. Otherwise, we temporarily mark end[c] (if 
it exists) as "not present," find a new nearest present neighbor c'' for c, 
insert {c,c'') in the queue, reset end[c] (if it exists) to "present," and 
pop the new highest priority pair. 

Boruvka. This heuristic is a variant on Greedy devised by Applegate, 
Bixby, Chvatal, and Cook in analogy with the classic minimum spanning 
tree of O. Boruvka [132]. As with the above Greedy implementation, we 
start by computing the nearest neighbor for each city. Instead of putting 
the resulting pairs into a priority queue, however, we simply sort them 
in order of increasing edge length. We then go through the hst, edge 
by edge, adding each to the tour we are building so long as we legally 
can do so. In other words, when a pair (c, c') is encountered where c' 
is no longer eligible, we discard the pair without updating even if c still 
hasn't attained degree 2. After we have gone through the whole list, we 
probably won't yet have a tour, so we repeat the process again, this time 
restricting attention to cities that do not yet have degree 2 and ehgible 
neighbors. We continue to repeat the process until a tour is constructed. 
In comparison to Greedy, this heuristic replaces priority queue overhead 
with simple sorting, but may have to do more nearest neighbor searches. 
It is not a priori evident whether tours should be better or worse. 

Quick Boruvka (Q-Boruvka). This variant, also due to Applegate, 
Bixby, Chvatal, and Cook, dispenses with the sorting step in Boruvka, 
presumably trading tour quality for an increase in speed. We go through 
the cities in some arbitrary fixed order, skipping a city if it already has 
degree 2 and otherwise adding an edge to the nearest eligible city. At 
most two passes through the set of cities will be required. 

Savings. This is a specialization to the STSP of a more general vehi
cle routing heuristic proposed by Clarke and Wright in [201]. Informally, 
it works by starting with a pseudo-tour, consisting of a multigraph that 
has two edges from an arbitrary central city CQ to each of the other cities. 
We then successively look for the best way to "shortcut" this graph by re
placing a length-2 path from one (non-central) city to another by a direct 
link. In practice, the Savings heuristic works like Greedy, except with 
a surrogate distance function. For any pair of cities c^c' other than CQ, 
the surrogate distance function is D{c^ c') — d{c^ c') — d{c, CQ) — (i(co, c'). 
Given a K-d tree, nearest neighbors under this surrogate distance func
tion can be computed using a slightly more complicated version of the 
standard nearest neighbor search, as shown in [461]. The only other 
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difference from Greedy is that CQ is not put in the priority queue, and 
we stop growing the tour when it contains N — 2 edges, at which point 
it must be a path, which we can complete to a tour by adding the edges 
from Co to its two endpoints. 

Theoretical worst-case results have been proved for several of these 
heuristics, assuming the triangle inequahty, i.e., that for all triples of 
cities (ci,C2,C3), (i(ci,C2) < d{ci^cs) + <i(c3,C2). For none of these 
heuristics are the tours guaranteed to be within a constant factor of 
optimum, but we can provide some bounds. NN can be shown never to 
produce a tour longer than (1 + \\ogN])/2 times optimum, and there 
are instances that force it to generate tours roughly 2/3 that long [730]. 
Greedy never produces a tour longer than (1 + log A^)/2 times optimum 
[633] (roughly the same upper bound as for NN), but the worst instances 
known only cause it to produce tours that are (log A^/3 log log N) times 
optimum [325]. Savings never produces a tour longer than (1 + log Â ) 
times optimum [633] (a weaker bound than for the other two heuris
tics), but the worst examples known produce tours that are again only 
(log iV/3 log log Â ) times optimum [325]. We are unaware of worst-case 
results for the relatively more recent Boruvka variants, but the bounds 
for these are hkely to be no better than those for Greedy. 

Figure 9.6 graphs the average tour quality as a function of TV for the 
six heuristics described in this section and our two classes of random ge
ometric instances. For both classes it is typical of most of the heuristics 
we cover that the average percentage excess over the Held-Karp bound 
appears to approach an asymptotic limiting value, although those lim
its are usually different for the two classes. For Uniform instances, the 
limiting values for NN and DENN appear to be roughly 23% above the 
Held-Karp bound, compared to 15% for Q-Boruvka, 14% for Greedy 
and Boruvka, and 12% for Savings. DENN appears to yield slightly bet
ter averages than NN for the smaller instances but its advantage vanishes 
once Â  > 10,000. (Variations after that point are attributable to the 
small number of instances in our samples). Greedy appears to be slightly 
better than Boruvka for the smaller instances, but this advantage disap
pears by the time N = 100,000. All the heuristics perform significantly 
more poorly for the Clustered instances, but the relative asymptotic 
ranking remains the same. For TSPLIB instances, the tour quality tends 
to lie between these two extremes, except that Savings is typically 1-
2% better on the larger TSPLIB instances than it is even for Uniform 
instances of similar size. 

When we order the heuristics by running time, they appear in roughly 
reverse order, which implies that no one of them is dominated by any 
of the others. Table 9.7 lists normalized running times for Uniform in-
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Figure 9.6. Average percentage excess for pure augmentation heuristics. (For an 
explanation of the abbreviations, see the text or Table 9.19.) Note that the ranges of 
N are different for the two classes of instances. 
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stances as a function of N. Times for Clustered instances are roughly 
the same. Those for TSPLIB instances tend to be faster, possibly be
cause the added structure of these instances limits the breadth of the 
K-d tree nearest-neighbor searches. The table covers three families of 
implementations: Bentley's (-B) implementations of NN and Greedy, the 
Johnson-McGeoch (-JM) implementations of the same heuristics plus 
Savings, and the Concorde (-ABCC) implementations of those two plus 
the two Boruvka variants. (The suffixes are the implementers' initials.) 

For codes with common implementers, the code that produces better 
tours typically takes longer time for all values of A ,̂ with two excep
tions: DENN takes about the same time as NN (as predicted), and the 
Johnson-McGeoch implementation of Savings sometimes beats their 
implementation of Greedy. Although the nearest-neighbor searches are 
more complicated under Savings than under Greedy, this is balanced by 
the fact that far fewer of them need to be made and the two heuristics 
end up taking roughly the same overall time. Generally, the time for 
Greedy/Savings is 2 to 5 times that for NN, with the biggest differences 
occurring for the Concorde implementations. 

Cross-family comparisons are more problematic, presumably because 
of implementation differences. The Bentley and Concorde implemen
tations exploit up-pointers in their K-d trees, whereas the Johnson-
McGeoch implementations do not. Up-pointers add constant-factor over
head but can greatly reduce the depth of searching. As a result, the 
Johnson-McGeoch implementations are faster than other two when N < 
100, 000 but slower when N is larger. Bentley's implementations are in 
C++ while the other two are in C, which might explain in part why Bent
ley's implementations lose to Concorde on both NN and Greedy. 

The observed running times for all the implementations appear to 
have two components: one that grows more slowly than NlogN and 
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Table 9.7. Normalized running times in seconds for Pure Augmentation heuristics 
and Random Uniform Euclidean instances. 
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dominates when N < 100,000, and one that grows faster than NlogN 
and dominates once Â  > 100,000. This latter component in fact appears 
to be growing faster than Nlog^ N, although no worse than 0{N^-'^^). 
The relative importance of these two components and their crossover 
point depend on the heuristic and the implementation. Determining the 
causes of this behavior is an interesting question for future research. 

With respect to tour quality, there is no appreciable difference between 
the various implementations of NN and Greedy. This is as should be 
expected, given the well-defined nature of those heuristics. Different 
implementations do not, however, always yield the same tours. This 
is because of different tie-breaking rules and because the output of M 
depends on the starting city chosen. 

Our overall conclusion is that , although there are few cases of pure 
domination here, three of the six heuristics adequately cover the range of 
trade-offs: DENN, Boruvka, and Savings (with the K-d tree implementa
tion chosen based on the expected size of the instances to be handled). 
In most real-world applications, we would expect Savings to be fast 
enough to supplant the other two. The above conclusions assume tha t 
one is looking for a stand-alone heuristic. As we shall see in Sections 3.4 
and 3.5, different conclusions may hold if one is choosing a method for 
generating starting tours in a local search heuristic. 

The story for non-geometric applications may also differ, and we are 
less able to provide insight here. The only non-geometric implementa
tions we have are for Greedy and NN, and our testbed of non-geometric 
instances consists mostly of Random Matrices, whose relevance to prac
tice is suspect. For what it is worth. Greedy continues to provide sub
stantially better tours than NN for these instances and now takes roughly 
the same time. Unfortunately, that time is now 0(A^^), and both heuris
tics produce tour lengths whose average ratio to the optimum appears 
to grow with Â  and exceeds 2 by the time N = 10,000. See [461]. 

3.3. More Complex Tour Construction 
In this section we consider somewhat more complicated heuristics, but 

ones tha t still build tours incrementally. Many of these heuristics, even 
ones with appealing theoretical performance guarantees, are dominated 
by Savings . Results for the dominated heuristics will not be covered in 
full detail here, although they can be viewed at the Challenge website. 

N e a r e s t I n s e r t i o n a n d i t s V a r i a n t s (NI,NA,NA+). Start with a 
partial tour consisting of some chosen city and its nearest neighbor. 
Then repeatedly choose a non-tour city c whose distance to its nearest 
neighbor among the tour cities is minimum, and insert it as follows: 
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• Insertion Rule (NI). Insert c between the two consecutive tour 
cities for which such an insertion causes the minimum increase in 
tour length. 

• Addition Rule (NA). Insert c next to its nearest neighbor in the 
tour on the side (before or after) that yields the minimum increase 
in the tour length. 

• Augmented Addition Rule (NA"̂ ). Insert c as in NI, but restrict 
attention to pairs of consecutive tour cities at least one of which is 
no further from c than twice the distance to c's nearest neighbor 
in the tour. 

NI NA, and NA"̂  are all guaranteed to produce tours that are no longer 
than (2— -^) times optimum assuming the triangle inequality holds, and 
all can produce tours that bad [730]. As explained by Bentley in [103], 
which introduced the augmented addition rule, they can all be imple
mented to exploit geometry, although the process is complicated. (NI re
quires a ball search and NA"̂  requires a fixed-radius near neighbor search.) 
As might be expected, this added complexity (even for NA) means that 
Bentley's implementations of all three heuristics are substantially slower 
than Savings. They also produce worse tours for all instances in our 
geometric testbeds. For Uniform instances NI and NA~̂  have an average 
percentage excess over the Held-Karp bound that approaches 27% as 
compared to 12% for Savings, while the limiting percentage for NA is 
32.5%. Thus all three variants are dominated by Savings. The same 
holds for the following family of theoretically interesting heuristics. 

Cheapest Insertion and its Variants (CI,CHCI). In Cheapest In
sertion (CI), we start with a partial tour consisting of a chosen city and 
its nearest neighbor. We then repeatedly choose a triple a, fe, c of cities 
such that a and b are adjacent in the current tour, c is a non-tour city, 
and the increase in tour length that would occur if c were inserted be
tween a and b is minimized, and perform that insertion. Assuming the 
triangle inequality, CI obeys the same 2 — {2/N) times optimum bound 
as Nearest Insertion. The "Convex Hull" variant CHCI starts by comput
ing the convex hull of the cities and creating a starting tour consisting 
of these in radial order. CHCI trivially obeys a 3 — {2/N) bound, given 
the result for CI. 

Implementations can again take advantage of geometry, as explained 
in [461]. For CHCI, the convex hull can be found by a linear-time al
gorithm such as Graham's [394]. Even so, the Johnson-McGeoch im
plementations of CI and CHCI remain substantially slower than their 
implementation of Savings and are almost universally worse. (CHCI is 
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slightly better than Savings on one 1,000-city Clustered instance.) CHCI 
tends to produce better tours than CI, but the advantage shrinks as Â  
grows. For Uniform instances, the average percentage excess over the 
Held-Karp bound for both CHCI and CI tends to about 22% versus 12% 
for Savings . 

D o u b l e M i n i m u m Spanning Tree (DMST). Construct a multigraph 
consisting of two copies of a minimum spanning tree for the cities. This 
graph must have an Euler tour, i.e., a (not necessarily simple) cycle that 
includes every edge exactly once. Construct one and convert it into a 
Hamiltonian cycle by taking shortcuts to avoid visiting cities more than 
once. Assuming the triangle inequahty holds, this heuristic obeys the 
same 2 — {2/N) worst-case bound as do Nearest and Cheapest Insertion. 

Again, geometry can be exploited in implementing DMST, in particular 
for constructing the initial MST. The Euler tour can be found in hnear 
time, as can the shortcuts needed to produce the tour. Unfortunately, 
we still end up slower than Savings , and even if we use the "greedy 
shortcut" procedure described below in the context of the Christofides 
heuristic, DMST still produces substantially worse tours than those for 
Savings . For Uniform instances the average percentage excess tends 
toward 40%, and the results for the other classes are comparable. 

Karp's Par t i t i on ing Heuris t ic (Karp). As in K-d tree construc
tion (and in the FRP heuristic of Section 3.1), we begin by recursively 
partitioning the cities by horizontal and vertical cuts through median 
cities, although now the median city is included in both of the subsets 
of cities created by the cut through it. This process is continued until 
no more than C cities are in any set of the partition (C is a parameter) . 
Using the dynamic programming algorithm of Bellman [95], we then op
timally solve the subproblems induced by the sets of cities in the final 
partition. Finally, we recursively patch the solutions together by means 
of their shared medians. For fixed C, this takes 0{N log N) time. 

