
Chapter 8

LOCAL SEARCH AND METAHEURISTICS

Cesar Rego
Hearin Center for Enterprise Science
School of Business Administration, University of Mississippi, MS 38677
crego@bus.olemiss.edu

Fred Glover
Hearin Center for Enterprise Science
School of Business Administration, University of Mississippi, MS 38677
fglover@bus.olemiss.edu

!• Background on Heuristic Methods
The Traveling Salesman Problem (TSP) is one of the most illustrious

and extensively studied problems in the field of Combinatorial Opti­
mization. Covering just the period from 1993 to mid-2001 alone, the
web databases of INFORMS and Decision Sciences report more than
150 papers devoted to the TSP. The problem can be stated in graph
theory terms as follows. Let G — (V, A) be a weighted complete graph,
where F = {t ' l , . . . , t'n} is a vertex (node) set and A = {{vi^Vj)\vi^ Vj G
V^i 7̂ j} is an edge set. C = [c{vi^Vj)] is a n * n matrix associated
with A, where c{vi^Vj) is a non-negative weight (distance or cost) on
edge (vi^Vj) if there is an edge between Vi and Vj. Otherwise c{vi^Vj) is
infinity.

The problem is said to be symmetric (STSP) if c{vi^ Vj) = c{vj^Vi) for
ah (vi^Vj) G A, and asymmetric (ATSP) otherwise. Elements of A are
often called arcs (rather than edges) in the asymmetric case. The STSP
(ATSP) consists of finding the shortest Hamiltonian cycle (circuit) in
G, which is often simply called a tour. In the symmetric case, G is
an undirected graph, and it is common to refer to the edge set E =
{(vi^Vj)\vi^Vj e V^i < j} in place of A. The version of STSP in which
distances satisfy the triangle inequality {c{vi^Vj) + c{vj^Vk) > c{vi^Vk)
for aU distinct Vi^Vj^Vk G V') is perhaps the most-studied special case of

 The Traveling Salesman Problem and Its Variations
© Springer Science+Business Media, LLC 2007
G. Gutin et al. (eds.),

mailto:crego@bus.olemiss.edu
mailto:fglover@bus.olemiss.edu

310 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

the problem, notably including the particular instance where V is a set
of points in a 2-dimensional plane and c{vi^ Vj) is the Euclidean distance
between Vi and Vj.

Important variants and extensions of the TSP arise in the setting
of vehicle routing (see Laporte and Osman [539]). A variety of other
interesting problems not directly related to routing can also be modeled
as TSPs, as is shown in the survey of Laporte [533]. Distances or costs
that are symmetric and satisfy the triangle inequality are predominantly
encountered in such applications. This chapter mainly deals with the
STSP and for the sake of simplicity we will generally refer to the problem
as the TSP.

The TSP can be formulated as an integer linear programming (ILP)
model, and a number of exact algorithms are based on such a formu­
lation. However, there are also some advantages to representing the
TSP directly as a permutation problem without transforming it into an
ILP, and we will focus on such a direct representation. Let n denote a
cyclic permutation mapping so that the sequence i, 7r(^),7r?^N,... ,7r?7^
for i 6 Â = { 1 , . . . , n} identifies a permutation of the elements of A ,̂
where TT/̂ X̂ = i. Let 11 be the set of all such mappings. Thus, solving a
particular instance of the TSP consists of finding a cycle permutation
(tour) TT* G n such that

n—1 n—\

E Ci^* — m i n > ^ CiTT,..

The TSP is one of the classical instances of an NP-complete problem,
and therefore there is no polynomial-time algorithm able to determine
TT* for all possible instances of the problem (unless P=NP). Perhaps be­
cause of the simplicity of its statement the TSP has been a key source
of important developments in NP-completeness theory (see e.g., John­
son and Papadimitriou, 1985). It has also been the subject of several
polyhedral studies (see Chapters 2 and 3). As a result, although P=NP
continues to be an improbable hypothesis, and hence a polynomial-time
algorithm for the TSP is not likely to be discovered, current specialized
TSP optimization codes have been solving general TSP instances involv­
ing about three-thousand vertices. Specifically, the Concorde package of
Applegate, Bixby, Chvatal and Cook [29] solved all instances up to 3200
cities in the 8̂ ^ DIMACS TSP Challenge testbed (Johnson, McGeoch,
Glover, and Rego [462]) using its default settings, except one 3162-city
random uniform Euclidian instance for which non-default twiddling was
necessary to find the optimal tour.

Local Search and Metaheuristics 311

State-of-the-art exact solution methods (which guarantee an optimal
solution if run long enough) can typically solve problems involving about
1000 vertices in reasonable computation time, but encounter significant
difficulties in solving larger problems, where they generally require com­
putational effort that exceeds the realm of practicality. Even for modest-
size problems, exact methods require substantially greater computation
time than the leading heuristic methods, which in addition are capa­
ble of finding optimal or very-close-to-optimal solutions for instances far
larger than those reasonably attempted by exact methods. An extensive
empirical analysis of computational results and algorithmic performance
for several classes of TSP heuristics is described in Chapter 9.

The aim of this chapter is to present an overview of classical and
modern local search procedures for the TSP and discuss issues involved
in creating more efficient and effective algorithms. Heuristic algorithms
for the TSP can be broadly divided into two classes: tour construction
procedures^ which build a tour by successively adding a new node at
each step; and tour improvement procedures^ which start from an initial
tour and seek a better one by iteratively moving from one solution to
another, according to adjacency relationships defined by a given neigh­
borhood structure. (Speciahzed tour construction heuristics are treated
in Chapter 9.) Combined, such approaches yield composite procedures
that attempt to obtain better solutions by applying an improvement
procedure to a solution given by a construction procedure. Often, the
success of these algorithms depends heavily on the quality of the initial
solution. Iterated variants of construction and improvement procedures
provide a natural means of elaborating their basic ideas, as subsequently
discussed.
Recent Developments in Overview. Recent progress in local search
methods has come from designing more powerful neighborhood struc­
tures for generating moves from one solution to another. These advances
have focused on compound neighborhood structures, which encompass
successions of interdependent moves, rather than on simple moves or
sequences of independent moves. On the other hand, the more sophis­
ticated neighborhood structures entail greater numbers of operations,
and therefore an increased effort to perform each step of the algorithm.
Thus, several studies have investigated strategies to combine neighbor­
hoods efficiently, and thereby reduce the computational effort of gen­
erating trajectories within them. These methods are generally variable
depth methods, where the number of moves carried out at each iteration
is dynamically determined, and usually varies from one iteration to the
next. A common characteristic of these methods is a look ahead process
where a relatively large sequence of moves is generated, each step leading

312 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

to a different trial solution, and the compound move that yields the best
trial solution (from the subsequences beginning with the initial move)
is the one chosen. Two types of variable depth neighborhood structures
have become prominent:

(1) connected neighborhood structures as represented by:

a. Variable Neighborhood Search (VNS) (Mladenovic and Hansen

[602], Hansen and Mladenovic [433, 432]),

b . Sequential Fan (SF) methods (Glover and Laguna [379]),

c. Filter and Fan (FF) methods (Glover [376]);

(2) disconnected neighborhood structures as represented by:

a. Lin-Kernighan (LK) methods (Lin and Kernighan [563]),

b . Chained and Iterated LK methods (Martin, Otto and Felten
[588], Johnson and McGeogh [463], Applegate, Cook and
Rohe [32]),

c. Ejection Chain (EC) methods (Glover [372], [374]).

In the TSP setting, connected neighborhood procedures are exempli­
fied at a simple level by classical /c-opt and Or-opt methods which keep
the Hamiltonian (feasible tour) property at each step. Variable depth
methods of these types consist of component moves that directly link
one tour to the next, thus generating streams of moves and associated
trial solutions. Conversely, the LK and EC methods consider sequences
of moves that do not necessarily preserve the connectivity of the tour,
although they enable a feasible tour to be obtained as a trial solution
by performing an additional move. Apart from this commonality, Lin-
Kernighan and Ejection Chains diff'er significantly in the form of the
intermediate (disconnected) structures that link one move to the next
in the sequence. LK methods rely on a Hamiltonian path as an inter­
mediate structure, while EC methods embrace a variety of intermediate
structures, each accompanied by appropriate complementary moves to
create feasible trial solutions. The Lin-Kernighan procedure is described
in Section 2.2. Ejection chains structures and the moves that join and
complement them are elaborated in Section 2.3, followed by advanced
variable depth methods in Section 2.4.
Local Search and Meta-Heuristic Approaches. Local search tech­
niques (which terminate at a local optimum) and associated meta-heuristic
strategies (which modify and guide local techniques to explore the so­
lution space more thoroughly) have been the focus of widespread scien­
tific investigation during the last decade. For more than twenty years

Local Search and Metaheuristics 313

two main "meta models" for heuristic techniques have been ascendant:
those based on "single stream" trajectories, and those based on "multi­
ple stream" trajectories, where the latter seek to generate new solutions
from a collection (or population) of solutions. The distinction is essen­
tially the same as that between serial and parallel algorithms, with the
allowance that population-based methods can also be applied in a serial
manner, as in a serial simulation of a parallel approach. Consequently,
as may be expected, there are some overlaps among the best procedures
of these two types. Traditionally, however, population-based methods
have often been conceived from a narrower perspective tha t excludes
strategies commonly employed with single stream methods. Thus, more
modern approaches that embody features of both methods are often
called hybrid procedures.

Some of the methods discussed in this chapter have fairly recently
come into existence as general purpose methods for a broad range of
combinatorial optimization problems, and have undergone adaptation
to provide interesting specializations for the TSP. This manifests one of
the reasons for the enduring popularity of the TSP: it often serves as a
"problem of choice" for testing new methods and algorithmic strategies.

The remainder of this chapter is organized as follows. Section 2
presents classical and more recent improvement methods that have proven
effective for the TSP. It also discusses several special cases of neigh­
borhood structures that can be useful for the design of more efficient
heuristics. Section 3 gives an overview of the tabu search metaheuristic,
disclosing the fundamental concepts and strategies that are relevant in
the TSP context. Section 4 extends the exploration of metaheuristics
to the description and application of recent unconventional evolutionary
methods for the TSP. Section 5 presents some concluding observations
and discusses possible research opportunities.

2. Improvement Methods
Broadly speaking, improvement methods are procedures that s tart

from a given solution, and at tempt to improve this solution by iterative
change, usually by manipulating relatively basic solution components.
In graph theory settings, depending on the problem and the type of al­
gorithm used, these components can be nodes, edges, (sub)paths or other
graph-related constructions. We consider three classes of improvement
methods according to the type of neighborhood structures used:

(1) constructive neighborhood methods^ which successively add new com­
ponents to create a new solution, while keeping some components
of the current solution fixed. (These include methods that assem-

314 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

ble components from different solutions, and methods that simply
choose different parameters of a construction procedure using in­
formation gathered from previous iterations.)

(2) transition neighborhood methods^ usually called local search proce­
dures, which iteratively move from one solution to another based
on the definition of a neighborhood structure.

(3) population-based neighborhood methods^ which generalize (1) and (2)
by considering neighborhoods of more than one solution as a foun­
dation for generating one or more new solutions.

In this section we focus our discussion on the second class of im­
provement methods and specifically on those that are either considered
classical or the core of the most efficient TSP algorithms known to date.

For the following development we assume a starting TSP tour is given
and is recorded by identifying the immediate predecessor and successor
of each node vi^ which we denote respectively Vi^ and ViJ^.

2.1. Basic Improvement Procedures
Fundamental neighborhood structures for the TSP (and for several

other classes of graph-based permutation problems) are based on edge-
exchanges and node-insertion procedures. Classical procedures of these
types are the /c-exchange (Lin [562]) and the Or-insertion (Or [635])
which also form the core of several more advanced procedures covered
in the next sections. Before describing the various neighborhood struc­
tures underlying these two classes of procedures, it is appropriate to
note that the concept of local optimality has a role in the nomencla­
ture of fc-Opt and Or-Opt - terms sometimes used inappropriately in
the TSP literature. In a local search method a neighborhood structure
is introduced to generate moves from one solution to another and, by
definition, a local optimum is a solution that can not be improved by
using the neighborhood structure under consideration. Accordingly, a
local optimum produced by an improvement method using fc-exchanges
or Or-insertion yields what is called a /c-optimal (/c-Opt) or a Or-optimal
(Or-opt) solution, respectively.

2.1.1 fc-exchange Neighborhoods. The terminology of k-
exchange neighborhoods derives from methods initially proposed by Lin
[562] to find so-called "A:-opt" TSP tours. The 2-exchange (2-opt) pro­
cedure is the simplest method in this category and is frequently used in
combinatorial problems that involve the determination of optimal cir-

Local Search and Metaheuristics 315

cuits (or cycles) in graphs. This includes the TSP and its extensions to
the wider classes of assignment, routing and scheduling problems.

The 2-opt procedure is a local search improvement method, and a
starting feasible solution is required to initiate the approach. The method
proceeds by replacing two non-adjacent edges {vi^Vi^) and {vj^Vj^) by
two others {vi^ Vj) and (t'i+, Vj-^)^ which are the only other two edges that
can create a tour when the first two are dropped. In order to maintain a
consistent orientation of the tour by the predecessor-successor relation­
ship, one of the two subpaths remaining after dropping the first two edges
must be reversed. For example, upon reversing the subpath {vi-\-^ - - - ^^j)
the subpath {vi^ Vi^^..., Vj^Vj^) is replaced by {vi^Vj^... ^ Vi^^Vj^). Fi­
nally, the solution cost change produced by a 2-exchange move can be
expressed as Aij — c{vi^Vj) + c{vi^^Vjj^) — c{vi^Vi^) — c{vj^Vj-^). A 2-
optimal (or 2-opt) solution is obtained by iteratively applying 2-exchange
moves until no possible move yields a negative A value.

The 2-opt neighborhood process can be generalized to perform k-opt

moves that drop some k edges and add k new edges. There are I , I

possible ways to drop k edges in a tour and {k — 1)!2^~^ ways to rehnk
the disconnected subpaths (including the initial tour) to recover the
tour structure. For small values of /c, relative to n, this implies a time
complexity of 0{n^) for the verification of fc-optimahty, and therefore
the use of fc-opt moves for A: > 3 is considered impractical unless special
techniques for restricting the neighborhood size are used. (To date, A; = 5
is the largest value of k that has been used in algorithms for large scale
TSPs.) We now summarize some of the main advances in the design of
more efficient fc-opt procedures.

