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!• Background on Heuristic Methods 
The Traveling Salesman Problem (TSP) is one of the most illustrious 

and extensively studied problems in the field of Combinatorial Opti­
mization. Covering just the period from 1993 to mid-2001 alone, the 
web databases of INFORMS and Decision Sciences report more than 
150 papers devoted to the TSP. The problem can be stated in graph 
theory terms as follows. Let G — (V, A) be a weighted complete graph, 
where F = {t ' l , . . . , t'n} is a vertex (node) set and A = {{vi^Vj)\vi^ Vj G 
V^i 7̂  j} is an edge set. C = [c{vi^Vj)] is a n * n matrix associated 
with A, where c{vi^Vj) is a non-negative weight (distance or cost) on 
edge (vi^Vj) if there is an edge between Vi and Vj. Otherwise c{vi^Vj) is 
infinity. 

The problem is said to be symmetric (STSP) if c{vi^ Vj) = c{vj^Vi) for 
ah (vi^Vj) G A, and asymmetric (ATSP) otherwise. Elements of A are 
often called arcs (rather than edges) in the asymmetric case. The STSP 
(ATSP) consists of finding the shortest Hamiltonian cycle (circuit) in 
G, which is often simply called a tour. In the symmetric case, G is 
an undirected graph, and it is common to refer to the edge set E = 
{(vi^Vj)\vi^Vj e V^i < j} in place of A. The version of STSP in which 
distances satisfy the triangle inequality {c{vi^Vj) + c{vj^Vk) > c{vi^Vk) 
for aU distinct Vi^Vj^Vk G V') is perhaps the most-studied special case of 
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the problem, notably including the particular instance where V is a set 
of points in a 2-dimensional plane and c{vi^ Vj) is the Euclidean distance 
between Vi and Vj. 

Important variants and extensions of the TSP arise in the setting 
of vehicle routing (see Laporte and Osman [539]). A variety of other 
interesting problems not directly related to routing can also be modeled 
as TSPs, as is shown in the survey of Laporte [533]. Distances or costs 
that are symmetric and satisfy the triangle inequality are predominantly 
encountered in such applications. This chapter mainly deals with the 
STSP and for the sake of simplicity we will generally refer to the problem 
as the TSP. 

The TSP can be formulated as an integer linear programming (ILP) 
model, and a number of exact algorithms are based on such a formu­
lation. However, there are also some advantages to representing the 
TSP directly as a permutation problem without transforming it into an 
ILP, and we will focus on such a direct representation. Let n denote a 
cyclic permutation mapping so that the sequence i, 7r(^),7r?^N,... ,7r?7^ 
for i 6 Â  = { 1 , . . . , n} identifies a permutation of the elements of A ,̂ 
where TT/̂ X̂ = i. Let 11 be the set of all such mappings. Thus, solving a 
particular instance of the TSP consists of finding a cycle permutation 
(tour) TT* G n such that 

n—1 n—\ 

E Ci^* — m i n > ^ CiTT,.. 

The TSP is one of the classical instances of an NP-complete problem, 
and therefore there is no polynomial-time algorithm able to determine 
TT* for all possible instances of the problem (unless P=NP). Perhaps be­
cause of the simplicity of its statement the TSP has been a key source 
of important developments in NP-completeness theory (see e.g., John­
son and Papadimitriou, 1985). It has also been the subject of several 
polyhedral studies (see Chapters 2 and 3). As a result, although P=NP 
continues to be an improbable hypothesis, and hence a polynomial-time 
algorithm for the TSP is not likely to be discovered, current specialized 
TSP optimization codes have been solving general TSP instances involv­
ing about three-thousand vertices. Specifically, the Concorde package of 
Applegate, Bixby, Chvatal and Cook [29] solved all instances up to 3200 
cities in the 8̂ ^ DIMACS TSP Challenge testbed (Johnson, McGeoch, 
Glover, and Rego [462]) using its default settings, except one 3162-city 
random uniform Euclidian instance for which non-default twiddling was 
necessary to find the optimal tour. 
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State-of-the-art exact solution methods (which guarantee an optimal 
solution if run long enough) can typically solve problems involving about 
1000 vertices in reasonable computation time, but encounter significant 
difficulties in solving larger problems, where they generally require com­
putational effort that exceeds the realm of practicality. Even for modest-
size problems, exact methods require substantially greater computation 
time than the leading heuristic methods, which in addition are capa­
ble of finding optimal or very-close-to-optimal solutions for instances far 
larger than those reasonably attempted by exact methods. An extensive 
empirical analysis of computational results and algorithmic performance 
for several classes of TSP heuristics is described in Chapter 9. 

The aim of this chapter is to present an overview of classical and 
modern local search procedures for the TSP and discuss issues involved 
in creating more efficient and effective algorithms. Heuristic algorithms 
for the TSP can be broadly divided into two classes: tour construction 
procedures^ which build a tour by successively adding a new node at 
each step; and tour improvement procedures^ which start from an initial 
tour and seek a better one by iteratively moving from one solution to 
another, according to adjacency relationships defined by a given neigh­
borhood structure. (Speciahzed tour construction heuristics are treated 
in Chapter 9.) Combined, such approaches yield composite procedures 
that attempt to obtain better solutions by applying an improvement 
procedure to a solution given by a construction procedure. Often, the 
success of these algorithms depends heavily on the quality of the initial 
solution. Iterated variants of construction and improvement procedures 
provide a natural means of elaborating their basic ideas, as subsequently 
discussed. 
Recent Developments in Overview. Recent progress in local search 
methods has come from designing more powerful neighborhood struc­
tures for generating moves from one solution to another. These advances 
have focused on compound neighborhood structures, which encompass 
successions of interdependent moves, rather than on simple moves or 
sequences of independent moves. On the other hand, the more sophis­
ticated neighborhood structures entail greater numbers of operations, 
and therefore an increased effort to perform each step of the algorithm. 
Thus, several studies have investigated strategies to combine neighbor­
hoods efficiently, and thereby reduce the computational effort of gen­
erating trajectories within them. These methods are generally variable 
depth methods, where the number of moves carried out at each iteration 
is dynamically determined, and usually varies from one iteration to the 
next. A common characteristic of these methods is a look ahead process 
where a relatively large sequence of moves is generated, each step leading 
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to a different trial solution, and the compound move that yields the best 
trial solution (from the subsequences beginning with the initial move) 
is the one chosen. Two types of variable depth neighborhood structures 
have become prominent: 

(1) connected neighborhood structures as represented by: 

a. Variable Neighborhood Search (VNS) (Mladenovic and Hansen 

[602], Hansen and Mladenovic [433, 432]), 

b . Sequential Fan (SF) methods (Glover and Laguna [379]), 

c. Filter and Fan (FF) methods (Glover [376]); 

(2) disconnected neighborhood structures as represented by: 

a. Lin-Kernighan (LK) methods (Lin and Kernighan [563]), 

b . Chained and Iterated LK methods (Martin, Otto and Felten 
[588], Johnson and McGeogh [463], Applegate, Cook and 
Rohe [32]), 

c. Ejection Chain (EC) methods (Glover [372], [374]). 

In the TSP setting, connected neighborhood procedures are exempli­
fied at a simple level by classical /c-opt and Or-opt methods which keep 
the Hamiltonian (feasible tour) property at each step. Variable depth 
methods of these types consist of component moves that directly link 
one tour to the next, thus generating streams of moves and associated 
trial solutions. Conversely, the LK and EC methods consider sequences 
of moves that do not necessarily preserve the connectivity of the tour, 
although they enable a feasible tour to be obtained as a trial solution 
by performing an additional move. Apart from this commonality, Lin-
Kernighan and Ejection Chains diff'er significantly in the form of the 
intermediate (disconnected) structures that link one move to the next 
in the sequence. LK methods rely on a Hamiltonian path as an inter­
mediate structure, while EC methods embrace a variety of intermediate 
structures, each accompanied by appropriate complementary moves to 
create feasible trial solutions. The Lin-Kernighan procedure is described 
in Section 2.2. Ejection chains structures and the moves that join and 
complement them are elaborated in Section 2.3, followed by advanced 
variable depth methods in Section 2.4. 
Local Search and Meta-Heuristic Approaches. Local search tech­
niques (which terminate at a local optimum) and associated meta-heuristic 
strategies (which modify and guide local techniques to explore the so­
lution space more thoroughly) have been the focus of widespread scien­
tific investigation during the last decade. For more than twenty years 
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two main "meta models" for heuristic techniques have been ascendant: 
those based on "single stream" trajectories, and those based on "multi­
ple stream" trajectories, where the latter seek to generate new solutions 
from a collection (or population) of solutions. The distinction is essen­
tially the same as that between serial and parallel algorithms, with the 
allowance that population-based methods can also be applied in a serial 
manner, as in a serial simulation of a parallel approach. Consequently, 
as may be expected, there are some overlaps among the best procedures 
of these two types. Traditionally, however, population-based methods 
have often been conceived from a narrower perspective tha t excludes 
strategies commonly employed with single stream methods. Thus, more 
modern approaches that embody features of both methods are often 
called hybrid procedures. 

Some of the methods discussed in this chapter have fairly recently 
come into existence as general purpose methods for a broad range of 
combinatorial optimization problems, and have undergone adaptation 
to provide interesting specializations for the TSP. This manifests one of 
the reasons for the enduring popularity of the TSP: it often serves as a 
"problem of choice" for testing new methods and algorithmic strategies. 

The remainder of this chapter is organized as follows. Section 2 
presents classical and more recent improvement methods that have proven 
effective for the TSP. It also discusses several special cases of neigh­
borhood structures that can be useful for the design of more efficient 
heuristics. Section 3 gives an overview of the tabu search metaheuristic, 
disclosing the fundamental concepts and strategies that are relevant in 
the TSP context. Section 4 extends the exploration of metaheuristics 
to the description and application of recent unconventional evolutionary 
methods for the TSP. Section 5 presents some concluding observations 
and discusses possible research opportunities. 

2. Improvement Methods 
Broadly speaking, improvement methods are procedures that s tart 

from a given solution, and at tempt to improve this solution by iterative 
change, usually by manipulating relatively basic solution components. 
In graph theory settings, depending on the problem and the type of al­
gorithm used, these components can be nodes, edges, (sub)paths or other 
graph-related constructions. We consider three classes of improvement 
methods according to the type of neighborhood structures used: 

(1) constructive neighborhood methods^ which successively add new com­
ponents to create a new solution, while keeping some components 
of the current solution fixed. (These include methods that assem-
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ble components from different solutions, and methods that simply 
choose different parameters of a construction procedure using in­
formation gathered from previous iterations.) 

(2) transition neighborhood methods^ usually called local search proce­
dures, which iteratively move from one solution to another based 
on the definition of a neighborhood structure. 

(3) population-based neighborhood methods^ which generalize (1) and (2) 
by considering neighborhoods of more than one solution as a foun­
dation for generating one or more new solutions. 

In this section we focus our discussion on the second class of im­
provement methods and specifically on those that are either considered 
classical or the core of the most efficient TSP algorithms known to date. 

For the following development we assume a starting TSP tour is given 
and is recorded by identifying the immediate predecessor and successor 
of each node vi^ which we denote respectively Vi^ and ViJ^. 

2.1. Basic Improvement Procedures 
Fundamental neighborhood structures for the TSP (and for several 

other classes of graph-based permutation problems) are based on edge-
exchanges and node-insertion procedures. Classical procedures of these 
types are the /c-exchange (Lin [562]) and the Or-insertion (Or [635]) 
which also form the core of several more advanced procedures covered 
in the next sections. Before describing the various neighborhood struc­
tures underlying these two classes of procedures, it is appropriate to 
note that the concept of local optimality has a role in the nomencla­
ture of fc-Opt and Or-Opt - terms sometimes used inappropriately in 
the TSP literature. In a local search method a neighborhood structure 
is introduced to generate moves from one solution to another and, by 
definition, a local optimum is a solution that can not be improved by 
using the neighborhood structure under consideration. Accordingly, a 
local optimum produced by an improvement method using fc-exchanges 
or Or-insertion yields what is called a /c-optimal (/c-Opt) or a Or-optimal 
(Or-opt) solution, respectively. 

2.1.1 fc-exchange Neighborhoods. The terminology of k-
exchange neighborhoods derives from methods initially proposed by Lin 
[562] to find so-called "A:-opt" TSP tours. The 2-exchange (2-opt) pro­
cedure is the simplest method in this category and is frequently used in 
combinatorial problems that involve the determination of optimal cir-
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cuits (or cycles) in graphs. This includes the TSP and its extensions to 
the wider classes of assignment, routing and scheduling problems. 

The 2-opt procedure is a local search improvement method, and a 
starting feasible solution is required to initiate the approach. The method 
proceeds by replacing two non-adjacent edges {vi^Vi^) and {vj^Vj^) by 
two others {vi^ Vj) and (t'i+, Vj-^)^ which are the only other two edges that 
can create a tour when the first two are dropped. In order to maintain a 
consistent orientation of the tour by the predecessor-successor relation­
ship, one of the two subpaths remaining after dropping the first two edges 
must be reversed. For example, upon reversing the subpath {vi-\-^ - - - ^^j) 
the subpath {vi^ Vi^^..., Vj^Vj^) is replaced by {vi^Vj^... ^ Vi^^Vj^). Fi­
nally, the solution cost change produced by a 2-exchange move can be 
expressed as Aij — c{vi^Vj) + c{vi^^Vjj^) — c{vi^Vi^) — c{vj^Vj-^). A 2-
optimal (or 2-opt) solution is obtained by iteratively applying 2-exchange 
moves until no possible move yields a negative A value. 

The 2-opt neighborhood process can be generalized to perform k-opt 

moves that drop some k edges and add k new edges. There are I , I 

possible ways to drop k edges in a tour and {k — 1)!2^~^ ways to rehnk 
the disconnected subpaths (including the initial tour) to recover the 
tour structure. For small values of /c, relative to n, this implies a time 
complexity of 0{n^) for the verification of fc-optimahty, and therefore 
the use of fc-opt moves for A: > 3 is considered impractical unless special 
techniques for restricting the neighborhood size are used. (To date, A; = 5 
is the largest value of k that has been used in algorithms for large scale 
TSPs.) We now summarize some of the main advances in the design of 
more efficient fc-opt procedures. 

2.1.2 Specia l Cases of fc-opt N e i g h b o r h o o d s . A useful 
observation for implementing restricted /c-opt moves is tha t any k-opt 
move for /c > 2 is equivalent to a finite sequence of 2-opt moves, assuming 
the graph is fully dense. (This is a result of the easily demonstrated fact 
that in such a graph any tour can be transformed into any other by a 
succession of 2-opt moves.) Consequently, if no sequence of k consecutive 
2-opt moves can improve the current tour, then it is also a /c-optimal 
tour. However, the reverse is not necessary true - i.e. a tour can be 
fc-optimal, but obviously there may exist a sequence of k successive 2-
opt moves that reduces the length of the tour (since every tour can 
be reached in this way in a fully dense graph). Thus, a comparative 
analysis of neighborhoods with successive k values provides a foundation 
for designing more efficient /c-opt procedures by restricting the attention 
to moves that are not included within {k — l)-opt neighborhoods. 
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By direct analogy to the 2-opt move, a 3-opt move consists of delet­
ing three edges of the current tour (instead of two) and relinking the 
endpoints of the resulting subpaths in the best possible way. For exam­
ple, letting (vi^Vi^)^ (VJ^VJJ^) and {vkTVk+) denote the triplet of edges 
deleted from the current tour, two of the seven possible ways to relink 
the three subpaths consist of (1) creating edges (vi^Vjj^)^ (f/e,i;i+), and 
{vj,Vk+); and (2) creating edges {vi.Vj), {vj-^,Vk+), and (vi^.Vk). 