This heuristic was proposed by Karp in his paper [497], which ana
lyzed the average-case behavior of a closely related, non-adaptive heuris
tic. For this non-adaptive variant and any 6 > 0, there exists a C^ such 
that for Uniform instances the expected ratio of the heuristic's tour 
length to the optimal tour length is asymptotically no more than 1 + e. 
Unfortu^],ately, C^ grows linearly with 1/6, and the running time and 
space r^qijirements of the dynamic programming subroutine are both 
exponential in C. (See also [500] and Chapter 7.) 

The adaptive version of the heuristic we test here is likely to produce 
better tours and be more robust in the presence of non-uniform data, but 
this has not been rigorously proved. It suff'ers from the same drawbacks 
as far as C is concerned, however, with the largest value that has proved 
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feasible being C = 20. Given that the average number of cities in the 
final partitions can vary from 10 to 20 depending on the value of AT, 
this heuristic has a wildly varying running time as a function of N. 
The average quality of the tours it produces for Uniform instances also 
fails to go to a hmit as Â  -^ oc. As might be expected, the best 
results correspond to the worst running times, which themselves can 
be hundreds of times worse than those for Savings. However, even 
those best results are far worse than those for Savings: the liminf of 
the Uniform instance excesses is larger than 20% and the results for 
Clustered and TSPLIB instances are substantially worse. 

The failings of this approach can be ameliorated if one settles for near-
optimal rather than optimal solutions to the final subproblems. This was 
the approach taken by FRP, but it used a small value for C and a poor 
heuristic (NN). If one instead uses a large value for C and one of the much 
more powerful heuristics we describe later in this chapter, one could do 
much better. Indeed, this might be a plausible first choice for coping 
with instances that are too big to handled all-at-once in main memory. 

Many other tour construction heuristics that have been proposed in 
the literature are also dominated by Savings (for example, Litke's recur
sive clustering heuristic [564] and the Greatest Angle Insertion heuristic 
of Golden and Stewart [388], both implemented to exploit geometry in 
[461] and covered on the Challenge website). However, none of these are 
of independent theoretical interest. For the remainder of this section, we 
concentrate on heuristics that are not dominated by Savings. We first 
consider variants on Nearest Insertion that lack its strong theoretical 
guarantees but perform much better in practice. 

Random and Farthest Insertion Variants (RI,RA,RA+,FI,FA,FA+). 
These heuristics differ from their "Nearest" variants mainly in the choice 
of city to add. In the "Random" variants the city is simply chosen ran
domly. In the "Farthest" variants we add the city c with the largest 
value of min{d(c, c') : c' is in the tour}. For both sets of variants, we 
start with a tour consisting of the two maximally distant cities. 

The best guarantee currently provable for these heuristics (assuming 
the triangle inequality) is that all provide tours that are no more than 
0(log N) times optimum. At present we do not know whether this bound 
is tight. The worst examples known for the Random variants were ob
tained by Azar [50]: Euclidean instances for which with high probability 
the heuristics produce tours of length 0(loglog A^/logloglog A )̂ times 
optimum. The worst examples known for the Farthest variants were ob
tained by Hurkens [455] and only yield ratios to optimum that approach 
6.5 (triangle inequahty) or 2.43 (2-dimensional Euchdean). 
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As with the Nearest variants, these heuristics can be implemented to 
exploit K-d trees. The Random variants save work in identifying the 
city to insert and so are fastest. The Farthest variants require addi
tional work in order to find the point to be inserted, but this can be 
done using a K-d tree on the tour cities and a lazily updated priority 
queue that for each non-tour city lists the distance to the closest tour 
city (at the time the entry was computed). As an indication of the rel
ative asymptotic performance of all these variants, see Table 9.8 which 
summarizes the average results for Bentley's implementations of them 
on 100,000 Uniform instances. For comparison purposes the results for 
the Johnson-McGeoch implementation of Savings are also included. 

Note first that in each family Augmented Addition takes less than 
twice as much time as Addition, but provides substantially better tours, 
especially in the cases of the Random and Farthest families. Second, note 
that in each family the Augmented Addition variants produce nearly as 
good tours as do their Insertion siblings at a fraction of the running 
time cost. Unfortunately, the only one of these heuristics that is clearly 
competitive with Savings in running time (RA) produces very poor tours. 

Uniform instances, however, don't tell the full story. As an illus
tration of the total picture, see Figure 9.7, which for all instances in 
our geometric testbeds without fractional coordinates compares the tour 
lengths found by FI and Savings. Although Savings typically has an 
even greater advantage for TSPLIB instances than for Uniform ones, a 
diff'erent story holds for the Clustered instance class. For these instances, 
RA"̂ , RI, FA"̂ , and FI all find better tours on average than does Savings, 
ranging from roughly a 1.5% improvement under RA"̂  to 3.0% under RI 
and 3.5% improvement under FA~̂  and FI. We should also point out that 
RA"̂  has another advantage. Although it is slower than Savings when 
N < 100,000, its running time is similar to that of Bentley's implemen
tation of Greedy, in that it becomes faster than Savings for larger Â  
(for roughly the same implementation-dependent reasons). 

Heuristic 
Excess % 
Seconds 

NA 
32.5 

6.6 

NA+ 
27.1 

8.6 

NI 
27.1 
12.3 

RA 
40.5 

3.2 

RA+ 
15.4 
5.7 

RI 
15.0 
20.3 

FA 
43.7 
10.7 

FA+ 
13.6 
13.6 

FI 
13.4 
27.7 

Sav 
12.1 
3.1 

Table 9.8. Average percentage excesses over the Held-Karp bound and normalized 
running times for Bentley's implementations of Insertion, Addition, and Augmented 
Addition heuristics applied to 100,000-city Random Uniform Euclidean instances. 
For comparison purposes, the last column gives results for the Johnson-McGeoch 
implementation of Savings. 
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Figure 9.7. Tour quality comparisons for Farthest Insertion and Savings heuristics. 

We thus can conclude that these heuristics and Savings are all tech
nically incomparable in that none totally dominates any of the others. 
Given the artificial nature of the Clustered instances, however, one would 
probably still choose Savings if one could use only one heuristic. 

CCA. This is an abbreviation for "Convex Hull, Cheapest Insertion, 
Angle Selection," a heuristic proposed by Golden and Stewart in [388] 
and claimed to be the best tour construction heuristic in that study. 
As in CHCI, one starts by constructing the convex hull of the cities and 
proceeds by successively inserting the remaining cities. The choice of 
insertion is more complicated however. For each non-tour city c, one 
determines the pair {ac, be) of adjacent tour cities between which c could 
be inserted with the least increase in overall tour length. We then select 
that c that maximizes the angle between the edges {ac^ c} and {c, be} 
and insert it between QC and be in the tour. 

Nothing is known theoretically about this heuristic, and its complex
ity makes it difficult (if not impossible) to exploit geometry when im
plementing it. However, the results reported in [388] were impressive, 
even if the largest instance considered had only 318 cities. To see how it 
handles larger instances, Johnson and McGeoch [461] constructed a non-
geometric implementation, which we tested. Running times as expected 
are non-competitive, growing at a rate somewhere between @{N'^) and 
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Figure 9.8. Tour quality comparisons for CCA and Savings heuristics. 

Q{N'^-^) and taking over 3 normalized hours for N =^ 33, 810 cities (the 
largest instance we tried) versus 0.44 seconds for Savings. However, as 
seen in Figure 9.8, CCA does find better tours for instances of all three 
types, even if its advantage for Uniform and TSPLIB instances seems to 
be vanishing as N grows. In particular, the limiting value for the average 
percentage excess on Uniform instances seems likely to exceed 12.5% (its 
value at Â  == 31, 623), whereas that for Savings is 12.1% 

The Christofides Heurist ic and its Variants. For our final collec
tion of tour construction heuristics, we consider variants on the famous 
heuristic of Christofides [189], which currently has the best worst-case 
guarantee known for any polynomial-time TSP heuristic, assuming only 
the triangle inequality. 

The Christofides heuristic is a clever improvement on the Double Min
imum Spanning tree (DMST) heuristic described earlier. In the standard 
version of Christofides (Christo-S), we start by computing a minimum 
spanning tree, as in DMST. However, instead of adding a second copy of 
the MST to get an Eulerian multigraph, here we add a minimum weight 
matching on the odd-degree vertices of the MST, which optimally grows 
the MST to an Eulerian multigraph. We then find an Euler tour and 
traverse it, shortcutting past previously visited vertices as in DMST. This 
leads to an improved guarantee: assuming the triangle inequality, the 
tour produced will never be more than 3/2 times the optimal tour length 
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Figure 9.9. Tour quality for Christofides with greedy shortcuts. 

(a bound that is asymptotically attainable by 2-dimensional Euclidean 
instances, as shown by Cornuejols and Nemhauser [222]). 

Unfortunately, this improvement in worst-case behavior comes at a 
price. The running time for Christofides is dominated by that for com
puting the minimum weight matching, and the best algorithms known 
for this have O(N^) running times, as compared to the (non-geometric) 
worst-case running time of 0{N'^ log N) for Savings. Fortunately, in 
practice we can use matching codes that exploit geometry to run much 
more quickly. For the implementations of Christofides studied here, we 
used the code of Cook and Rohe [207], together with a K-d tree based 
minimum spanning tree algorithm. With these, the observed running 
time appeared to be 0{N^''^^) and we were able to handle instances 
with 3 milhon cities in normalized time of about an hour, only 10 times 
longer than for Savings. (Memory problems prevented us from success
fully running the Christofides code on larger instances.) 

The tour quality results for this standard version of Christofides are 
disappointing, however. Like Farthest Insertion it beats Savings on the 
Clustered instances, but it does worse for Uniform instances and most of 
the TSPLIB instances. Indeed, its average percentage excess for Uniform 
instances appears to approach 14.5%, which is worse than the limits for 
FA and FI as well as the 12.1% for Savings. 
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This is not the end of the story, however. A natural question is 
whether we might somehow do a better job of shortcutting in the fi
nal phase of the heuristic. As shown by Papadimitriou and Vazirani in 
[657], it is NP-hard to find the optimal way to shortcut the Euler tour. 
However, there are heuristics that do significantly better than the naive 
approach taken in the standard implementation. The "greedy shortcut" 
version of Christofides (Chr is to-G) examines the multiply visited cities 
in some arbitrary order and for each chooses the current best of the 
possible shortcuts. This version runs in essentially the same time as the 
standard one and yet finds better tours than both Savings and Far
thest Insertion on all but one instance each (and on those two instances, 
it is only 0.06% worse). It is also more consistent. Figure 9.9 plots 
the percentage excess above the Held-Karp bound for Ch r i s t o -G on all 
the integral-coordinate geometric instances in our testbeds (except the 
10,000,000-city instance which we couldn't run). For all three classes 
Chr i s to -G ' s excesses for larger instances lie between 9 and 10%. The 
hmiting percentage for Uniform instances appears to be about 9.8%, a 
substantial improvement over any of the other heuristics we have cov
ered. Chr i s to -G also outperforms CCA on all instances with more than 
3,162 cities and performs better on average except in the case of Clus
tered instances with 1,000 or 3,162 cities (and is of course much faster). 

Another modification of Christofides that has been proposed is to 
replace the initial MST with the one-tree obtained in the process of 
computing the Held-Karp bound using Lagrangean relaxation [444, 445]. 
This approach was combined with greedy shortcuts by Andre Rohe [729] 
in an implementation we shall call Christo-HK. The Lagrangean relax
ation scheme used by Rohe involves many spanning tree computations 
over weighted sparse graphs derived from the Delaunay triangulation of 
the cities. Although no at tempt is made to run this process to conver
gence, it still takes substantially longer than simply computing a single 
MST for the cities, so that asymptotically Christo-HK seems to be some 
4-8 times slower than Chr i s to -G. It does find significantly better tours, 
however: Its average excess over the HK bound appears to go toward 
6.9% for Uniform instances and 8.6% for Clustered instances. 

If one is unwilling to pay the running time penalty of Ch r i s t o -G 
(much less that of Christo-HK), it is natural to ask how well one might 
do if one sped up the bottleneck matching phase of Christofides' algo
rithm by using a fast heuristic to get a good but not-necessarily-optimal 
matching (while still using greedy shortcuts). We have implemented such 
a heuristic using a K-d tree based greedy matching procedure followed 
by 2-opting, i.e., looking for pairs {a, 6}, {c, d} of matched cities for 
which changing partners (to {a^c}^ {^^d}) shortens the matching, until 
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N -
RA+ 
Chr-S 
FI 
CCA 
Sav 
ACh 
Chr-G 

1 Chr-HK 

Average 

1000 
13.96 
14.48 
12.54 
10.11 
11.38 
11.13 
9.80 
7.55 

Percent Excess over the HK Bound: Uniform Instances 

3162 
15.25 
14.61 
12.47 
11.47 
11.78 
11.00 
9.79 
7.33 

lOK 
15.04 
14.81 
13.35 
11.73 
11.82 
11.05 
9.81 
7.30 

31K 
15.49 
14.67 
13.44 
12.46 
12.09 
11.39 
9.95 
6.74 

lOOK 
15.43 
14.70 
13.39 

-
12.14 
11.24 
9.85 
6.86 

316K 
15.42 
14.49 
13.43 

-
12.14 
11.19 
9.80 
6.90 

IM 
15.48 
14.59 
13.47 

-
12.14 
11.18 
9.79 
6.79 

3M 
15.47 
14.51 
13.49 

-
12.10 
11.11 
9.75 

-

lOM 
15.50 

-
13.49 

-
12.10 
11.11 

-
-

RA+ 
Chr-S 
FI 
CCA 
Sav 
ACh 
Chr-G 

1 Chr-HK 

0.06 
0.06 
0.19 
4.88 
0.02 
0.03 
0.06 
1.00 

Average 

0.23 
0.26 
0.76 

82.09 
0.08 
0.12 
0.27 
3.96 

Normalized Running Time 

0.71 1.9 5.7 
1.00 4.8 21.3 
2.62 9.3 27.7 

1129.85 14015 
0.26 0.8 3.1 
0.44 1.3 3.8 
1.04 5.1 21.3 

14.73 51.4 247.2 

in Seconds 

13 60 
99 469 
65 316 
-

21 100 
28 134 

121 423 
971 3060 

222 
3636 
1301 

-
386 
477 

3326 
-

852 i 
-

5345 
-

1604 
2036 

-
-

Table 9.9. Results for the more powerful tour construction heuristics on Random 
Uniform EucUdean instances. Sav, ACh, and Chr stand for Savings, AppChristo, and 
Christo, respectively. 

no more can be found. Our 2-opting procedure uses the speedup tricks 
for the 2-opt TSP heuristic described in the next section. The resulting 
"Approximate Christofides" heuristic (AppChristo) is from 2 to 7 or 
more times faster than Christo-G, with average tour lengths increasing 
between 1 and 2%, the higher figure being for Clustered instances. For 
Uniform instances, the hmiting percentage excess for AppChristo ap
pears to be 11.1%, compared to 12.1% for Savings, and AppChristo is 
typically only 1.2 to 3 times slower. 