2.1.2 Specia l Cases of fc-opt N e i g h b o r h o o d s . A useful
observation for implementing restricted /c-opt moves is tha t any k-opt
move for /c > 2 is equivalent to a finite sequence of 2-opt moves, assuming
the graph is fully dense. (This is a result of the easily demonstrated fact
that in such a graph any tour can be transformed into any other by a
succession of 2-opt moves.) Consequently, if no sequence of k consecutive
2-opt moves can improve the current tour, then it is also a /c-optimal
tour. However, the reverse is not necessary true - i.e. a tour can be
fc-optimal, but obviously there may exist a sequence of k successive 2-
opt moves that reduces the length of the tour (since every tour can
be reached in this way in a fully dense graph). Thus, a comparative
analysis of neighborhoods with successive k values provides a foundation
for designing more efficient /c-opt procedures by restricting the attention
to moves that are not included within {k — l)-opt neighborhoods.

316 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

By direct analogy to the 2-opt move, a 3-opt move consists of delet­
ing three edges of the current tour (instead of two) and relinking the
endpoints of the resulting subpaths in the best possible way. For exam­
ple, letting (vi^Vi^)^ (VJ^VJJ^) and {vkTVk+) denote the triplet of edges
deleted from the current tour, two of the seven possible ways to relink
the three subpaths consist of (1) creating edges (vi^Vjj^)^ (f/e,i;i+), and
{vj,Vk+); and (2) creating edges {vi.Vj), {vj-^,Vk+), and (vi^.Vk).

An important difference between these two possibilities to create 3-
opt moves is that the orientation of the tour is preserved in (1), while
in (2) the subpaths (I'i-f,... ^Vj) and (t ' j+, . . . ^Vk) have to be reversed
to maintain a feasible tour orientation. The cost of a 3-opt move can be
computed as A^j^, the sum of the costs of the added edges minus the
sum of the costs of the deleted edges, where a negative A represents an
improving move. Generically, similar computations and conditions for
reversing subpaths result for any /c-opt move.

Another way to reduce the time complexity of 3-opt moves comes from
the observation that a 2-opt move is a special case of a 3-opt move in
which a deleted edge is added back to relink a subpath. Consequently,
three of the seven possible 3-opt moves correspond to 2-opt moves. Thus,
if the tour is already 2-optimal, then these three types of 2-exchange
moves need not be checked in the 3-opt process. An additional class
of 3-opt moves can be obtained as a sequence of two (non-independent)
2-opt moves. This special case may occur when an edge inserted by the
first 2-opt move is deleted by the application of the second 2-opt move.
Three other 3-opt moves fall into this special case. Figure 8.1 illustrates
one of these possibilities, applied to the TSP tour given in Figure 8.1 A.
The 3-opt move is represented in Figure 8.IB where the symbol eo is
used to label the edges deleted by the move. Similarly, Figure 8.1C
illustrates the application of two successive 2-opt moves where CQ and ei
are the edges deleted by the first and the second application of the move.
Note that edge ei is one of the edges added by the first application of
the 2-opt move. Figure 8.ID represents the TSP tour that results from
the application of either the 3-opt move or the indicated sequence of two
2-opt moves.

The foregoing observations indicate that out of the seven possible 3-
opt moves only one requires a sequence of three 2-opt moves, so that

only a very small fraction of the I , j possible combinations need to

be considered. Also, as described in Christofides and Eilon [190] a 4-opt
neighborhood (which involves 47 possible 4-opt moves) includes six 2-opt

Local Search and Metaheuristics 317

(A) (B)

(C) (D)

Figure 8.1. 3-opt obtained by two successive 2-opt moves.

318 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

moves, sixteen sequences of two 2-opt moves, and twenty-five sequences
of three 2-opt moves. Consequently, the consideration of sequences of
three 2-opt moves derived from interconnecting restricted 2-opt moves
in successive levels is sufficient to ensure the tour is 4-optimal. In con­
trast, the determination of a 5-optimal tour requires examination of a
sequence of at least five 2-opt moves, yielding significantly more combi­
natorial possibilities than the sequences of three 2-opt moves required
by 3-opt and 4-opt neighborhoods. This provides an indication of the
relatively greater advantage of 5-opt neighborhoods over 4-opt neighbor­
hoods when compared to the advantages of 4-opt over 3-opt, as demon­
strated by Christofides and Eilon [190] and more recently by Helsgaun
[446]. A multi-stage 2-opt approach appears particularly useful to im­
plement variable depth methods, as discussed in Section 2.4.

2.1.3 Special Cases of Insertion and fc-Opt Neighborhoods.
Another useful relationship emerges from the comparative analysis of

k-opt moves relative to several classes of insertion moves. We define two
basic types of node-based moves within the TSP setting:

(1) node insertion moves: a selected node Vi is inserted between two ad­
jacent nodes Vp and Vq in the tour by adding edges {vp^ t;^), (vi^Vq)^
{vi-.Vi^) and dropping edges {vp.Vq), {vi-,Vi), {vi.Vi^).

(2) node exchange moves: two nodes Vi and Vj exchange positions by
adding edges {vi-,Vj), {vj.Vi^), (vj-^Vi), (vi.Vj^) and dropping
edges (vi-^Vi)^ {vi^Vi^)^ (vj-^Vj)^ {vj^Vj^). An exception occurs if
{vi^ Vj) is an edge of the tour, in which case the move is equivalent
to inserting Vi between Vj and Vj^ (or inserting Vj between Vi- and
Vi)'

Or-Opt Neighborhoods and Extensions. A generalization of the
foregoing node-based neighborhoods consists of extending these pro­
cesses to insert and exchange sequences (or subpaths) of consecutive
edges in the tour. By treating subpaths as if they were nodes this gener­
alized process can be implemented using operations similar to the ones
defined for the node insertion/exchange moves.

Two classical methods that seek to reduce the complexity of the 3-
opt procedure are Bentley's 2.5-opt and Or-opt (Or [635]). 2.5-opt is an
extension of the 2-opt procedure that considers a single-node insertion
move when 2-opt fails to improve (Bentley [103]). The Or-opt heuristic
proceeds as a multi-stage generalized insertion process, which starts by
considering the insertion of three-node subpaths (between two adjacent
nodes) and then successively reduces the process to insert two-node sub-
paths (hence edges) and finally to insert single nodes, changing the type

Local Search and Metaheuristics 319

of move employed whenever a local optimum is found for the current
neighborhood. Note that node-insertion and edge-insertion moves are
special cases of 3-opt moves when a subpath between two dropped edges
of the 3-opt move consists of just one node or edge, respectively. Also,
as mentioned before, most 3-opt moves do not preserve the orientation
of the tour. Now, it is easy to see that the Or-opt procedure restricts
the 3-opt neighborhood to a subclass of moves that preserves the cur­
rent tour orientation. The time complexity of this procedure is 0{n^),
However, while the Or-opt neighborhood has proved relatively efficient
when applied to some constrained traveling salesman and vehicle routing
problems, the procedure does not appear to present a competitive ad­
vantage when compared to efficient implementations of the 3-opt proce­
dure. (Chapter 9 provides details on efficient implementations of 3-opt.)
A possible enhancement of the classical Or-opt procedure arises from
a generalization based on an ejection chain framework, as we discuss
in Section 2.3.2. Such a generalization gives the procedure the ability
to create a variable depth neighborhood search similar to the one the
Lin-Kernighan procedure performs with classical /c-opt moves.
C o n s t r u c t i v e / D e s t r u c t i v e N e i g h b o r h o o d s for Res tr i c t ing /c-opt
M o v e s . Gendreau, Hertz, and Laporte [351] propose a generalized in­
sertion procedure (GENI) which may be viewed as a combination of
single-node insertion moves with 4-opt and 5-opt moves. GENI is used
in the constructive phase of their GENIUS algorithm to create a starting
tour, beginning from an arbitrary cycle of 3 vertices. The alternating
use of GENI with its reverse procedure (destructively removing nodes
from the tour) forms the basis of the String/Unstring (US) neighbor­
hood structure used in the local search phase of the GENIUS algorithm.
Thus, the successive application of Unstring and String creates a destruc­
tive/constructive type of neighborhood structure tha t typically generates
restricted forms of 8-opt, 9-opt, and 10-opt moves. The process can be
viewed as a one-step (unit depth) strategic oscillation (see Section 3.3).

The destructive Unstring neighborhood structure removes a vertex
from the current tour by replacing k edges by A: — 1 other edges for /c == 4
or 5. Figure 8.2 depicts an example of the Unstring process where node
Vi is removed from the tour. In the figure, diagrams A and C represent
the initial tours to apply an Unstring process with k — A and fc = 5,
respectively. Diagrams B and D represent the resulting subgraphs after
applying the Unstring move, which removes the edges labeled "e" and
relinks the respective subpaths as illustrated. In this procedure, edges
defined by nodes identified with different letters generically represent
subpaths having these nodes as their endpoints.

320 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

z e , z+

(A) (B)

w e„ w+ w w+

(C) (D)

Figure 8.2. The String/Unstring Neighborhood Structure

Local Search and Metaheuristics 321

String is a constructive neighborhood structure that reverses the op­
erations of the Unstring procedure to insert a disconnected vertex Vi
between two other vertices (not necessarily consecutive in the tour) by
replacing k edges by /c + 1 other edges for /c = 3 or 4. Figure 8.2 illus­
trates String moves for /c = 3 and /c = 4 by following the diagrams in
the order from B to A and from D to C, respectively.
Recent Results on Restricting fc-Opt Neighborhoods. Useful
results for reducing computation required by /c-opt procedures are pro­
vided by Glover [375] and Helsgaun [446]. Glover's paper shows that
the best move from a sub-collection of 4-opt moves (which embraces
all 2-opt moves, an additional class of 3-opt moves, and two principal
classes of 4-opt moves) can be found in the same order of time required
to find a best 2-opt move. The method is based on an acyclic shortest
path model underlying the creation of dynamic alternating paths and
cycles generated by an ejection chain framework as discussed in Section
2.3. The use of ejection chains to generate special forms of alternating
paths and cycles also proves useful in the implementation of the stem-
and-cycle ejection chain method described in Rego [704] and discussed
in Section 2.3.3. Helsgaun considers the use of 5-opt moves to replace
2-opt moves in the basic step of the classic implementation of the Lin-
Kernighan (LK) procedure as discussed in Section 2.2. In Helsgaun's
particular variant of the LK procedure 5-opt moves are made computa­
tionally practicable by restricting the possible alternatives using special
candidate hsts, in this case augmenting a "close-by neighbor" list to in­
clude additional nodes identified by solving Lagrangean relaxations over
minimum spanning tree (1-tree) relaxations as introduced by Held and
Karp ([444, 445]).

2.2. The Classical Lin-Kernighan Procedure
The Lin-Kernighan (LK) procedure (Lin and Kernighan [563]) is a

strategy for generating /c-opt moves where the value of k is dynamically
determined by performing a sequence of 2-opt moves. Although, as
noted, any A:-opt move can be represented by a sequence of 2-opt moves,
the LK procedure limits attention to a particular subset of these se­
quences. The goal is to restrict the neighborhood search and at the same
time to generate high quality /c-opt moves. The 2-opt moves are gener­
ated in successive levels where a 2-opt move of level i (z = 2, . . . ,L, /c =
2 + 1) drops one of the edges that has been added by the 2-opt move of
the previous level {i — 1). An exception is made for the first 2-opt move
of the sequence, which can start either from the current tour or after
performing a special class of 3-opt or 4-opt moves. However, this excep-

322 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

tion is only allowed when a sequence of 2-opt moves in the regular LK
search fails to improve the initial tour. These special cases will become
clear later in the detailed explanation of each step of the method.

The method starts by generating a 2-opt, 3-opt or 4-opt move and then
deletes an edge adjacent to the last one added to create a Hamiltonian
path. Thereafter, each new move consists of adding an edge to the
degree 1 node that was not met by the last edge added, and dropping
the unique resulting edge that again will recover a Hamiltonian path
(thus completing the last add-drop portion of a 2-opt move).

It is interesting to note that these moves (and in fact the first add-
drop half of any 2-opt move) "pass through" a stem-and-cycle structure^
which is one of the reference structures introduced by Glover [374] as
a foundation for creating more flexible and general types TSP moves.
However, this structure is not identified as relevant in the LK method,
which relies solely on the Hamiltonian path structure as a basis for com­
posing its moves, and consequently is left unexploited within the LK
framework. (The expanded set of possibilities provided by the stem-
and-cycle structure is described in Section 2.3.3.)

Figure 8.3 illustrates the three types of starting moves for initiating
the LK approach (2, 3 and 4-opt moves).

2-Opt 3-Opt 4-Opt

Figure 8.3. Possible moves at the first level of the Lin-Kernighan process

The initial /c-opt moves (fc = 2,3,4) that are used to launch the LK
procedure can be created as follows, as illustrated by the diagrams in
Figure 8.3, preceding:

k = 2 - The first step of the LK procedure selects the first edges
ei — (fi,t'2) £̂ nd hi = ('̂ 25'̂ 3) to drop and add (respectively), so that

Local Search and Metaheuristics 323

they produce a cost improvement, and hence yield a negative value of
El — c{v2^vs) — c{vi^V2). (Such a choice must be possible if a bet­
ter tour exists.) A first level 2-opt move is obtained by dropping edge
62 = {VS^VA) where ^4 is in the tour neighbor of v^ tha t is in the cy­
cle {v2, t'3, '^^4,..., V2) created when edge hi was added. This last edge-
drop operation implicit when hi is chosen creates a Hamiltonian path
Hi = (^ ' l , . . . t'3, t'25 • • • 5 '̂ 4) that is used to close up the tour by adding
edge (t'4,t 'i). Compute Ti = c{v4^vi) — c{vs^V4^) and examine the solu­
tion cost change by computing A i = J5i + Ti.

k = 3- Accompanying the initial drop-add choice that removes ei and
adds /ii, drop edge 62 = ('̂ ^3,̂ 4) where V4 is adjacent to v^. There are
two possibilities to create a 3-opt move: (1) if 1̂4 is in the cycle, the move
is direct extension of the LK process from the level 1 to level 2; (2) if t'4 is
the endpoint of the path from vi to t'4, create a Hamiltonian pa th H2 by
hnking V4 to one vertex v^ (corresponding to edge /i2 — ('̂ 4, ^5)) and drop
one of its adjacent edges 63 = {vs^ve) where v^ is a vertex in the cycle
(t?2,1^3, • • • , t'2)- Link VQ to vi to create a tour. There are some subtleties
in the way edge 63 is chosen. When V4 is in the path, the method selects
vs by computing v^ = argmin{c(^4, i;5) - mdix{c{vs,V5-),c(v^,vs^)}}.
Once v^ is chosen two trial values are examined to select VQ by computing
ve = argmin{c('L'6,'^i) — c{v^,ve) : VQ = v^^^vs-^-}. (The computation of
VQ in the way just defined is equivalent to finding the better of the
two trial tours produced by adding the links (v^-^vi) and (v^^^vi)^ as
suggested in the original Lin and Kernighan paper.) The corresponding
cost changes are given by E2 — Ei + c(t'4, vs) — c{vs^ v^)^ T2 = C{VQ^ vi) —
(^{y^T^e)^ resulting in a tour cost change of A2 = £"2 + T2.