An important difference between these two possibilities to create 3-
opt moves is that the orientation of the tour is preserved in (1), while 
in (2) the subpaths (I'i-f,... ^Vj) and (t ' j+, . . . ^Vk) have to be reversed 
to maintain a feasible tour orientation. The cost of a 3-opt move can be 
computed as A^j^, the sum of the costs of the added edges minus the 
sum of the costs of the deleted edges, where a negative A represents an 
improving move. Generically, similar computations and conditions for 
reversing subpaths result for any /c-opt move. 

Another way to reduce the time complexity of 3-opt moves comes from 
the observation that a 2-opt move is a special case of a 3-opt move in 
which a deleted edge is added back to relink a subpath. Consequently, 
three of the seven possible 3-opt moves correspond to 2-opt moves. Thus, 
if the tour is already 2-optimal, then these three types of 2-exchange 
moves need not be checked in the 3-opt process. An additional class 
of 3-opt moves can be obtained as a sequence of two (non-independent) 
2-opt moves. This special case may occur when an edge inserted by the 
first 2-opt move is deleted by the application of the second 2-opt move. 
Three other 3-opt moves fall into this special case. Figure 8.1 illustrates 
one of these possibilities, applied to the TSP tour given in Figure 8.1 A. 
The 3-opt move is represented in Figure 8.IB where the symbol eo is 
used to label the edges deleted by the move. Similarly, Figure 8.1C 
illustrates the application of two successive 2-opt moves where CQ and ei 
are the edges deleted by the first and the second application of the move. 
Note that edge ei is one of the edges added by the first application of 
the 2-opt move. Figure 8.ID represents the TSP tour that results from 
the application of either the 3-opt move or the indicated sequence of two 
2-opt moves. 

The foregoing observations indicate that out of the seven possible 3-
opt moves only one requires a sequence of three 2-opt moves, so that 

only a very small fraction of the I , j possible combinations need to 

be considered. Also, as described in Christofides and Eilon [190] a 4-opt 
neighborhood (which involves 47 possible 4-opt moves) includes six 2-opt 
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(A) (B) 

(C) (D) 

Figure 8.1. 3-opt obtained by two successive 2-opt moves. 
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moves, sixteen sequences of two 2-opt moves, and twenty-five sequences 
of three 2-opt moves. Consequently, the consideration of sequences of 
three 2-opt moves derived from interconnecting restricted 2-opt moves 
in successive levels is sufficient to ensure the tour is 4-optimal. In con­
trast, the determination of a 5-optimal tour requires examination of a 
sequence of at least five 2-opt moves, yielding significantly more combi­
natorial possibilities than the sequences of three 2-opt moves required 
by 3-opt and 4-opt neighborhoods. This provides an indication of the 
relatively greater advantage of 5-opt neighborhoods over 4-opt neighbor­
hoods when compared to the advantages of 4-opt over 3-opt, as demon­
strated by Christofides and Eilon [190] and more recently by Helsgaun 
[446]. A multi-stage 2-opt approach appears particularly useful to im­
plement variable depth methods, as discussed in Section 2.4. 

2.1.3 Special Cases of Insertion and fc-Opt Neighborhoods. 
Another useful relationship emerges from the comparative analysis of 

k-opt moves relative to several classes of insertion moves. We define two 
basic types of node-based moves within the TSP setting: 

(1) node insertion moves: a selected node Vi is inserted between two ad­
jacent nodes Vp and Vq in the tour by adding edges {vp^ t;^), (vi^Vq)^ 
{vi-.Vi^) and dropping edges {vp.Vq), {vi-,Vi), {vi.Vi^). 

(2) node exchange moves: two nodes Vi and Vj exchange positions by 
adding edges {vi-,Vj), {vj.Vi^), (vj-^Vi), (vi.Vj^) and dropping 
edges (vi-^Vi)^ {vi^Vi^)^ (vj-^Vj)^ {vj^Vj^). An exception occurs if 
{vi^ Vj) is an edge of the tour, in which case the move is equivalent 
to inserting Vi between Vj and Vj^ (or inserting Vj between Vi- and 
Vi)' 

Or-Opt Neighborhoods and Extensions. A generalization of the 
foregoing node-based neighborhoods consists of extending these pro­
cesses to insert and exchange sequences (or subpaths) of consecutive 
edges in the tour. By treating subpaths as if they were nodes this gener­
alized process can be implemented using operations similar to the ones 
defined for the node insertion/exchange moves. 

Two classical methods that seek to reduce the complexity of the 3-
opt procedure are Bentley's 2.5-opt and Or-opt (Or [635]). 2.5-opt is an 
extension of the 2-opt procedure that considers a single-node insertion 
move when 2-opt fails to improve (Bentley [103]). The Or-opt heuristic 
proceeds as a multi-stage generalized insertion process, which starts by 
considering the insertion of three-node subpaths (between two adjacent 
nodes) and then successively reduces the process to insert two-node sub-
paths (hence edges) and finally to insert single nodes, changing the type 
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of move employed whenever a local optimum is found for the current 
neighborhood. Note that node-insertion and edge-insertion moves are 
special cases of 3-opt moves when a subpath between two dropped edges 
of the 3-opt move consists of just one node or edge, respectively. Also, 
as mentioned before, most 3-opt moves do not preserve the orientation 
of the tour. Now, it is easy to see that the Or-opt procedure restricts 
the 3-opt neighborhood to a subclass of moves that preserves the cur­
rent tour orientation. The time complexity of this procedure is 0{n^), 
However, while the Or-opt neighborhood has proved relatively efficient 
when applied to some constrained traveling salesman and vehicle routing 
problems, the procedure does not appear to present a competitive ad­
vantage when compared to efficient implementations of the 3-opt proce­
dure. (Chapter 9 provides details on efficient implementations of 3-opt.) 
A possible enhancement of the classical Or-opt procedure arises from 
a generalization based on an ejection chain framework, as we discuss 
in Section 2.3.2. Such a generalization gives the procedure the ability 
to create a variable depth neighborhood search similar to the one the 
Lin-Kernighan procedure performs with classical /c-opt moves. 
C o n s t r u c t i v e / D e s t r u c t i v e N e i g h b o r h o o d s for Res tr i c t ing /c-opt 
M o v e s . Gendreau, Hertz, and Laporte [351] propose a generalized in­
sertion procedure (GENI) which may be viewed as a combination of 
single-node insertion moves with 4-opt and 5-opt moves. GENI is used 
in the constructive phase of their GENIUS algorithm to create a starting 
tour, beginning from an arbitrary cycle of 3 vertices. The alternating 
use of GENI with its reverse procedure (destructively removing nodes 
from the tour) forms the basis of the String/Unstring (US) neighbor­
hood structure used in the local search phase of the GENIUS algorithm. 
Thus, the successive application of Unstring and String creates a destruc­
tive/constructive type of neighborhood structure tha t typically generates 
restricted forms of 8-opt, 9-opt, and 10-opt moves. The process can be 
viewed as a one-step (unit depth) strategic oscillation (see Section 3.3). 

The destructive Unstring neighborhood structure removes a vertex 
from the current tour by replacing k edges by A: — 1 other edges for /c == 4 
or 5. Figure 8.2 depicts an example of the Unstring process where node 
Vi is removed from the tour. In the figure, diagrams A and C represent 
the initial tours to apply an Unstring process with k — A and fc = 5, 
respectively. Diagrams B and D represent the resulting subgraphs after 
applying the Unstring move, which removes the edges labeled "e" and 
relinks the respective subpaths as illustrated. In this procedure, edges 
defined by nodes identified with different letters generically represent 
subpaths having these nodes as their endpoints. 
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z e , z+ 

(A) (B) 

w e„ w+ w w+ 

(C) (D) 

Figure 8.2. The String/Unstring Neighborhood Structure 
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String is a constructive neighborhood structure that reverses the op­
erations of the Unstring procedure to insert a disconnected vertex Vi 
between two other vertices (not necessarily consecutive in the tour) by 
replacing k edges by /c + 1 other edges for /c = 3 or 4. Figure 8.2 illus­
trates String moves for /c = 3 and /c = 4 by following the diagrams in 
the order from B to A and from D to C, respectively. 
Recent Results on Restricting fc-Opt Neighborhoods. Useful 
results for reducing computation required by /c-opt procedures are pro­
vided by Glover [375] and Helsgaun [446]. Glover's paper shows that 
the best move from a sub-collection of 4-opt moves (which embraces 
all 2-opt moves, an additional class of 3-opt moves, and two principal 
classes of 4-opt moves) can be found in the same order of time required 
to find a best 2-opt move. The method is based on an acyclic shortest 
path model underlying the creation of dynamic alternating paths and 
cycles generated by an ejection chain framework as discussed in Section 
2.3. The use of ejection chains to generate special forms of alternating 
paths and cycles also proves useful in the implementation of the stem-
and-cycle ejection chain method described in Rego [704] and discussed 
in Section 2.3.3. Helsgaun considers the use of 5-opt moves to replace 
2-opt moves in the basic step of the classic implementation of the Lin-
Kernighan (LK) procedure as discussed in Section 2.2. In Helsgaun's 
particular variant of the LK procedure 5-opt moves are made computa­
tionally practicable by restricting the possible alternatives using special 
candidate hsts, in this case augmenting a "close-by neighbor" list to in­
clude additional nodes identified by solving Lagrangean relaxations over 
minimum spanning tree (1-tree) relaxations as introduced by Held and 
Karp ([444, 445]). 

2.2. The Classical Lin-Kernighan Procedure 
The Lin-Kernighan (LK) procedure (Lin and Kernighan [563]) is a 

strategy for generating /c-opt moves where the value of k is dynamically 
determined by performing a sequence of 2-opt moves. Although, as 
noted, any A:-opt move can be represented by a sequence of 2-opt moves, 
the LK procedure limits attention to a particular subset of these se­
quences. The goal is to restrict the neighborhood search and at the same 
time to generate high quality /c-opt moves. The 2-opt moves are gener­
ated in successive levels where a 2-opt move of level i (z = 2, . . . ,L, /c = 
2 + 1) drops one of the edges that has been added by the 2-opt move of 
the previous level {i — 1). An exception is made for the first 2-opt move 
of the sequence, which can start either from the current tour or after 
performing a special class of 3-opt or 4-opt moves. However, this excep-
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tion is only allowed when a sequence of 2-opt moves in the regular LK 
search fails to improve the initial tour. These special cases will become 
clear later in the detailed explanation of each step of the method. 

The method starts by generating a 2-opt, 3-opt or 4-opt move and then 
deletes an edge adjacent to the last one added to create a Hamiltonian 
path. Thereafter, each new move consists of adding an edge to the 
degree 1 node that was not met by the last edge added, and dropping 
the unique resulting edge that again will recover a Hamiltonian path 
(thus completing the last add-drop portion of a 2-opt move). 

It is interesting to note that these moves (and in fact the first add-
drop half of any 2-opt move) "pass through" a stem-and-cycle structure^ 
which is one of the reference structures introduced by Glover [374] as 
a foundation for creating more flexible and general types TSP moves. 
However, this structure is not identified as relevant in the LK method, 
which relies solely on the Hamiltonian path structure as a basis for com­
posing its moves, and consequently is left unexploited within the LK 
framework. (The expanded set of possibilities provided by the stem-
and-cycle structure is described in Section 2.3.3.) 

Figure 8.3 illustrates the three types of starting moves for initiating 
the LK approach (2, 3 and 4-opt moves). 

2-Opt 3-Opt 4-Opt 

Figure 8.3. Possible moves at the first level of the Lin-Kernighan process 

The initial /c-opt moves (fc = 2,3,4) that are used to launch the LK 
procedure can be created as follows, as illustrated by the diagrams in 
Figure 8.3, preceding: 

k = 2 - The first step of the LK procedure selects the first edges 
ei — (fi,t'2) £̂ nd hi = ('̂ 25'̂ 3) to drop and add (respectively), so that 
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they produce a cost improvement, and hence yield a negative value of 
El — c{v2^vs) — c{vi^V2). (Such a choice must be possible if a bet­
ter tour exists.) A first level 2-opt move is obtained by dropping edge 
62 = {VS^VA) where ^4 is in the tour neighbor of v^ tha t is in the cy­
cle {v2, t'3, '^^4,..., V2) created when edge hi was added. This last edge-
drop operation implicit when hi is chosen creates a Hamiltonian path 
Hi = (^ ' l , . . . t'3, t'25 • • • 5 '̂ 4) that is used to close up the tour by adding 
edge (t'4,t 'i). Compute Ti = c{v4^vi) — c{vs^V4^) and examine the solu­
tion cost change by computing A i = J5i + Ti. 

k = 3- Accompanying the initial drop-add choice that removes ei and 
adds /ii, drop edge 62 = ('̂ ^3,̂ 4) where V4 is adjacent to v^. There are 
two possibilities to create a 3-opt move: (1) if 1̂4 is in the cycle, the move 
is direct extension of the LK process from the level 1 to level 2; (2) if t'4 is 
the endpoint of the path from vi to t'4, create a Hamiltonian pa th H2 by 
hnking V4 to one vertex v^ (corresponding to edge /i2 — ('̂ 4, ^5)) and drop 
one of its adjacent edges 63 = {vs^ve) where v^ is a vertex in the cycle 
(t?2,1^3, • • • , t'2)- Link VQ to vi to create a tour. There are some subtleties 
in the way edge 63 is chosen. When V4 is in the path, the method selects 
vs by computing v^ = argmin{c(^4, i;5) - mdix{c{vs,V5-),c(v^,vs^)}}. 
Once v^ is chosen two trial values are examined to select VQ by computing 
ve = argmin{c('L'6,'^i) — c{v^,ve) : VQ = v^^^vs-^-}. (The computation of 
VQ in the way just defined is equivalent to finding the better of the 
two trial tours produced by adding the links (v^-^vi) and (v^^^vi)^ as 
suggested in the original Lin and Kernighan paper.) The corresponding 
cost changes are given by E2 — Ei + c(t'4, vs) — c{vs^ v^)^ T2 = C{VQ^ vi) — 
(^{y^T^e)^ resulting in a tour cost change of A2 = £"2 + T2. 

/c = 4 - As in the k — 2 and /c = 3 cases, begin by dropping ei and 
adding /ii, and then drop edge 62 = (VS^VA) where V4 is adjacent to V3. 
There are two possibilities to create a 4-opt move: (1) if V4 is in the cycle, 
the move is direct extension of the LK process from the level 2 to level 3; 
(2) if V4 is the endpoint of the path from vi to V4^ create a Hamiltonian 
path Hs in two steps: (i) link V4 to a vertex v^ in the path (creating edge 
/i2 = ('̂ 4, '^5)) and drop its adjacent edges 63 = (t's, VQ) where VQ is in the 
path {vs^V6^' •' ^VA)] (ii) hnk VQ to one vertex V7 in the cycle (creating 
^3 = ('^65^7)) and drop one of its adjacent edges 64 — (t'7,t'8). Link the 
endpoints of the resulting Hamiltonian path Rz to create a tour. Edge 63 
is chosen by setting 63 = argmin{c(^;4, v^ — max{c(^'5,1^5-), c{y^^ '^5+)} • 
VQ — v^-^ '^5+}- Once 63 is chosen, edge 64 is selected by computing 64 — 
argmin{c(i;6,t'7) - max{c(^7, i;8-), 0(1^7, i;8+)} : v^ = vj^^vj^}. (In this 
case vertices V7 and vg are selected at the same time simply by choosing 
the largest cost edge incident at f 7, which implies that only one trial tour 
will be examined as suggested in the original paper.) The corresponding 
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cost changes are given by E^ = Ei -\- c{v4^v^) + C{VG^V7) — c{vs^V4)^ 
T3 — c{vs^ vi) — c(t'7, vs)^ and consequently the tour cost change is given 
by A 3 - £ ; 3 + r3. 