Table 9.9 summarizes the tour quality and running time results on 
Uniform instances for the best of the "more complex tour construction 
heuristics" of this section, with Savings included for comparison pur
poses. Times for similarly sized instances of the other two geometric 
classes are roughly the same except in the case of Clustered instances. 
AppChristo is typically almost twice as slow for such instances, while 
Christo-S and Christo-G are almost 3 times slower for the smaller 
ones, improving to 25-50% slower when Â  — 316, 228. 
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3.4. Simple Local Search Heuristics 
In this and the next three sections we cover various local search heuris

tics for the STSP, many of which are described in more detail in Chapter 
8. In a local search heuristic for the TSP, one defines a neighborhood 
structure on the set of tours, where a tour T' is declared to be a neigh
bor of a tour T if it differs from it in some specified way. The classic 
neighborhoods of this type are the fc-Opt neighborhoods, where V is 
obtained from T by deleting k edges and replacing them with a different 
set of k edges (a k-Opt move). For /c > 2, the sets need not be disjoint, 
so in particular a k-Opt move is a special case of a (/c + l)-Opt move. 

Given a neighborhood structure, a standard local search heuristic op
erates in two phases. First, it uses some tour construction heuristic to 
generate a starting tour. Then it repeatedly replaces its current tour by 
a neighboring tour of shorter length until no such tour can be found (ei
ther because none exists, in which case the tour is "locally optimal," or 
because the heuristic does not explore its neighborhoods exhaustively). 
A local search heuristic that uses the k-Opt neighborhood is usually 
called simply "fc-Opt," and in this section we study various pure and 
restricted heuristics of this kind. 

Currently, 2-Opt and 3-Opt are the main k-Opt heuristics used in 
practice, introduced respectively by Flood and Croes [314, 228] and by 
Bock [115]. In Shen Lin's influential 1965 study of 3-Opt [562], he con
cluded that the extra time required for 4-Opt was not worth the small 
improvement in tour quality it yielded, and no results have appeared 
since then to contradict this conclusion. In contrast, there have been 
several attempts to trade tour quality for improved running time in 3-
Opt by exploiting restricted versions of the 3-Opt neighborhood, as in 
the Or-Opt heuristic of Or [635] and the 2.5-Opt heuristic of Bentley 
[103]. 

Implementation Details. Simply stating the neighborhood struc
ture used does not completely specify a local search heuristic. In order 
to determine the tours generated by the heuristic one needs to provide 
such additional details as (a) the tour construction heuristic used, (b) 
the rule for choosing the improving move to make when there are more 
than one, and (c) the method used to look for improving moves (when 
the rule specified in (b) depends on the order in which moves are exam
ined). Moreover, the heuristic's running time will depend on additional 
implementation details. Although naively one might expect 2-Opt and 
3-Opt to require Q.{N'^) and ^(A^^) time respectively, in practice they 
can be implemented to run much more quickly for geometric instances. 
3-Opt can be implemented to run much more quickly than ft{N^) even 
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for non-geometric instances. Although many factors are involved in these 
speedups, there are perhaps four key ones. 

1. Avoiding Search Space Redundancy 

2. Bounded Neighbor Lists 

3. Don't-Look Bits 

4. Tree-Based Tour Representation 

The second and third of these trade a potential slight degradation in 
tour quahty for improvements in running time. In particular, their use 
leaves open a slight possibility that the final tour may not be 2-Optimal 
(3-Optimal), i.e., it may have a better neighboring tour that we failed 
to notice. We now describe each of the four factors individually, as they 
are relevant not only the simple local search heuristics of this section 
but to the more sophisticated heuristics of later sections as well. 

Avoiding Search Space Redundancy. We illustrate this in the 
context of 2-Opt. Each possible 2-Opt move can be viewed as corre
sponding to a 4-tuple of cities (a, 6, c, d), where {a, 6} and {c, d] are tour 
edges deleted and {a, c} and {6, d} are the edges that replace them. Sup
pose we intend to search through all the possibilities as follows: Let ti 
range over the N possibilities for a; given ti , let 2̂ range over the two 
possibihties for b] and given ti and ^2, let 3̂ range over the possibili
ties for c (the choice of d is then forced). Note that, as stated, a given 
move would be examined four times, depending on whether (^1,̂ 2) is 
(a, 6), (6, a), (c, d), or (d^c). This redundancy can be exploited as fol
lows: Never consider a city t for 3̂ unless d(ti^t) < d{ti^t2). Note that 
if (a, 6, c, d) is never examined under this regimen, we must have both 
d{a^c) > d{a^b) and d{b^d) > d{c^d)^ and so it cannot be an improving 
move. Hence no improving move will be missed. This restriction typi
cally strongly limits the possibihties for 3̂ as the heuristic proceeds. A 
generalization to 3-Opt limits choices for both 3̂ and the analogous final 
choice ^5. 

For geometric instances, this restriction can be implemented using 
K-d trees and a fixed-radius near neighbor search, as described in [103]. 
For non-geometric instances, one could simply precompute for each city 
an ordered list of the other cities by increasing distance. However, a 
quicker option is the following. 

Bounded Neighbor Lists. Instead of creating for each city an 
ordered list of all the other cities, create a truncated hst of the nearest 
k cities, ordered by increasing distance, on the assumption that more 
distant cities are unlikely to yield improving moves. In general, such lists 
can be computed in overall time 0{N'^\ogk). For geometric instances 
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this can be reduced to something more hke 0{NlogN) using K-d trees. 
A possibly more robust version of this approach is to include for each 
city c the [k/A\ cities closest to c in each of the four quadrants of the 
coordinate system with c at (0,0). If these total fewer than k cities, 
we augment the set by the nearest remaining cities overall to bring the 
total up to /c. This will be referred to in what follows as a quad-neighbor 
list. Another possibility for geometric instances, suggested by Reinelt 
[710, 711], is to construct a neighbor list from the cities closest to c in 
the Delaunay triangulation of the city set. 

Don't-Look Bits. This idea was introduced by Bentley in [103] 
to help avoid the repetition of fruitless searches. Suppose our search for 
improving moves is as described above, with an outer loop that considers 
all Â  possible choices for ti. Suppose we are considering the case where 
ti = a and that (i) the last time we searched with ti = a, we didn't find 
an improving move and (ii) a has the same tour neighbors as it had that 
last time. Then it might seem unlikely that we will find an improving 
move this time either. Bentley proposed not searching in this case, being 
willing to risk the possibility that occasionally an improving move might 
be missed. In order to keep track of the cities for which searches could be 
skipped, he suggested maintaining an array of Don^t-Look bits. Initially, 
the bits are all set to 0. Thereafter, the bit for a is set to 1 whenever a 
search with ti = a is unsuccessful. Conversely, if an edge of the tour is 
deleted when an improving move is made, both its endpoints get their 
don't-look bits set back to 0. Note that as the local search procedure 
continues, the number of bits that are set to 0 will decline, so it may 
make sense to simply keep the cities with 0-bits in a queue, ordered by 
the length of time since they were last examined, rather than keeping an 
explicit array of don't-look bits. In this way we not only avoid searches, 
but spend no time at all considering cities that are to be skipped. 

Tree-Based Tour Representation. Empirical measurements re
ported in [103, 322] suggest that for Uniform instances both 2-Opt and 
3-Opt typically make G(A )̂ improving moves. Bentley in [103] observed 
that as N increases, the time spent performing these moves came to 
dominate the overall time for his implementations. This was because 
of the way he represented the tour. A 2-Opt move basically involves 
cutting the tour in two places and reversing the order of one of the two 
resulting segments before putting them back together. If the tour is 
stored in a straightforward way (either as an array or a doubly linked 
list), this means that the time for performing the 2-Opt move must be 
at least proportional to the length of the shorter segment. Bentley's 
empirical data suggested that for Uniform instances the average length 
of this shorter segment was growing roughly as A^̂ '̂ , as was the average 
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work for performing each move. If we consider alternative tree repre
sentations, this can be reduced to y/N using the 2-level trees of [322] 
or to logA^ using the splay tree data structure of [764]. For a study 
of the tradeoffs involved and the crossover points between various tour 
representations, see [322]. 

Results for 2-Opt, 2.5-Opt, and 3-Opt. Implementation choices 
can make a difference, both in tour quality and running time. We con
sider three sets of implementations. 

• 2-Opt and 3-Opt implementations by Johnson and McGeoch (-JM). 

• 2-Opt, 3-Opt and "2.5-Opt" implementations by Bentley (-B). The 
third heuristic is a restricted version of 3-Opt in which the 2-Opt 

neighborhood is augmented only by those 3-Opt moves that delete 
a single city from the tour and reinserted it elsewhere. 

• 2-, 2.5-, and 3-Opt implementations by Applegate, Bixby, Chvatal, 
and Cook (-ABCC). These are included as options in the edgegen 
program of the Concorde software release. 

The three sets of implementations are similar in that all exploit don't-
look bits, but differ in many other respects. Concorde's implementations 
use Nearest Neighbor to generate starting tours, whereas the Bentley and 
Johnson-McGeoch implementations both use the Greedy heuristic (al
though Johnson and McGeoch use a randomized variant that picks the 
shortest edge with probability 2/3 and the second shortest with proba
bility 1/3). For all three heuristics Concorde considers only one of the 
two neighbors of ti as a choice for 2̂ whereas the Bentley and Johnson-
McGeoch implementations consider both. Another difference has to do 
with move selection. For each choice of ti , the Johnson-McGeoch and 
Concorde implementations apply the first improving move found (ex
cept that in the JM implementations an improving 2-Opt move is not 
performed in 3-Opt unless no way is found to extend it to an even bet
ter 3-Opt move). In contrast, for each choice of ti , the Bentley imple
mentations keep looking for improving moves until it has seen 8 (or run 
out of possibilities) and then performs the best of these. The Bentley 
and Concorde implementations also have more chance of finding improv
ing moves, since they use fixed-radius near-neighbor searches to find all 
possible candidates for ts (and 5̂ in the case of 3-Opt), whereas the 
JM implementations restrict the choices to quad-neighbor lists of length 
20. On the other hand, in the case of 3-Opt, Bentley's implementation 
examines fewer classes of potential 3-Opt moves, omitting for example 
those 3-Opt moves that permute but do not reverse any of the three 
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Algorithm 
Christo-G 
Christo-HK 
2opt-B 
2opt-JM 
2opt-ABCC 
2.5opt-B 
2.5opt-ABCC 
3opt-B 
3opt-JM 
3opt-ABCC 

Percent Excess 
U 

9.9 
6.9 
5.7 
4.8 

14.4 
4.7 

12.6 
3.6 
3.0 
8.4 

C 
9.6 
8.4 
9.6 

10.7 
19.6 
8.2 

17.3 
5.5 
6.9 

11.2 

T 
9.5 
7.4 
5.8 
6.0 

14.7 
4.8 

13.0 
3.8 
4.2 
9.2 

Time (Seconds) 
U 

21.3 
247.2 

8.8 
10.7 
3.7 

10.2 
4.3 

15.5 
12.3 
6.1 

C 
37.8 

197.0 
9.7 

12.4 
2.9 

12.0 
3.2 

176.8 
14.9 
12.5 

T 
29.5 

177.9 
5.6 
6.5 
1.9 
7.5 
2.4 

17.8 
6.9 
3.7 

Table 9.10. Average percent excess over the HK bound and normalized running times 
for 100,000-city Uniform and Clustered instances and for TSPLIB instance pla85900. 
All codes were run on the same machine. 

segments created when 3 tour edges are deleted. A final difference is 
that the Bentley and Concorde implementations represent the tour with 
an array whereas Johnson and McGeoch use the 2-level tree of [322]. 

Table 9.10 summarizes average heuristic performance of these imple
mentations on the instances of approximately 100,000 cities in our three 
geometric classes. A first observation is that the Concorde (-ABCC) im
plementations are much faster and produce much worse tours than their 
-B and -JM counterparts. This is a reasonable tradeoff in the context of 
the intended use for the Concorde implementations, which is to quickly 
generate sets of good edges for use with other Concorde components. 
It does, however, illustrate the danger of Concorde's restriction to one 
choice for city t2, which is the primary cause for this tradeoff: Applying 
the same restriction to the JM implementations yields similar improve
ments in running time and degradations in tour quality. 