/c = 4 - As in the k — 2 and /c = 3 cases, begin by dropping ei and
adding /ii, and then drop edge 62 = (VS^VA) where V4 is adjacent to V3.
There are two possibilities to create a 4-opt move: (1) if V4 is in the cycle,
the move is direct extension of the LK process from the level 2 to level 3;
(2) if V4 is the endpoint of the path from vi to V4^ create a Hamiltonian
path Hs in two steps: (i) link V4 to a vertex v^ in the path (creating edge
/i2 = ('̂ 4, '^5)) and drop its adjacent edges 63 = (t's, VQ) where VQ is in the
path {vs^V6^' •' ^VA)] (ii) hnk VQ to one vertex V7 in the cycle (creating
^3 = ('^65^7)) and drop one of its adjacent edges 64 — (t'7,t'8). Link the
endpoints of the resulting Hamiltonian path Rz to create a tour. Edge 63
is chosen by setting 63 = argmin{c(^;4, v^ — max{c(^'5,1^5-), c{y^^ '^5+)} •
VQ — v^-^ '^5+}- Once 63 is chosen, edge 64 is selected by computing 64 —
argmin{c(i;6,t'7) - max{c(^7, i;8-), 0(1^7, i;8+)} : v^ = vj^^vj^}. (In this
case vertices V7 and vg are selected at the same time simply by choosing
the largest cost edge incident at f 7, which implies that only one trial tour
will be examined as suggested in the original paper.) The corresponding

324 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

cost changes are given by E^ = Ei -\- c{v4^v^) + C{VG^V7) — c{vs^V4)^
T3 — c{vs^ vi) — c(t'7, vs)^ and consequently the tour cost change is given
by A 3 - £ ; 3 + r3.

Extending LK moves to further levels. As mentioned, the reg­
ular LK search (which does not include the special 3-opt and 4-opt
moves) consists of generating k-opt moves (k > 2) (as a sequence of
2-opt moves) in successive levels where at each level a new vertex is
selected to extend the process to the next level by recovering a Hamil-
tonian path Hi (dropping the last link ('̂2^,'̂ l)) and using this path
as a reference structure to generate a new path i/^+i of the same type
(by linking its endpoint to another vertex in the path and dropping
one of its adjacent vertices). Starting with £'0 = 0, for a fixed ver­
tex V2i at a level i of the LK search, a new vertex V2i-\ri î chosen in
such a way that Ei = Ei-i + c{v2i,V2i+i) - c{v2i-i,V2i) yields a neg­
ative value. (An exception is made for some special alternative 3-opt
and 4-opt moves as explained above.) Consequently, a trial move (that
yields a trial tour) for the level z(z > 0) can be obtained by computing
Ti — c(i;2i-f2,'^i) — c(t'2i+i,^'22+2)- Similarly, the total tour cost change
is given by ^{ — Ei^Ti, At each level i of the LK process, the method
keeps track of the minimum A value (corresponding to the best trial
tour) and records the sequence of the vertices associated with the ê and
hi edges, which will be used to perform a move at the end of the LK
search.

The LK procedure also considers a backtracking process which allows
the method to repeat, each time choosing a different starting vertex as­
sociated with an untried alternative for inserting or deleting an edge
hi = {vi^Vi^i) or Ci = {v2i-i)y2i)^ respectively. Such alternatives (which
include the special 3-opt and 4-opt moves) are successively examined
starting from level i and proceeding back to level 1, where the exami­
nation of edges hi and Ci is alternated so that a candidate for edge ê
is examined after exhausting all possible candidates for hi without find­
ing any improvement of the starting tour. Candidates for level i — 1
are examined after exploring all alternatives for level i. As soon as an
improvement is found at some level, the backtracking process stops and
the LK process continues from that level (and its accompanying ê or
hi choice), progressing forward again to higher levels as previously de­
scribed. If no improvement occurs in the backtracking process, including
those cases where alternative choices for the vertex vi are examined, the
procedure stops and returns the best tour found so far. (In the original
paper backtracking is used only for i == 1 and 2.)

Local Search and Metaheuristics 325

A refinement of the basic LK method considers a look-ahead process
where the choice of a current hi edge takes into consideration the cost of
the associated Ci^i edge. The evaluation criterion (via this "look-ahead"
rule) is the one tha t minimizes Ei — Ei-i -h c{v2i^ V2i-\-i) — c(^'2i+i, '̂ 22+2)
for a fixed vertex V2i{i > 1), which gives the shortest Hamiltonian path
for the next reference structure. Lin and Kernighan mention evaluating
the tour length only for this choice, but of course there is little extra
effort in evaluating the tour length for all choices and record the best for
future reference (even if it is not the one that generates the next reference
structure). Proceeding from this level a trial tour can be obtained at each
additional level of the LK process by adding an edge ('̂ ^2^+2,'̂ 1) which
closes up the current Hamiltonian path adding the cost Ti = c(t'2i-f2, '^i)-
Again, the total tour cost change for the current level is given by A^ =

Before providing the outline of the LK procedure we recall that a
standard local search process involves solving a subproblem at each iter­
ation. The solution space for this subproblem is implicitly defined by the
neighborhood structure and the particular subset of available moves that
is singled out to identify "reasonable choices" (and hence to restrict the
solution space for this subproblem). Thus, it is relevant to keep in mind
that the various minimization functions used in neighborhood search for
TSPs assume the consideration of a neighbor list that restricts the num­
ber of choices for the vertices/edges involved in the moves. The original
paper of Lin and Kernighan suggests a neighbor list made up of the 5
nearest neighbors of the node. However, other authors such as John­
son and McGeoch [463] claim better results for lists of the 20 nearest
neighbors, and Applegate, Bixby, Chvatal, and Cook [32] use lists of
different lengths at different levels of the search. In addition, Lin and
Kernighan required that no added edges be subsequently deleted in the
same k-opt move and no deleted edges be subsequently added. Johnson
and McGeoch apply only the first of these two restrictions, which by
itself is enough to insure that the search will have no more than n levels.
A general outline of the Lin-Kernighan procedure is presented in Figure
8.4.

The Lin-Kernighan procedure introduces an important framework to
generate compound moves. The wider class of variable depth meth­
ods known as Ejection Chains methods discussed in the next section
shares several characteristics with this procedure. First, the creation
of a reference structure (which in the LK procedure is implicitly given
by the pa th Hi) makes it possible to create moves whose depth goes
significantly beyond the one that can be handled in a practical manner

326 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Step 1. Initialization

(a) Generate a starting tour T.

(b) Set i = 1. Choose for vi some vertex that has not taken this role since

the last best tour was found.

Step 2. Choose ei and hi to initiate the LK search.

(a) Set 61 = {vi, V2).

(b) Select ^i = {v2, v^) such that Ei < 0. If this is not possible, stop.

Step 3 . Perform LK Search

(a) Set i = i -f 1. Choose ê = (t '2i-i ,^2i) such that V2i is in the cycle
created when /ii_i was added.

(b) Compute Ai and keep track of the e and h edges associated with the
current Hamiltonian path Hi. Record the level i* associated with the
minimum A value found so far.

(c) Choose hi = {v2i,V2i+i) such that Ei < 0 and ei^i exists.

If such a hi exists, go to Step 3.

Step 4. Backtraching for Levels 1 and 2

Perform 3-opt moves:
(a) If there is at least one /i2 not examined, set i = 2 and go to Step 3(c).

(b) If there is at least one 62 not examined, choose e2 = (vs^v^) such that
V4 is in the path (f i , . . . ,^4,1^3).

(c) Choose ^2 = (^^4,^5) and the associated adjacent edge 63 = (1^5,fe) such
that vs is in the cycle (^2,1^3, • • •, ^2)-

(d) Compute E2 and A2. If A2 is smaller than the best (least) A value
found so far, update i* and the new e and h edges considered in this
Step. If E2 < 0, set z = 3 and go to Step 3(c).

Perform 4-opt moves:

(e) Choose /12 = {v4,vs) and the associated adjacent edge 63 = {VS^VQ) such
that vs is in the path (I ' l , . . ., i'4) and 63 is in the cycle (vs , . . ., 1̂ 4, ^5)
created when /12 was added.

(f) Choose /i3 = (ve^vr) and the associated 64 = (vr^vg) where vj is in
the cycle {v2,V3,... ,V2) and vg corresponds to the largest cost edge
incident at V7.

(g) Compute Es and A3. If A3 is smaller than the best A value found so
far, update i* and the new e and h edges considered in this Step. If
E3 < 0, set i = 4 and go to Step 3(c).

Perform 2-opt moves:

(h) If there is at least one hi not examined, set i = I and go to Step 2(b).

(i) If there is at least one ei not examined, set i = I and go to Step 2(a).

(j) If there is at least one vi not examined, go to Step 1(b). Otherwise Stop.

Figure 8.4. T h e General Lin-Kernighan Procedure

Local Search and Metaheuristics 327

with classic /c-opt neighborhoods. Second, the iterative characteristic of
building the neighborhood to successive levels provides a form of "ad­
vance look-ahead" which leads to better choices. Finally, the evaluation
of trial solutions throughout the neighborhood construction provides a
way for the method to adaptively select the most appropriate level (or
depth) of the move.

A fundamental drawback of the k-opt neighborhoods traditionally
used, including the ones constructed in the basic Lin-Kernighan ap­
proach, is that the edges added and dropped are successively adjacent.
These moves can be identified by numbering the vertices in the sequence
determined by the added and dropped edges, noting that the last vertex
is always connected by a tour edge to the first. We call these sequential
neighborhoods^ as opposed to non-sequential neighborhoods where such
a successive adjacency requirement is not imposed. Sequential neigh­
borhoods can be shown to generate a restricted instance of a classical
alternating path, as introduced in graph theory by Berge [104].

Sequential neighborhoods can fail to find certain types of improved
tours even if they are close to the current tour. This is illustrated in
Figure 8.5, which depicts the so-called double-bridge as an example of a
move in a non-sequential neighborhood. The tour reached by this move
cannot be reached by means of any move within a bounded sequential
neighborhood. Lin and Kernighan first identified this class of moves
and suggested looking for improving double-bridge moves as a supple­
ment to their variable-depth moves . Subsequently, Martin, Otto, and
Felten [588] proposed using random double-bridge moves as a method
for restarting the algorithm once a local optimum had been found, and
variants on the resulting "Chained" (or "Iterated") Lin-Kernighan al­
gorithm have proved quite successful (Applegate et al. [27], Applegate,
Cook, and Rohe [32], Helsgaun [446], Johnson and McGeoch [463]). A
discussion of the performance of these approaches in practice is provided
in Chapter 9.

2.3- Ejection Chain Methods
We have noted that the LK procedure relies on a Hamiltonian path as

the basic reference structure to generate moves at each level of neighbor­
hood construction. The fact that this structure has a configuration very
close to a valid tour is convenient for visualization, but also constitutes a
hmitation of the procedure. More general Ejection Chain methods avoid
this limitation by providing a wide variety of reference structures, which
have the ability to generate moves not available to neighborhood search

328 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Figure 8.5. The double-bridge neighborhood.

approaches traditionally applied to TSPs. This section explores some of
these ejection chain approaches and provides a framework for efficient
implementations.

Ejection Chains are variable depth methods that generate a sequence
of interrelated simple moves to create a more complex compound move.
There are several types of ejection chains, some structured to induce
successive changes in problem variables and others structured to induce
changes in particular types of model components (such as nodes and
edges of a graph). For a comprehensive description of ejection chain
methods on graphs we refer the reader to Glover [371] and Glover (
[372, 374]. Implementations and some extensions of these types of ejec­
tion chains for the TSP can be found in Pesch and Glover [667], Rego
[704] and Glover and Punnen [382]. Applications of ejection chains to a
cardinality-constrained TSP are discussed in Cao and Glover [158].

Ejection chains have also been successfully applied to combinatorial
problems other than the TSP. For example, Dorndorf and Pesch [259]
and Hubscher and Glover [372] use node-based ejection chains for clus­
tering problems, while Laguna et al. [528] and Yagiura, Ibaraki and
Glover [830] use ejection chains for the generalized assignment prob­
lem. Rego [706, 705], examines neighborhood structures based on node
and subpath ejections to produce highly effective results for the vehicle
routing problem. Finally, Cavique, Rego, and Themido [172] apply an
ejection chain model to combine different types of moves for a real-world
crew scheduling problem.

In this section we provide basic definitions and concepts of ejection
chains, and then discuss some specialized ejection chain methods for the
travehng salesman problem.

Local Search and Metaheuristics 329

2.3.1 Ejec t ion Chains Bas ics . Broadly speaking, an ejection
chain consists of a succession of operations performed on a given set
of elements, where the kth operation changes the state of one or more
elements which are said to be ejected in the k + 1th operation. This
ejection thereby changes the state of other elements, which then lead
to further ejections, until no more operations can be made according to
pre-defined conditions. State-change steps and ejection steps typically
alternate, and the options for each depend on the cumulative effect of
previous steps (usually, but not necessarily, being influenced by the step
immediately preceding).