Extending LK moves to further levels. As mentioned, the reg­
ular LK search (which does not include the special 3-opt and 4-opt 
moves) consists of generating k-opt moves (k > 2) (as a sequence of 
2-opt moves) in successive levels where at each level a new vertex is 
selected to extend the process to the next level by recovering a Hamil-
tonian path Hi (dropping the last link ( '̂2^,'̂ l)) and using this path 
as a reference structure to generate a new path i/^+i of the same type 
(by linking its endpoint to another vertex in the path and dropping 
one of its adjacent vertices). Starting with £'0 = 0, for a fixed ver­
tex V2i at a level i of the LK search, a new vertex V2i-\ri î  chosen in 
such a way that Ei = Ei-i + c{v2i,V2i+i) - c{v2i-i,V2i) yields a neg­
ative value. (An exception is made for some special alternative 3-opt 
and 4-opt moves as explained above.) Consequently, a trial move (that 
yields a trial tour) for the level z(z > 0) can be obtained by computing 
Ti — c(i;2i-f2,'^i) — c(t'2i+i,^'22+2)- Similarly, the total tour cost change 
is given by ^{ — Ei^Ti, At each level i of the LK process, the method 
keeps track of the minimum A value (corresponding to the best trial 
tour) and records the sequence of the vertices associated with the ê  and 
hi edges, which will be used to perform a move at the end of the LK 
search. 

The LK procedure also considers a backtracking process which allows 
the method to repeat, each time choosing a different starting vertex as­
sociated with an untried alternative for inserting or deleting an edge 
hi = {vi^Vi^i) or Ci = {v2i-i)y2i)^ respectively. Such alternatives (which 
include the special 3-opt and 4-opt moves) are successively examined 
starting from level i and proceeding back to level 1, where the exami­
nation of edges hi and Ci is alternated so that a candidate for edge ê  
is examined after exhausting all possible candidates for hi without find­
ing any improvement of the starting tour. Candidates for level i — 1 
are examined after exploring all alternatives for level i. As soon as an 
improvement is found at some level, the backtracking process stops and 
the LK process continues from that level (and its accompanying ê  or 
hi choice), progressing forward again to higher levels as previously de­
scribed. If no improvement occurs in the backtracking process, including 
those cases where alternative choices for the vertex vi are examined, the 
procedure stops and returns the best tour found so far. (In the original 
paper backtracking is used only for i == 1 and 2.) 
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A refinement of the basic LK method considers a look-ahead process 
where the choice of a current hi edge takes into consideration the cost of 
the associated Ci^i edge. The evaluation criterion (via this "look-ahead" 
rule) is the one tha t minimizes Ei — Ei-i -h c{v2i^ V2i-\-i) — c(^'2i+i, '̂ 22+2) 
for a fixed vertex V2i{i > 1), which gives the shortest Hamiltonian path 
for the next reference structure. Lin and Kernighan mention evaluating 
the tour length only for this choice, but of course there is little extra 
effort in evaluating the tour length for all choices and record the best for 
future reference (even if it is not the one that generates the next reference 
structure). Proceeding from this level a trial tour can be obtained at each 
additional level of the LK process by adding an edge ('̂ ^2^+2,'̂ 1) which 
closes up the current Hamiltonian path adding the cost Ti = c(t'2i-f2, '^i)-
Again, the total tour cost change for the current level is given by A^ = 

Before providing the outline of the LK procedure we recall that a 
standard local search process involves solving a subproblem at each iter­
ation. The solution space for this subproblem is implicitly defined by the 
neighborhood structure and the particular subset of available moves that 
is singled out to identify "reasonable choices" (and hence to restrict the 
solution space for this subproblem). Thus, it is relevant to keep in mind 
that the various minimization functions used in neighborhood search for 
TSPs assume the consideration of a neighbor list that restricts the num­
ber of choices for the vertices/edges involved in the moves. The original 
paper of Lin and Kernighan suggests a neighbor list made up of the 5 
nearest neighbors of the node. However, other authors such as John­
son and McGeoch [463] claim better results for lists of the 20 nearest 
neighbors, and Applegate, Bixby, Chvatal, and Cook [32] use lists of 
different lengths at different levels of the search. In addition, Lin and 
Kernighan required that no added edges be subsequently deleted in the 
same k-opt move and no deleted edges be subsequently added. Johnson 
and McGeoch apply only the first of these two restrictions, which by 
itself is enough to insure that the search will have no more than n levels. 
A general outline of the Lin-Kernighan procedure is presented in Figure 
8.4. 

The Lin-Kernighan procedure introduces an important framework to 
generate compound moves. The wider class of variable depth meth­
ods known as Ejection Chains methods discussed in the next section 
shares several characteristics with this procedure. First, the creation 
of a reference structure (which in the LK procedure is implicitly given 
by the pa th Hi) makes it possible to create moves whose depth goes 
significantly beyond the one that can be handled in a practical manner 



326 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

Step 1. Initialization 

(a) Generate a starting tour T. 

(b) Set i = 1. Choose for vi some vertex that has not taken this role since 

the last best tour was found. 

Step 2. Choose ei and hi to initiate the LK search. 

(a) Set 61 = {vi, V2). 

(b) Select ^i = {v2, v^) such that Ei < 0. If this is not possible, stop. 

Step 3 . Perform LK Search 

(a) Set i = i -f 1. Choose ê  = (t '2i-i ,^2i) such that V2i is in the cycle 
created when /ii_i was added. 

(b) Compute Ai and keep track of the e and h edges associated with the 
current Hamiltonian path Hi. Record the level i* associated with the 
minimum A value found so far. 

(c) Choose hi = {v2i,V2i+i) such that Ei < 0 and ei^i exists. 

If such a hi exists, go to Step 3. 

Step 4. Backtraching for Levels 1 and 2 

Perform 3-opt moves: 
(a) If there is at least one /i2 not examined, set i = 2 and go to Step 3(c). 

(b) If there is at least one 62 not examined, choose e2 = (vs^v^) such that 
V4 is in the path ( f i , . . . ,^4,1^3). 

(c) Choose ^2 = (^^4,^5) and the associated adjacent edge 63 = (1^5,fe) such 
that vs is in the cycle (^2,1^3, • • •, ^2)-

(d) Compute E2 and A2. If A2 is smaller than the best (least) A value 
found so far, update i* and the new e and h edges considered in this 
Step. If E2 < 0, set z = 3 and go to Step 3(c). 

Perform 4-opt moves: 

(e) Choose /12 = {v4,vs) and the associated adjacent edge 63 = {VS^VQ) such 
that vs is in the path ( I ' l , . . ., i'4) and 63 is in the cycle (vs , . . ., 1̂ 4, ^5) 
created when /12 was added. 

(f) Choose /i3 = (ve^vr) and the associated 64 = (vr^vg) where vj is in 
the cycle {v2,V3,... ,V2) and vg corresponds to the largest cost edge 
incident at V7. 

(g) Compute Es and A3. If A3 is smaller than the best A value found so 
far, update i* and the new e and h edges considered in this Step. If 
E3 < 0, set i = 4 and go to Step 3(c). 

Perform 2-opt moves: 

(h) If there is at least one hi not examined, set i = I and go to Step 2(b). 

(i) If there is at least one ei not examined, set i = I and go to Step 2(a). 

(j) If there is at least one vi not examined, go to Step 1(b). Otherwise Stop. 

Figure 8.4. T h e General Lin-Kernighan Procedure 
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with classic /c-opt neighborhoods. Second, the iterative characteristic of 
building the neighborhood to successive levels provides a form of "ad­
vance look-ahead" which leads to better choices. Finally, the evaluation 
of trial solutions throughout the neighborhood construction provides a 
way for the method to adaptively select the most appropriate level (or 
depth) of the move. 

A fundamental drawback of the k-opt neighborhoods traditionally 
used, including the ones constructed in the basic Lin-Kernighan ap­
proach, is that the edges added and dropped are successively adjacent. 
These moves can be identified by numbering the vertices in the sequence 
determined by the added and dropped edges, noting that the last vertex 
is always connected by a tour edge to the first. We call these sequential 
neighborhoods^ as opposed to non-sequential neighborhoods where such 
a successive adjacency requirement is not imposed. Sequential neigh­
borhoods can be shown to generate a restricted instance of a classical 
alternating path, as introduced in graph theory by Berge [104]. 

Sequential neighborhoods can fail to find certain types of improved 
tours even if they are close to the current tour. This is illustrated in 
Figure 8.5, which depicts the so-called double-bridge as an example of a 
move in a non-sequential neighborhood. The tour reached by this move 
cannot be reached by means of any move within a bounded sequential 
neighborhood. Lin and Kernighan first identified this class of moves 
and suggested looking for improving double-bridge moves as a supple­
ment to their variable-depth moves . Subsequently, Martin, Otto, and 
Felten [588] proposed using random double-bridge moves as a method 
for restarting the algorithm once a local optimum had been found, and 
variants on the resulting "Chained" (or "Iterated") Lin-Kernighan al­
gorithm have proved quite successful (Applegate et al. [27], Applegate, 
Cook, and Rohe [32], Helsgaun [446], Johnson and McGeoch [463]). A 
discussion of the performance of these approaches in practice is provided 
in Chapter 9. 

2.3- Ejection Chain Methods 
We have noted that the LK procedure relies on a Hamiltonian path as 

the basic reference structure to generate moves at each level of neighbor­
hood construction. The fact that this structure has a configuration very 
close to a valid tour is convenient for visualization, but also constitutes a 
hmitation of the procedure. More general Ejection Chain methods avoid 
this limitation by providing a wide variety of reference structures, which 
have the ability to generate moves not available to neighborhood search 
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Figure 8.5. The double-bridge neighborhood. 

approaches traditionally applied to TSPs. This section explores some of 
these ejection chain approaches and provides a framework for efficient 
implementations. 

Ejection Chains are variable depth methods that generate a sequence 
of interrelated simple moves to create a more complex compound move. 
There are several types of ejection chains, some structured to induce 
successive changes in problem variables and others structured to induce 
changes in particular types of model components (such as nodes and 
edges of a graph). For a comprehensive description of ejection chain 
methods on graphs we refer the reader to Glover [371] and Glover ( 
[372, 374]. Implementations and some extensions of these types of ejec­
tion chains for the TSP can be found in Pesch and Glover [667], Rego 
[704] and Glover and Punnen [382]. Applications of ejection chains to a 
cardinality-constrained TSP are discussed in Cao and Glover [158]. 

Ejection chains have also been successfully applied to combinatorial 
problems other than the TSP. For example, Dorndorf and Pesch [259] 
and Hubscher and Glover [372] use node-based ejection chains for clus­
tering problems, while Laguna et al. [528] and Yagiura, Ibaraki and 
Glover [830] use ejection chains for the generalized assignment prob­
lem. Rego [706, 705], examines neighborhood structures based on node 
and subpath ejections to produce highly effective results for the vehicle 
routing problem. Finally, Cavique, Rego, and Themido [172] apply an 
ejection chain model to combine different types of moves for a real-world 
crew scheduling problem. 

In this section we provide basic definitions and concepts of ejection 
chains, and then discuss some specialized ejection chain methods for the 
travehng salesman problem. 
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2.3.1 Ejec t ion Chains Bas ics . Broadly speaking, an ejection 
chain consists of a succession of operations performed on a given set 
of elements, where the kth operation changes the state of one or more 
elements which are said to be ejected in the k + 1th operation. This 
ejection thereby changes the state of other elements, which then lead 
to further ejections, until no more operations can be made according to 
pre-defined conditions. State-change steps and ejection steps typically 
alternate, and the options for each depend on the cumulative effect of 
previous steps (usually, but not necessarily, being influenced by the step 
immediately preceding). 

In the ejection chain terminology, the order in which an element ap­
pears in the chain determines its level. The conditions coordinating the 
ejection chain process are called legitimacy conditions^ which are guar­
anteed by associated legitimacy restrictions. 

We focus on ejection chain methods for carrying out operations on 
graphs. The objective is to create mechanisms, namely neighborhood 
structures, allowing one solution subgraph to be successfully transformed 
into another. 

In this context, relative to a specific graph G, an ejection chain of L 
levels consists of a succession of operations TTII, . . . , m /c , . . . , TUL called 
ejection moves ^ where m^ transforms a subgraph Gk of G into an­
other subgraph Gk-\-i by disconnecting (or ejecting) specified components 
(nodes, edges, subpaths) and relinking them to other components. The 
number of levels L is the depth of the ejection chain. The particular level 
chosen (from among the L levels generated to provide a move executed 
by a local search method) usually varies from one iteration to the next. 
The total number of levels L can likewise vary, and hence ejection chains 
fall within the class of so-called variable depth methods. In an ejection 
chain framework, the subgraph obtained at each level of the chain may 
not represent a feasible solution but may be transformed into a feasible 
solution by using a complementary operation called a trial move. 

More formally, let Si be the current solution at iteration i of the local 
search method, and let nik^ tk be the ejection move and the trial move, re­
spectively, at a level k of the chain. A neighborhood search ejection chain 
process consists of generating a sequence of moves m i , t i , . . . , TTI/C, t /^, . . . , 
m/,, ti on Si such tha t the transition from solution Si to Si^i is given by 
performing a compound move m i , m 2 , . . . , m,/.*, /̂c*, where /c* represents 
the level associated with the highest quahty trial solution visited during 
the ejection chain construction. In the ejection chain context we use the 
terms compound move and transition move interchangeably, to specify 
the move leading from one solution to another in an iteration of the local 
search procedure. 
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The effectiveness of such a procedure depends on the criterion for 
selecting component moves. More specifically, neighboring solutions ob­
tained by an ejection chain process are created by a succession of embed­
ded neighborhoods that lead to intermediate trial solutions at each level 
of the chain. However, the evaluation of ejection moves can be made 
independently from the evaluation of the trial moves, in which case trial 
moves are only evaluated after performing the ejection move at the same 
level of the chain. In this variant of the approach, the evaluation of an 
ejection move rrik only depends on the cumulative effect of the previous 
ejection moves, m i , . . . , m/^-i, and is kept separate from the evaluations 
of trial solutions encountered along the way. The trial moves are there­
fore restricted to the function of finding the best trial solution that can 
be obtained after performing the associated ejection move. 

We stress that our preceding description of ejection chain processes 
simply constitutes a taxonomic device for grouping methods that share 
certain useful features. The value of the taxonomy, however, is evi­
denced by the role it has played in uncovering new methods of consid­
erable power for discrete optimization problems across a broad range of 
applications. Within the TSP setting, as will be seen, the ejection chain 
framework provides a foundation for methods that embrace a variety of 
compound neighborhood structures with special properties for combin­
ing moves, while entaihng a relatively modest computational effort. 

2.3.2 Node-based Ejection Chain Methods. Node-based 
ejection chain methods derive from extensions of customary single node 
insertion and node exchange neighborhoods found useful in several classes 
of graph problems including: machine scheduling, clustering, graph-
coloring, vertex covering, maximum clique or independent problems, ve­
hicle routing problems, generalized and quadratic assignment problem, 
and the traveling salesman problem, to cite only a few. 