As to comparisons between the Bentley and JM implementations, the 
latter produce better results for Uniform instances but are worse for 
Clustered instances. For these, Bentley's more complete examination 
of candidates for ts may be paying off, although there is a substantial 
running time penalty in the case of 3-Opt. For TSPLIB instances, the 
results are mixed, with the JM implementations more often producing 
better tours, although not for pla85900 as shown in the table. Also not 
evident in the table is the running time penalty that the Bentley and 
Concorde implementations experience once Â  > 100,000, due to their 
use of the array representation for tours. Their observed running times 
have rt{N^-^) growth rates, whereas the JM implementations, with their 
tree-based tour representations, have observed running times that ap
pear to be 0(A^log^ A )̂. As a consequence, 2.5opt-B is 5 times slower 
than the JM implementation of full 3-Opt when N = 3,162, 278 and 
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Algorithm 
NN-ABCC 
Greedy-JM 
2opt-JM 
3opt-JM 

Percent Excess 
1,000 

224 
163 
66 
31 

3,162 
321 
198 
92 
43 

10,000 
337 
250 
114 
63 

Time (Seconds) 
1,000 

0.8 
0.7 
1.0 
1.1 

3,162 10,000 
9.7 112 
8.8 107 

12.2 157 
12.3 150 

Table 9.11. Average percent excesses over the HK bound and normalized running 
times for Random Matrix instances of sizes from 1,000 to 10,000 cities. All codes 
were run on the same machine. 

2opt-ABCC and 3opt-ABCC are both 5-10 times slower than the corre
sponding JM implementations once N = 1,000,000. 

Table 9.10 also addresses the question of how these simple local search 
heuristics compare to the best of the tour construction heuristics in 
our study: greedy-shortcut Christofides (Christo-G) and its Held-Karp-
based variant Christo-HK. Based on the results in the table, it would 
appear that both are dominated by the 2.5opt-B and 3opt-JM, and 
the first is also dominated by 2opt-B. The situation is a bit more com
plicated, however, if one looks at the Challenge testbeds as a whole. 
Christo-G tends to produce better tours than 2opt-B for many Clus
tered instances and to be faster than all the Bentley and JM implemen
tations for Uniform and TSPLIB instances with 10,000 or fewer cities. 
2.5opt-B and 3opt-JM, however, produce better tours than Christo-G 
and Christo-HK for almost all the instances in the Challenge testbeds 
on which the latter two could be run. (3opt-JM loses only on two in
stances.) Since the running time advantage for Christo-G is never more 
than a factor of 3 on the smaller instances, all of which can be han
dled by the 3opt-JM in normahzed time of less than 10 seconds (usually 
less than 2), and since the running time for Christo-HK is substantially 
worse than that for 3opt-JM across the board, there is probably no real 
reason to use either Christofides variant in practice, assuming one has a 
good implementation of 3-Opt. 

The JM implementations of 2-Opt and 3-Opt can handle non-geometric 
instances, and so we also ran them on our Random Matrix testbed. The 
results are summarized in Table 9.11, which for comparison purposes 
also includes results for two tour construction implementations that can 
handle such instances: the benchmark Greedy code, which provides a 
good estimate for the lengths of the starting tours used by 2opt-JM and 
3opt-JM, and Concorde's implementation of NN. 

Observe that all the heuristics produce much poorer tours for Random 
Matrix instances than they do for geometric instances. Even the best 
of them, 3-Opt, has percentage excesses that are worse by a factor of 
10 or more. Also note that tour quality declines substantially as N 
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increases. The results for all four heuristics are consistent with the 
conjecture that the average percentage excess grows as log N^ whereas 
for the geometric instances in our testbeds, all of our heuristics seem 
to have average percentage excesses that are bounded, independent of 
A .̂ The running time for Random Matrices is also much worse, growing 
somewhat more rapidly than A^̂ , the nominal growth rate for simply 
reading the instance. An interesting side effect of this is that the time 
for performing local search becomes a much less significant component 
of the overall running time. 3opt-JM takes only about 50% more time 
than NN-ABCC and the running time difference between 2opt-JM and 
3opt-JM is inconsequential. (This is because most of the local search 
speedup tricks mentioned above continue to be applicable, so that the 
local search phase does not take much longer for Random Matrices than 
it did for geometric instances.) Given how much better 3opt-JM's tours 
are than those of the other heuristics, it is the obvious choice among the 
four, should one want to solve this kind of instance. 

More on Starting Tours and Neighbor Lists. As noted above, 
all the Bentley and the JM implementations used the Greedy heuristic to 
generate starting tours. This decision was based on the extensive exper
iments reported in [103, 461], which showed that Greedy tours tended 
to yield the best results, both in comparison to worse tour construction 
heuristics such as NN or the infamous "generate a random tour" heuristic, 
and to better ones such as FI or Savings. It appears that the starting 
tour needs to have some obvious defects if a simple local search heuristic 
is to find a way to make major improvements, but it can't be too bad or 
else the heuristic will not be able to make up the full difference. Ran
dom starting tours have the additional disadvantage that they lead to 
increased running times because more moves need to be made to reach 
local optimality. 

The JM implementations for which results were reported above used 
neighbor lists of length 20. Many authors have suggested using substan
tially shorter lists, but at least in the context of these implementations, 
20 seems a reasonable compromise. Using lists of length 10 saves only 
10-20% in running time but on average causes tour lengths to increase by 
1% or more for both 2opt-JM and 3opt-JM and all four instance classes. 
Increasing the list length to 40 increases running time by 40-50% and 
for 3opt-JM on average improves tour length by less than 0.3% on all 
but the Clustered instances. The average improvements for Clustered 
instances are more variable, but appear to average roughly 0.6% overall. 
For 2opt-JM the tour length improvements due to increasing the neigh
bor list length to 40 are slightly larger, but the running time becomes 



414 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

greater than that for 3opt-JM with 20 neighbors, and the latter finds 
much better tours. For full details, see the Challenge website. 

Other Simple Local Search Heuristics. 2.5-Opt is not the only 
restricted version of a k-Opt heuristic that has been seriously studied. 
Much early attention was devoted to the Or-Opt heuristic of [635], which 
uses a neighborhood intermediate between that of 2.5-Opt and full 3-
Opt. In 2.5-Opt, we consider those 3-Opt moves in which one of the three 
segments into which the tour is initially broken contains just one city; 
Or-Opt expands this to segments of as many as 3 cities. It was originally 
proposed as a way of reducing the running time overhead of the naive 
Q{N^) implementation of 3-Opt, before the existence of the speedup 
tricks mentioned above was widely known. Although these tricks should 
be adaptable to Or-Opt as well, it seems unhkely that the latter would 
retain much speed advantage over a more complete 3-Opt implemen
tation. Thus the probable tour degradation due to the much smaller 
Or-Opt neighborhood is not hkely to be justified, and Or-Opt no longer 
appears to be a serious competitor. No implementations were submitted 
to the Challenge. 

Researchers have recently also considered putting restrictions on the 
/c-Opt neighborhood when fc > 4, with the intent of getting better tours 
than 3-Opt without paying the full running time penalty for fc-Opt itself. 
Two families of heuristics of this type were submitted to the Challenge: 
the GENI/GENIUS heuristics of Gendreau, Hertz, and Laporte [351] and 
the HyperOpt heuristics of Burke, Cowling, and Keuthen [149]. 

From one point of view GEN I can be viewed as a tour construction 
heuristic, in that the tour is augmented one city at a time. However, 
each augmentation is equivalent to a simple insertion followed by a 4-
or 5-Opt move, so we have chosen to consider it here in the section 
on local search. GENIUS uses GENI to construct its starting tour, and 
then attempts to improve it by a "stringing-unstringing" procedure that 
technically is a restricted version of 8-, 9-, or 10-Opt. In addition, the 
heuristics use truncated nearest neighbor lists to restrict their choices, 
with the heuristic being parameterized by the length p of these lists. 

We tested implementations of GENI and GENIUS provided to us by 
Gendreau et al., which we fine-tuned by improving their handling of 
memory allocation and by removing some redundant operations. This 
fine-tuning did not change the output tours but does result in substantial 
running-time improvements. The implementations still do not, however, 
exploit the full set of speedup tricks listed above, and with p = 10 GENI 
is 100 times slower for 10,000-city instances than 3opt-JM (on the same 
machine), and GENIUS is over 300 time slower. Moreover, although both 
GENI and GENIUS find better tours than 3-Opt for Clustered instances, 
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they are worse for Uniform instances and most TSPLIB instances. In
creasing p to 20 does not yield a significant improvement in the tours 
but causes substantial increases in running time. It is possible that a 
reimplementation of the heuristics to take advantage of more speedup 
tricks might make them more competitive timewise. It seems unlikely, 
however, that we could speed up the heuristics sufficiently to make them 
competitive with implementations of Lin-Kernighan to be described in 
the next section, and those find better tours across the board. (Based 
on comparisons to GENIUS in [713], the I*̂  heuristic of Renaud, Doctor, 
and Laporte [713], which uses a restricted 4-Opt neighborhood, would 
not seem to be competitive either.) 

The HyperOpt heuristics of [149] also come in parameterized form, 
with the the neighborhood structure for /c-HyperOpt being a restricted 
version of the 2A:-0pt neighborhood. To construct a neighboring tour, 
one first deletes two disjoint sets of k consecutive tour edges. This breaks 
the tour into two subtours and 2{k — 1) isolated cities. These are then 
recombined optimally into a tour using dynamic programming. The 
implementations of Burke et al. are substantially faster than those for 
GENI/GENIUS, even taking into account possible normalization errors. 
The normalized times for 2-HyperOpt are comparable to those for the 
3opt-JM until they start to degrade around N = 100,000. Unfortu
nately, 2-HyperOpt's average tour quahty is worse than that of 3opt-JM 
for all three geometric instance classes. 4-HyperOpt might be slightly 
better than 3opt-JM on Clustered instances, but it is a close call, and 
3opt~JM is 50 times faster. 

Thus as of now it does not appear that restricted fc-Opt heuristics, 
A: > 4, off*er a promising avenue to cost-eff'ective improvements on 3-
Opt. As was first shown in 1973 by Lin and Kernighan [563], a much 
better generalization is the concept of variable-depth search. We cover 
heuristics based on this concept in the next section. 

3.5. Lin-Kernighan and Variants 
The Lin-Kernighan heuristic of [563] does not limit its search to moves 

that change only a bounded number of edges. In principle it can change 
almost all the edges in the tour in a single move. However, the moves 
have a specific structure: each can be viewed as a 3-Opt move followed by 
a sequence of 2-opt moves, although only the full final move need actually 
improve the tour. The heuristic keeps running time under control by 
restricting the "LK-Search" to moves that are grown one 2-Opt move at 
a time, without backtracking beyond a fixed level. In addition, it uses 
neighbor lists to restrict the number of growth alternatives it considers, 
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locks edges that have aheady been changed by the move so that the 
changes won't subsequently be undone, and aborts the search if a strict 
gain criterion based on the best tour seen so far is not met. More details 
can be found in Chapter 8. 

In implementing Lin-Kernighan, one has far more choices to make 
than for simple heuristics hke 2-Opt and 3-Opt, and the literature con
tains reports on many implementations of Lin-Kernighan with widely 
varying behavior. In addition to such standard choices as (a) what tour 
construction heuristic to use, (b) when to continue looking for better 
improving moves after one has been found, (c) how long neighbor lists 
should be and how they should be constituted, (d) what tour represen
tation should be used, and (e) whether to use don't look-bits, here are 
some of the new choices: 

• How broad should the search be? The original Lin-Kernighan im
plementation restricted attention to neighbor lists of length 5 at 
all levels of the search. 

• How much backtracking is allowed? The original Lin-Kernighan 
implementation considered all 3-Opt moves that met the gain cri
terion (together with a restricted class of 4-Opt moves) as starting 
points for the LK-search. 

• Should one consider just one or the standard two choices for ^2? 

• Does one lock both deleted and added edges, or only one of the 
two classes? (The original LK implementation locked both, but 
locking either of the two classes separately is enough to insure 
that the search runs in polynomial time.) 

• Does one tighten the gain criterion in the middle of the LK-search 
if a better tour is discovered along the way? 

• Should one extend the partial move that yields the best tour, or 
the one that has the best gain criterion? 

• Should one impose a constant bound on the depth of the LK-
search? 

• Should one augment the moves constructed by LK-search with 
non-sequential "double-bridge" 4-Opt moves, as proposed by Lin 
and Kernighan (but not used in their own implementation)? 

Moreover, one can consider topological variants on the way that moves 
are grown and the reference structure maintained at each level of the 
search. Lin and Kernighan's reference structure is a path with one end 
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fixed, and the changes considered in growing the move all consist of 
adding an edge from the unfixed end of the path to a city on its neighbor 
hst, and then deleting the one edge that will take us back to a path. 
Other possible reference structures have been implemented, such as the 
unanchored path of Mak and Morton [576] or the "stem-and-cycle" of 
Glover [373, 374]. In addition, alternative ways of extending an LK-
search (besides the standard 2-Opt move) have been considered, as in 
the variant due to Helsgaun [446] that augments via 5-Opt moves. 

We do not have space to go into full detail on how all the tested imple
mentations differ. Indeed, many implementers' written descriptions of 
their implementations do not provide all the answers. So we concentrate 
in what follows on key differences (and similarities) and our conclusions 
about the effects of various choices are necessarily tentative. 

Basic Lin-Kernighan. We start with implementations that do not 
depart in major ways from the original heuristic, i.e., implementations 
that use a path as reference structure, use 2-Opt moves as the augmen
tation method in LK-search, and do not perform double-bridge moves. 
Four such implementations were submitted to the Challenge: 

1. LK-JM (Johnson and McGeoch [461, 463]). The main results re
ported here for this implementation use Greedy starting tours, 
length-20 quad-neighbor lists for all levels of the search, don't-
look bits, and the 2-Level Tree tour representation [322]. In the 
LK-search, this C implementation uses an anchored path as its 
reference structure, locks only the added edges, updates the gain 
criterion when a better tour is found in mid-search, does not bound 
the depth of the searches, and otherwise follows the original Lin-
Kernighan Fortran code, from which it is derived. 