In the ejection chain terminology, the order in which an element ap­
pears in the chain determines its level. The conditions coordinating the
ejection chain process are called legitimacy conditions^ which are guar­
anteed by associated legitimacy restrictions.

We focus on ejection chain methods for carrying out operations on
graphs. The objective is to create mechanisms, namely neighborhood
structures, allowing one solution subgraph to be successfully transformed
into another.

In this context, relative to a specific graph G, an ejection chain of L
levels consists of a succession of operations TTII, . . . , m /c , . . . , TUL called
ejection moves ^ where m^ transforms a subgraph Gk of G into an­
other subgraph Gk-\-i by disconnecting (or ejecting) specified components
(nodes, edges, subpaths) and relinking them to other components. The
number of levels L is the depth of the ejection chain. The particular level
chosen (from among the L levels generated to provide a move executed
by a local search method) usually varies from one iteration to the next.
The total number of levels L can likewise vary, and hence ejection chains
fall within the class of so-called variable depth methods. In an ejection
chain framework, the subgraph obtained at each level of the chain may
not represent a feasible solution but may be transformed into a feasible
solution by using a complementary operation called a trial move.

More formally, let Si be the current solution at iteration i of the local
search method, and let nik^ tk be the ejection move and the trial move, re­
spectively, at a level k of the chain. A neighborhood search ejection chain
process consists of generating a sequence of moves m i , t i , . . . , TTI/C, t /^, . . . ,
m/,, ti on Si such tha t the transition from solution Si to Si^i is given by
performing a compound move m i , m 2 , . . . , m,/.*, /̂c*, where /c* represents
the level associated with the highest quahty trial solution visited during
the ejection chain construction. In the ejection chain context we use the
terms compound move and transition move interchangeably, to specify
the move leading from one solution to another in an iteration of the local
search procedure.

330 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The effectiveness of such a procedure depends on the criterion for
selecting component moves. More specifically, neighboring solutions ob­
tained by an ejection chain process are created by a succession of embed­
ded neighborhoods that lead to intermediate trial solutions at each level
of the chain. However, the evaluation of ejection moves can be made
independently from the evaluation of the trial moves, in which case trial
moves are only evaluated after performing the ejection move at the same
level of the chain. In this variant of the approach, the evaluation of an
ejection move rrik only depends on the cumulative effect of the previous
ejection moves, m i , . . . , m/^-i, and is kept separate from the evaluations
of trial solutions encountered along the way. The trial moves are there­
fore restricted to the function of finding the best trial solution that can
be obtained after performing the associated ejection move.

We stress that our preceding description of ejection chain processes
simply constitutes a taxonomic device for grouping methods that share
certain useful features. The value of the taxonomy, however, is evi­
denced by the role it has played in uncovering new methods of consid­
erable power for discrete optimization problems across a broad range of
applications. Within the TSP setting, as will be seen, the ejection chain
framework provides a foundation for methods that embrace a variety of
compound neighborhood structures with special properties for combin­
ing moves, while entaihng a relatively modest computational effort.

2.3.2 Node-based Ejection Chain Methods. Node-based
ejection chain methods derive from extensions of customary single node
insertion and node exchange neighborhoods found useful in several classes
of graph problems including: machine scheduling, clustering, graph-
coloring, vertex covering, maximum clique or independent problems, ve­
hicle routing problems, generalized and quadratic assignment problem,
and the traveling salesman problem, to cite only a few.

Since the worst case complexity of evaluating a single node-insertion
and node-exchange neighborhood is 0{'n?)^ creating compound neigh­
borhoods by combinations of these moves requires an effort that grows
exponentially with the number of moves considered in the combination.
More precisely, the best compound neighborhood of k moves can be
generated and evaluated with 0{n^) effort. This effort can be notably
reduced by using appropriate candidate hsts that we discuss in Section
3.1. Such hsts also apply to several other types of neighborhood struc­
tures, including the ones discussed in this section.

We present here ejection chain methods to implement a multi-node
insertion move and a multi-node exchange move that yield an impor­
tant form of combinatorial leverage. Specifically, the number of moves

Local Search and Metaheuristics 331

represented by a level k neighborhood is multiplicatively greater than
the number of moves in a level k - I neighborhood, but the best move
from the neighborhoods at each successive level can be determined by
repeating only the effort required to determine a best first level move.
In our application, for example, the moves of the first, second and third
levels are respectively 0{n?), O(n^), and 0{n'^) in number, but the best
member of each can be found by repeating the 0{n'^) effort required to
determine the best move of the first level, so the total effort is still 0{ii?).
For a worst case analysis and proofs of the complexity of these ejection
chain processes see Glover [371]. Here we focus on special properties for
comparative analysis of different neighborhood structures and examine
some implementation issues for improving algorithm performance.

Figure 8.6 illustrates a multi-node insertion produced by an ejection
chain method. In the figure, a starting TSP tour is represented by the
convex hull of the nodes, ek denotes edges which are deleted at level k
of the chain (and which identify the associated ejected nodes). Edges
shown "inside" the starting tour are the ones that are added by the
ejection chain process. To simplify the diagrams node labels are not
used, but a node Vk is implicitly identified by the two adjacent e^ edges.

The ejection chain starts by identifying a node pair VQ^ vi that yields
the best (highest evaluation) ejection move that disconnects node VQ
from its current position and inserts it into the position currently occu­
pied by node vi. Thus, a first level ejection move consists of adding edges
(i;o, '^1-), (t'o, viJr) ^nd deleting edges eo and ei. This creates an interme­
diate structure where node vi is temporarily disconnected from the tour.
However, a trial move can be performed by creating edge {vo-i ^0+), and
inserting node vi between nodes pi and ^i, creating edges (^'l,^;p^), and
('̂ b'̂ (7i), and deleting edge ti. For the subsequent levels, ejection moves
consist of selecting a new candidate node to be ejected by the previ­
ously ejected node, and so forth, until no other legitimate node exists
for ejection.

This move is illustrated in the second level of the ejection chain shown
in the middle diagram of Figure 8.6, where node vi ejects node V2 by
adding edges {vi^V2-), {vi,V2-^) and deleting edge 62- The trial move
used in the first level is not considered for the construction of further
levels of the chain. Instead, the ejection move generates a new move
(of the same type) for the next level. A trial move is then executed as
previously indicated, now by hnking node V2 to nodes p2 and q2^ and
deleting edge ^2. The corresponding level 2 trial solution is given in
diagram on the right in Figure 8.6.

332 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

f^ 1 ^

Figure 8.6. Two levels of a multi-node insertion ejection chain

A multi-node exchange move can be obtained at each level of the chain
by considering a trial move that simply relocates the current ejected node
to occupy the vacant position left by the node t'o that initiates the chain.
This is carried out by creating two edges (t'o-,^'^), {"^ki^o^)-, where Vk
denotes the node ejected at a level k of the chain.

In the multi-node insertion ejection chain method a trial move can
be evaluated in time 0{n).^ but in the multi-node exchange method the
move is evaluated in constant time, 0(1). Experiments with this ejection
chain method for the vehicle routing problem (VRP) have shown that
multi-node insertion is usually more efficient than multi-node exchange
(Rego [706]). However, both types of moves can be efficiently combined
in the same ejection chain process to select the best compound move at
each level of the chain. Such an ejection chain produces a more com­
plex neighborhood which dynamically combines insertion with exchange
moves.

Figure 8.7 depicts this second type of ejection chain using the same
ejection moves illustrated in Figure 8.6. Note that the first level of the
chain is a standard single-node exchange move where nodes i;o and vi
exchange their positions. However, this exchange move produced by the
ejection chain does not necessarily represent the highest evaluation two-
node exchange move, unless we decide (for this first level) to evaluate
the ejection move and the trial move conjointly. This decision is just a
matter of preference since in this particular type of ejection chain either
criterion can be evaluated in 0{ii?).

In the figure, level 1 and level 2 trial moves consist of adding edges
(t'o-,'^i), (^'l,^'o+) â nd edges (i;o-,^'2)5 ('̂ 27'̂ o+)) respectively. Note that
although edge ('L'o_,̂ '2) has been deleted by the second ejection move

Local Search and Metaheuristics 333

Figure 8.7. Two levels of a multi-node exchange ejection chain

it is added back by the associated trial move to create a tour from the
intermediate structure.

In each of these methods, a legitimate structure for the ejection chain
is defined by the requirement that each ejected node occurs only once
in the chain. The preceding characterization of legitimacy imphes that
no edge will be added or dropped more than once by the transition
move associated with the ejection chain, and consequently the tour cost
change created by the transition move equals the sum of the added edges
minus the sum of the dropped edges. These relationships are useful for
the goal of efficiently generating and evaluating chains of progressively
greater depth with a suitable combinatorial leverage.

Both types of node-based ejection chains can be completely deter­
mined by the succession of ejected nodes, ;̂o, • • •, '̂ /c, • • •, '̂ L, which we
designate by the set ZL- Accordingly, we let ZL- and ZL+ respectively
denote the set of predecessors and the set of successors of vertices in
Zi^ and let WL denote the set of all the vertices involved in the ejection
chain process, WL — ZL- U ZL ^ ZL^- Thus, the legitimacy restric­
tions consist of stipulating that each vertex in ZL occurs only once in
WL. However, any vertex in ZL- may reappear in Z L + and vice versa,
without violating this restriction.

An ejection chain of L levels can be recursively evaluated by comput­
ing the ejection values for these levels and summing them to give the
trial value for each level. We denote a legitimate neighborhood for a
node V]^ in Z\^ by LN{vi^)^ thereby identifying a subset of nodes of G
that do not violate the legitimacy restrictions. For convenience we de­
note the cost of two adjacent edges (̂ '̂ , Vj) and {vj^ Vk) as c{vi^ Vj^Vk) =
c{vi,Vj) + c{vj,Vk). Figure 8.8 provides a general neighborhood search
procedure.

As shown in Glover [371] it is possible to create other variants of these
ejection chain methods by growing the chain in the opposite direction.

334 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Step 0. Initialization

(a) Initialize a legitimate neighborhood for all vertices.

(b) Denote the starting solution by S.

(c) Set /c = 0.

Step 1. Create the first level of the ejection chain

(a) Determine a set of two initial vertices Vk,Vk-^-i by computing:

(b) Ek = min{c{vk-,Vk-i,Vk^) - c{vk-i-,Vk-i,Vk-i+) -
c{vk-,Vk,Vk+) -\- Xc{vk-i-,Vk-i +) : Vi.Vj 6 V}, where
A = 1 if multi-node insertion is used and A = 0 otherwise.

(c) Set Zk = {vk}'

Step 2. Grow the chain to further levels

(a) Set k = k + 1 and set Zk = Zk-i U {vk}-

(b) Evaluate the trial tour cost for the current level by computing the
value: Ak = Ek -\- min{c{vp,Vk,Vp+) - c{vp,Vp+) : Vp G V\Zk}
if multi-node insertion is used. Otherwise compute Ak — Ek +

c{vo-,Vk,VQ^).

(c) Keep track of the best level k* that produces the best trial tour.

(d) Determine the new vertex v G LN{vk) by computing: Ek — Ek-i-\-

min{c{vk-,Vk-i,Vk+) - c{vk-,Vk,Vk+) : Vi,Vj G Wk-i}.

(e) Set Vk-\-i = V.

(f) Update the legitimate neighborhoods for each vertex Vi G Wk*.

(g) U k < L and LN{vk) is not empty, return Step 2. Otherwise go to

Step 3.

Step 3. Perform the compound move

(a) Apply to S the sequence of ejection moves up to the level k*.
(b) Complete the update of S by executing the trial move for the level

k* associated with multi-node insertion or multi-node exchange.

Figure 8.8. Neighborhood search iteration for node-based ejection chains.

Thus, for a multi-node ejection chain, the method starts by an insertion
move which disconnects one node from its current position, followed by
inserting it between two others. Then, the chain grows by selecting a
node to fill the vacant position, which in turn opens a new "hole" for
the next level of the chain. This technique is particularly relevant for
using ejection chains to provide a construction method with attractive
properties. A constructive multi-node insertion ejection chain method
starts by choosing an initial single-node insertion move and making the

Local Search and Metaheuristics 335

corresponding edge additions to generate a partial subgraph of the tour.
Then, the subgraph is extended by adding one node (external to the
current subgraph) to become the new VQ node in the chain. The process
is repeated until the partial subgraph becomes a spanning subgraph of
G, thus corresponding to a TSP tour in G. The use of the ejection chain
as a construction method always assures a legitimate T S P structure is
produced. Since each new node VQ is external to the current subgraph,
it can not correspond to any of the spanning nodes of the ejection chain.

2.3.3 General iz ing Insert ion and E x c h a n g e Ejec t ion Cha in
M e t h o d s . The foregoing ejection chain process can be easily ex­
tended to eject subpaths in addition to nodes. In its simplest form the
procedure can be viewed as a generalization of the Or-opt neighborhood
implemented in an ejection chain framework. A straightforward way to
implement this generalized insertion ejection chain method is to collapse
subpaths so they are essentially treated as nodes. (These collapsed sub-
paths are sometimes called swpernodes.) Conversely, the method can
implicitly create "holes" in subpaths and these can be possibilities for
ejecting nodes inside of subpaths.

2.3.4 S u b p a t h Ejec t ion Chain M e t h o d s . In a subpath ejec­
tion chain (SEC) the ejection moves involve the re-arranging of paths
rather than individual nodes. One example is the variable depth search
of the Lin-Kernighan procedure. In this section we discuss a poten­
tially more powerful SEC method that forms the core of one the most
efficient local search algorithms for the TSP, and whose performance is
discussed in Chapter 9. The method is based on the stem-and-cycle
(S&C) reference structure, which is a spanning subgraph of G tha t
consists of a path S T = {vt^... ,'u^}called a stem, attached to a cycle

CY = {Vr,Vsi,'",Vs2^^r)-

The first diagram of Figure 8.9 illustrates the creation of an S&C
reference structure for the first level of the ejection chain process. The
structure is created by dropping one edge in the tour (denoted by eo)
and linking one of the endpoints of the resulting Hamiltonian path to
a different vertex in this path (denoted by Vr). Vertex Vr^ which is the
intersection of the stem and the cycle, is called the root. The two vertices
in the cycle adjacent to Vr^ denoted by Vs-^ and Vs2^ are called subroots.
The vertex vt is called the tip of the stem.