Since the worst case complexity of evaluating a single node-insertion 
and node-exchange neighborhood is 0{'n?)^ creating compound neigh­
borhoods by combinations of these moves requires an effort that grows 
exponentially with the number of moves considered in the combination. 
More precisely, the best compound neighborhood of k moves can be 
generated and evaluated with 0{n^) effort. This effort can be notably 
reduced by using appropriate candidate hsts that we discuss in Section 
3.1. Such hsts also apply to several other types of neighborhood struc­
tures, including the ones discussed in this section. 

We present here ejection chain methods to implement a multi-node 
insertion move and a multi-node exchange move that yield an impor­
tant form of combinatorial leverage. Specifically, the number of moves 
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represented by a level k neighborhood is multiplicatively greater than 
the number of moves in a level k - I neighborhood, but the best move 
from the neighborhoods at each successive level can be determined by 
repeating only the effort required to determine a best first level move. 
In our application, for example, the moves of the first, second and third 
levels are respectively 0{n?), O(n^), and 0{n'^) in number, but the best 
member of each can be found by repeating the 0{n'^) effort required to 
determine the best move of the first level, so the total effort is still 0{ii?). 
For a worst case analysis and proofs of the complexity of these ejection 
chain processes see Glover [371]. Here we focus on special properties for 
comparative analysis of different neighborhood structures and examine 
some implementation issues for improving algorithm performance. 

Figure 8.6 illustrates a multi-node insertion produced by an ejection 
chain method. In the figure, a starting TSP tour is represented by the 
convex hull of the nodes, ek denotes edges which are deleted at level k 
of the chain (and which identify the associated ejected nodes). Edges 
shown "inside" the starting tour are the ones that are added by the 
ejection chain process. To simplify the diagrams node labels are not 
used, but a node Vk is implicitly identified by the two adjacent e^ edges. 

The ejection chain starts by identifying a node pair VQ^ vi that yields 
the best (highest evaluation) ejection move that disconnects node VQ 
from its current position and inserts it into the position currently occu­
pied by node vi. Thus, a first level ejection move consists of adding edges 
(i;o, '^1-), (t'o, viJr) ^nd deleting edges eo and ei. This creates an interme­
diate structure where node vi is temporarily disconnected from the tour. 
However, a trial move can be performed by creating edge {vo-i ^0+), and 
inserting node vi between nodes pi and ^i, creating edges (^'l,^;p^), and 
('̂ b'̂ (7i), and deleting edge ti. For the subsequent levels, ejection moves 
consist of selecting a new candidate node to be ejected by the previ­
ously ejected node, and so forth, until no other legitimate node exists 
for ejection. 

This move is illustrated in the second level of the ejection chain shown 
in the middle diagram of Figure 8.6, where node vi ejects node V2 by 
adding edges {vi^V2-), {vi,V2-^) and deleting edge 62- The trial move 
used in the first level is not considered for the construction of further 
levels of the chain. Instead, the ejection move generates a new move 
(of the same type) for the next level. A trial move is then executed as 
previously indicated, now by hnking node V2 to nodes p2 and q2^ and 
deleting edge ^2. The corresponding level 2 trial solution is given in 
diagram on the right in Figure 8.6. 
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f^ 1 ^ 

Figure 8.6. Two levels of a multi-node insertion ejection chain 

A multi-node exchange move can be obtained at each level of the chain 
by considering a trial move that simply relocates the current ejected node 
to occupy the vacant position left by the node t'o that initiates the chain. 
This is carried out by creating two edges (t'o-,^'^), {"^ki^o^)-, where Vk 
denotes the node ejected at a level k of the chain. 

In the multi-node insertion ejection chain method a trial move can 
be evaluated in time 0{n).^ but in the multi-node exchange method the 
move is evaluated in constant time, 0(1). Experiments with this ejection 
chain method for the vehicle routing problem (VRP) have shown that 
multi-node insertion is usually more efficient than multi-node exchange 
(Rego [706]). However, both types of moves can be efficiently combined 
in the same ejection chain process to select the best compound move at 
each level of the chain. Such an ejection chain produces a more com­
plex neighborhood which dynamically combines insertion with exchange 
moves. 

Figure 8.7 depicts this second type of ejection chain using the same 
ejection moves illustrated in Figure 8.6. Note that the first level of the 
chain is a standard single-node exchange move where nodes i;o and vi 
exchange their positions. However, this exchange move produced by the 
ejection chain does not necessarily represent the highest evaluation two-
node exchange move, unless we decide (for this first level) to evaluate 
the ejection move and the trial move conjointly. This decision is just a 
matter of preference since in this particular type of ejection chain either 
criterion can be evaluated in 0{ii?). 

In the figure, level 1 and level 2 trial moves consist of adding edges 
(t'o-,'^i), (^'l,^'o+) â nd edges (i;o-,^'2)5 ('̂ 27'̂ o+)) respectively. Note that 
although edge ('L'o_,̂ '2) has been deleted by the second ejection move 



Local Search and Metaheuristics 333 

Figure 8.7. Two levels of a multi-node exchange ejection chain 

it is added back by the associated trial move to create a tour from the 
intermediate structure. 

In each of these methods, a legitimate structure for the ejection chain 
is defined by the requirement that each ejected node occurs only once 
in the chain. The preceding characterization of legitimacy imphes that 
no edge will be added or dropped more than once by the transition 
move associated with the ejection chain, and consequently the tour cost 
change created by the transition move equals the sum of the added edges 
minus the sum of the dropped edges. These relationships are useful for 
the goal of efficiently generating and evaluating chains of progressively 
greater depth with a suitable combinatorial leverage. 

Both types of node-based ejection chains can be completely deter­
mined by the succession of ejected nodes, ;̂o, • • •, '̂ /c, • • •, '̂ L, which we 
designate by the set ZL- Accordingly, we let ZL- and ZL+ respectively 
denote the set of predecessors and the set of successors of vertices in 
Zi^ and let WL denote the set of all the vertices involved in the ejection 
chain process, WL — ZL- U ZL ^ ZL^- Thus, the legitimacy restric­
tions consist of stipulating that each vertex in ZL occurs only once in 
WL. However, any vertex in ZL- may reappear in Z L + and vice versa, 
without violating this restriction. 

An ejection chain of L levels can be recursively evaluated by comput­
ing the ejection values for these levels and summing them to give the 
trial value for each level. We denote a legitimate neighborhood for a 
node V]^ in Z\^ by LN{vi^)^ thereby identifying a subset of nodes of G 
that do not violate the legitimacy restrictions. For convenience we de­
note the cost of two adjacent edges (̂ '̂ , Vj) and {vj^ Vk) as c{vi^ Vj^Vk) = 
c{vi,Vj) + c{vj,Vk). Figure 8.8 provides a general neighborhood search 
procedure. 

As shown in Glover [371] it is possible to create other variants of these 
ejection chain methods by growing the chain in the opposite direction. 
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Step 0. Initialization 

(a) Initialize a legitimate neighborhood for all vertices. 

(b) Denote the starting solution by S. 

(c) Set /c = 0. 

Step 1. Create the first level of the ejection chain 

(a) Determine a set of two initial vertices Vk,Vk-^-i by computing: 

(b) Ek = min{c{vk-,Vk-i,Vk^) - c{vk-i-,Vk-i,Vk-i+) -
c{vk-,Vk,Vk+) -\- Xc{vk-i-,Vk-i + ) : Vi.Vj 6 V}, where 
A = 1 if multi-node insertion is used and A = 0 otherwise. 

(c) Set Zk = {vk}' 

Step 2. Grow the chain to further levels 

(a) Set k = k + 1 and set Zk = Zk-i U {vk}-

(b) Evaluate the trial tour cost for the current level by computing the 
value: Ak = Ek -\- min{c{vp,Vk,Vp+) - c{vp,Vp+) : Vp G V\Zk} 
if multi-node insertion is used. Otherwise compute Ak — Ek + 

c{vo-,Vk,VQ^). 

(c) Keep track of the best level k* that produces the best trial tour. 

(d) Determine the new vertex v G LN{vk) by computing: Ek — Ek-i-\-

min{c{vk-,Vk-i,Vk+) - c{vk-,Vk,Vk+) : Vi,Vj G Wk-i}. 

(e ) Set Vk-\-i = V. 

(f) Update the legitimate neighborhoods for each vertex Vi G Wk*. 

(g) U k < L and LN{vk) is not empty, return Step 2. Otherwise go to 

Step 3. 

Step 3. Perform the compound move 

(a) Apply to S the sequence of ejection moves up to the level k*. 
(b) Complete the update of S by executing the trial move for the level 

k* associated with multi-node insertion or multi-node exchange. 

Figure 8.8. Neighborhood search iteration for node-based ejection chains. 

Thus, for a multi-node ejection chain, the method starts by an insertion 
move which disconnects one node from its current position, followed by 
inserting it between two others. Then, the chain grows by selecting a 
node to fill the vacant position, which in turn opens a new "hole" for 
the next level of the chain. This technique is particularly relevant for 
using ejection chains to provide a construction method with attractive 
properties. A constructive multi-node insertion ejection chain method 
starts by choosing an initial single-node insertion move and making the 
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corresponding edge additions to generate a partial subgraph of the tour. 
Then, the subgraph is extended by adding one node (external to the 
current subgraph) to become the new VQ node in the chain. The process 
is repeated until the partial subgraph becomes a spanning subgraph of 
G, thus corresponding to a TSP tour in G. The use of the ejection chain 
as a construction method always assures a legitimate T S P structure is 
produced. Since each new node VQ is external to the current subgraph, 
it can not correspond to any of the spanning nodes of the ejection chain. 

2.3.3 General iz ing Insert ion and E x c h a n g e Ejec t ion Cha in 
M e t h o d s . The foregoing ejection chain process can be easily ex­
tended to eject subpaths in addition to nodes. In its simplest form the 
procedure can be viewed as a generalization of the Or-opt neighborhood 
implemented in an ejection chain framework. A straightforward way to 
implement this generalized insertion ejection chain method is to collapse 
subpaths so they are essentially treated as nodes. (These collapsed sub-
paths are sometimes called swpernodes.) Conversely, the method can 
implicitly create "holes" in subpaths and these can be possibilities for 
ejecting nodes inside of subpaths. 

2.3.4 S u b p a t h Ejec t ion Chain M e t h o d s . In a subpath ejec­
tion chain (SEC) the ejection moves involve the re-arranging of paths 
rather than individual nodes. One example is the variable depth search 
of the Lin-Kernighan procedure. In this section we discuss a poten­
tially more powerful SEC method that forms the core of one the most 
efficient local search algorithms for the TSP, and whose performance is 
discussed in Chapter 9. The method is based on the stem-and-cycle 
(S&C) reference structure, which is a spanning subgraph of G tha t 
consists of a path S T = {vt^... ,'u^}called a stem, attached to a cycle 

CY = {Vr,Vsi,'",Vs2^^r)-

The first diagram of Figure 8.9 illustrates the creation of an S&C 
reference structure for the first level of the ejection chain process. The 
structure is created by dropping one edge in the tour (denoted by eo) 
and linking one of the endpoints of the resulting Hamiltonian path to 
a different vertex in this path (denoted by Vr). Vertex Vr^ which is the 
intersection of the stem and the cycle, is called the root. The two vertices 
in the cycle adjacent to Vr^ denoted by Vs-^ and Vs2^ are called subroots. 
The vertex vt is called the tip of the stem. 

The method starts by creating a stem-and-cycle reference structure 
from a TSP tour. Then, the method proceeds by performing an ejection 
move which links the tip node Vt to one of the remaining nodes Vp of 
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the graph, excluding the one that is adjacent to the tip. The root is 
considered as belonging to the cycle. 

We differentiate two types of ejection moves depending on whether 
the operation is applied to the stem or to the cycle: 

(1) Stem-ejection move: add an edge {vt^Vp) where Vp belongs to the 
stem. Identify the edge {vp^ Vq) so that Vq is a vertex on the subpath 
{vt^... ^Vp). Vertex Vq becomes the new tip node. 

(2) Cycle-ejection move: add an edge (vt^Vp) where Vp belongs to the 
cycle. Select an edge {vp^Vq) of the cycle to be deleted where 
Vq = Vp- or Vq — Vpj^. Vcrtcx Vq becomes the new tip node. 

As with other types of ejection chains, an ejection move transforms an 
intermediate structure into another of the same type, which usually does 
not represent a feasible structure for the problem. The only exception 
is the degenerate case where the tip vt is also the root Vr and hence the 
stem is of length 0 and the cycle is a tour. This can arise for instance 
as the result of a cycle-ejection move where Vp is a cycle-neighbor of 
Vr. Even though the root is fixed during one ejection chain search it is 
possible to change it whenever the degenerate case occurs. 

In the general case of a non-degenerate S&C structure a feasible tour 
can always be obtained at each level of the chain by linking the tip node 
to one of the subroots and deleting the edge that links the subroot to 
the root node. 

Figure 8.9 illustrates one level of the stem-and-cycle ejection chain 
process where edges that lie on the convex-hull of the vertex set are 
members of the initial tour and edges "inside" the tour are those added 
by the component ejection chain moves. We denote by e/c and d/c the 
edges deleted at level fc by ejection and trial moves, respectively, and 
denote by t]^ the tip node at level k. The S&C reference structure is 
created in the left-hand diagram by adding a link between two nodes in 
the tour and deleting one of the edges adjacent to either one of these 
nodes. Hence Vr becomes the root node with subroots 5i and 52, and to 
identifies the initial tip node. The middle diagram illustrates an example 
of a stem.-ejection move which links to to S2 and deletes ei, thus making 
ti the new tip node. In the example, the associated trial move consists 
of adding the edge (ti,5i) and deleting edge {si^Vr). Another possible 
trial move can be obtained by relinking ti to 52 and deleting di. 

The right-hand side diagram illustrates a cycle-ejection move which 
hnks to to Vp (in the cycle) and deletes ei. Again, two possible trial moves 
can be obtained by linking ti to one of the subroots and deleting the 
associated di. A trial move can also be generated just after creating the 
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S&C structure. However, at this initial level only one trial move leads to 
a different tour, which in the example consists of adding edge (to, 5i) and 
deleting edge (si^Vr). This restricted possibility yields the initial 2-opt 
trial move considered in the LK procedure. At each subsequent level, 
the two trial moves available by the S&C reference structure, and the 
enriched set of continuations for generating successive instances of this 
structure, provide a significantly enlarged set of tours accessible to the 
S&C approach by comparison to those accessible to the LK approach. 

Figure 8.9. The stem-and-cycle ejection chain 

In the design of the stem-and-cycle neighborhood search procedure 
legitimacy conditions can be added with two main purposes: (1) to 
prevent the method from visiting solutions already inspected during the 
ejection chain process; (2) to generate special forms of alternating paths 
which have proved useful in several classical graph theory problems. For 
the first purpose it is sufficient to stipulate that no deleted edge is added 
back during the construction of the chain. The second purpose deserves 
some additional consideration. 