2. LK-Neto (Neto [626]). This implementation is based on the original 
Lin-Kernighan paper [563] and on the Johnson-McGeoch chapter 
[463]. It differs from the Johnson-McGeoch implementation in that 
neighbor lists consist of 20 quadrant neighbors unioned with the 20 
nearest neighbors, LK-searches are bounded at 50 moves, and spe
cial cluster compensation routines are used with the hopes of im
proving performance for instances in which the cities are grouped 
in widely separated clusters, presumably as in our Clustered in
stances. Source code for this implementation (in CWEB) is available 
from h t t p : //www. cs . to ron to . edu /~ne to / r e sea rch / lk / . 

3. LK-ABCC (Applegate, Bixby, Chvatal, and Cook [27]). This is the 
default Lin-Kernighan implementation in Concorde. Based on re
marks in [27], it would appear that this implementation differs 
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from the Johnson-McGeoch implementation mainly as follows: It 
uses Q-Boruvka starting tours, length-12 quad-neighbor lists, an 
unanchored path as reference structure, a narrower (but slightly 
deeper) backtracking strategy with just one choice for ^2, and LK-
searches bounded at 50 moves. Source code is available from the 
Concorde website. 

4. LK-ACR (Applegate, Cook, and Rohe [32]). Based on remarks in 
[27, 32], it would appear that this implementation differs from 
Concorde's in that it uses a slightly broader and deeper back
tracking strategy and bounds the depth of the LK-search at 25 
moves. 

Both of the latter two implementations were optimized for use in the 
context of Chained Lin-Kernighan, where the speed of a single invoca
tion of LK may be more important than saving the last few fractions 
of a percent in tour length. Results confirm this. See Table 9.12 which 
presents average tour qualities and running times for the four implemen
tations. For comparison purposes, the corresponding results for 3opt-JM 
are also included. 

Note that LK-JM and LK-Neto provide roughly equivalent tours except 
for the Clustered instances. These tours are typically substantially bet
ter than those for LK-ABCC and LK-ACR, although LK-ABCC and LK-ACR 
are significantly faster for Clustered and TSPLIB instances and for Uni
form instances when N < 10,000. As in the case of the ABCC imple
mentations of 2-, 2.5-, and 3-Opt, a major reason for this disparity is 
probably the restriction in LK-ABCC and LK-ACR to a single choice for 
t2. A second but lesser reason is the fact that the latter two heuristics 
construct shorter neighbor lists and do so more quickly. The fact that 
they bound the depth of the LK-search would not seem to be a major 
factor, however, since LK-Neto also bounds the depth. Moreover, if one 
imposes a depth bound of 50 on LK-JM, neither tour quahty nor running 
time is typically affected significantly. As to asymptotic growth rates, 
the observed running times for LK-JM and LK-ACR appear to be 0(A^^'^^), 
while those for LK-Neto and LK-ABCC may be somewhat worse. 

Between LK-ABCC and LK-ACR, the former tends to yield slightly better 
tours and take slightly longer, but the results for both are closer to 
those for 3opt-JM than to those for LK-JM. Indeed, for the three smallest 
TSPLIB sizes, 3opt-JM on average finds better tours than LK-ACR. This 
becomes less surprising when we look at running times, since LK-ACR 
actually appears (subject to normalizing errors) to use less time than 
3opt-JM for these instances. LK-ABCC is almost as fast. 
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N 

LK: 

3opt: 

LK: 

3opt: 

LK: 

3opt: 

= 

JM 
Neto 
ABCC 

ACR 
JM 

JM 

Neto 
ABCC 

ACR 

JM 

JM 

Neto 
ABCC 

ACR 

JM 

Average Percent Excess over the HK Bound 

1000 

1.92 
1.91 
2.22 
2.36 
2.96 

1.75 
2.52 
3.77 
3.89 
4.08 

2.38 
2.40 
3.54 
4.48 
3.93 

3162 lOK 31K lOOK 316K 

Random Uniform Euclidean Instances 
1.99 2.02 2.02 1.97 1.96 
1.97 1.99 1.89 1.95 1.97 
2.43 2.60 2.48 2.54 2.67 
2.90 2.72 2.73 2.74 2.75 
2.84 3.06 3.02 2.97 2.93 

Random Clustered Euclidean Instances 
2.95 3.41 3.71 3.63 3.67 
4.19 4.76 4.42 4.78 
6.23 5.70 6.38 5.31 5.45 
6.13 5.93 6.28 5.54 5.54 
6.06 6.89 7.48 6.88 7.08 

TSPLIB Instances 
2.16 1.92 1.73 1.61 
2.32 1.88 2.00 
3.29 2.39 2.16 1.60 
3.48 3.72 2.91 2.40 
3.67 3.17 3.99 4.20 

IM 

1.96 
1.92 
2.68 
2.77 
2.96 

3M 

1.92 
1.88 
2.55 
2.67 
2.88 

lOM 

-
-

2.54 
2.49 

-

LK: 

3opt: 

LK: 

3opt: 

LK: 

3opt: 

JM 

Neto 
ABCC 

ACR 
JM 

JM 
Neto 
ABCC 

ACR 
JM 

JM 
Neto 
ABCC 

ACR 
JM 

Average Normalized Running Time in Seconds 

0.20 

0.19 
0.09 
0.07 
0.13 

1.66 
4.35 
0.19 
0.10 
0.15 

0.34 
0.40 
0.10 
0.08 
0.14 

Random Uniform Euclidean Instances 
0.69 2.32 7.2 22.8 61 

0.87 3.35 14.4 89.6 574 
0.34 1.49 6.0 21.4 61 
0.29 0.93 3.0 16.4 76 
0.45 1.44 4.2 12.3 33 

Random Clustered Euclidean Instances 
4.97 15.37 59.3 173.1 495 

15.04 51.17 138.6 558.1 
0.72 2.55 11.0 37.9 108 
0.45 1.40 4.5 25.0 114 
0.54 1.77 5.0 14.9 38 

TSPLIB Ins tances 

0.64 4.29 13.0 24.3 
1.08 10.26 47.1 
0.29 1.21 3.5 8.8 
0.23 0.74 1.7 5.4 
0.38 1.42 3.4 6.9 

323 

3578 
307 
318 

162 

1255 

17660 

1330 6980 
1290 5760 
600 

Table 9.12. Results for 3-Opt and four implementations of Lin-Kernighan. Averages 
for TSPLIB are taken over the same instances as in Figure 9.3. 
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Turning now to the relationship between LK-JM and LK-Neto, a first 
observation is that the algorithmic descriptions in [563, 463] (on which 
the LK-Neto implementation was based) seem to be adequate to define 
a reproducible Lin-Kernighan implementation, at least as far as tour 
quality on Uniform and most TSPLIB instances is concerned. The two 
implementations do differ significantly on Clustered instances, but this 
is presumably because Neto has added innovations designed to handle 
clustered instances more effectively. Unfortunately, for this particular 
class of Clustered instances, the innovations do not appear to be effec
tive. LK-Neto provides significantly worse tours than LK-JM and the 
ratio of its normalized running time to that of LK-JM is higher for Clus
tered instances than it is for Uniform instances. There also appears to 
be some as-yet-unidentified difference in the two implementations that 
has an asymptotic effect on running times: For Uniform instances the 
normahzed running times for LK-Neto start to diverge from those for 
LK-JM when Â  gets large. 

All the above LK implementations use variants on the Greedy heuris
tic to generate starting tours and so do not provide much of an oppor
tunity to analyze the effects of different starting heuristics on the final 
LK results. (Analyses of this sort can be found in [32, 461].) How
ever, one question is hard to resist: What would happen if we combined 
Lin-Kernighan with the very best (and slowest) of our tour generation 
heuristics, Christo-HK? Andre Rohe submitted results for just such a 
combination, and although his Lin-Kernighan implementation was an 
early one that lacks the detailed tuning of LK-ABCC and LK-ACR, the 
results are intriguing. For Â  > 1,000 the total running time is domi
nated by that simply to generate the starting tour and for Uniform and 
TSPLIB instances averages from 3 to 10 times slower than that for LK-JM. 
However, the final tours are significantly better. For Uniform instances 
the limiting ratio to the HK bound appears to be about 1.5% versus 
the 1.9% for LK-JM and the average improvement over LK-JM on TSPLIB 
instances ranges from 0.2% to 0.5%. For the larger Clustered instances 
the improvement over LK-JM is roughly 1.3% and there is essentially no 
running time penalty. Although even bigger improvements are possi
ble using the repeated local search heuristics of the next section, those 
heuristics typically take even more time. Thus combining Lin-Kernighan 
with Christo-HK could sometimes be an appealing option. 

To complete the Lin-Kernighan picture, Table 9.13 covers Random 
Matrix instances. Since the results for LK-Neto do not cover the 10,000-
city instance, we also include a version of LK-JM with LK-search depth 
bounded at 50 (LK-JM-BD). (Note that because the triangle inequahty 
does not hold, Christo-HK starting tours are no longer relevant.) 
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Algorithm 

LK: JM 
JM-BD 
Neto 
ABCC 
ACR 

3opt: JM 

Percent Excess 
1,000 

3.5 
3.5 
3.0 
4.0 
5.3 

31.2 

3,162 
4.4 
4.8 
4.1 
6.0 
7.6 

42.6 

10,000 
5.9 
6.2 

-
9.0 

10.3 
62.7 

Time (Seconds) 
1,000 

1.2 
1.1 
1.2 
1.1 
0.3 
1.1 

3,162 
12.8 
12.4 
16.9 
12.6 
3.6 

12.3 

10,000 
161 
154 

-
151 
32 

150 

Table 9.13. Average percent excesses over the HK bound and normalized running 
times for Random Matrix instances of sizes from 1,000 to 10,000 cities. 

Once again LK-ACR is faster than 3opt-JM (in this case significantly 
so), but now it also finds much better tours. Its tours are however worse 
than those for LK-ABCC, and both produce significantly worse tours than 
LK-JM and LK-Neto. Once again it is not clear if any of this difference can 
be attributed to bounding the depth of the LK-search. Indeed, LK-Neto, 
with bounding, finds significantly better tours than the LK-JM, with or 
without bounding (for reasons unknown to us and in contrast to the re
sults for the geometric case). Running times for all the implementations 
except LK-ACR are comparable, being dominated by the time to read 
and preprocess the instance. As to the difficulty of this instance class 
in general, note that for all the implementations, the percentage above 
the Held-Karp bound again appears to be growing with Â  (possibly at 
a log Â  rate), something that doesn't happen for the geometric classes. 

We now turn to variants on basic Lin-Kernighan that involve more 
substantial changes to the basic design of the heuristic. 

Stem-and-Cycle Variants. These variants differ primarily in their 
choice of reference structure for the LK-search. Here the structure con
sists of a cycle with a path connected to one of its vertices, as described 
in more detail in Chapter 8. The implementation for which we report 
results is due to Rego, Glover, and Gamboa and is based on the heuristic 
described in [704]. It makes use of the 2-Level Tree tour representation, 
but does not use don't-look bits. (As we shall see, this probably exacts 
a severe running time penalty.) Variants using random starting tours 
(SCLK-R) or Boruvka starting tours (SCLK-B) yield roughly comparable 
tours, although the latter is usually at least twice as fast. 

Figure 9.10 shows the relative tour-quality performance on our geo
metric testbed for SCLK-B and LK-JM. Note that the two are consistently 
close, usually well within 1% of each other. Neither implementation 
has tours that are consistently better than the other's, although LK-JM 
wins more often than it loses. The normalized running time for SCLK-B 
ranges from 4 times slower than LK-JM on 1,000-city Clustered instances 
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SCLK-B vs LK-JM 
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Figure 9.10. Tour quality comparisons between the Rego-Glover-Gamboa implemen
tation of the Stem-and-Cycle variant of Lin-Kernighan with Boruvka starting tours 
and the Johnson-McGeoch implementation of basic Lin-Kernighan. 

to 1300 times slower on the 316,228-city Uniform instance (the largest 
on which SCLK-B was run). It is possible that incorporating don't-look 
bits into the implementation will make up much of this gap, but for now 
there does not seem to be any significant advantage to this approach 
over basic Lin-Kernighan. 

The Helsgaun Variant (Helsgaun). This variant, described in 
[446], offers several major innovations. First, the augmentation step 
in the LK-search is not a 2-Opt move but a sequential 5-Opt move. To 
keep running time under control, search at all levels is limited to length-5 
neighbor lists. These are constructed in an innovative fashion. 

We begin as if we were going to compute an estimate of the Held-
Karp bound using the Lagrangean relaxation approach of [444, 445] 
augmented with techniques from [230, 442]. This yields a vector of 
"TT-values" (TTI, . . . , TTJV) such that the minimum one-tree (spanning tree 
plus an edge) under the distance function (i7r(ci, Cj) = d{ci, Cj) + TT̂  + TTJ 
is a close lower bound on the Held-Karp bound. Based on this new 
distance function, the "a-value" a(i, j ) for each edge {Q,CJ} is defined 
to be the diff"erence between the length of the minimum one-tree (under 
dyr) that is required to contain {ci.Cj} and the length of the minimum 
unconstrained one tree (under ^7 )̂. Given the vector of TT-values, the 
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Figure 9.11. Tour quality comparisons between the Helsgaun variant on 
Kernighan and the Johnson-McGeoch implementation of basic Lin-Kernighan. 