The method starts by creating a stem-and-cycle reference structure
from a TSP tour. Then, the method proceeds by performing an ejection
move which links the tip node Vt to one of the remaining nodes Vp of

336 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

the graph, excluding the one that is adjacent to the tip. The root is
considered as belonging to the cycle.

We differentiate two types of ejection moves depending on whether
the operation is applied to the stem or to the cycle:

(1) Stem-ejection move: add an edge {vt^Vp) where Vp belongs to the
stem. Identify the edge {vp^ Vq) so that Vq is a vertex on the subpath
{vt^... ^Vp). Vertex Vq becomes the new tip node.

(2) Cycle-ejection move: add an edge (vt^Vp) where Vp belongs to the
cycle. Select an edge {vp^Vq) of the cycle to be deleted where
Vq = Vp- or Vq — Vpj^. Vcrtcx Vq becomes the new tip node.

As with other types of ejection chains, an ejection move transforms an
intermediate structure into another of the same type, which usually does
not represent a feasible structure for the problem. The only exception
is the degenerate case where the tip vt is also the root Vr and hence the
stem is of length 0 and the cycle is a tour. This can arise for instance
as the result of a cycle-ejection move where Vp is a cycle-neighbor of
Vr. Even though the root is fixed during one ejection chain search it is
possible to change it whenever the degenerate case occurs.

In the general case of a non-degenerate S&C structure a feasible tour
can always be obtained at each level of the chain by linking the tip node
to one of the subroots and deleting the edge that links the subroot to
the root node.

Figure 8.9 illustrates one level of the stem-and-cycle ejection chain
process where edges that lie on the convex-hull of the vertex set are
members of the initial tour and edges "inside" the tour are those added
by the component ejection chain moves. We denote by e/c and d/c the
edges deleted at level fc by ejection and trial moves, respectively, and
denote by t]^ the tip node at level k. The S&C reference structure is
created in the left-hand diagram by adding a link between two nodes in
the tour and deleting one of the edges adjacent to either one of these
nodes. Hence Vr becomes the root node with subroots 5i and 52, and to
identifies the initial tip node. The middle diagram illustrates an example
of a stem.-ejection move which links to to S2 and deletes ei, thus making
ti the new tip node. In the example, the associated trial move consists
of adding the edge (ti,5i) and deleting edge {si^Vr). Another possible
trial move can be obtained by relinking ti to 52 and deleting di.

The right-hand side diagram illustrates a cycle-ejection move which
hnks to to Vp (in the cycle) and deletes ei. Again, two possible trial moves
can be obtained by linking ti to one of the subroots and deleting the
associated di. A trial move can also be generated just after creating the

Local Search and Metaheuristics 337

S&C structure. However, at this initial level only one trial move leads to
a different tour, which in the example consists of adding edge (to, 5i) and
deleting edge (si^Vr). This restricted possibility yields the initial 2-opt
trial move considered in the LK procedure. At each subsequent level,
the two trial moves available by the S&C reference structure, and the
enriched set of continuations for generating successive instances of this
structure, provide a significantly enlarged set of tours accessible to the
S&C approach by comparison to those accessible to the LK approach.

Figure 8.9. The stem-and-cycle ejection chain

In the design of the stem-and-cycle neighborhood search procedure
legitimacy conditions can be added with two main purposes: (1) to
prevent the method from visiting solutions already inspected during the
ejection chain process; (2) to generate special forms of alternating paths
which have proved useful in several classical graph theory problems. For
the first purpose it is sufficient to stipulate that no deleted edge is added
back during the construction of the chain. The second purpose deserves
some additional consideration.

In classical alternating path methods in graph theory, and in neigh­
borhood search processes related to them, the customary approach is to
restrict the edges deleted to be edges of the starting solution. Meth­
ods that use this approach, which include the classical Lin-Kernighan
procedure, may be viewed as static alternating path methods. However,
certain neighboring solutions can not be obtained except by generating
alternating paths in which previously added path edges are also can­
didates to be deleted. Thus, in contrast to classical approaches, this
produces a dynamic alternating path. In fact, the paths provided by the
S&C structure give the ability to reach any TSP tour from any other
tour, in contrast to the situation illustrated earlier where the paths pro­
vided by the LK approach are unable to reach some tours that differ only

338 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

by 4 edges from the current tour. Moreover, as demonstrated in Glover
[374], this abihty can be assured by a simple "non-reversal" condition,
which prevents an edge from being deleted if is inserted immediately
after deleting another edge that was previously inserted. These restric­
tions define the legitimacy conditions for the S&C algorithm described
in Rego [704], and are also incorporated into an enhanced version of this
algorithm reported in the 8*̂ DIMACS TSP Implementation Challenge
(Johnson, McGeoch, Glover, and Rego [462]).

A general design of the stem-and-cycle neighborhood search procedure
can be described as in Figure 8.10, where we define a legitimate neigh­
borhood for a node Vi^ denoted by LN{vi)^ as the subset of nodes of G
that do not violate the legitimacy restrictions identified above. Also, as
shown in Rego [704] the maximum number of levels for a S&C ejection
chain is bounded by 2n, but since the best trial solution is usually found
in a relatively lower level, L is considered a user-supplied parameter.

2.4. New Methods for Variable Depth Search
We have illustrated how ejection chain methods can be useful to gen­

erate compound neighborhood structures of several types, encompassing
a variety of special properties for the traveling salesman problem. As
previously mentioned, this framework for generating neighborhoods has
proved highly effective for exploring the solution space in several other
hard combinatorial problems. However, we recall that ejection chains
characteristically generate moves that can not be obtained by neighbor­
hoods that preserve feasibility at each step. We now discuss methods
to efficiently combine other, more customary, neighborhoods based on
the creation of appropriate candidate lists, which likewise can easily be
exploited by parallel processing.

In the context of the TSP the terms candidate lists and neighbor lists
are often used interchangeably because the restricted sets of elements
considered for evaluation are usually defined by the relative distance be­
tween nodes in the problem data space. We will examine several types of
neighbor lists in Section 3.1. However, for the exposition of the methods
discussed in the present section, it is important to clearly differentiate
neighbor lists from candidate lists. While both lists are associated with
strategies to reduce the neighborhood size, neighbor lists constitute sim­
ply one possibility for creating candidate lists, and in many settings
are used to initialize a more general candidate list approach. Neighbor
lists are static, and keep neighbor elements from changing during the
search process. (Methods that temporarily change the problem data

Local Search and Metaheuristics 339

Step 0. Initialization

(a) Denote the starting solution by S.

(b) Select the initial tip node vtQ = fr-

(c) Set k = 0.

Step 1. Generate the ejection chain

(a) Ejection Move:
Compute the value of the ejection move for each vertex Vp G
LN{vtf^) as follows: Ek — c{vtf^,Vp) — c{vp,Vq) if Vp G ST] Ek =
c{vtj^,Vp) - min{c{vp,Vp^),c{vp,Vp-)} if Vp G CY]

(b) Select the vertex Vp* that yields the minimum Ek value and keep
track of its adjacent vertex Vq considered for the move.

(c) Trial Move:
Compute the value of the trial moves associated with each subroot
Si{i = 1,2) and chose the one that minimizes Tk = c{vp,Vsi) —
c{vsi,Vr). The trial tour cost is given by Afc = Ek + Tk.

(d) Keep track of the level k* that produces the best trial tour so far

and record the subroot node involved in the trial move.

(e) Update LN.

(f) Set k = k -\-l and set vt^ = Vq.

(g) If /c < L and LN is not empty return to Step 1. Otherwise go to

Step 2.

Step 2. Perform the compound move

(a) Apply to S each ejection move considered in the ejection chain up
to the level k*.

(b) Complete the update of S by executing the trial move for the level
k*.

Figure 8.10. An Iteration of the Stem-and-Cycle Procedure

such as space smoothing (Gu and Huang [409], Steven et al. [774]) and
noising methods (Charon and Hudry [179, 180]), can change the static
relationship, however.) Conversely, candidate lists do not necessarily
rely on the problem data but rather are made up of solution attributes.
These attributes, which can include the types of elements used in the
neighbor lists and many others, change dynamically, based on informa­
tion gathered from the search process. Candidate hsts have been chiefly
proposed in association with tabu search, which exploits strategic infor­
mation embodied in memory structures. In such settings the changes in
the candidate Hsts are represented within an adaptive memory program-

340 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

ming implementation either by explicitly replacing some attributes with
others or by changing values of these attributes.

We next discuss candidate lists that offer a useful basis for creating
compound moves within exponential neighborhoods, while using an eco­
nomical degree of effort. For illustration purposes we consider standard
single-node insertion moves as a basic element to create more complex
moves.

2.4.1 The Sequential Fan Method. This Sequential Fan
method may be viewed as a natural generalization of beam search^ an
approach that is extensively used in scheduling. (See Morton and Pentico
[609], for a survey of beam search and its applications.) Beam search is
applied within sequential construction methods as a restricted breadth-
first tree search, which progresses level by level, without backtracking,
but only exploring the most promising nodes at each level. As a schedule
is constructed, beam search progressively truncates the tree by choosing
a parameter (the "beam width") that determines a constant number /3 of
nodes (partial solutions) at each depth from the root that are permitted
to generate nodes at the next depth. A variant called filtered beam
search (Ow and Morton [638]) refines this approach by using a two-step
evaluation to chose the /3 best moves at each level. The method first
picks some number 6 (the "filter width") of locally best moves, and then
submits these to more rigorous examination by extending each one in a
single path look-ahead to the end of the tree (choosing the locally best
move at each step of the path). The total path evaluations are used to
select the /3 best moves from the initial 6 candidates.

By extension, the sequential fan method operates in the local search
setting as well as in the sequential construction setting, and works with
complete solutions in neighborhood spaces as well as with the types of
partial solutions used by beam search. It also more generally varies the
width of the search strategically as a function of both the depth and
the quality of the solutions generated. In a simple application to the
TSP, for example, moves that interchange their current positions in the
tour can be checked to identify a few good options, and for each of these,
follow-on options are checked by pruning the total number of alternatives
that are tracked at each level according to quality and depth.

The basic construction of the Sequential Fan tree underlies the use
of a candidate list strategy based on weeding out promising moves by
applying evaluations in successive levels of the tree search, where the
moves that pass the evaluation criteria at one level are subjected to
additional evaluation criteria at the next. The basis for the creation of
the sequential fan candidate list strategy can be described as follows. A

Local Search and Metaheuristics 341

list of moves M{k) is associated with each level k, where hst M{k) is
derived by applying criterion k to evaluate the moves on list M{k — 1).
To start , hst M (l) is created from the set of all available moves or from
a subset determined by another type of candidate list (e.g. a neighbor
list as commonly used in the TSP setting) and contains the ai best of
these moves by criterion 1. List M(2) then contains the a2 best of the
moves from M (l) according to criterion 2, and so on.

More generally, subsequent lists may not merely contain moves that
are members of earlier lists, but may contain moves derived from these
earlier moves. A useful way to make successive refined evaluations is
to employ a deeper look-ahead in subsequent layers. For example, list
M (l) may apply criterion 1 to evaluate immediate moves, while M(2)
may apply criterion 2 to evaluate moves from the solutions produced
by M (l) to create compound moves. More advanced constructions of
this look-ahead process may be conceived by the use of ejection chain
processes (performed from nodes at the current level) as a foundation
to determine promising component moves to dynamically update the
candidate list. Also, high evaluation trial solutions found throughout the
ejection chain can be recorded for further consideration, as we discuss
in Section 4.3.

2.4.2 T h e Fi l ter and Fan M e t h o d . The Filter and Fan
method (F&F) is a combination of the filtration and sequential fan can­
didate list strategies used in tabu search.

By our earlier conventions, a compound move is one that can be de­
composed into a sequence of more elementary component moves (or sub-
moves), and the best compound move is the best (highest evaluation)
combination of these submoves. As we have seen, a complete evalua­
tion of simple node-insertion and node-exchange moves in dense TSPs
requires 0{n?) eff'ort, and the effort of evaluating a combination of L
of these moves is 0{n^)^ and hence grows exponentially with L. How­
ever, this effort can be notably reduced based on the assumption tha t
the best L-compound move is a combination of L submoves such that
each is one of the M{k) highest evaluation moves for the corresponding
level k of the tree (A: = 1 , . . . , L). Thus, instead of evaluating all possible
combinations of k moves the F&F method proceeds by progressively cre­
ating new solutions for a level k{k > 0), which derive from the solutions
generated in the level k - 1 by applying a restricted subset A{k) of the
highest evaluation moves, selected from a larger set M(0) of potentially
good moves, |M(0) | = 770.

342 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The Filter and Fan Model. The F&F model can be viewed as a
neighborhood tree where branches represent submoves and nodes identify
solutions produced by these moves. An exception is made for the root
node, which represents the starting solution to which the compound
move is to be applied. The maximum number of levels considered in
one sequence defines the depth of the tree. The neighborhood tree is
explored level by level in a breadth search strategy. For each level /c, the
method generates ryi * r]2 moves by the fan candidate list strategy^ then
a subset M{k) of 772 moves is selected by the filter candidate list strategy
to generate the solutions for the next level.

An illustration of the Filter and Fan model is provided in Figure
8.11, where black nodes identify a local optimum with respect to the
L-neighborhood. The method starts as a standard descent method by
performing 1-moves as long as they improve the best current solution.
Once a local optimum is found (in the descent phase) the best M(0)
moves (among the M moves evaluated to establish local optimality) are
used to create the first level of the F&F neighborhood tree. The next
levels are created as follows. Letting 771 be the number of M{k) moves
for level fc, the method proceeds by selecting a subset Ai{k) of 772 moves
from M(0) associated with each solution Xi{k){i = 1 , . . . , 771) to generate
77 = 771 * 7̂2 trial solutions for the level k + 1 (as a result of applying 7/2
moves to each solution at level k). For convenience we consider 771 = 4
and 772 = 2 for the example illustrated in Figure 8.11. (The process of
selecting 772 moves has to obey to a set a legitimacy conditions that will
be specified later.)