In classical alternating path methods in graph theory, and in neigh­
borhood search processes related to them, the customary approach is to 
restrict the edges deleted to be edges of the starting solution. Meth­
ods that use this approach, which include the classical Lin-Kernighan 
procedure, may be viewed as static alternating path methods. However, 
certain neighboring solutions can not be obtained except by generating 
alternating paths in which previously added path edges are also can­
didates to be deleted. Thus, in contrast to classical approaches, this 
produces a dynamic alternating path. In fact, the paths provided by the 
S&C structure give the ability to reach any TSP tour from any other 
tour, in contrast to the situation illustrated earlier where the paths pro­
vided by the LK approach are unable to reach some tours that differ only 
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by 4 edges from the current tour. Moreover, as demonstrated in Glover 
[374], this abihty can be assured by a simple "non-reversal" condition, 
which prevents an edge from being deleted if is inserted immediately 
after deleting another edge that was previously inserted. These restric­
tions define the legitimacy conditions for the S&C algorithm described 
in Rego [704], and are also incorporated into an enhanced version of this 
algorithm reported in the 8*̂  DIMACS TSP Implementation Challenge 
(Johnson, McGeoch, Glover, and Rego [462]). 

A general design of the stem-and-cycle neighborhood search procedure 
can be described as in Figure 8.10, where we define a legitimate neigh­
borhood for a node Vi^ denoted by LN{vi)^ as the subset of nodes of G 
that do not violate the legitimacy restrictions identified above. Also, as 
shown in Rego [704] the maximum number of levels for a S&C ejection 
chain is bounded by 2n, but since the best trial solution is usually found 
in a relatively lower level, L is considered a user-supplied parameter. 

2.4. New Methods for Variable Depth Search 
We have illustrated how ejection chain methods can be useful to gen­

erate compound neighborhood structures of several types, encompassing 
a variety of special properties for the traveling salesman problem. As 
previously mentioned, this framework for generating neighborhoods has 
proved highly effective for exploring the solution space in several other 
hard combinatorial problems. However, we recall that ejection chains 
characteristically generate moves that can not be obtained by neighbor­
hoods that preserve feasibility at each step. We now discuss methods 
to efficiently combine other, more customary, neighborhoods based on 
the creation of appropriate candidate lists, which likewise can easily be 
exploited by parallel processing. 

In the context of the TSP the terms candidate lists and neighbor lists 
are often used interchangeably because the restricted sets of elements 
considered for evaluation are usually defined by the relative distance be­
tween nodes in the problem data space. We will examine several types of 
neighbor lists in Section 3.1. However, for the exposition of the methods 
discussed in the present section, it is important to clearly differentiate 
neighbor lists from candidate lists. While both lists are associated with 
strategies to reduce the neighborhood size, neighbor lists constitute sim­
ply one possibility for creating candidate lists, and in many settings 
are used to initialize a more general candidate list approach. Neighbor 
lists are static, and keep neighbor elements from changing during the 
search process. (Methods that temporarily change the problem data 
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Step 0. Initialization 

(a) Denote the starting solution by S. 

(b) Select the initial tip node vtQ = fr-

(c) Set k = 0. 

Step 1. Generate the ejection chain 

(a) Ejection Move: 
Compute the value of the ejection move for each vertex Vp G 
LN{vtf^) as follows: Ek — c{vtf^,Vp) — c{vp,Vq) if Vp G ST] Ek = 
c{vtj^,Vp) - min{c{vp,Vp^),c{vp,Vp-)} if Vp G CY] 

(b) Select the vertex Vp* that yields the minimum Ek value and keep 
track of its adjacent vertex Vq considered for the move. 

(c) Trial Move: 
Compute the value of the trial moves associated with each subroot 
Si{i = 1,2) and chose the one that minimizes Tk = c{vp,Vsi) — 
c{vsi,Vr). The trial tour cost is given by Afc = Ek + Tk. 

(d) Keep track of the level k* that produces the best trial tour so far 

and record the subroot node involved in the trial move. 

(e) Update LN. 

(f) Set k = k -\-l and set vt^ = Vq. 

(g) If /c < L and LN is not empty return to Step 1. Otherwise go to 

Step 2. 

Step 2. Perform the compound move 

(a) Apply to S each ejection move considered in the ejection chain up 
to the level k*. 

(b) Complete the update of S by executing the trial move for the level 
k*. 

Figure 8.10. An Iteration of the Stem-and-Cycle Procedure 

such as space smoothing (Gu and Huang [409], Steven et al. [774]) and 
noising methods (Charon and Hudry [179, 180]), can change the static 
relationship, however.) Conversely, candidate lists do not necessarily 
rely on the problem data but rather are made up of solution attributes. 
These attributes, which can include the types of elements used in the 
neighbor lists and many others, change dynamically, based on informa­
tion gathered from the search process. Candidate hsts have been chiefly 
proposed in association with tabu search, which exploits strategic infor­
mation embodied in memory structures. In such settings the changes in 
the candidate Hsts are represented within an adaptive memory program-
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ming implementation either by explicitly replacing some attributes with 
others or by changing values of these attributes. 

We next discuss candidate lists that offer a useful basis for creating 
compound moves within exponential neighborhoods, while using an eco­
nomical degree of effort. For illustration purposes we consider standard 
single-node insertion moves as a basic element to create more complex 
moves. 

2.4.1 The Sequential Fan Method. This Sequential Fan 
method may be viewed as a natural generalization of beam search^ an 
approach that is extensively used in scheduling. (See Morton and Pentico 
[609], for a survey of beam search and its applications.) Beam search is 
applied within sequential construction methods as a restricted breadth-
first tree search, which progresses level by level, without backtracking, 
but only exploring the most promising nodes at each level. As a schedule 
is constructed, beam search progressively truncates the tree by choosing 
a parameter (the "beam width") that determines a constant number /3 of 
nodes (partial solutions) at each depth from the root that are permitted 
to generate nodes at the next depth. A variant called filtered beam 
search (Ow and Morton [638]) refines this approach by using a two-step 
evaluation to chose the /3 best moves at each level. The method first 
picks some number 6 (the "filter width") of locally best moves, and then 
submits these to more rigorous examination by extending each one in a 
single path look-ahead to the end of the tree (choosing the locally best 
move at each step of the path). The total path evaluations are used to 
select the /3 best moves from the initial 6 candidates. 

By extension, the sequential fan method operates in the local search 
setting as well as in the sequential construction setting, and works with 
complete solutions in neighborhood spaces as well as with the types of 
partial solutions used by beam search. It also more generally varies the 
width of the search strategically as a function of both the depth and 
the quality of the solutions generated. In a simple application to the 
TSP, for example, moves that interchange their current positions in the 
tour can be checked to identify a few good options, and for each of these, 
follow-on options are checked by pruning the total number of alternatives 
that are tracked at each level according to quality and depth. 

The basic construction of the Sequential Fan tree underlies the use 
of a candidate list strategy based on weeding out promising moves by 
applying evaluations in successive levels of the tree search, where the 
moves that pass the evaluation criteria at one level are subjected to 
additional evaluation criteria at the next. The basis for the creation of 
the sequential fan candidate list strategy can be described as follows. A 
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list of moves M{k) is associated with each level k, where hst M{k) is 
derived by applying criterion k to evaluate the moves on list M{k — 1). 
To start , hst M ( l ) is created from the set of all available moves or from 
a subset determined by another type of candidate list (e.g. a neighbor 
list as commonly used in the TSP setting) and contains the ai best of 
these moves by criterion 1. List M(2) then contains the a2 best of the 
moves from M ( l ) according to criterion 2, and so on. 

More generally, subsequent lists may not merely contain moves that 
are members of earlier lists, but may contain moves derived from these 
earlier moves. A useful way to make successive refined evaluations is 
to employ a deeper look-ahead in subsequent layers. For example, list 
M ( l ) may apply criterion 1 to evaluate immediate moves, while M(2) 
may apply criterion 2 to evaluate moves from the solutions produced 
by M ( l ) to create compound moves. More advanced constructions of 
this look-ahead process may be conceived by the use of ejection chain 
processes (performed from nodes at the current level) as a foundation 
to determine promising component moves to dynamically update the 
candidate list. Also, high evaluation trial solutions found throughout the 
ejection chain can be recorded for further consideration, as we discuss 
in Section 4.3. 

2.4.2 T h e Fi l ter and Fan M e t h o d . The Filter and Fan 
method (F&F) is a combination of the filtration and sequential fan can­
didate list strategies used in tabu search. 

By our earlier conventions, a compound move is one that can be de­
composed into a sequence of more elementary component moves (or sub-
moves), and the best compound move is the best (highest evaluation) 
combination of these submoves. As we have seen, a complete evalua­
tion of simple node-insertion and node-exchange moves in dense TSPs 
requires 0{n?) eff'ort, and the effort of evaluating a combination of L 
of these moves is 0{n^)^ and hence grows exponentially with L. How­
ever, this effort can be notably reduced based on the assumption tha t 
the best L-compound move is a combination of L submoves such that 
each is one of the M{k) highest evaluation moves for the corresponding 
level k of the tree (A: = 1 , . . . , L). Thus, instead of evaluating all possible 
combinations of k moves the F&F method proceeds by progressively cre­
ating new solutions for a level k{k > 0), which derive from the solutions 
generated in the level k - 1 by applying a restricted subset A{k) of the 
highest evaluation moves, selected from a larger set M(0) of potentially 
good moves, |M(0) | = 770. 
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The Filter and Fan Model. The F&F model can be viewed as a 
neighborhood tree where branches represent submoves and nodes identify 
solutions produced by these moves. An exception is made for the root 
node, which represents the starting solution to which the compound 
move is to be applied. The maximum number of levels considered in 
one sequence defines the depth of the tree. The neighborhood tree is 
explored level by level in a breadth search strategy. For each level /c, the 
method generates ryi * r]2 moves by the fan candidate list strategy^ then 
a subset M{k) of 772 moves is selected by the filter candidate list strategy 
to generate the solutions for the next level. 

An illustration of the Filter and Fan model is provided in Figure 
8.11, where black nodes identify a local optimum with respect to the 
L-neighborhood. The method starts as a standard descent method by 
performing 1-moves as long as they improve the best current solution. 
Once a local optimum is found (in the descent phase) the best M(0) 
moves (among the M moves evaluated to establish local optimality) are 
used to create the first level of the F&F neighborhood tree. The next 
levels are created as follows. Letting 771 be the number of M{k) moves 
for level fc, the method proceeds by selecting a subset Ai{k) of 772 moves 
from M(0) associated with each solution Xi{k){i = 1 , . . . , 771) to generate 
77 = 771 * 7̂2 trial solutions for the level k + 1 (as a result of applying 7/2 
moves to each solution at level k). For convenience we consider 771 = 4 
and 772 = 2 for the example illustrated in Figure 8.11. (The process of 
selecting 772 moves has to obey to a set a legitimacy conditions that will 
be specified later.) 

We define A{k) = {Ai{k),A2ik),... ,Ar^,{k)}{\Ai{k)\ = r/2) as the 
set of 77 moves evaluated at the level k from which the set M{k) = 
{mik^m2k^'' ",rnrj-^^k} is selected, M{k) C A{k)^k > 0. The process is 
repeated by creating a set X(/c + 1) of solutions obtained by applying 
M{k) moves to the associated solutions in X{k) and keeping these solu­
tions as starting points for the next level of the F&F tree. 

For the purpose of illustration we consider the fan candidate list strat­
egy to be the one that identifies the best 772 component moves for each 
solution at a level fc, and the filter candidate list strategy to be the one 
that identifies a subset of r/i of the 77 moves generated. Also, our example 
constitutes a variant in which the method stops branching as soon as 
an improved solution is found, then switches back to the descent phase 
starting with this new solution. However, other strategies to create both 
types of candidate hsts are possible. 
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Descent Phase 

with Single Transition Moves 

Compound Move 

Figure 8.11. The Filter and Fan Model 
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More elaborate designs of the F&F method allow different types of 
moves for combination at each level of the tree, so that compound moves 
can be obtained by different neighborhoods applied under appropriate 
legitimacy conditions. By continuing the tree search after a local opti­
mum is found, local optimality is overcome in "intermediate" levels of 
the F&F tree. Then the best trial solution encountered throughout the 
tree is chosen to re-initiate the descent phase. 

More advanced versions result by replacing the descent phase with a 
tabu search phase, which, for example, can activate the F&F strategy 
based on the use of critical event memory. Thus, the F&F strategy can 
be used either to intensify the search in regions of high quality (elite) 
solutions or to diversify the search by propelling the method to a different 
region of the solution space. 
Generating legitimate multi-node insertion moves by an F&F 
strategy. In order to create legitimate trial solutions when applying 
the F&F method legitimacy conditions have to be defined according to 
the type of component move used for the problem. We characterize 
legitimacy conditions for an F&F method using single-node insertion 
component moves for the TSP. 

A component move will be called legitimate at a level k if this move 
can be performed by the usual neighborhood search rules (e.g. as a 
customary node insertion) after performing the associated (/c — l)-move. 
Otherwise, the move is illegitimate. By this definition, a move that is 
illegitimate relative to a solution Xi{k){l < i < rji) will remain illegiti­
mate throughout further levels of the subtree rooted by Xi{k). 

We further stipulate that the legitimacy conditions ensure the com­
ponent move evaluations do not change during the F&F neighborhood 
search. Thus, the solution cost-changes associated with each move in M 
are carried forward through the tree to provide information for evaluat­
ing the A{k) moves. By doing so, the neighborhood of a solution Xi{k) 
can be restricted to consist of 772 potentially good moves. The M{k) 
moves (fc > 0) are chosen according to the quality of the trial solutions 
produced by the A{k) moves. 

Consider an F&F process based on single node-insertion moves, which 
insert a node vi between two consecutive nodes Vp and Vq in the tour. 
To maintain the legitimacy of an L-move it is sufficient to forbid the 
insertion of a node Vi between nodes for which the corresponding edge 
(vp^Vq) has been deleted in one of the L — 1 levels of the corresponding 
L-move. 
Additional considerations for implementation. An efficient im­
plementation of the F&F procedure requires the identification of appro-
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priate data structures for handling different parts of the method and 
speeding up the search. 

The first issue in implementing the F&F method concerns the cre­
ation of M(0) in the descent phase. Assume the simplest form of the 
F&F strategy is employed, where the initial phase is a pure memoryless 
descent procedure. Hence M(0) is a subset of the best M moves evalu­
ated on the last step of the descent (to verify that local optimality has 
been reached). It may be computationally more efficient to create M(0) 
by performing an additional iteration of the local search procedure after 
reaching the local optimum 5*, rather than to keep track of the 770 best 
moves at each iteration. A priority queue based on a binary heap data 
structure can be used to identify the best 770 moves during the neighbor­
hood search process in 0{log{r]Q)) time. (See, e.g., Gormen, Leiserson, 
and Rivest, [218], pages 140-152.) Since the additional iteration consists 
of repeating the evaluation of moves in the previous iteration, several 
strategies can be used to restrict the size of the neighborhood, thus 
reducing the time complexity to create M(0). 

Another issue concerns the creation of Ai{k) for each solution Xi{k). 
Instead of searching M(0) for the best 772 legitimate moves it can be 
advantageous to consider the rrijk moves {j = 1 , . . . ,771^,^ 7̂  i) as the 
candidates for Ai{k). The creation of this candidate hst assumes that 
good moves in one level of the tree are potentially good in deeper levels of 
the tree. However, such a strategy increases the chance for re-generating 
solutions previously visited. One way to counter this tendency is to use 
a tabu list of move attributes associated with each solution Xi{k)^ thus 
introducing a further level of legitimacy. Additional moves to complete 
Ai{k) can be examined in M(0) whenever the number of legitimate moves 
for Xi{k) is smaller than 772. An outhne of the general F&F procedure 
is provided in Figure 8.12. 