Lin-

a-values for all edges can be computed in linear space and 0(N'^) time 
[446]. The neighbor list for Q then consists of the 5 cities Cj with smallest 
values of a[i^j). These are initially ordered by increasing a-value, but 
are subsequently dynamically reordered to give priority to edges shared 
by the current best tour and its predecessor. 

In addition, the implementation alternates between searching its "LK-
search-with-scqucntial-5-Opt-augmentations" neighborhood and search
ing a second neighborhood defined by a set of non-sequential moves that 
includes not only double-bridge 4-Opt moves but also some specially 
structured 5-Opt moves as well. Given the power of its search strategy, 
the implementation needs only to backtrack at the first (ti) level. For its 
starting tours it uses a special heuristic tha t exploits the a-values. The 
reader intc^n^sted in this and the other details of the heuristic is referred 
to Helsgaun's pajx^r [446]. The C source code for Helsgaun is currently 
available; from h t t p : / / w w w . d a t . r u c . d k / ~ k e l d / . 

Tlu; tour-cjuality results for this variant are impressive. See Figure 
9.11, which corri[)a,r(;s Helsgaun to LK-JM. Note that Helsgaun finds 
bcittc^r tours For a, huge; majority of the instances in our testbed, usu
ally \)()\,U)v by 1% or more for Uniform and TSPLIB instances, a large 
amount, in llio contcixt of the differences between LK-variants. The dif-
icnmco is (jvcni gr(ia,t(ir for our Random Matrix instances. The detailed 

http://www.dat.ruc.dk/~keld/
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Table 9.14- Results for the Helsgaun variant on Lin-Kernighan as compared to those 
for the Johnson-McGeoch implementation of basic Lin-Kernighan. 

averages are shown in Table 9.14, which indicates that for Random Ma
trices, Helsgaun finds tours that are essentially optimal. The table also 
reports on average running times, which show that Helsgaun pays a 
significant running time penalty for its improved tour quality. In some 
cases Helsgaun takes as much as 1,000 times longer than LK-JM, and 
its running time growth rate appears to be Q{N'^) versus the observed 
Q^^i.25^ rate for LK-JM. In certain apphcations such a price may be 
worth paying of course. The most active and interesting research on 
STSP heuristics today concerns how best to use a large amount of com
putation time to help narrow the small gap above optimal tour length 
left by Lin-Kernighan. In the next section we consider other ways of 
buying better tours by spending more time. 

3.6. Repeated Local Search Heuristics 
One way to invest extra computation time is to exploit the fact that 

many local improvement heuristics have random components, even if 
only in their initial tour construction. Thus if one runs the heuristic 
multiple times one will get different results and can take the best. Un
fortunately, as noted by many authors and aptly illustrated in [463], 
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the value of the straightforward repeated-run approach diminishes as 
instance size increases. 

A much more effective way to use repeated runs has received wide 
attention in the last decade. The idea is basically this: Instead of us
ing independently generated starting tours, derive the starting tours by 
perturbations of the output tours of previous runs. This idea was sug
gested by Baum in 1986 [93] and is in a sense implicit in the operation 
of the Tabu Search approach of Glover [369, 370]. However, its first 
effective reahzation in the context of the TSP is due to Martin, Otto, 
and Felten, who in [587, 588] proposed generating a new starting tour 
by perturbing the current best tour with a "kick" consisting of a random 
double-bridge 4-Opt move. Their original implementation used 3-Opt as 
the local search engine, but this was quickly upgraded to Lin-Kernighan 
in their own work and that of Johnson [460]. 

If the underlying Lin-Kernighan (or 3-Opt) variant uses don't-look 
bits, this approach has an additional advantage. At the end of a run 
of Lin-Kernighan, all the don't-look bits will typically be on since no 
improving moves have been found for any choice of t i . Performing one 
4-Opt move to get a new starting tour only changes the tour neighbors 
for at most 8 cities. This suggests that, instead of starting with all the 
don't-look bits off, as in a stand-alone run, we might want to start with 
the don't-look bits on for all but these 8 or fewer cities, i.e., we place only 
these cities in the initial priority queue of candidates for t i . In practice, 
this can lead to sublinear time per iteration if other data structures are 
handled appropriately, which more than makes up for any loss in the 
effectiveness of individual iterations. 

Martin, Otto, and Felten referred to their approach as "chained local 
optimization" since one could view the underlying process as a Markov 
chain. They also attempted to bias their choice of 4-Opt move toward 
better than average moves, and incorporated a fixed-temperature sim
ulated annealing component into the heuristic. Results for five descen
dants of this approach were submitted to the Challenge, differing both 
in the underlying local search heuristic used and in the methods used for 
generating the double-bridge kicks. (Variants using more elaborate kicks 
have been studied [205, 452], but none have yet proved competitive on 
large instances with the best of the heuristics presented here.) Together, 
these five include all the current top performers known to the authors 
for this region of the time/quality tradeoff space. None of the imple
mentations use simulated annealing, and the first three call themselves 
"Iterated" 3-Opt/Lin-Kernighan to mark this fact. 

1. Iterated 3-Opt (Johnson-McGeoch) (ISopt) [463]. This uses 
3opt-JM and random double-bridge kicks. 
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2. Iterated Lin-Kernighan (Johnson-McGeoch) (ILK-JM) [463]. 
This uses LK-JM-BD and random double-bridge kicks. 

3. Iterated Lin-Kernighan (Neto) (ILK-Neto) [626]. This uses 
LK-Neto with random double-bridge kicks. 

4. Chained Lin-Kernighan (Applegate-Bixby-Chvatal-Cook) 
(CLK-ABCC). This uses LK-ABCC and the sophisticated method for 
generating promising kicks described in [27]. 

5. Chained Lin-Kernighan (Applegate-Cook-Rohe) (CLK-ACR) 
[32]. This uses LK-ACR together with a new method of generated 
biased kicks based on random walks, with the number of steps in 
the random walk doubling after the A t̂h iteration. 

Given the huge running times for Helsgaun's variant on Lin-Kernighan, 
the above variants on Chained Lin-Kernighan can all perform many it
erations and still not take as much time as Helsgaun does. However, if 
one has time to spare, one can also perform the latter repeatedly. For 
this, Helsgaun [446] has devised a different way of exploiting informa
tion about previous runs. Instead of using a kick to perturb his current 
champion into a new starting tour, he uses his standard tour construc
tion heuristic to generate the new starting tour, but biases its choices 
based on the edges present in the current champion tour. He gets a per-
iteration speedup because he doesn't have to recompute the TT-vector and 
the a-values after the first iteration, although his running times remain 
substantial. We shall refer to this heuristic as Helsgaun-/c, where k is 
the number of iterations. 

Tables 9.15 and 9.16 summarize results for the various repeated-run 
heuristics described above. Results for ILK-Neto are omitted because 
of its similarity to the ILK-JM implementation and the fact that the 
results reported for it were less complete. As with the corresponding base 
implementations, ILK-JM and ILK-Neto seem to produce similar results, 
except that ILK-Neto is somewhat slower and does better on Random 
Matrices. The tables are divided into four sections, one for each class 
of instances in the Challenge testbed. Within each section, heuristics 
are ordered and grouped together according to the tour quality they 
provide. The grouping is somewhat subjective, but attempts to reflect 
performance over all instance sizes within a clgiss. Thus for example for 
Clustered instances (C) we group CLK-ABCC-N and I3opt-10N together 
even though the latter is much better for small N^ because it is worse for 
large N. These groupings are carried over from the tour quality table to 
the running time table, so that the most cost-effective heuristic in each 
group can be identified. 
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The performance of a repeated-run heuristic naturally depends on how 
many iterations are performed. In practice one may simply run for as 
many iterations as can be handled within some fixed time limit or until 
a satisfactory solution is reached, and several of these implementations 
were designed with this usage in mind. For a scientific study, however, 
one needs results that are more readily reproducible, and hence a combi
natorial stopping criterion is to be preferred. Here we bound the number 
of iterations by a function of the number Â  of cities. Typical bounds are 
N/10, N, or lOA ,̂ as indicated by the suffix on the heuristic's name in 
the tables. For comparison purposes, the tables also include the results 
for both LK-JM and Helsgaun. 

A first observation is that none of the heuristics in the table is consis
tently dominated by any other in both tour quality and running time. 
However, if running time is no object, then the the iterated versions of 
Helsgaun's heuristic appear to be the way to go. Although Table 9.15 
does not include rows for the optimal solution quality (which itself has 
a gap above the Held-Karp bound), the row for Helsgaun-N serves that 
purpose fairly well. The average excess for the optimal solution is known 
for all testbed instances with 3,162 or fewer cities, and all TSPLIB and 
Random Matrix instances with 10,000 cities or fewer. Helsgaun-N's av
erage excess is within 0.01% of this value in all these cases except for 
the "1,000-city" TSPLIB instances, for which it is 0.04% above the opti
mal excess. Moreover, for no instance in the Challenge testbed with a 
known optimal solution is the Helsgaun-N tour more than 0.18% longer 
than optimum. Much of this quality is retained by the iV/10-iteration 
version, which uses substantially less time and can feasibly be applied to 
larger instances (although for instances with 10,000 or fewer cities even 
Helsgaun-N never takes more than four hours of normalized running 
time, which should be feasible in many applications). Both variants 
have running time growth rates that appear to be Q{N'^-^) or worse, 
however, and so computers will have to be a lot faster before they can 
be applied to million-city instances. 

The basic Helsgaun heuristic is itself a strong performer in three of the 
four classes, although it does fall down seriously on Clustered instances 
and is probably not cost-effective compared to CLK-ACR-N on Uniform 
and TSPLIB instances. For Random Matrix instances, none of the other 
heuristics come close to Helsgaun and its iterated versions, and their 
running times are moreover quite reasonable. If there were ever a reason 
to solve instances like these in practice, however, optimization should 
be considered an option. Concorde was able to solve all the Random 
Matrix instances in our testbed to optimality using its default settings. 
The average normalized running times were also quite reasonable: For 
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Table 9.15. Tour quality results for repeated local search heuristics, with Helsgaun 
and LK-JM included for comparison purposes. 
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Average Normalized Running Time in Seconds 
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Table 9.16. Normalized running times for repeated local search heuristics. The "3M" 
column was omitted so the table would fit on a page. The missing entries are 1255 
seconds for LK-JM and 94700 seconds for CLK-ACR-N. 
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10,000 cities the normalized optimization time was 1,380 seconds, only 
marginally more than that for Helsgaun. 

At the other end of the spectrum, consider I3opt-10N. Although it 
does very poorly on Random Matrix instances, it finds significantly bet
ter tours than LK-JM for the other three classes, with its much greater 
running time balanced by the fact that it should be much easier to 
implement than any of the other heuristics in the table. Moreover, it 
substantially outperforms Helsgaun on large Clustered instances, beats 
CLK-ABCC-N for the smaller ones, and is fairly close to ILK-JM-. IN for 
Uniform and TSPLIB instances, with similar running times when Â  is 
large. However, if one looks at the details of its runs, it would appear 
that not much would be gained by providing I3opt more iterations. 
On average there were no further improvements in the last 15% of the 
lOA^ iterations. Thus it would appear that the tour quality achieved 
by ILK-JM-N, CLK-ACR-N and CLK-ABCC-ION is beyond the capabilities 
of ISopt. Note that the running time growth rate for I3opt-10N ap
pears to be 0(A/'^-^^), indicating that the use of don't-look bits is paying 
off asymptotically. A similar effect is observed for Lin-Kernighan based 
variants, and so faster computers will extend the range of these heuristics 
more readily than they will Helsgaun and its repeated-run variants. 

Turning to the Lin-Kernighan-based variants, we see the effect of the 
fact that ILK-JM is based on a more powerful but slower Lin-Kernighan 
engine than CLK-ABCC and CLK-ACR. Even though ILK-JM-N performs 
only one tenth as many iterations as CLK-ABCC-ION, the running times 
for the two are (roughly) comparable. So are the tour lengths, with 
the exception of the Clustered instances. Here ILK-JM-N finds distinctly 
better tours, possibly because of its use of longer neighbor hsts. As 
to CLK-ACR, note that CLK-ACR-N produces distinctly better tours than 
CLK-ABCC-N in all but the Uniform class (where they are comparable), 
so it is possible that results for CLK-ACR-ION, if we had them, would 
show better tours than ILK-JM-N, again in comparable time. Results 
for ILK-JM-ION are not included in the table for space reasons, but tend 
to yield an average tour-length improvement of 0.1% over ILK-JM-N for 
the three geometric classes (at the price of taking 10 times as long). For 
Random Matrix instances the improvement is closer to 1%. 

At some point, however, simply running for more iterations may not 
be the best use of computation time. In our next section we consider 
other possibilities for getting the last e improvement in tour quality: 
heuristics that use Chained Lin-Kernighan as a subroutine. But first, 
a brief digression to follow up our earlier remark about the relation 
between Tabu Search and Chained Lin-Kernighan. 
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Tabu Search. In its simplest form, a Tabu Search heuristic operates 
as follows. As with other local search variants, it assumes a neighbor
hood structure on solutions. Given the current solution, we find the the 
best neighbor (or the best of a random sample of neighbors) subject to 
certain "Tabu" restrictions needed to avoid cycling. One then goes to 
that neighbor, whether it is an improving move or not. Note that in effect 
this breaks the search into alternating phases. First we make improving 
moves until a local optimum (or at least an apparent local optimum) is 
found, then we perform a "kick" consisting of one or more uphill moves 
until we reach a solution from which we can once again begin a descent. 
A full Tabu Search heuristic is usually much more complicated than this, 
using various strategies for "diversification" and "intensification" of the 
search, as well as parameters governing lengths of Tabu lists and "as
piration levels," etc., for which see [369, 370]. However, the underlying 
similarity to chained local optimization remains. 