We define A{k) = {Ai{k),A2ik),... ,Ar^,{k)}{\Ai{k)\ = r/2) as the
set of 77 moves evaluated at the level k from which the set M{k) =
{mik^m2k^'' ",rnrj-^^k} is selected, M{k) C A{k)^k > 0. The process is
repeated by creating a set X(/c + 1) of solutions obtained by applying
M{k) moves to the associated solutions in X{k) and keeping these solu­
tions as starting points for the next level of the F&F tree.

For the purpose of illustration we consider the fan candidate list strat­
egy to be the one that identifies the best 772 component moves for each
solution at a level fc, and the filter candidate list strategy to be the one
that identifies a subset of r/i of the 77 moves generated. Also, our example
constitutes a variant in which the method stops branching as soon as
an improved solution is found, then switches back to the descent phase
starting with this new solution. However, other strategies to create both
types of candidate hsts are possible.

Local Search and Metaheuristics 343

Descent Phase

with Single Transition Moves

Compound Move

Figure 8.11. The Filter and Fan Model

344 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

More elaborate designs of the F&F method allow different types of
moves for combination at each level of the tree, so that compound moves
can be obtained by different neighborhoods applied under appropriate
legitimacy conditions. By continuing the tree search after a local opti­
mum is found, local optimality is overcome in "intermediate" levels of
the F&F tree. Then the best trial solution encountered throughout the
tree is chosen to re-initiate the descent phase.

More advanced versions result by replacing the descent phase with a
tabu search phase, which, for example, can activate the F&F strategy
based on the use of critical event memory. Thus, the F&F strategy can
be used either to intensify the search in regions of high quality (elite)
solutions or to diversify the search by propelling the method to a different
region of the solution space.
Generating legitimate multi-node insertion moves by an F&F
strategy. In order to create legitimate trial solutions when applying
the F&F method legitimacy conditions have to be defined according to
the type of component move used for the problem. We characterize
legitimacy conditions for an F&F method using single-node insertion
component moves for the TSP.

A component move will be called legitimate at a level k if this move
can be performed by the usual neighborhood search rules (e.g. as a
customary node insertion) after performing the associated (/c — l)-move.
Otherwise, the move is illegitimate. By this definition, a move that is
illegitimate relative to a solution Xi{k){l < i < rji) will remain illegiti­
mate throughout further levels of the subtree rooted by Xi{k).

We further stipulate that the legitimacy conditions ensure the com­
ponent move evaluations do not change during the F&F neighborhood
search. Thus, the solution cost-changes associated with each move in M
are carried forward through the tree to provide information for evaluat­
ing the A{k) moves. By doing so, the neighborhood of a solution Xi{k)
can be restricted to consist of 772 potentially good moves. The M{k)
moves (fc > 0) are chosen according to the quality of the trial solutions
produced by the A{k) moves.

Consider an F&F process based on single node-insertion moves, which
insert a node vi between two consecutive nodes Vp and Vq in the tour.
To maintain the legitimacy of an L-move it is sufficient to forbid the
insertion of a node Vi between nodes for which the corresponding edge
(vp^Vq) has been deleted in one of the L — 1 levels of the corresponding
L-move.
Additional considerations for implementation. An efficient im­
plementation of the F&F procedure requires the identification of appro-

Local Search and Metaheuristics 345

priate data structures for handling different parts of the method and
speeding up the search.

The first issue in implementing the F&F method concerns the cre­
ation of M(0) in the descent phase. Assume the simplest form of the
F&F strategy is employed, where the initial phase is a pure memoryless
descent procedure. Hence M(0) is a subset of the best M moves evalu­
ated on the last step of the descent (to verify that local optimality has
been reached). It may be computationally more efficient to create M(0)
by performing an additional iteration of the local search procedure after
reaching the local optimum 5*, rather than to keep track of the 770 best
moves at each iteration. A priority queue based on a binary heap data
structure can be used to identify the best 770 moves during the neighbor­
hood search process in 0{log{r]Q)) time. (See, e.g., Gormen, Leiserson,
and Rivest, [218], pages 140-152.) Since the additional iteration consists
of repeating the evaluation of moves in the previous iteration, several
strategies can be used to restrict the size of the neighborhood, thus
reducing the time complexity to create M(0).

Another issue concerns the creation of Ai{k) for each solution Xi{k).
Instead of searching M(0) for the best 772 legitimate moves it can be
advantageous to consider the rrijk moves {j = 1 , . . . ,771^,^ 7̂ i) as the
candidates for Ai{k). The creation of this candidate hst assumes that
good moves in one level of the tree are potentially good in deeper levels of
the tree. However, such a strategy increases the chance for re-generating
solutions previously visited. One way to counter this tendency is to use
a tabu list of move attributes associated with each solution Xi{k)^ thus
introducing a further level of legitimacy. Additional moves to complete
Ai{k) can be examined in M(0) whenever the number of legitimate moves
for Xi{k) is smaller than 772. An outhne of the general F&F procedure
is provided in Figure 8.12.

3. Tabu Search
The Tabu Search (TS) metaheuristic has proved highly successful in

solving a wide range of challenging problems. A key feature of TS is its
use of adaptive memory, accompanied by a collection of strategies for
taking advantage of this memory in a variety of contexts. Character­
istically, TS can be implemented at multiple levels to exploit tradeoffs
between ease of implementation and sophistication of the search. Sim­
pler forms of TS incorporate a restricted portion of its adaptive memory
design and are sometimes applied in preliminary analyses. These ap­
proaches have proved useful for testing the performance of a limited
subset of TS components, and for identifying cases where more fully in-

346 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Step 0. Generate a candidate list of component moves

(a) Consider a starting solution S and perform 1-moves using a local
search method until a local optimum S* is found.

(b) Create a candidate list M(0) with the 770 highest evaluation moves
in the neighborhood where S* was found.

(c) Apply the best 771 moves in M(0) to S* to create the first level of

the F&F tree with solutions Xi(l)(z = 1 , . . . ,771). Set k = 1.

Step 1. Generate the Filter and Fan tree

(a) Identify the best 772 legitimate moves derived from M(0) for each
solution Xi{k){i = 1 , . . . ,771) to create sets Ai{k){j = 1,... ,r)i).

(b) Evaluate each move in Ai(k), applied to the associated solution
Xi{k), and compute the value of the corresponding trial solution.

(c) If the best trial solution found is better than S*, perform the as­
sociated move from Xi{k) on S and go to Step 0.

(d) Otherwise, select the A{k) moves that led to the best 771 trial so­
lutions to become the members of M(/c).

(e) Apply the M{k) moves to the corresponding solutions Xi{k) to
create X{k 4-1).

(f) U k = L stop. Otherwise set k = k -{- 1 and repeat Step 1,

Figure 8.12. A General Filter and Fan Procedure

tegrated strategies are not required. However, versions of tabu search
that include a more comprehensive and advanced set of its elements
generally prove superior to more limited versions of the approach.

A strategic component of TS that is sometimes omitted involves main­
taining and analyzing a collection of high quality solutions to infer prop­
erties of other high quality solutions. Such processes provide a con­
nection between Tabu Search and certain evolutionary approaches, as
represented by the Scatter Search method discussed in the next section.

So far algorithmic studies of large TSP instances have chiefly focused
on isolating efficient neighborhood structures (such as those based on
Lin-Kernighan and Ejection Chain procedures) and on using appropri­
ate candidate lists. As reported in the 8*̂ DIMACS TSP Implementa­
tion Challenge, recent implementations of LK and EC procedures can
now find near-optimal solutions for very-large scale TSP instances in a
relatively short time.

Motivated by the experiences reported in other problem settings we
speculate that still better TSP solutions may be found by including
advanced features of tabu search. In this section we discuss some key

Local Search and Metaheuristics 347

strategies in TS that deserve special consideration to achieve improved
outcomes.

3.1- Candidate List Strategies
As we have already emphasized, efficient procedures for isolating good

candidate moves are critically important for the efficiency of local search
algorithms. In the TSP setting, for example, the use of candidate lists
is mandatory when large instances have to be solved.

There are some subtleties in the ways candidate list strategies may be
used. A number of studies have observed that optimal or near optimal
solutions often can be constructed for the TSP by limiting consideration
to a small number of shortest (least cost) arcs out of each node. A natu­
ral procedure is to create a candidate list defined by the nearest neighbor
graph, giving the neighbor list previously discussed, where some limited
number of nodes closest to each given node determines the edges per­
mitted to be included in the tours generated. However, TSP instances
exist where the best solutions significantly violate this restriction, as ex­
emplified by the situation where vertices on a Euclidian plane occur in
separated clusters. A drawback of the nearest neighbor list is the fact
that its size is fixed and it does not exploit the geometric structure of
the problem. Consequently, more efficient approaches create moves by
requiring some but not all edges to belong to a shortest-edge collection.
Reinelt [710] suggests a candidate list approach based on the computa­
tion of a Delaunay graph, which provides a set of edges to initialize the
candidate list. Then the list is expanded by adding an edge {vi^Vk) for
each pair {vi^Vj) and [vj^Vk) in the initial set. It has been observed that
even if this approach provides useful edges for clustered TSP instances it
misses several other important edges and thus restricts the performance
of the local search procedure.

A more efficient candidate list construction is the so-called /c-quadrant
neighbor graph, initially proposed by Miller and Pekny [598] for a 2-
matching problem (which is a relaxation of the TSP) and first used by
Johnson and McGeogh [463] in the TSP context. In this graph, each
vertex Vj is the origin of a quadrant in a Euclidian plane and the /c/4
vertices closest to the origin in each quadrant define the neighbors for
vertex Vj. Let qij denote the number of vertices in the quadrant i for
vertex Vj. If Yli=i Qij < ^̂ ^hen we fill out the candidate hst for Vj with
the A:-^.^-^ qij nearest cities to Vj not already included. This candidate
hst is used in several of the most efficient implementations of local search
algorithms submitted to the DIMACS TSP Challenge, including imple-

348 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

mentations of the Lin-Kernighan and Ejection Chain algorithms. A more
sophisticated approach is used in Helsgaun's variant of Lin-Kernighan
[446], where the candidate hst for vi consists of its k nearest neighbors
Vj under a new metric produced in a two-step derivation process from
the original distances (see Chapter 9).

We conjecture that the design of efficient candidate lists for these
hard TSP instances (where vertices are not uniformly diffused but may
clump and cluster) depend in part on their amplification factor [371],
which is the ratio of the total number of arcs added by the move to
the number that belong to the fc-shortest category. For a simple ex­
ample, consider single node insertion and exchange moves. Requiring
that a "first added edge" in each of these moves must be on a nearest
neighbor list) instead of requiring that all added edges belong to such
lists) will achieve amplification factors of 3 and 4 respectively. The log­
ical conditions defining such a candidate list in the present context can
be specified more precisely as follows. For an insertion move, where a
selected node vi is repositioned to lie between nodes Vp and Vq^ we re­
quire one of these two added edges (vp^Vi) or (vi^Vq) to be among the
k shortest arcs linked to node Vi. Since three edges are added by the
move (including the arc joining Vi- to vi^)^ this single-arc requirement
gives an amplification factor of 3. (More than one of the three added
edges may belong to the /c-shortest category, but only one is compelled
to do so.) Given node Vi^ the form of the insertion move is completely
determined once either edge (vp^Vi) or (vi^Vq) is specified. Similarly, for
exchange moves, where nodes vi and Vj interchange positions, we require
only one of the four added edges (vi-^Vj)^ (vj — ̂ Vi)^ (vi^Vj^)^ (vj^Vi^)
to belong to the fc-shortest group, yielding an amplification factor of 4.
Here, a given added edge can be used to define two different moves. By
extension, the subpath insertions and exchanges of the type described
in the ejection chain method provide a means for achieving significantly
higher amphfication factors.

The features attending these cases are characteristic of those exhib­
ited by a special type of candidate list proposed in tabu search called a
preferred attribute candidate list. In this instance, the fc shortest edges
of a node Vi identify the "preferred attributes" used to control the con­
struction of moves where each attribute (or attribute set) on the list
exhibits a property expected to be found in good solutions. For the
present setting, these candidate lists can be constructed as follows.

Consider first the case of insert moves where each preferred arc (vi^ Vj)
generates two candidate moves: the first inserting Vi between Vj and Vjj^^
and the second inserting Vj between Vi and vi^^ excluding the case where
(vi^Vj) is an edge of the tour. Since we are dealing with the symmetric

Local Search and Metaheuristics 349

case, the preferred edge (vi.Vj) generates two insert moves in addition
to those indicated. The first inserts Vi between Vj and Vj-^^ and the
second inserts Vj between vi- and Vi. The preferred attribute candidate
hst for exchange moves is similarly constructed. Each preferred edge
(fi, Vj) generates four candidate exchange moves, the first exchanging Vj
with Vj^^ the second exchanging vi with Vi-, and two others that result
by treating a preferred edge in its two equivalent forms of {vi^Vj) and
{vj^Vi), Note that the generahzation of these constructions for multi-
node insertion and exchange moves of the type considered by Or-opt
neighborhoods is straightforward.

We suggest that fuller advantage can be gained from the preferred
candidate hst by replacing the costs c{vi^Vj) by non-negative reduced
costs derived by solving 1-tree relaxation of the TSP. This will not change
the move evaluations, but typically will change the identities of the k-
shortest edges of each node. (Ties can be broken by reference to the
original costs.) Additional shortest edges may be included as determined
by "modified" reduced costs, where constraints violating the node degree
are plugged in a Lagrangian function to amend the 1-tree structure.

In addition to the design of candidate list strategies, a careful orga­
nization that saves the results of evaluations from previous iterations
rather than re-computing them from scratch, can also be valuable for
reducing time. Time saved in this way allows a chance to devote more
time to the search. In the TSP setting this objective has been chiefly
achieved by the use of the so-called don^t-look hits strategy introduced by
Bentley [103]. This strategy is based on the observation that if the base
vertex, e.g. vi in the LK procedure, and if the "tour neighbors" of this
vertex have not changed since that time, it is unlikely that the selection
of this vertex will produce an improving move. Thus, by associating a
binary variable (or flag) with each vertex, the neighborhood is restricted
to moves for which the base vertex fi 's associated bit is turned off. A
bit for a vertex vi is turned on the first time the selection of this vertex
does not produce an improving move. Conversely, it is turned off when
one of its adjacent vertices is used for a move.