3. Tabu Search 
The Tabu Search (TS) metaheuristic has proved highly successful in 

solving a wide range of challenging problems. A key feature of TS is its 
use of adaptive memory, accompanied by a collection of strategies for 
taking advantage of this memory in a variety of contexts. Character­
istically, TS can be implemented at multiple levels to exploit tradeoffs 
between ease of implementation and sophistication of the search. Sim­
pler forms of TS incorporate a restricted portion of its adaptive memory 
design and are sometimes applied in preliminary analyses. These ap­
proaches have proved useful for testing the performance of a limited 
subset of TS components, and for identifying cases where more fully in-
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Step 0. Generate a candidate list of component moves 

(a) Consider a starting solution S and perform 1-moves using a local 
search method until a local optimum S* is found. 

(b) Create a candidate list M(0) with the 770 highest evaluation moves 
in the neighborhood where S* was found. 

(c) Apply the best 771 moves in M(0) to S* to create the first level of 

the F&F tree with solutions Xi(l)(z = 1 , . . . ,771). Set k = 1. 

Step 1. Generate the Filter and Fan tree 

(a) Identify the best 772 legitimate moves derived from M(0) for each 
solution Xi{k){i = 1 , . . . ,771) to create sets Ai{k){j = 1,... ,r)i). 

(b) Evaluate each move in Ai(k), applied to the associated solution 
Xi{k), and compute the value of the corresponding trial solution. 

(c) If the best trial solution found is better than S*, perform the as­
sociated move from Xi{k) on S and go to Step 0. 

(d) Otherwise, select the A{k) moves that led to the best 771 trial so­
lutions to become the members of M(/c). 

(e) Apply the M{k) moves to the corresponding solutions Xi{k) to 
create X{k 4-1). 

(f) U k = L stop. Otherwise set k = k -{- 1 and repeat Step 1, 

Figure 8.12. A General Filter and Fan Procedure 

tegrated strategies are not required. However, versions of tabu search 
that include a more comprehensive and advanced set of its elements 
generally prove superior to more limited versions of the approach. 

A strategic component of TS that is sometimes omitted involves main­
taining and analyzing a collection of high quality solutions to infer prop­
erties of other high quality solutions. Such processes provide a con­
nection between Tabu Search and certain evolutionary approaches, as 
represented by the Scatter Search method discussed in the next section. 

So far algorithmic studies of large TSP instances have chiefly focused 
on isolating efficient neighborhood structures (such as those based on 
Lin-Kernighan and Ejection Chain procedures) and on using appropri­
ate candidate lists. As reported in the 8*̂  DIMACS TSP Implementa­
tion Challenge, recent implementations of LK and EC procedures can 
now find near-optimal solutions for very-large scale TSP instances in a 
relatively short time. 

Motivated by the experiences reported in other problem settings we 
speculate that still better TSP solutions may be found by including 
advanced features of tabu search. In this section we discuss some key 
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strategies in TS that deserve special consideration to achieve improved 
outcomes. 

3.1- Candidate List Strategies 
As we have already emphasized, efficient procedures for isolating good 

candidate moves are critically important for the efficiency of local search 
algorithms. In the TSP setting, for example, the use of candidate lists 
is mandatory when large instances have to be solved. 

There are some subtleties in the ways candidate list strategies may be 
used. A number of studies have observed that optimal or near optimal 
solutions often can be constructed for the TSP by limiting consideration 
to a small number of shortest (least cost) arcs out of each node. A natu­
ral procedure is to create a candidate list defined by the nearest neighbor 
graph, giving the neighbor list previously discussed, where some limited 
number of nodes closest to each given node determines the edges per­
mitted to be included in the tours generated. However, TSP instances 
exist where the best solutions significantly violate this restriction, as ex­
emplified by the situation where vertices on a Euclidian plane occur in 
separated clusters. A drawback of the nearest neighbor list is the fact 
that its size is fixed and it does not exploit the geometric structure of 
the problem. Consequently, more efficient approaches create moves by 
requiring some but not all edges to belong to a shortest-edge collection. 
Reinelt [710] suggests a candidate list approach based on the computa­
tion of a Delaunay graph, which provides a set of edges to initialize the 
candidate list. Then the list is expanded by adding an edge {vi^Vk) for 
each pair {vi^Vj) and [vj^Vk) in the initial set. It has been observed that 
even if this approach provides useful edges for clustered TSP instances it 
misses several other important edges and thus restricts the performance 
of the local search procedure. 

A more efficient candidate list construction is the so-called /c-quadrant 
neighbor graph, initially proposed by Miller and Pekny [598] for a 2-
matching problem (which is a relaxation of the TSP) and first used by 
Johnson and McGeogh [463] in the TSP context. In this graph, each 
vertex Vj is the origin of a quadrant in a Euclidian plane and the /c/4 
vertices closest to the origin in each quadrant define the neighbors for 
vertex Vj. Let qij denote the number of vertices in the quadrant i for 
vertex Vj. If Yli=i Qij < ^̂  ^hen we fill out the candidate hst for Vj with 
the A:-^.^-^ qij nearest cities to Vj not already included. This candidate 
hst is used in several of the most efficient implementations of local search 
algorithms submitted to the DIMACS TSP Challenge, including imple-



348 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

mentations of the Lin-Kernighan and Ejection Chain algorithms. A more 
sophisticated approach is used in Helsgaun's variant of Lin-Kernighan 
[446], where the candidate hst for vi consists of its k nearest neighbors 
Vj under a new metric produced in a two-step derivation process from 
the original distances (see Chapter 9). 

We conjecture that the design of efficient candidate lists for these 
hard TSP instances (where vertices are not uniformly diffused but may 
clump and cluster) depend in part on their amplification factor [371], 
which is the ratio of the total number of arcs added by the move to 
the number that belong to the fc-shortest category. For a simple ex­
ample, consider single node insertion and exchange moves. Requiring 
that a "first added edge" in each of these moves must be on a nearest 
neighbor list) instead of requiring that all added edges belong to such 
lists) will achieve amplification factors of 3 and 4 respectively. The log­
ical conditions defining such a candidate list in the present context can 
be specified more precisely as follows. For an insertion move, where a 
selected node vi is repositioned to lie between nodes Vp and Vq^ we re­
quire one of these two added edges (vp^Vi) or (vi^Vq) to be among the 
k shortest arcs linked to node Vi. Since three edges are added by the 
move (including the arc joining Vi- to vi^)^ this single-arc requirement 
gives an amplification factor of 3. (More than one of the three added 
edges may belong to the /c-shortest category, but only one is compelled 
to do so.) Given node Vi^ the form of the insertion move is completely 
determined once either edge (vp^Vi) or (vi^Vq) is specified. Similarly, for 
exchange moves, where nodes vi and Vj interchange positions, we require 
only one of the four added edges (vi-^Vj)^ (vj — ̂ Vi)^ (vi^Vj^)^ (vj^Vi^) 
to belong to the fc-shortest group, yielding an amplification factor of 4. 
Here, a given added edge can be used to define two different moves. By 
extension, the subpath insertions and exchanges of the type described 
in the ejection chain method provide a means for achieving significantly 
higher amphfication factors. 

The features attending these cases are characteristic of those exhib­
ited by a special type of candidate list proposed in tabu search called a 
preferred attribute candidate list. In this instance, the fc shortest edges 
of a node Vi identify the "preferred attributes" used to control the con­
struction of moves where each attribute (or attribute set) on the list 
exhibits a property expected to be found in good solutions. For the 
present setting, these candidate lists can be constructed as follows. 

Consider first the case of insert moves where each preferred arc (vi^ Vj) 
generates two candidate moves: the first inserting Vi between Vj and Vjj^^ 
and the second inserting Vj between Vi and vi^^ excluding the case where 
(vi^Vj) is an edge of the tour. Since we are dealing with the symmetric 
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case, the preferred edge (vi.Vj) generates two insert moves in addition 
to those indicated. The first inserts Vi between Vj and Vj-^^ and the 
second inserts Vj between vi- and Vi. The preferred attribute candidate 
hst for exchange moves is similarly constructed. Each preferred edge 
(fi, Vj) generates four candidate exchange moves, the first exchanging Vj 
with Vj^^ the second exchanging vi with Vi-, and two others that result 
by treating a preferred edge in its two equivalent forms of {vi^Vj) and 
{vj^Vi), Note that the generahzation of these constructions for multi-
node insertion and exchange moves of the type considered by Or-opt 
neighborhoods is straightforward. 

We suggest that fuller advantage can be gained from the preferred 
candidate hst by replacing the costs c{vi^Vj) by non-negative reduced 
costs derived by solving 1-tree relaxation of the TSP. This will not change 
the move evaluations, but typically will change the identities of the k-
shortest edges of each node. (Ties can be broken by reference to the 
original costs.) Additional shortest edges may be included as determined 
by "modified" reduced costs, where constraints violating the node degree 
are plugged in a Lagrangian function to amend the 1-tree structure. 

In addition to the design of candidate list strategies, a careful orga­
nization that saves the results of evaluations from previous iterations 
rather than re-computing them from scratch, can also be valuable for 
reducing time. Time saved in this way allows a chance to devote more 
time to the search. In the TSP setting this objective has been chiefly 
achieved by the use of the so-called don^t-look hits strategy introduced by 
Bentley [103]. This strategy is based on the observation that if the base 
vertex, e.g. vi in the LK procedure, and if the "tour neighbors" of this 
vertex have not changed since that time, it is unlikely that the selection 
of this vertex will produce an improving move. Thus, by associating a 
binary variable (or flag) with each vertex, the neighborhood is restricted 
to moves for which the base vertex fi 's associated bit is turned off. A 
bit for a vertex vi is turned on the first time the selection of this vertex 
does not produce an improving move. Conversely, it is turned off when 
one of its adjacent vertices is used for a move. 

3.2. Intensification and Diversification Strategies 
Intensification and diversification in tabu search underlie the use of 

memory structures which operate by reference to four main principal 
dimensions: recency^ frequency^ quality^ and influence. The strategic 
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integration of different types of memory along these dimensions is gen­
erally known as adaptive memory program^ming. 

Elements of memory can refer to both attributive memory and explicit 
memory. Attributive (or "Attribute-based") memory refers to either 
basic or created attributes - instead of recording complete solutions -
as a way to generate strategies to guide the search. Attributive mem­
ory records information about solution attributes that change in moving 
from one solution to another. For example, in the TSP setting, attributes 
can consist of nodes or arcs that are added, dropped or repositioned 
by the moves executed. (In more abstract problem formulations, at­
tributes may correspond to values of variables or functions.) Sometimes 
attributes are also strategically combined to create other attributes, as 
by hash functions or by chunking or "vocabulary building" methods ( 
[379]). Tabu search also uses exphcit memory (complete solutions), usu­
ally by recording a limited set of elite solutions which are analyzed to 
determine relationships between attributes in these solutions. 

Broadly speaking, recency/frequency and quality/influence can be 
viewed as complementary dimensions. Recency-based and frequency-
based memory record timing information about the use of specific mem­
ory elements while quality and influence classify solutions in terms of 
their significance for representing promising solution characteristics (or 
regions in the solution space) and the impact of certain choices on the 
quality of the solutions produced. The time span considered in recency-
based and frequency-based memory gives rise to an important distinction 
between short-term, memory and longer-term, memory. 

The short term memory component of tabu search, which is the start­
ing point for many tabu search implementations, characteristically em­
bodies a recency-based memory that modifies the solution trajectory 
by tabu restrictions (or conditions) and aspiration criteria. A tabu re­
striction prevents a particular solution, or set of solutions, from being 
chosen as the outcome of the next move. Most commonly used short 
term memory keeps track of solution attributes that have changed dur­
ing the recent past. Recency-based memory is exploited by assigning a 
tabu-active designation to selected attributes that contribute to creating 
a tabu restriction. This prevents certain solutions from the recent past 
from belonging to the admissible neighborhood of the current solution 
and hence from being revisited. The process imphcitly subdivides solu­
tions into changing "similarity classes" whereby all solutions that share 
tabu-active attributes with solutions recently visited may likewise be 
prevented from being visited. Aspiration levels provide a supplementary 
basis for controlling the search, by allowing a move to be selected if the 
resulting solution is sufficiently good or novel, in spite of being classified 
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tabu-active. A simple aspiration criterion is to allow a tabu move to be 
selected if it leads to a solution better than the best one seen so far, 
or the best one seen within a particular region or duration of search. 
Advanced forms of short-term memory may consider various types of 
tabu restrictions associated with several aspiration criteria, which may 
be used in conjunction to make a decision about the declination of the 
tabu status of a particular move. 

In the TSP context, tabu restrictions may be created, for example, 
by (1) preventing a dropped edge from being subsequently added back; 
(2) preventing an added edge from being subsequently dropped; (3) pre­
venting a move that simultaneously adds a previously dropped edge and 
drops a previously added edge. Since there are generally fewer edges 
that can be dropped than can be added, a tabu restriction of type (1) 
allows a greater degree of flexibility than a restriction of type (2) or 
(3). (Still greater flexibility is provided by a restriction that prevents a 
dropped edge from being added back only if the move simultaneously 
drops a previously added edge.) 

Tabu restrictions remain in operation for a certain number of iter­
ations (the tabu tenure) which can vary according to the solution at­
tributes involved and the current search state. In some implementations 
where all attributes receive the same tenure, the tabu restrictions are 
activated by placing the attributes on a tabu list^ and the size of this 
hst identifies the tenure. (An attribute whose tenure expires is removed 
from the list at the same time that a new attribute is added.) A first 
level of intensification and diversification can be achieved by changing 
the tabu hst size. Small sizes encourage the exploration of solutions near 
a local optimum, and larger ones push the search out of the vicinity of 
the local optimum. Varying the tabu list size during the search provides 
one way to explore such an effect, which has proved useful in a number 
of tabu search applications. 

A common means of implementing this type of short term memory is 
to create an array which records the iteration that an attribute becomes 
tabu-active. Then, the attribute remains tabu-active as long as the 
current iteration does not exceed the initial iteration value by more 
than the tabu tenure. A special type of tabu list results by creating 
"coded attributes" using hash functions. Such a representation may be 
viewed as a semi-explicit memory that can be used as an alternative 
to attributive memory. One variant of such an approach is a special 
form of tabu search known as reactive tabu search (Battiti and Tecchiolli 
[91]). The goal of this technique is to diff*erentiate more precisely among 
individual solutions, by making use of a fine guage attribute memory. 
(Only individual solutions can pass through the mesh, if the hashing 
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is highly effective.) Other TS approaches usually incorporate broader 
gauge attribute definitions, which impHcitly differentiate among subsets 
of solutions rather than individual solutions. In reactive TS, when the 
search appears to revisit a particular solution (by encountering its coded 
attributes) too often, the method introduces a diversification step to 
drive the solution into a new region. 

Frequency-based memory provides a type of information that comple­
ments the information provided by recency-based memory. Frequency-
based memory has two forms: transition frequency memory and resi­
dence frequency memory. Transition frequency relates to the number 
of times an attribute enters or leaves the solutions generated (as, for 
example, the number of times an edge is added or dropped). Residence 
frequency relates to the number of iterations during which an attribute 
belongs the solutions generated (as, for example, the number of itera­
tions an edge belongs to a TSP tour, considering all tours generated). 
Frequency based memory can also be different according to the interval 
(or intervals) of time chosen for the memory. Frequency based memory 
that is applied only to elite solutions gives different information and is 
used in different ways than frequency ba^ed memory that is applied to 
all solutions (or "average" solutions). These memories are sometimes 
accompanied by extended forms of recency-based memory. 