And note that, in the case of the STSP at least. Tabu Search comes 
with extra overhead: Whereas in most of the local search irnplementa-
tions studied above, one performs one of the first improving moves seen, 
in a Tabu Search heuristic one typically must generate a sizable collection 
of moves from which the best is to be picked. This perhaps partially ex
plains the results observed for the one collection of Tabu Search variants 
submitted to the challenge, implemented by Dam and Zachariasen [238]. 
Their implementations allow for the possibility of using different neigh
borhood structures for the downhill and uphill phases with the choices 
being the 2-Opt neighborhood, the double bridge neighborhood (DB), the 
standard LK-search neighborhood (LK), and the Stem-and-Cycle variant 
on it, called "flower" in [238] (SC). Interestingly, the best tours are most 
often found by the variants closest to Chained Lin-Kernighan: those that 
use standard LK-search or the Stem-and-Cycle variant for the downhill 
phase and double-bridge moves for the uphill phase, with the LK-search 
variant being substantially faster. 

Unfortunately the running times even for this version are sufficiently 
slow that it is almost totally dominated by ILK-JM-N and CLK-ACR-N. 
The latter almost always finds better tours and averages between 35 
and 200-h times faster (normalized running time) depending on instance 
class and size. Details can be viewed at the Challenge website. Although 
the Tabu Search implementations did not use all the available speedup 
tricks and is not as highly optimized as ILK-JM-N and CLK-ACR-N, it 
seems unlikely that more programming effort would bridge this gap. 



432 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

3.7. Using Chained LK as a Subroutine 
Just as we were able to get improved results out of Lin-Kernighan by 

using it as a subroutine in Chained Lin-Kernighan, one might consider 
improving on Chained LK by using it in more complicated procedures. 
One simple possibility would be to use Chained LK to generate starting 
tours for a second local search heuristic. Given how effective Chained 
LK already is, the second heuristic would probably need a neighborhood 
structure that is quite different from that used by Chained LK. Balas 
and Simonetti have proposed a likely candidate in [80]. 

Balas and Simonetti Dynamic Programming. This approach 
starts by identifying a home city ci and without loss of generality rep
resents all tours as ordered sequences of the cities starting with ci. For 
any fixed fc, we say that such a tour T' is a k-bounded neighbor of a 
tour r = c^[i],c^i2]i • • •, c^[N] if for no i, j with i> j + k does city ĉ [̂ ] 
occur after c^^^^ in T'. Note that in this neighborhood structure, two 
tours can be neighbors even if they have no edges in common. This is 
in sharp contrast to the k-Opt neighborhood structure, in which neigh
boring tours differ in at most k edges. Moreover, the new neighborhood 
can be searched much more effectively. For each k there is a linear-time 
dynamic programming algorithm that for any tour T finds its best k-
bounded neighbor [80]. The running time is exponential in fc, but this 
is not a major problem for small k. One thus can use this algorithm 
to perform steepest-descent local search under the /c-bounded neighbor
hood structure. 

Simonetti submitted results to the Challenge using this approach with 
k G {6,8,10} and with CLK-ABCC-N used to generate starting tours. The 
combination was run on all benchmark instances with one million or 
fewer cities except the 10,000-city Random Matrix instance. Improve
ments over the starting tour were found on 20 of these 87 instances when 
fc = 6, on 22 when fc = 8 and on 25 when k = 10. On larger instances, 
improvements were found at a significantly higher rate. For problems 
over 30,000 nodes, improvements over the starting tour were found on 11 
of 13 instances when using fc = 6, and on 12 of 13 instances with k = 8 
and 10. Improvements were small, however. Even for k = 10 there were 
only six improvements larger than 0.01% and only one larger than 0.02%. 
This was an improvement of 0.07% for r l l 323 and was already found 
with k = 6. In a sense this last improvement is quite substantial, since it 
reduced the tourlength from 0.60% above optimum to 0.53%. Moreover, 
even tiny improvements can be worthwhile if they can be obtained rel
atively inexpensively, which in this case they can. For A: == 8 the added 
overhead for applying this algorithm to the tour output by CLK-ABCC-N 
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is minimal, ranging from 5 to 20%, and even for k = 10 the total run
ning time was increased by at most a factor of 2.4. Thus this approach 
might make a worthwhile low-cost general post-processor to any heuris
tic, especially for the larger instances where it appears to be more suc
cessful. The code is currently available from Simonetti's TSP webpage, 
h t t p : //www. con t r ib . andrew. emu. edu /~ne i l s / t sp / index .h tml . 

The second heuristic we cover also uses Chained LK to generate start
ing tours, but in a more sophisticated framework. 

A Multi-Level Approach (Walshaw [818]). The idea is to recur
sively apply Chained LK (or any other local search heuristic) to a smaller 
"coalesced" instance in order to generate a starting tour for the full in
stance. A coalesced instance is created by matching nearby cities and 
requiring that the edge between them be included in all generated tours 
{fixing the edge). If the instance to be coalesced already has fixed edges, 
then the only cities that can be matched must have degree 0 or 1 in the 
graph of fixed edges and can't be endpoints of the same path in that 
graph. Note that a coalesced instance containing a fixed path can be 
modeled by a smaller instance in which that path is replaced by a sin
gle fixed edge between its endpoints and the internal cities are deleted. 
Starting with the original instance, we thus can create a sequence of 
smaller and smaller instances by repeatedly applying this approach un
til we reach an instance with four or fewer cities. 

Having constructed this hierarchical decomposition, we then proceed 
as follows, assuming our base heuristic has been modified so that it al
ways outputs a tour containing all fixed edges. We start by applying 
the heuristic to the last (smallest) instance created, using the heuristic's 
native starting tour generator. Thereafter, as we progress back up the 
hierarchy, we use the result of running the heuristic on the previous in
stance as the starting tour for the current instance. We end up running 
the base heuristic G(logA^) times, but most of the runs are on small 
instances, and overall running time is no more than 2 to 3 times that 
for running the base heuristic once on the full instance. See [818] for 
more details, including the geometry-based method for matching cities 
during the coalescing phase. Walshaw submitted results for two instan
tiations of the Multi-Level approach. The first (MLLK) used LK-ABCC as 
its base heuristic and the second (MLCLK-N) used CLK-ABCC-N. The base 
heuristics were forced to obey fixed-edge constraints by setting the costs 
of required edges to a large negative value. 

MLLK could well have been discussed in the previous section. Al
though it can't compete with CLK-ABCC-N on average tour quality, for 
large instances it is 15 to 35 times faster, and it did find better tours 
for a significant number of Clustered instances. When compared to 
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LK-ABCC, it found better tours on average for all three geometric classes, 
with the advantage averaging 3% for Clustered instances. MLCLK-N did 
not obtain significant tour-length improvements over its base heuristic 
(CLK-ABCC-N) for Uniform instances, but it did find better tours for 
over half the TSPLIB instances and almost all the Clustered instances. 
Its tours averaged 1% better for this latter class. 

The two approaches considered so far in this section needed little more 
than twice the time for running Chained LK. In the remainder of the 
section, we consider what one might do if one wants even better tours 
and is wilhng to spend substantially more computational resources to 
get them. Currently the people willing to pay this price are mainly re
searchers interested in testing the ultimate limits of heuristic techniques 
and in generating better upper bounds on unsolved testbed instances, 
but this is an active community. Work in this area has also followed the 
paradigm of using Chained LK as a subroutine, but now the key factor 
being exploited is the randomization inherent in the heuristic. 

Multiple Independent Runs. Chained Lin-Kernighan is a ran
domized heuristic, not only because of possible randomization in its 
starting tour generation, but also because the kicks are randomly gen
erated. If one runs it several times with different seeds for the random 
number generator, one is likely to get different tours. This fact can be 
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Figure 9.12. Tour quality comparisons between taking the best of ten runs of 
CLK-ABCC-N and taking the result of a single run of CLK-ABCC-ION. 
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exploited once one reaches the point where added iterations no longer 
seem to be helping, that is, it might be more effective to take the best of 
ten A^-iteration runs instead of just performing one lOA^-iteration run, 
which would take roughly the same time. See Figure 9.12, which for all 
the instances in our testbeds with 100,000 or fewer cities compares the 
best tour length over ten runs of CLK-ABCC-N (a composite heuristic we 
shall denote by CLK-ABCC-N-blO) with the tour length for one run of 
CLK-ABCC-ION. Although the "best of ten" strategy falls down for Ran
dom Matrix instances, it never loses by much on any instance from the 
other three classes, and it wins by significant amounts on many of the 
smaller Clustered and TSPLIB instances. 

Note that taking the best of ten runs of a heuristic may not be enough 
to make up the gap between that base heuristic and a better heuristic. 
For example, Walshaw's Multi-Level Approach using CLK-ABCC-N does 
even better on Clustered instances than does CLK-ABCC-N-blO and takes 
only 1/5 as much time. Furthermore, Helsgaun's variant on Chained LK 
is so good that, even with just 0.1 Â  iterations it consistently outperforms 
CLK-ABCC-N-blO, as shown in Figure 9.13. Moreover, Helsgaun-.IN is 
typically faster for the smaller instances, although its running time grows 
much more rapidly with N, so that by the time one reaches 30,000 
cities it is more than 10 times slower than the best-of-ten approach. 
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This doesn't, however, totally rule out the value of the simple best-
of-ten approach. The best of ten runs of Helsgaun-.IN might be an 
interesting competitor for Helsgaun-N, assuming the running time is 
available. There are, however, more creative approaches to exploit the 
randomization involved in our heuristics. 

Tour Merging (Applegate, Bixby, Chvatal, and Cook [27]). This 
approach is based on the observation that tours that are very close to 
optimal share many common edges. Moreover, if one takes the union of 
all the edges in a small set of such tours, one typically obtains a graph 
with low "branch-width," a graph parameter introduced by Robertson 
and Seymour [724] that in a sense quantifies how "treehke" a graph is. 

This can be exploited algorithmically as follows. First, although it 
is NP-hard to determine the precise branch-width of a graph, there are 
effective heuristics for finding near-optimal branch-width decompositions 
of low branch-width graphs. Second, there is a dynamic programming 
algorithm due to Cook and Seymour [208] that, given an edge-weighted 
Hamiltonian graph G and a branch decomposition for it with branch-
width A:, finds the shortest Hamiltonian cycle in G in time linear in N. 
The running time is exponential in k but is quite feasible for small values. 
Thus one can typically take the results of several runs of Chained LK and 
find the optimal tour contained in the union of their edges. During the 
last few years, this technique has helped Applegate, Bixby, Chvatal, and 
Cook solve many previously unsolved TSPLIB instances. Note that in this 
approach one needn't restrict oneself to Chained LK tours. Applegate et 
al. typically performed many tour-merging runs, often using the result of 
one run as one of the tours to be merged in a subsequent run. Moreover, 
the recent solution of dl5112 was aided by improved upper bounds that 
were obtained by applying tour-merging to Iterated Helsgaun tours in 
addition to Chained LK tours. 

Although tour-merging has most typically been used in a hands-on 
fashion, with manual choice of tours to be merged, etc., it is possible 
to run it in a stand-alone manner. Cook submitted results to the Chal
lenge for a heuristic of this sort (Tourmerge), in which the tour-merging 
process is applied to the results of ten runs of CLK-ABCC-N. Five runs of 
Tourmerge were performed on the set of all testbed instance with fewer 
than 10,000 cities. The heuristic was not always successful. For none 
of the runs on Random Matrix instances did the combined graph for 
the 10 tours have low enough branch-width for tour-merging to be feasi
ble. Similar failures occurred in all runs on the TSPLIB instances u2319, 
fnl4461, and pla7397 and in one or two runs on each of the 3162-city 
Uniform instances. Nevertheless, results were generated for most of the 
instances attempted and were substantially better than those for sim-
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ply taking the best of the ten runs of CLK-ABCC-N. Moreover, if we take 
the best of the five tour-merging runs (a composite heuristic we shall 
denote by Tourmerge-b5), we now become competitive with Helsgaun's 
heuristic, even if the latter is allowed N rather than 0.1 AT iterations. 

Figure 9.14 compares the results of Tourmerge-b5 and Helsgaun-N 
on all instances for which Tourmerge-b5 generated tours. Note first the 
much narrower range in differences. Tourmerge-b5 is never more than 
0.05% worse (when it actually produces a solution) and is never more 
than 0.20% better. This is in comparison to the -4 .5% to +1.5% range 
in Figure 9.13. The biggest variation is on TSPLIB instances, where 
Tourmerge-b5 does better more often than it does worse. 

The normalized running time for performing all five tour-merging runs 
can however be substantially worse than that for one run of Helsgaun-N, 
typically some 5 times slower but occasionally as much â  100. (For the 
instances where some of the runs had to be aborted because of high 
branch-width, no times were reported, so we estimated the running time 
for the failed run as the average of those for the successful runs.) More
over, for 14 of the 54 instances on which Tourmerge-b5 was successfully 
run, its normalized time was greater than that for finding the optimal so
lution and proving optimality using Concorde's default settings. In five 
cases Concorde was faster by a factor of 4 or more. (Helsgaun-N was 
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slower than Concorde-optimization on only two instances.) Neverthe
less, the time for Tourmerge-b5 would probably be manageable in many 
applications. With the exception of the 3,162-city Uniform instances, 
no instance with less than 10,000 cities required more than an hour of 
normalized time, and even the slowest 3,162-city instance took just 16 
hours (and for this instance Tourmerge-b5 found an optimal solution, 
whereas full optimization via Concorde under default settings was still 
far from complete when terminated after several days). 