3.2. Intensification and Diversification Strategies
Intensification and diversification in tabu search underlie the use of

memory structures which operate by reference to four main principal
dimensions: recency^ frequency^ quality^ and influence. The strategic

350 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

integration of different types of memory along these dimensions is gen­
erally known as adaptive memory program^ming.

Elements of memory can refer to both attributive memory and explicit
memory. Attributive (or "Attribute-based") memory refers to either
basic or created attributes - instead of recording complete solutions -
as a way to generate strategies to guide the search. Attributive mem­
ory records information about solution attributes that change in moving
from one solution to another. For example, in the TSP setting, attributes
can consist of nodes or arcs that are added, dropped or repositioned
by the moves executed. (In more abstract problem formulations, at­
tributes may correspond to values of variables or functions.) Sometimes
attributes are also strategically combined to create other attributes, as
by hash functions or by chunking or "vocabulary building" methods (
[379]). Tabu search also uses exphcit memory (complete solutions), usu­
ally by recording a limited set of elite solutions which are analyzed to
determine relationships between attributes in these solutions.

Broadly speaking, recency/frequency and quality/influence can be
viewed as complementary dimensions. Recency-based and frequency-
based memory record timing information about the use of specific mem­
ory elements while quality and influence classify solutions in terms of
their significance for representing promising solution characteristics (or
regions in the solution space) and the impact of certain choices on the
quality of the solutions produced. The time span considered in recency-
based and frequency-based memory gives rise to an important distinction
between short-term, memory and longer-term, memory.

The short term memory component of tabu search, which is the start­
ing point for many tabu search implementations, characteristically em­
bodies a recency-based memory that modifies the solution trajectory
by tabu restrictions (or conditions) and aspiration criteria. A tabu re­
striction prevents a particular solution, or set of solutions, from being
chosen as the outcome of the next move. Most commonly used short
term memory keeps track of solution attributes that have changed dur­
ing the recent past. Recency-based memory is exploited by assigning a
tabu-active designation to selected attributes that contribute to creating
a tabu restriction. This prevents certain solutions from the recent past
from belonging to the admissible neighborhood of the current solution
and hence from being revisited. The process imphcitly subdivides solu­
tions into changing "similarity classes" whereby all solutions that share
tabu-active attributes with solutions recently visited may likewise be
prevented from being visited. Aspiration levels provide a supplementary
basis for controlling the search, by allowing a move to be selected if the
resulting solution is sufficiently good or novel, in spite of being classified

Local Search and Metaheuristics 351

tabu-active. A simple aspiration criterion is to allow a tabu move to be
selected if it leads to a solution better than the best one seen so far,
or the best one seen within a particular region or duration of search.
Advanced forms of short-term memory may consider various types of
tabu restrictions associated with several aspiration criteria, which may
be used in conjunction to make a decision about the declination of the
tabu status of a particular move.

In the TSP context, tabu restrictions may be created, for example,
by (1) preventing a dropped edge from being subsequently added back;
(2) preventing an added edge from being subsequently dropped; (3) pre­
venting a move that simultaneously adds a previously dropped edge and
drops a previously added edge. Since there are generally fewer edges
that can be dropped than can be added, a tabu restriction of type (1)
allows a greater degree of flexibility than a restriction of type (2) or
(3). (Still greater flexibility is provided by a restriction that prevents a
dropped edge from being added back only if the move simultaneously
drops a previously added edge.)

Tabu restrictions remain in operation for a certain number of iter­
ations (the tabu tenure) which can vary according to the solution at­
tributes involved and the current search state. In some implementations
where all attributes receive the same tenure, the tabu restrictions are
activated by placing the attributes on a tabu list^ and the size of this
hst identifies the tenure. (An attribute whose tenure expires is removed
from the list at the same time that a new attribute is added.) A first
level of intensification and diversification can be achieved by changing
the tabu hst size. Small sizes encourage the exploration of solutions near
a local optimum, and larger ones push the search out of the vicinity of
the local optimum. Varying the tabu list size during the search provides
one way to explore such an effect, which has proved useful in a number
of tabu search applications.

A common means of implementing this type of short term memory is
to create an array which records the iteration that an attribute becomes
tabu-active. Then, the attribute remains tabu-active as long as the
current iteration does not exceed the initial iteration value by more
than the tabu tenure. A special type of tabu list results by creating
"coded attributes" using hash functions. Such a representation may be
viewed as a semi-explicit memory that can be used as an alternative
to attributive memory. One variant of such an approach is a special
form of tabu search known as reactive tabu search (Battiti and Tecchiolli
[91]). The goal of this technique is to diff*erentiate more precisely among
individual solutions, by making use of a fine guage attribute memory.
(Only individual solutions can pass through the mesh, if the hashing

352 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

is highly effective.) Other TS approaches usually incorporate broader
gauge attribute definitions, which impHcitly differentiate among subsets
of solutions rather than individual solutions. In reactive TS, when the
search appears to revisit a particular solution (by encountering its coded
attributes) too often, the method introduces a diversification step to
drive the solution into a new region.

Frequency-based memory provides a type of information that comple­
ments the information provided by recency-based memory. Frequency-
based memory has two forms: transition frequency memory and resi­
dence frequency memory. Transition frequency relates to the number
of times an attribute enters or leaves the solutions generated (as, for
example, the number of times an edge is added or dropped). Residence
frequency relates to the number of iterations during which an attribute
belongs the solutions generated (as, for example, the number of itera­
tions an edge belongs to a TSP tour, considering all tours generated).
Frequency based memory can also be different according to the interval
(or intervals) of time chosen for the memory. Frequency based memory
that is applied only to elite solutions gives different information and is
used in different ways than frequency ba^ed memory that is applied to
all solutions (or "average" solutions). These memories are sometimes
accompanied by extended forms of recency-based memory.

Intensification is sometimes based on keeping track of the frequency
that attributes (assignments of elements to positions, edges of tours,
fairly narrow ranges of value assignments, etc.) occur in elite solutions,
and then favoring the inclusion of the highest frequency elements so the
search can concentrate on finding the best supporting uses (or values)
of other elements.

As part of a longer term intensification strategy, elements of a solution
may be selected judiciously to be provisionally locked into the solution
on the basis of having occurred with a high frequency in the best solu­
tions found. In that case, choosing different mutually reinforcing sets of
elements to be treated in such a fashion can be quite beneficial. In the
TSP setting where typically good solutions have many elements in com­
mon, edges that belong to the intersection of elite tours may be locked
into the solution, in order to focus the search on manipulating other
parts of the tour. This creates a combinatorial implosion effect (oppo­
site to a combinatorial explosion effect) that shrinks the solution space
to a point where best solutions over the reduced space tend to be found

Local Search and Metaheuristics 353

more readily. Such an intensification approach, where restrictions are
imposed on parts of the problem or structure is a form of intensification
by decomposition proposed in tabu search.

The backtracking mechanism used in the Lin-Kernighan procedure
may be viewed as a simple type of intensification process that a t tempts
to find a new improving solution by jumping back to successive trial solu­
tions examined in the first steps of the current Lin-Kernighan iteration.
This is a limited form of intensification in the sense tha t elite solutions
chosen to restart the method are restricted to those encountered at the
immediately preceding level and therefore are very similar to one an­
other. In fact, since the backtracking process is only applied when no
improving solution is found during the LK move generation, backtrack­
ing may be viewed as a perturbation mechanism locally applied to the
last local optimum found (and therefore limited to the exploration of one
elite solution at a time). The reverse extreme of this technique is the
process of restarting the method from a new initial solution generated
either randomly or by varying parameters of a constructive procedure.
This represents a primitive form of diversification, without reference to
memory to preserve promising characteristics of the elite solutions vis­
ited so far or to compel the generation of solutions that differ in specific
ways from those previously seen.

An important strategy used in the most efficient implementations of
the Lin-Kernighan procedure is the so-called "don't look bits" (DLB)
approach described in Section 3.L The strategy may be viewed as an
instance of applying a critical event tabu list structure, where the tabu-
active status of an at t r ibute terminates as soon as a specified event
occurs. In the case of the DLB approach, the at t r ibute under consider­
ation is a node, which is forbidden to be involved in a move, and hence
is not examined to introduce a new edge, after it fails to be considered
for an improving move.

More precisely, the usual DLB implementation can be succinctly for­
mulated as a restricted application of tabu conditions, making use of
TS terminology to describe its operation, as follows. An at t r ibute (in
this case a node) is assigned a tabu-active status as soon as a search
for an improving move with that node as the ba^e node vi fails. The
tabu-active s tatus of the node renders moves that involve this node tabu,
and the s tatus is removed in the DLB approach as soon as an improving
move is found that drops an edge adjacent to the tabu-active node, thus
identifying the "critical event" in this particular context. More general
TS designs identify unattractive at tr ibutes by frequency memory over
specified regions of the search, and then penalize such at tr ibutes during
an intensification or diversification phase. The "region" for the Don't

354 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Look Bits approach is simply the domain of moves examined during an
iteration when the addition of the edge fails to produce an improving
move, and the penalty is pre-emptive, as in the more common forms of
short-term TS memory.

We conjecture that the memory structure introduced by the "don't
look bits" strategy, in conjunction with efficient candidate list construc­
tions, provides a key contribution to the performance of modern imple­
mentations of the Lin-Kernighan procedure. If so, there may be advan­
tages to using more general types of critical event memory structures,
governed by correspondingly more general uses of frequency memory, as
a basis for alternative implementations. In this connection, it is inter­
esting to note that the present implementations of the Stem-and-Cycle
ejection chain method do not incorporate any type of memory struc­
tures (including the "don't look bits" structure) to restrict the solution
space and guide the search process. The attractive outcomes of this ejec­
tion chain approach compared to the LK implementations are therefore
somewhat surprising, and invite further examination of the Stem-and-
Cycle and other ejection chain structures, where consideration is given
to including the types of supplemental implementation strategies that
have supported the LK procedures.

3.3. Strategic Oscillation
Strategic oscillation represents a special diversification approach in

tabu search that deserves its own discussion. An important challenge
in the design of local search algorithms is to create strategies that effec­
tively avoid the trap of getting stuck in local optima. It is not unusual
in combinatorial optimization for high quality local optima to lie in deep
(or "large") valleys of the solution space, sometimes attended by numer­
ous smaller variations in elevation along the general valley floor. In such
cases, a significant number of iterations may be required to leave these
basins of attraction in order to find new local optima of higher quality.
One way to overcome this difficulty is to change the neighborhood when
the telltale features of such a basin of attraction are observed. The iden­
tification of critical levels of change required to escape from "insidious
valleys" provides the basis to implement a strategic oscillation that alter­
nates between different (and somewhat complementary) neighborhood
structures.

A key issue often encountered in strategic oscillation is to allow the
method to cross boundaries of feasibility instead of strictly remaining
within the feasible region. In general combinatorial problems, a com­
mon technique for doing this consists of relaxing some of the "hard"

Local Search and Metaheuristics 355

constraints and introducing penalties associated with those that are vi­
olated as a result. Penalty values are appropriately adjusted at each
iteration in order to bring the search back into the feasible region. Ap­
proaches of this type have been adopted to the heuristic context in the
tabu search algorithm of Gendreau, Hertz, and Laporte [352] for the
classic vehicle routing problem (VRP), which includes embedded TSPs.
In this application, the vehicle capacity and the route length constraints
are temporarily relaxed and handled by a penalty function as described.

In the TSP setting where constraints consist of enforcing a partic­
ular graph structure - in this case, a Hamiltonian circuit (or cycle) -
oscillation strategies must rely upon the ability of the neighborhood
structures to deal with infeasible graph structures. Typical examples of
such neighborhoods are provided by the reference structures used in the
Lin-Kernighan and Stem-and-Cycle Ejection Chain procedures. In these
approaches, as previously noted, a feasible TSP tour chosen at one level
of the move generation process is obtained by performing a sequence of
(infeasible) moves that transform one reference structure into another,
and recovering feasibility by performing a complementary trial move.

Another way to implement a strategic oscillation is to utilize construc­
tive/destructive neighborhoods, which follow each construction phase by
destroying the feasibility of the problem graph structure, and then build
up a new solution by reconnecting the solution subgraph in a different
way.

The destructive process can be done either one component at a time
or based on selecting a subset of graph components as in the vocabulary
building strategy of tabu search. In either case, the destructive process
yields a partial subgraph made up of a subset of disconnected compo­
nents. The aim of the constructive process is then to efficiently re-insert
the missing components into the partial graph to create a new com­
plete tour. The GENIUS algorithm of Gendreau, Hertz, and Laporte
[351] uses a simple one-step (unit depth) oscillation, as noted earlier,
but more advanced forms of oscillation are clearly possible.

4. Recent Unconventional Evolutionary
Methods

It is useful to base the design of the constructive/destructive process
on the observation of commonalties between good TSP tours, making
use of associated tabu search memory components. Additional ways to
create memory structures to explore intensification and diversification
arise in connection with Scatter Search and Path Relinking methods
which embody a population-based approach.

356 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

4.1. Scatter Search Overview
Scatter search [368] is an evolutionary method proposed as a primal

counterpart to the dual approaches called surrogate constraint methods,
which were introduced as mathematical relaxation techniques for dis­
crete optimization problems. As opposed to ehminating constraints by
plugging them into the objective function as in Lagrangean relaxations,
surrogate relaxations have the goal of generating new constraints that
may stand in for the original constraints. The approach is based on
the principle of capturing relevant information contained in individual
constraints and integrating it into new surrogate constraints as a way to
generate composite decision rules and new trial solutions (Glover [367]).

Scatter search combines vectors of solutions in place of the surrogate
constraint approach of combining vectors of constraints, and likewise is
organized to capture information not contained separately in the origi­
nal vectors. Also, in common with surrogate constraint methods, SS is
organized to take advantage of auxiliary heuristic solution methods to
evaluate the combinations produced and generate new vectors. As any
evolutionary procedure, the method maintains a population of solutions
that evolves in successive generations.