Intensification is sometimes based on keeping track of the frequency 
that attributes (assignments of elements to positions, edges of tours, 
fairly narrow ranges of value assignments, etc.) occur in elite solutions, 
and then favoring the inclusion of the highest frequency elements so the 
search can concentrate on finding the best supporting uses (or values) 
of other elements. 

As part of a longer term intensification strategy, elements of a solution 
may be selected judiciously to be provisionally locked into the solution 
on the basis of having occurred with a high frequency in the best solu­
tions found. In that case, choosing different mutually reinforcing sets of 
elements to be treated in such a fashion can be quite beneficial. In the 
TSP setting where typically good solutions have many elements in com­
mon, edges that belong to the intersection of elite tours may be locked 
into the solution, in order to focus the search on manipulating other 
parts of the tour. This creates a combinatorial implosion effect (oppo­
site to a combinatorial explosion effect) that shrinks the solution space 
to a point where best solutions over the reduced space tend to be found 
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more readily. Such an intensification approach, where restrictions are 
imposed on parts of the problem or structure is a form of intensification 
by decomposition proposed in tabu search. 

The backtracking mechanism used in the Lin-Kernighan procedure 
may be viewed as a simple type of intensification process that a t tempts 
to find a new improving solution by jumping back to successive trial solu­
tions examined in the first steps of the current Lin-Kernighan iteration. 
This is a limited form of intensification in the sense tha t elite solutions 
chosen to restart the method are restricted to those encountered at the 
immediately preceding level and therefore are very similar to one an­
other. In fact, since the backtracking process is only applied when no 
improving solution is found during the LK move generation, backtrack­
ing may be viewed as a perturbation mechanism locally applied to the 
last local optimum found (and therefore limited to the exploration of one 
elite solution at a time). The reverse extreme of this technique is the 
process of restarting the method from a new initial solution generated 
either randomly or by varying parameters of a constructive procedure. 
This represents a primitive form of diversification, without reference to 
memory to preserve promising characteristics of the elite solutions vis­
ited so far or to compel the generation of solutions that differ in specific 
ways from those previously seen. 

An important strategy used in the most efficient implementations of 
the Lin-Kernighan procedure is the so-called "don't look bits" (DLB) 
approach described in Section 3.L The strategy may be viewed as an 
instance of applying a critical event tabu list structure, where the tabu-
active status of an at t r ibute terminates as soon as a specified event 
occurs. In the case of the DLB approach, the at t r ibute under consider­
ation is a node, which is forbidden to be involved in a move, and hence 
is not examined to introduce a new edge, after it fails to be considered 
for an improving move. 

More precisely, the usual DLB implementation can be succinctly for­
mulated as a restricted application of tabu conditions, making use of 
TS terminology to describe its operation, as follows. An at t r ibute (in 
this case a node) is assigned a tabu-active status as soon as a search 
for an improving move with that node as the ba^e node vi fails. The 
tabu-active s tatus of the node renders moves that involve this node tabu, 
and the s tatus is removed in the DLB approach as soon as an improving 
move is found that drops an edge adjacent to the tabu-active node, thus 
identifying the "critical event" in this particular context. More general 
TS designs identify unattractive at tr ibutes by frequency memory over 
specified regions of the search, and then penalize such at tr ibutes during 
an intensification or diversification phase. The "region" for the Don't 
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Look Bits approach is simply the domain of moves examined during an 
iteration when the addition of the edge fails to produce an improving 
move, and the penalty is pre-emptive, as in the more common forms of 
short-term TS memory. 

We conjecture that the memory structure introduced by the "don't 
look bits" strategy, in conjunction with efficient candidate list construc­
tions, provides a key contribution to the performance of modern imple­
mentations of the Lin-Kernighan procedure. If so, there may be advan­
tages to using more general types of critical event memory structures, 
governed by correspondingly more general uses of frequency memory, as 
a basis for alternative implementations. In this connection, it is inter­
esting to note that the present implementations of the Stem-and-Cycle 
ejection chain method do not incorporate any type of memory struc­
tures (including the "don't look bits" structure) to restrict the solution 
space and guide the search process. The attractive outcomes of this ejec­
tion chain approach compared to the LK implementations are therefore 
somewhat surprising, and invite further examination of the Stem-and-
Cycle and other ejection chain structures, where consideration is given 
to including the types of supplemental implementation strategies that 
have supported the LK procedures. 

3.3. Strategic Oscillation 
Strategic oscillation represents a special diversification approach in 

tabu search that deserves its own discussion. An important challenge 
in the design of local search algorithms is to create strategies that effec­
tively avoid the trap of getting stuck in local optima. It is not unusual 
in combinatorial optimization for high quality local optima to lie in deep 
(or "large") valleys of the solution space, sometimes attended by numer­
ous smaller variations in elevation along the general valley floor. In such 
cases, a significant number of iterations may be required to leave these 
basins of attraction in order to find new local optima of higher quality. 
One way to overcome this difficulty is to change the neighborhood when 
the telltale features of such a basin of attraction are observed. The iden­
tification of critical levels of change required to escape from "insidious 
valleys" provides the basis to implement a strategic oscillation that alter­
nates between different (and somewhat complementary) neighborhood 
structures. 

A key issue often encountered in strategic oscillation is to allow the 
method to cross boundaries of feasibility instead of strictly remaining 
within the feasible region. In general combinatorial problems, a com­
mon technique for doing this consists of relaxing some of the "hard" 
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constraints and introducing penalties associated with those that are vi­
olated as a result. Penalty values are appropriately adjusted at each 
iteration in order to bring the search back into the feasible region. Ap­
proaches of this type have been adopted to the heuristic context in the 
tabu search algorithm of Gendreau, Hertz, and Laporte [352] for the 
classic vehicle routing problem (VRP), which includes embedded TSPs. 
In this application, the vehicle capacity and the route length constraints 
are temporarily relaxed and handled by a penalty function as described. 

In the TSP setting where constraints consist of enforcing a partic­
ular graph structure - in this case, a Hamiltonian circuit (or cycle) -
oscillation strategies must rely upon the ability of the neighborhood 
structures to deal with infeasible graph structures. Typical examples of 
such neighborhoods are provided by the reference structures used in the 
Lin-Kernighan and Stem-and-Cycle Ejection Chain procedures. In these 
approaches, as previously noted, a feasible TSP tour chosen at one level 
of the move generation process is obtained by performing a sequence of 
(infeasible) moves that transform one reference structure into another, 
and recovering feasibility by performing a complementary trial move. 

Another way to implement a strategic oscillation is to utilize construc­
tive/destructive neighborhoods, which follow each construction phase by 
destroying the feasibility of the problem graph structure, and then build 
up a new solution by reconnecting the solution subgraph in a different 
way. 

The destructive process can be done either one component at a time 
or based on selecting a subset of graph components as in the vocabulary 
building strategy of tabu search. In either case, the destructive process 
yields a partial subgraph made up of a subset of disconnected compo­
nents. The aim of the constructive process is then to efficiently re-insert 
the missing components into the partial graph to create a new com­
plete tour. The GENIUS algorithm of Gendreau, Hertz, and Laporte 
[351] uses a simple one-step (unit depth) oscillation, as noted earlier, 
but more advanced forms of oscillation are clearly possible. 

4. Recent Unconventional Evolutionary 
Methods 

It is useful to base the design of the constructive/destructive process 
on the observation of commonalties between good TSP tours, making 
use of associated tabu search memory components. Additional ways to 
create memory structures to explore intensification and diversification 
arise in connection with Scatter Search and Path Relinking methods 
which embody a population-based approach. 
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4.1. Scatter Search Overview 
Scatter search [368] is an evolutionary method proposed as a primal 

counterpart to the dual approaches called surrogate constraint methods, 
which were introduced as mathematical relaxation techniques for dis­
crete optimization problems. As opposed to ehminating constraints by 
plugging them into the objective function as in Lagrangean relaxations, 
surrogate relaxations have the goal of generating new constraints that 
may stand in for the original constraints. The approach is based on 
the principle of capturing relevant information contained in individual 
constraints and integrating it into new surrogate constraints as a way to 
generate composite decision rules and new trial solutions (Glover [367]). 

Scatter search combines vectors of solutions in place of the surrogate 
constraint approach of combining vectors of constraints, and likewise is 
organized to capture information not contained separately in the origi­
nal vectors. Also, in common with surrogate constraint methods, SS is 
organized to take advantage of auxiliary heuristic solution methods to 
evaluate the combinations produced and generate new vectors. As any 
evolutionary procedure, the method maintains a population of solutions 
that evolves in successive generations. 

A number of algorithms based on the scatter search approach have 
recently been proposed for various combinatorial problems (Kelly, Ran-
gaswamy and Xu [502], Fleurent et al. [313], Cung et al. [231], Laguna 
and Marti [530], Campos et al. [157], Glover, L0kketangen and Woodruff 
[381], Atan and Secomandi [48], Laguna, Lourengo and Marti [529], Xu, 
Chiu and Glover [829], Cavique, Rego and Themido [173]). For tutorial 
descriptions of Scatter Search with examples of different applications we 
refer the reader to Glover, Laguna, and Marti [380], and Rego and Leao 
[708]. 

Scatter search operates on a set of reference solutions to generate new 
solutions by weighted linear combinations of structured subsets of solu­
tions. The reference set is required to be made up of high-quality and 
diverse solutions and the goal is to produce weighted centers of selected 
subregions that project these centers into regions of the solution space 
that are to be explored by auxiliary heuristic procedures. Depending on 
whether convex or nonconvex combinations are used, the projected re­
gions can be respectively internal or external to the selected subregions. 

For problems where vector components are required to be integer, a 
rounding process is used to yield integer values for such components. 
Rounding can be achieved either by a generalized rounding method or 
iteratively, using updating to account for conditional dependencies that 
can modify the rounding options. 
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Regardless of the type of combinations employed, the projected re­
gions are not required to be feasible and hence the auxiliary heuristic 
procedures are usually designed to incorporate a double function of map­
ping an infeasible point to a feasible trial solution and then to transform 
this solution into one or more trial solutions. (The auxiliary heuris­
tic commonly includes the function of restoring feasibility, but this is 
not a strict requirement since scatter search can be allowed to operate 
in the infeasible solution space.) From the implementation standpoint 
the scatter search method can be structured to consist of the following 
subroutine. 

Diversification Generation Method - Produces diverse trial solu­
tions from one or more arbitrary seed solutions used to initiate the 
method. 

Improvement Method - Transforms a trial solution into one or more 
enhanced trial solutions. (If no improvement occurs for a given trial 
solution, the enhanced solution is considered to be the same as the one 
submitted for improvement.) 

Reference Set Update Method - Creates and maintains a set of ref­
erence solutions that are the "best" according to the criteria under con­
sideration. The goal is to ensure diversity while keeping high-quality 
solutions as measured by the objective function. 

Subset Generation Method - Generates subsets of the reference set 
as a basis for creating combined solutions. 

Solution Combination Method - Uses structured and weighted com­
binations to transform each subset of solutions produced by the subset 
generation method into one or more combined solutions. 

A general template for a scatter search algorithm can be organized in 
two phases outlined as follows (Figure 8.13). 

4.2. Scatter Search for the TSP 
An important aspect in any evolutionary approach is the way solutions 

are encoded as members of the population. In genetic algorithms solu­
tions were originally encoded as bit strings, though there have been some 
departures to this practice in recent years. The disposition to use bit 
strings in GA methods derives from the fact that the first GA crossover 
mechanism for combining solutions were based on simple exchanges of 
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Step 0. Initial Phase 

(a) Diversification Generator 

(b) Improvement Method 

(c) Reference Set Update Method 

(d) Repeat this initial phase until producing a desirable level of high-

quality and diverse solutions. 

Step 1. Scatter Search Phase 

(a) Subset Generation Method 

(b) Solution Combination Method 

(c) Improvement Method 

(d) Reference Set Update Method 
(e) Repeat this scatter search phase until the reference set converges 

or until a specified cutoff limit on the total number of iterations 
is reached. 

Figure 8.13. A Scatter Search Template 

bits. In the classical GA bit string representations, continuous decision 
variables are usually encoded as substrings of the solution strings and 
their length depends on the precision required for these variables. Dis­
crete decision variables are commonly encoded in these representations 
as a collection of zero-one variables, each corresponding to a single binary 
character in the solution string. For combinatorial problems defined on 
graphs, decision variables are typically associated with nodes or edges 
of the problem graph. In the TSP setting, where the number of edges 
is typically much larger than the number of nodes, solutions are usually 
encoded as a sequence of nodes representing a possible permutation for 
the problem. However, such a permutation-based representation used 
by GA approaches for the TSP entails several drawbacks subsequently 
noted. 

By contrast, the original form of Scatter Search was not restricted 
to a specific type of encoding such as using bit strings, because the 
mechanism for combining solutions was not constrained to the limited 
crossover operations that governed the original GA formulations. In fact, 
SS readily incorporates different types of solution encodings in different 
parts of the method. In this section we discuss a Scatter Search ap­
proach for the TSP that utilizes such a "difTerential encoding" scheme. 
A node-based variable representation is used where information about 
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the relative value of the variables is not a primary issue, and an edge-
based encoding is used otherwise. 

To provide a general framework that discloses some critical features 
for applying scatter search to the TSP, a general design of the scatter 
search template for the TSP may be stated as follows. 

Initial P h a s e 

Diversif icat ion Generator . Scatter search starts by generating an 
initial set of diverse trial solutions, characteristically using a system­
atic procedure, which may include a stochastic component but which is 
highly "strategic" as opposed to relying chiefly on randomization. 

Treating the TSP as a permutation problem, an illustrative approach 
for generating diverse combinatorial objects may be described as follows. 
A trial permutation P is used as a seed to generate subsequent permu­
tations. Define the subsequence P{h : s) to be the vector P{h : s) = 
(s, 5 -f- /i, 5 -h 2 / i , . . . , 5 -h rh)^ where r is the largest nonnegative integer 
such that s + rh < n. Relative to this, define the permutation P{h) for 
h<n, to be P{h) = {P{h : h), P( / i : /i - 1 ) , . . . , P{h : 1)). In the TSP 
context we consider permutations as n-vectors whose components are the 
vertices vi G V. Consider for illustration a TSP with n = 14 vertices, 
h = A, and a seed permutation P ( l , 2, 3,4, 5,6, 7, 8, 9,10,11,12,13,14) 
given by the sequence of vertices ordered by their indices. The recur­
sive application of P ( 4 : 5) for s = 4 , . . . , 1 results in the subsequences, 
P = {4,8,12}, P = {3, 7,11}, P = {2, 6,10,14}, and P - {1, 5, 9,13}, 
hence P(4) = {4, 8,12, 3, 7,11, 2 ,6 ,10 ,14 ,1 , 5, 9,13}. By varying h it is 
possible to generate up to n different permutations to initialize the refer­
ence set. The generated permutations can themselves represent tours by 
successively linking vertices in the order they appear in the permutation 
and attaching the initial and ending vertices to close up the tour. 

I m p r o v e m e n t M e t h o d . The improvement method used in the initial 
phase may or may not be the same method used in the scatter search 
phase. This decision usually depends on the context and on the search 
strategy one may want to implement. Here we consider the context of the 
Euclidian TSPs, where distances between vertices are ordinary Euchdian 
distances in the plane. For instance, since a diversification generator 
such as the one we are using characteristically generates edges tha t cross 
in the initial tours, and such crossings are non-optimal for Euclidian 
problems, a simple form of improvement method in the initial phase can 
be one of ehminating possible edge crossings rather than doing extensive 
local optimization. The objective is to avoid premature convergence and 
to keep a reference set with diverse and high quality solutions at each 
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iteration. In this context, the use of a classical k-opt procedure (fc == 2 or 
3) under a first-improvement startegy^ which performs a move whenever 
it improves the current tour, may be appropriate for the initial phase of 
the SS procedure while a more powerful technique such as Lin-Kernighan 
or Stem-and-Cycle variable depth methods would be appropriate for the 
scatter search phase. 