The fact that neither Tourmerge-b5 nor Helsgaun-N beats the other 
on all instances suggests a final "heuristic" for getting improved results 
at the cost of increased running times: Run both and take the best tour 
found. Better yet, run both plus the several other effective heuristics 
from this and the previous section and take the best tour found. Table 
9.17 summarizes how that approach would work on the subset of the 71 
Challenge testbed instances for which optimal solution values are known, 
using the four heuristics Tourmerge-b5, Helsgaun-N, ILK-JM-ION, and 
ILK-JM-N-blO (the best of ten runs of ILK-JM-N). 

Running times for large instances would of course be huge, but this 
approach might well be the method of choice when Concorde is unsuc
cessful in optimizing within the large number of hours or days one is 
willing to spend. Recall from Table 9.1 that for a significant subset of 
the instances with fewer than 10,000 cities Concorde under its default 
settings took more than 100 (normalized) hours if it succeeded at all, 
and it failed for all our geometric instances with more than 4,000 cities. 

4. Conclusions and Further Research 
In this chapter we have discussed a wide variety of heuristics occupying 

many positions on the tradeoff curve for tour quality and running time. 
Moreover, we have compared their performance on a wider range of 
instance types and sizes than in previous studies. In order to get such 
broad coverage, however, we have had to accept some compromises, and 
it is appropriate to remind the reader about these. 

First, for many of the codes we cover, the results we include come 
from unverified reports submitted by the implementers, based on runs 
on a variety of machines. As discussed in Section 2.2, our methodology 
for normalizing reported running times is necessarily inexact. Second, 
as seen in many places in this chapter, two implementations of the same 
heuristic can have markedly different running times, even on the same 
machine, depending on the data structures and coding expertise used. 
For local search heuristics, even the tour lengths can differ depending 
on implementation choices. Thus the conclusions we draw are often as 
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C l k . l 
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r l l304 
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n r w l 3 7 9 
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u l 4 3 2 
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d l 6 5 5 
v m l 7 4 8 
u l 8 1 7 
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Table 9.17. Best results obtained for all testbed instances whose optimal solutions are 
known. Four heuristics sufficed to generate these results: Helsgaun-N (abbreviated in 
the table as h), Tourmerge-b5 (m), ILK-JM-ION (ilO), and best often runs of ILK-JM-N 
(ib). Where more than one heuristic found the best solution, we list all that did. 
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much about the implementation as about the heuristics implemented. 
Finally, most of our results only cover one run of the given heuristic on 
each instance, which for heuristics that incorporate randomization can 
lead to very noisy data. For this reason we have tried to concentrate on 
averages over similarly sized instances and on observable patterns in the 
data, rather than results for particular instances. 

Time constraints have also had their effect, forcing us to concentrate 
on just four instance classes with an emphasis on 2-dimensional geo
metric instances, the type that occur most often in practice. We also 
have not considered in detail the dependence of heuristic performance 
on parameter settings (for example the lengths of neighbor lists, the 
choice of starting tour, or the nature of the "kick" in Chained Lin-
Kernighan). Such questions should more naturally fall in the domain 
of individual papers about the heuristics in question, and we hope the 
Challenge testbeds and benchmarks will facilitate such work in the fu
ture. We intend to provide just such detailed experimental analysis for 
the Bentley and Johnson-McGeoch implementations discussed here in 
the forthcoming monograph [461]. As mentioned earlier, we also plan to 
maintain the Challenge website indefinitely as a resource and standard 
of comparison for future researchers. 

If the reader is to take one lesson away from this chapter, it should 
be the high level of performance that can be attained using today's ex
isting heuristics, many of them with publicly available implementations. 
A second major lesson concerns the large extent to which a heuristic's 
performance (both running time and tour quality) can depend on im
plementation details, as we have seen many times in this chapter. 

As a final lesson, let us review once more the wide range of trade-offs 
to which we referred above. Recall that we have already provided one 
illustration of this in Section 3. In that section. Figure 9.3 and Table 
9.2 showed the range of performance possibilities for Random Uniform 
Geometric instances. For such instances and most heuristics, the percent 
excess over the Held-Karp bound appears to approach a rough limiting 
bound, which typically has almost been reached by the time Â  = 10,000. 
The table and figure presented average results for selected heuristics on 
Uniform instances of that size, covering a wide range of behavior. 

Results can be more instance-dependent for structured instances such 
as those in TSPLIB. To put the earlier table in perspective (while par
tially ignoring the above-mentioned proviso about drawing detailed con
clusions from single runs on individual instances), we conclude our dis
cussion with Table 9.18, which considers the currently largest solved 
TSPLIB instance dl5112, and gives both the percentage excess above 
optimum and the normalized running time obtained for it by all the key 
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implementations covered in the chapter, as well as a few related ones. 
The abbreviated heuristic names used in the table and elsewhere in this 
chapter are explained in Table 9.19. Analogous tables for other instances 
can be generated from the Comparisons page at the Challenge website. 

Acknowledgment. The authors thank Jon Bentley, Gregory Gutin, 
and Cesar Rego for helpful comments on drafts of this chapter and all 
the Challenge participants for their participation and feedback. 
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Percent 
Above 

Op t ima l 

-0.5215 
0.0000 
0.0186 
0.0236 
0.1051 
0.1266 
0.1358 
0.1744 
0.1810 
0.1952 
0.1988 
0.2013 
0.2114 
0.2259 
0.2447 
0.3359 
0.4451 
0.5232 
0.6138 
0.6282 
0.6464 

0.6747 
0.7579 
0.9739 
1.0929 
1.1038 
1.1418 
1.1443 
1.1620 
1.1975 
1.2170 
1.2549 
1.2678 

1.3357 
1.3422 
1.4427 
1.8178 
1.8456 
1.8761 
2.1715 
2.3504 
2.5974 

1 2.7254 

Running 
T ime 

(Seconds) 

90.13 

-
26322.93 

7896.88 
1515.99 

980.66 
8738.10 
1046.75 

102.55 
154.79 

3408.07 
65.36 
89.59 

542.61 
332.16 
108.29 

21.53 
42.07 

6.55 
69.52 

112.96 

15.64 
38531.28 

2203.88 
4.96 
3.03 
5.70 

11.74 
2.98 

35660.20 
2.61 
4.23 

498.12 
134.58 

2.01 
4.97 
2.38 
1.53 
1.46 
1.90 
2.73 

136.37 

1.70 

Heurist ic 1 

HeldKarp 1 
Optva l 
Helsgaun-N 
H e l s g a u n - . I N 
Helsgaun 
CLK-ABCC-ION 
ILK-JM-ION 
CLK-ABCC-N-blO 
CLK-ABCC-N 
MLCLK-N 
ILK-JM-N-blO 
CLK-ACR-N 
MLCLK-.5N 
ILK-Neto-N 
ILK-JM-N 
ILK-JM-.3N 
MLCLK-.IN 
ILK-JM-.IN 
CLK-ACR-1000 
ILK-Neto- . IN 
I3op t -10N 

LK-HK 
Tabu-SC-SC 
Tabu-LK-DB 
LK-JM-40 
LK-JM-20 
LK-Neto-20 
LK-Neto-40 
LK-JM-20a 
Tabu-SC-DB 
LK-JM-10 
LK-Neto-12 

SCLK-R 

SCLK-B 
CLK-ACR-100 
MLLK 

LK-ABCC 

CLK-ACR-10 

LK-ACR 

3opt -JM-20 
3opt - JM-40 
Hyper-4 
3opt -JM-10 

Percent 
Above 

Opt imal 

2.8124 
3.0729 
3.1389 
3.7261 
4.0234 
4.2518 
4.2704 
4.3852 
4.5620 
4.7515 
5.1630 
5.2668 
6.2298 
8.9277 

10.4116 
10.7438 
11.0510 
11.7303 
11.8092 
12.9387 
13.6291 

13.6803 
13.6803 
14.5281 
14.7968 
15.9946 
17.1529 
17.3106 
22.3039 
22.3094 
23.1644 
24.6647 

28.5153 
31.0319 
32.0524 
36.1238 
37.0620 
42.1799 
42.8104 
42.8104 
49.2882 
59.2344 

-

Running 
T ime 

(Seconds) 

JW 
16.12 

2773.49 
1.94 
2.53 
1.73 
1.81 
2.53 
2.47 

325.66 
1.56 
1.81 

14.14 
1.65 
0.73 

2578.46 
0.41 
4.67 
2.33 
3.38 
1.65 

1.13 
0.17 
0.26 
0.44 

31.09 
1.31 
1.38 
2.84 
2.01 
0.49 
0.14 

1.59 

100.03 
0.06 
0.55 
0.60 
1.77 
0.05 
0.07 
0.17 
0.26 

0.03 

Heurist ic 

3op t -B 
Hyper -3 
GENIUS-10 
2 . 5 o p t - B 
2op t - JM-40 
2op t - JM-20 
2op t - JM-20a 
2op t - JM-40a 

Hyper -2 
GENI-10 
2op t - JM-10 
2 o p t - B 
Chr i s to -HK 
C h r i s t o - G 
AppChr i s to 
CCA 
S a v i n g s 
FI 
FA+ 
RI 

C h r i s t o - S 
RA"^ 

Q-Boruvka 
Boruvka 
Greedy-ABCC 
L i t k e - 1 5 
CI 
CHCI 
NI 
NA+ 
DENN 

NN-ABCC 

NA 

Karp-20 
S p a c e f i l l 
DblMST 
RA 
FA 
S t r i p 
S t r i p 2 
FRP 
Karp-15 
Read 

Table 9.18. Tour quality and normalized running times for TSPLIB instance dl5112. 
General conclusions should not be drawn from small differences in quality or time. 
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Abbrev Short Description of Heuristic 

AppChristo Approximate Christofides (JM) 
{Q-}Boruvka Concorde's implementation of (Quick) Boruvka 
CCA The Golden-Stewart CCA heuristic (JM) 
{CH}CI The JM implementations of (Convex Hull) Cheapest Insertion 
CLK-X'k The X version of Chained LK with k iterations 
Christo-{S,G} The Christofides heuristic with {standard,greedy} shortcuts (JM) 
Christo-HK Christofides using Held-Karp one-trees instead of MST's (Rohe) 
Concorde Concorde used for optimization with default settings 
DblMST The Double Minimum Spanning Tree heuristic (JM) 
FJIjAjA"^} Bentley's farthest {insertion,addition,augmented addition} 
FRP Bentley's implementation of the Fast Recursive Partitioning heuristic 
GENI{US}-p The Gendreau-Hertz-Laporte GENI(US) heuristic with p neighbors 
Greedy{-X} The X implementation of Greedy (Default: JM implementation) 
HeldKarp Held-Karp bound as computed by Concorde 
Helsgaun{-/c} Helsgaun's heuristic (with k iterations) 
Hyper-/c The Burke-Cowling-Keuthen implementation of /c-Hyperopt 
I3opt-/c The JM implementation of Iterated 3-Opt with k iterations 
ILK-X-k The X version of Iterated LK with k iterations 
Karp-n Karp's Partitioning heuristic for maximum subproblem size k (JM) 
kopt-X The X implementation of fc-Opt, k G {2, 2.5,3} 
/copt-JM{-p} The JM implementation of /e-Opt with p quad neighbors 
Litke-/c Litke's Clustering heuristic for maximum subproblem size k (JM) 
LK-X-p The X version of basic Lin-Kernighan with p quad neighbors 
LK-X{-BD} The X version of basic Lin-Kernighan with default neighbor lists 

(and bounded depth LK-searches if that is not the default) 
LK-HK Lin-Kernighan using Christo-HK starts (Rohe) 
MLCLK-/c Walshaw's implementation of Multi-Level /c-iteration Chained LK 
MLLK Walshaw's implementation of Multi-Level Lin-Kernighan 
N{I,A,A'''} Bentley's nearest {insertion,addition,augmented addition} 
NN{-X} The X implementation of Nearest Neighbor (Default: B) 
Optval Optimal solution lengths (from a variety of sources) 
R{I,A,A'*'} Bentley's random {insertion,addition,augmented addition} 
Read Time to simply read the instance using standard I/O routines 
Savings The JM implementation of the Clarke-Wright "Savings" heuristic 
SCLK-{R,B} The Glover-Rego implementation of a Stem-and-Cycle variant of Lin-

Kernighan with {random,boruvka} starts 
Spacef i l l The Bartholdi-Platzmann implementation of Spacefilling Curve 
Strip{2} The JM implementation of the Strip (2-Way Strip) heuristic 
labu-D-U The Dam-Zachariasen implementation of Tabu Search using the D 

(U) neighborhood for downhill (uphill) moves 
Tourmerge The tour-merging heuristic of ABCC applied to 10 runs of CLK-ABCC-N 

Table 9.19. Abbreviated names used in this chapter. The symbol X stands for an 
abbreviation of the implementers' names: "ABCC" for Applegate, Bixby, Chvatal, and 
Cook (Concorde), "ACR" for Applegate, Cook, and Rohe, "B" for Bentley, "JM" for 
Johnson-McGeoch, "Neto" for Neto, and "R" for Rohe. Adding the suffix "-bn" to 
any name means that one is taking the best of n runs. 


	Chapter 9 EXPERIMENTAL ANALYSIS OFHEURISTICS FOR THE STSP
	1. Introduction
	2. DIMACS STSP Implementation Challenge
	2.1. Testbeds
	2.2. Running Time Normalization
	2.3. Evaluating Tour Quality

	3. Heuristics and Results
	3.1. Heuristics Designed for Speed
	3.2. Tour Construction by Pure Augmentation
	3.3. More Complex Tour Construction
	3.4. Simple Local Search Heuristics
	3.5. Lin-Kernighan and Variants
	3.6. Repeated Local Search Heuristics
	3.7. Using Chained LK as a Subroutine

	4. Conclusions and Further Research