Reference Set Update Method. This method is used to create and 
maintain a set of reference solutions. As in any evolutionary method, 
a set of solutions (population of individuals) containing high evaluation 
combinations of attributes replaces less promising solutions at each it­
eration (generation) of the method. In genetic algorithms, for example, 
the updating process rehes on randomized selection rules which select 
individuals according to their relative fitness value. In scatter search the 
updating process relies on the use of memory and is organized to main­
tain a good balance between intensification and diversification of the 
solution process. In advanced forms of scatter search reference solutions 
are selected based on the use of memory which operates by reference to 
different dimensions as defined in tabu search. Depending on the con­
text and the search strategy, different types of memory are called for. 
As we have seen the term adaptive memory program^ming refers to the 
general realm of strategies for integrating and managing various types of 
memory to achieve both intensification and diversification. (See Glover 
and Laguna [379], and Rego and AUdaee [707], for a detailed explana­
tion of various forms and uses of memory within search processes.) For 
the purpose of this discussion we consider a simple rule to update the 
set of reference solutions, where intensification is achieved by selecting 
high-quality solutions in terms of the objective function value and di­
versification is induced by including diverse solutions from the current 
candidate set CS. Thus the reference set RS can be defined by two 
distinct subsets B and D, representing r(^si)ectively the subsets of high-
quality and diverse solutions, hence RS — B U D. 

Denote the cardinahties of B and D by |Z?| = ri and |D1 = r2, which 
do not need to be identical and can vary during the search. For instance, 
relatively larger sizes of B (D) can be ai)propriate during a phase that 
is more strongly characterized by an intensification (diversification) em­
phasis. Different schemes can be chosen to implement these variations. 
A dynamic variation of these sizes can be implemented by a perturbation 
scheme, for example, and a strategic oscillation approach with critical 
event memory can be used as an indicator of the order of magnitude of 
the relative variations. 
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It is important to distinguish the concepts of difference and distance. 
In the context of the TSP, the difference between two TSP tours is 
defined as the number of edges by which the two solutions differ. The 
distance between two solutions X and Y is defined as the minimum 
number of steps (or iterations) necessary for the local search algorithm 
to move from solution X to solution Y. Thus, the distance between two 
TSP tours depends on the type of neighborhood used in the local search 
algorithm and may not be directly related to the difference between the 
two TSP tours. 

For a visual representation consider a solution space graph G where 
nodes represent solutions and arcs define direct moves from one solution 
to another associated with a given neighborhood structure. The distance 
between two solutions X and Y is given by the shortest path (in terms 
of the number of arcs) from node X to node Y in the graph G. It is easy 
to see that the distance between solutions is a more accurate measure 
of diversity than the difference between them. However, for the sake 
of simplicity it is common to use the difference between solutions as an 
indicator of their diversity, and for the same reason this measure can be 
used for the selection of diverse solutions to update D in the reference 
set. 

Let CS denote the set of solutions generated and improved during 
the method's application. If some of these solutions produced by the di­
versification generator are not sufficiently distant from each other, it is 
possible that the improvement method may generate the same solution 
from several different members of CS. Therefore, it can be valuable to 
have a fast procedure to identify and eliminate solutions from CS tha t 
duplicate or "lie very close" to others before creating or updating the ref­
erence set. Such an approach can be facilitated by using an appropriate 
hash function. 

A straightforward way to create a reference set RS consists of selecting 
the r i best solutions from CS to create B , and then to generate the set D 
of r2 diverse solutions by successively selecting the solution tha t differs 
by the greatest amount from the current members of RS. As a diversity 
measure we define dij — |(S'z U Sj) \ {Si C^ Sj)\ as the difference between 
solutions Si and Sj^ which identifies the number of edges by which the 
two solutions differ from each other. The dij values are computed for 
each pair of solutions Si G RS and Sj e CS. 

Candidate solutions are included in RS according to the Maxmin cri­
terion which maximizes the minimum distance of each candidate so­
lution to all the solutions currently in the reference set. The method 
starts with RS = B and at each step extends RS by selecting a so­
lution SJ e CS and setting RS = RS U {Sj} and CS = CS\ {Sj}. 
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More formally, the selection of a candidate solution is given by Sj = 
argmax m\ni=i^_^^^\Rs\{dij • j — I , - - - JC '5 |} . The process is repeated 
until RS is filled to the desired level. 

Scatter Search Phase 

Subset Generation Method. This method consists of generating 
subsets of reference solutions to create structured combinations, where 
subsets of solutions are organized to cover different promising regions of 
the solution space. In a spatial representation, the convex-hull of each 
subset delimits the solution space in subregions containing all possible 
convex combinations of solutions in the subset. In order to achieve a 
suitable intensification and diversification of the solution space, three 
types of subsets are organized to consist of: 

1) subsets containing only solutions in 5 , 

2) subsets containing only solutions in D, and 

3) subsets that mix solutions in B and D in different proportions. 

Subsets defined by solutions of type 1 are conceived to intensify the 
search in regions of high-quality solutions while subsets of type 2 are 
created to diversify the search to unexplored regions. Finally, subsets of 
type 3 integrate both high-quality and diverse solutions with the aim of 
exploiting solutions across these two types of subregions. 

Adaptive memory once again is useful to define combined rules for 
clustering elements in the various types of subsets. This has the advan­
tage of incorporating additional information about the search space and 
problem context. 

The use of sophisticated memory features is beyond the scope of this 
discussion. However, for illustrative purposes, we may consider a simple 
procedure that generates the following types of subsets: 

1) All 2-element subsets. 

2) 3-element subsets derived from two element subsets by augmenting 
each 2-element subset to include the best solution (as measured by 
the objective function value) not in this subset. 

3) 4-element subsets derived from the 3-element subsets by augmenting 
each 3-element subset to include the best solution (as measured by 
the objective function value) not in this subset. 
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4) The subsets consisting of the best b elements (as measured by the 
objective function value), for 6 = 5 , . . . , | 5 | . 

Solution Combination Method. The Solution Combination method 
is designed to explore subregions within the convex-hull of the reference 
set. We consider solutions encoded as vectors of variables Xij repre­
senting edges (vi^Vj), New solutions are generated by weighted hnear 
combinations which are structured by the subsets defined in the preced­
ing step. In order to restrict the number of solutions only one solution 
is generated in each subset by a convex linear combination defined as 
follows. Let E he Si subset of RS, \E\ = r, and let H{E) denote the 
convex hull of E. We generate solutions S G H{E) represented as 

S = 5^A,5, 
t=i 

r 

EA. = 1 
h > 0, t - l , . . . , r 

where the multiplier Â  represents the weight assigned to solution St. 
We compute these multipliers by 

1 

x. = ^^^ 
E r cis,) 

SO that the better (lower cost) solutions receive higher weight than less 
attractive (higher cost) solutions. Then, we calculate the score of each 
variable xij relative to the solutions in E by computing 

r 

score{x^j) = ^{Xtxlj) 

where x^j denotes that Xij IS an edge in the solution St. Finally as 
variables are required to be binary, the final Xij value is obtained by 
rounding its score to give Xij = [score{xij) + .5\. The computation of the 
value for each variable in E results in creating a linear combination of the 
solutions in E and a new solution can be produced using edges associated 
with variables Xjj = 1. Nevertheless, the set of these edges. Nevertheless, 
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the set of these edges does not necessarily (and usually doesn't) represent 
a feasible graph structure for a TSP solution, since it typically produces 
a subgraph containing vertices whose degrees differ from two. Such 
subgraphs can be viewed as fragments of solutions (or partial tours). 
When the subgraph resulting from a linear combination contains vertices 
of degree greater than two, a very straightforward technique consists of 
successively dropping edges with the smallest scores in the star (incident 
edge set) of these vertices until their degree becomes equal to two. By 
doing so, the subgraph obtained will be either feasible or fall into the 
case where some of the vertices have degree 1. At this juncture there 
are several possibilities to create a feasible solution subgraph and an 
appropriate tradeoff has to be chosen. For example, a simple possibility 
is to group vertices of degree 1 and use a heuristic that simply links them 
two by two according to some distance measure or savings criterion. 
Another possibility is to solve the linear assignment problem to match 
each pair of nodes according to their relative distances. 

4.3. Path Relinking 
Scatter Search (SS) provides a natural evolutionary framework for 

adaptive memory programming, as we have seen, by its incorporation 
of strategic principles that are shared with certain components of Tabu 
Search. Another strategy for integrating SS and TS principles consists of 
replacing vector spaces with neighborhood spaces as a basis for combin­
ing solutions, which gives raise to a TS strategy called Path-Relinking 
(PR). 

More particularly, while SS considers linear combinations of solution 
vectors, PR combines solutions by generating paths between them us­
ing local search neighborhoods, and selecting new solutions encountered 
along these paths. 

This generalization of SS can be described by the same general tem­
plate outlined in Figure 8.13. Figure 8.14 provides a visual interpretation 
of the PR process. The lines leaving S in the figure shows an alternative 
paths traced by the path-relinking strategy having the solutions denoted 
by ^ i , ^2 and ^3 operate as guiding solutions^ which collectively deter­
mine the path trajectory taken from the initial solution S during the 
local search process. In the simplest case, a single guiding solution can 
be used. 

The process of generating paths between solutions is accomplished 
by selecting moves that introduce attributes contained in the solutions 
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Figure 8.14- Path Relinking 

that operate as guiding solutions. In the move generation process, these 
attr ibutes are weighted to determine which moves are given higher pri­
ority. Again, by analogy with the SS design, each intermediate point 
lying in a path between solution S and a given guiding solution S" can 
be viewed as the result of a combination of these solutions. 

By extension, a number of strategies are possible for a fuller explo­
ration of the solution space in a path-relinking framework. Alternative 
paths from S under the influence of the guiding solutions can be gener­
ated by using memory structures of the type embodied in TS. Also, in 
a given collection of elite solutions, the roles of initiating solution and 
guiding solutions can be alternated. Tha t is, a set of current solutions 
may be generated simultaneously, extending different paths, and allow­
ing an initiating solution to be replaced (as a guiding solution for others) 
whenever its associated current solution satisfies a sufficiently strong as­
piration criterion. Because their roles are interchangeable, the initiating 
and guiding solutions are collectively called reference solutions. 

The possibility of exploring different trajectories in the neighborhood 
space suggests the use of alternative neighborhood structures with the 
objective of reaching solutions that might otherwise be bypassed. This 
strategy, denoted in TS terminology by tunneling^ offers additional pos­
sibilities to explore boundaries between regions of feasible and infeasible 
solutions as a form of strategic oscillation. 

Path-relinking provides a useful means for integrating intensification 
and diversification, by reference to groups (or clusters) of ehte solutions 
that are organized according to some measure of relative difference or 
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distance that gives an indicator of their diversity. Solutions declared 
"close" to each other according to a given criterion typically are as­
signed to the same cluster and the objective is to maintain a set of 
clusters along the search that differ from each other by a significant de­
gree. Here the concept of proximity is broad rather than restrictive in 
the sense that solutions may be considered close to one another if they 
share some particular characteristics relevant in the context of the prob­
lem under consideration. In the TSP context, for example, proximate 
solutions may be the ones containing edges that are common to many 
good solutions. In a path rehnking strategy, choosing solutions S and S' 
from the same cluster stimulates intensification (by preserving common 
characteristics of these solutions), while choosing them from two dif­
ferent clusters stimulates diversification (by including attributes of the 
guiding solutions notcontained in the initial ones). This approach can 
go beyond the target solutions by extrapolation, creating an effect anal­
ogous to the creation of non-convex linear combinations allowed in the 
Euclidian space. But if an attractive departure from a guided trajectory 
is found along the way (using aspiration criteria), then this alternative 
route can also be explored, providing a dynamic integration of intensifi­
cation and diversification. 

Given that Ejection Chain methods, including the important special 
case represented by the Lin-Kernighan approach, have provided some 
of the most efficient algorithms for the TSP, a natural possibility is to 
join such methods with path relinking to provide a broader range of 
strategies. Such an approach, which is currently unexplored, can also 
take advantage of other heuristic processes previously described. For 
example, a combination of ejection chains and path relinking, can draw 
upon a sequential fan method to generate paths within the path-relinking 
procedure. The move components of a sequential fan candidate list can 
be organized in this setting to include the attributes of the designated 
guiding solutions. By applying ejection chain constructions to provide 
a look-ahead process in the sequential fan method, high evaluation trial 
solutions can be chosen to update the reference set {RS) of guiding 
solutions for a multi-parent path-relinking strategy. In such a strategy, 
it is important to consider appropriate measures of distance between the 
initial solution and the guiding solutions so that solutions in RS differ by 
approximately the same degree from the initial solution. By extension, if 
a sufficient number of ejection chain levels is generated to reach solutions 
that lie at distances beyond those of the current guiding solutions, then 
high quality solutions found in this extended neighborhood space can 
be used as guiding points for an extrapolated path-relinking process. 
Approaches of this form can be relevant not only for TSPs but also for 
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generalizations that include additional constraints and "embedded TSP" 
structures. 

Finally, we observe that additional metaheuristic approaches exist 
that offer the potential to create useful hybrid methods for the TSP 
and its variants. It is beyond the scope of this chapter to provide a 
detailed description of such methods, but we refer the reader to Glover 
and Kochenberger [378] for an extensive coverage of these alternative 
procedures. 

5. Conclusions and Research Opportunities 
The current state-of-the-art discloses that the key to designing effi­

cient algorithms for large scale traveling salesman problems is to combine 
powerful neighborhood structures with speciahzed candidate list strate­
gies, while giving careful attention to appropriate data structures for 
implementation. As reported in Chapter 9, the Lin-Kernighan (LK) 
procedure and the Stem-and-Cycle procedure, which represent alterna­
tive instances of Ejection Chain (EC) methods, currently provide the 
most effective algorithms for solving large TSPs. The merit of the EC 
approaches derives from the use of reference structures to generate com­
pound moves from simpler components, where the evaluation of a move 
at each level of construction is subdivided into independent operations 
to gain efficiency. The definition of the reference structure is highly im­
portant in these methods, and more advanced reference structures (such 
as the doubly-rooted loop constructions of [372], for example) invite 
examination in the future. Such structures provide an opportunity to 
generate moves with special properties not incorporated in fc-opt moves 
generated by present TSP procedures. 

Another potential strategic enhancement comes from the fact that the 
LK and the Stem-and-Cycle procedures characteristically create paths 
in neighborhood space by elaborating only a single thread of alternatives 
throughout successive levels of construction. A more aggressive way to 
employ such processes is to embed them in special neighborhood search 
trees, as described by Sequential Fan (SF) and Filter and Fan (F&F) 
methods. This affords the possibihty to go beyond "greedy one-step 
choices" in the creation of neighborhood paths, while utilizing mecha­
nisms that are highly susceptible to parallel implementation. SF and 
F&F approaches can also be used to merge neighborhoods of varying 
characteristics within different stages and threads of the search. Cou­
pling such elements with more carefully designed memory-based strate­
gies, such as those derived from adaptive memory programming consid­
erations, provide additional avenues for future investigation. 
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