A number of algorithms based on the scatter search approach have
recently been proposed for various combinatorial problems (Kelly, Ran-
gaswamy and Xu [502], Fleurent et al. [313], Cung et al. [231], Laguna
and Marti [530], Campos et al. [157], Glover, L0kketangen and Woodruff
[381], Atan and Secomandi [48], Laguna, Lourengo and Marti [529], Xu,
Chiu and Glover [829], Cavique, Rego and Themido [173]). For tutorial
descriptions of Scatter Search with examples of different applications we
refer the reader to Glover, Laguna, and Marti [380], and Rego and Leao
[708].

Scatter search operates on a set of reference solutions to generate new
solutions by weighted linear combinations of structured subsets of solu­
tions. The reference set is required to be made up of high-quality and
diverse solutions and the goal is to produce weighted centers of selected
subregions that project these centers into regions of the solution space
that are to be explored by auxiliary heuristic procedures. Depending on
whether convex or nonconvex combinations are used, the projected re­
gions can be respectively internal or external to the selected subregions.

For problems where vector components are required to be integer, a
rounding process is used to yield integer values for such components.
Rounding can be achieved either by a generalized rounding method or
iteratively, using updating to account for conditional dependencies that
can modify the rounding options.

Local Search and Metaheuristics 357

Regardless of the type of combinations employed, the projected re­
gions are not required to be feasible and hence the auxiliary heuristic
procedures are usually designed to incorporate a double function of map­
ping an infeasible point to a feasible trial solution and then to transform
this solution into one or more trial solutions. (The auxiliary heuris­
tic commonly includes the function of restoring feasibility, but this is
not a strict requirement since scatter search can be allowed to operate
in the infeasible solution space.) From the implementation standpoint
the scatter search method can be structured to consist of the following
subroutine.

Diversification Generation Method - Produces diverse trial solu­
tions from one or more arbitrary seed solutions used to initiate the
method.

Improvement Method - Transforms a trial solution into one or more
enhanced trial solutions. (If no improvement occurs for a given trial
solution, the enhanced solution is considered to be the same as the one
submitted for improvement.)

Reference Set Update Method - Creates and maintains a set of ref­
erence solutions that are the "best" according to the criteria under con­
sideration. The goal is to ensure diversity while keeping high-quality
solutions as measured by the objective function.

Subset Generation Method - Generates subsets of the reference set
as a basis for creating combined solutions.

Solution Combination Method - Uses structured and weighted com­
binations to transform each subset of solutions produced by the subset
generation method into one or more combined solutions.

A general template for a scatter search algorithm can be organized in
two phases outlined as follows (Figure 8.13).

4.2. Scatter Search for the TSP
An important aspect in any evolutionary approach is the way solutions

are encoded as members of the population. In genetic algorithms solu­
tions were originally encoded as bit strings, though there have been some
departures to this practice in recent years. The disposition to use bit
strings in GA methods derives from the fact that the first GA crossover
mechanism for combining solutions were based on simple exchanges of

358 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Step 0. Initial Phase

(a) Diversification Generator

(b) Improvement Method

(c) Reference Set Update Method

(d) Repeat this initial phase until producing a desirable level of high-

quality and diverse solutions.

Step 1. Scatter Search Phase

(a) Subset Generation Method

(b) Solution Combination Method

(c) Improvement Method

(d) Reference Set Update Method
(e) Repeat this scatter search phase until the reference set converges

or until a specified cutoff limit on the total number of iterations
is reached.

Figure 8.13. A Scatter Search Template

bits. In the classical GA bit string representations, continuous decision
variables are usually encoded as substrings of the solution strings and
their length depends on the precision required for these variables. Dis­
crete decision variables are commonly encoded in these representations
as a collection of zero-one variables, each corresponding to a single binary
character in the solution string. For combinatorial problems defined on
graphs, decision variables are typically associated with nodes or edges
of the problem graph. In the TSP setting, where the number of edges
is typically much larger than the number of nodes, solutions are usually
encoded as a sequence of nodes representing a possible permutation for
the problem. However, such a permutation-based representation used
by GA approaches for the TSP entails several drawbacks subsequently
noted.

By contrast, the original form of Scatter Search was not restricted
to a specific type of encoding such as using bit strings, because the
mechanism for combining solutions was not constrained to the limited
crossover operations that governed the original GA formulations. In fact,
SS readily incorporates different types of solution encodings in different
parts of the method. In this section we discuss a Scatter Search ap­
proach for the TSP that utilizes such a "difTerential encoding" scheme.
A node-based variable representation is used where information about

Local Search and Metaheuristics 359

the relative value of the variables is not a primary issue, and an edge-
based encoding is used otherwise.

To provide a general framework that discloses some critical features
for applying scatter search to the TSP, a general design of the scatter
search template for the TSP may be stated as follows.

Initial P h a s e

Diversif icat ion Generator . Scatter search starts by generating an
initial set of diverse trial solutions, characteristically using a system­
atic procedure, which may include a stochastic component but which is
highly "strategic" as opposed to relying chiefly on randomization.

Treating the TSP as a permutation problem, an illustrative approach
for generating diverse combinatorial objects may be described as follows.
A trial permutation P is used as a seed to generate subsequent permu­
tations. Define the subsequence P{h : s) to be the vector P{h : s) =
(s, 5 -f- /i, 5 -h 2 / i , . . . , 5 -h rh)^ where r is the largest nonnegative integer
such that s + rh < n. Relative to this, define the permutation P{h) for
h<n, to be P{h) = {P{h : h), P(/ i : /i - 1) , . . . , P{h : 1)). In the TSP
context we consider permutations as n-vectors whose components are the
vertices vi G V. Consider for illustration a TSP with n = 14 vertices,
h = A, and a seed permutation P (l , 2, 3,4, 5,6, 7, 8, 9,10,11,12,13,14)
given by the sequence of vertices ordered by their indices. The recur­
sive application of P (4 : 5) for s = 4 , . . . , 1 results in the subsequences,
P = {4,8,12}, P = {3, 7,11}, P = {2, 6,10,14}, and P - {1, 5, 9,13},
hence P(4) = {4, 8,12, 3, 7,11, 2 ,6 ,10 ,14 ,1 , 5, 9,13}. By varying h it is
possible to generate up to n different permutations to initialize the refer­
ence set. The generated permutations can themselves represent tours by
successively linking vertices in the order they appear in the permutation
and attaching the initial and ending vertices to close up the tour.

I m p r o v e m e n t M e t h o d . The improvement method used in the initial
phase may or may not be the same method used in the scatter search
phase. This decision usually depends on the context and on the search
strategy one may want to implement. Here we consider the context of the
Euclidian TSPs, where distances between vertices are ordinary Euchdian
distances in the plane. For instance, since a diversification generator
such as the one we are using characteristically generates edges tha t cross
in the initial tours, and such crossings are non-optimal for Euclidian
problems, a simple form of improvement method in the initial phase can
be one of ehminating possible edge crossings rather than doing extensive
local optimization. The objective is to avoid premature convergence and
to keep a reference set with diverse and high quality solutions at each

360 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

iteration. In this context, the use of a classical k-opt procedure (fc == 2 or
3) under a first-improvement startegy^ which performs a move whenever
it improves the current tour, may be appropriate for the initial phase of
the SS procedure while a more powerful technique such as Lin-Kernighan
or Stem-and-Cycle variable depth methods would be appropriate for the
scatter search phase.

Reference Set Update Method. This method is used to create and
maintain a set of reference solutions. As in any evolutionary method,
a set of solutions (population of individuals) containing high evaluation
combinations of attributes replaces less promising solutions at each it­
eration (generation) of the method. In genetic algorithms, for example,
the updating process rehes on randomized selection rules which select
individuals according to their relative fitness value. In scatter search the
updating process relies on the use of memory and is organized to main­
tain a good balance between intensification and diversification of the
solution process. In advanced forms of scatter search reference solutions
are selected based on the use of memory which operates by reference to
different dimensions as defined in tabu search. Depending on the con­
text and the search strategy, different types of memory are called for.
As we have seen the term adaptive memory program^ming refers to the
general realm of strategies for integrating and managing various types of
memory to achieve both intensification and diversification. (See Glover
and Laguna [379], and Rego and AUdaee [707], for a detailed explana­
tion of various forms and uses of memory within search processes.) For
the purpose of this discussion we consider a simple rule to update the
set of reference solutions, where intensification is achieved by selecting
high-quality solutions in terms of the objective function value and di­
versification is induced by including diverse solutions from the current
candidate set CS. Thus the reference set RS can be defined by two
distinct subsets B and D, representing r(^si)ectively the subsets of high-
quality and diverse solutions, hence RS — B U D.

Denote the cardinahties of B and D by |Z?| = ri and |D1 = r2, which
do not need to be identical and can vary during the search. For instance,
relatively larger sizes of B (D) can be ai)propriate during a phase that
is more strongly characterized by an intensification (diversification) em­
phasis. Different schemes can be chosen to implement these variations.
A dynamic variation of these sizes can be implemented by a perturbation
scheme, for example, and a strategic oscillation approach with critical
event memory can be used as an indicator of the order of magnitude of
the relative variations.

Local Search and Metaheuristics 361

It is important to distinguish the concepts of difference and distance.
In the context of the TSP, the difference between two TSP tours is
defined as the number of edges by which the two solutions differ. The
distance between two solutions X and Y is defined as the minimum
number of steps (or iterations) necessary for the local search algorithm
to move from solution X to solution Y. Thus, the distance between two
TSP tours depends on the type of neighborhood used in the local search
algorithm and may not be directly related to the difference between the
two TSP tours.

For a visual representation consider a solution space graph G where
nodes represent solutions and arcs define direct moves from one solution
to another associated with a given neighborhood structure. The distance
between two solutions X and Y is given by the shortest path (in terms
of the number of arcs) from node X to node Y in the graph G. It is easy
to see that the distance between solutions is a more accurate measure
of diversity than the difference between them. However, for the sake
of simplicity it is common to use the difference between solutions as an
indicator of their diversity, and for the same reason this measure can be
used for the selection of diverse solutions to update D in the reference
set.

Let CS denote the set of solutions generated and improved during
the method's application. If some of these solutions produced by the di­
versification generator are not sufficiently distant from each other, it is
possible that the improvement method may generate the same solution
from several different members of CS. Therefore, it can be valuable to
have a fast procedure to identify and eliminate solutions from CS tha t
duplicate or "lie very close" to others before creating or updating the ref­
erence set. Such an approach can be facilitated by using an appropriate
hash function.

A straightforward way to create a reference set RS consists of selecting
the r i best solutions from CS to create B , and then to generate the set D
of r2 diverse solutions by successively selecting the solution tha t differs
by the greatest amount from the current members of RS. As a diversity
measure we define dij — |(S'z U Sj) \ {Si C^ Sj)\ as the difference between
solutions Si and Sj^ which identifies the number of edges by which the
two solutions differ from each other. The dij values are computed for
each pair of solutions Si G RS and Sj e CS.

Candidate solutions are included in RS according to the Maxmin cri­
terion which maximizes the minimum distance of each candidate so­
lution to all the solutions currently in the reference set. The method
starts with RS = B and at each step extends RS by selecting a so­
lution SJ e CS and setting RS = RS U {Sj} and CS = CS\ {Sj}.

362 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

More formally, the selection of a candidate solution is given by Sj =
argmax m\ni=i^_^^^\Rs\{dij • j — I , - - - JC '5 |} . The process is repeated
until RS is filled to the desired level.

Scatter Search Phase

Subset Generation Method. This method consists of generating
subsets of reference solutions to create structured combinations, where
subsets of solutions are organized to cover different promising regions of
the solution space. In a spatial representation, the convex-hull of each
subset delimits the solution space in subregions containing all possible
convex combinations of solutions in the subset. In order to achieve a
suitable intensification and diversification of the solution space, three
types of subsets are organized to consist of:

1) subsets containing only solutions in 5 ,

2) subsets containing only solutions in D, and

3) subsets that mix solutions in B and D in different proportions.

Subsets defined by solutions of type 1 are conceived to intensify the
search in regions of high-quality solutions while subsets of type 2 are
created to diversify the search to unexplored regions. Finally, subsets of
type 3 integrate both high-quality and diverse solutions with the aim of
exploiting solutions across these two types of subregions.

Adaptive memory once again is useful to define combined rules for
clustering elements in the various types of subsets. This has the advan­
tage of incorporating additional information about the search space and
problem context.

The use of sophisticated memory features is beyond the scope of this
discussion. However, for illustrative purposes, we may consider a simple
procedure that generates the following types of subsets:

1) All 2-element subsets.

2) 3-element subsets derived from two element subsets by augmenting
each 2-element subset to include the best solution (as measured by
the objective function value) not in this subset.

3) 4-element subsets derived from the 3-element subsets by augmenting
each 3-element subset to include the best solution (as measured by
the objective function value) not in this subset.

Local Search and Metaheuristics 363

4) The subsets consisting of the best b elements (as measured by the
objective function value), for 6 = 5 , . . . , | 5 | .

Solution Combination Method. The Solution Combination method
is designed to explore subregions within the convex-hull of the reference
set. We consider solutions encoded as vectors of variables Xij repre­
senting edges (vi^Vj), New solutions are generated by weighted hnear
combinations which are structured by the subsets defined in the preced­
ing step. In order to restrict the number of solutions only one solution
is generated in each subset by a convex linear combination defined as
follows. Let E he Si subset of RS, \E\ = r, and let H{E) denote the
convex hull of E. We generate solutions S G H{E) represented as

S = 5^A,5,
t=i

r

EA. = 1
h > 0, t - l , . . . , r

where the multiplier Â represents the weight assigned to solution St.
We compute these multipliers by

1

x. = ^^^
E r cis,)

SO that the better (lower cost) solutions receive higher weight than less
attractive (higher cost) solutions. Then, we calculate the score of each
variable xij relative to the solutions in E by computing

r

score{x^j) = ^{Xtxlj)

where x^j denotes that Xij IS an edge in the solution St. Finally as
variables are required to be binary, the final Xij value is obtained by
rounding its score to give Xij = [score{xij) + .5\. The computation of the
value for each variable in E results in creating a linear combination of the
solutions in E and a new solution can be produced using edges associated
with variables Xjj = 1. Nevertheless, the set of these edges. Nevertheless,

364 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

the set of these edges does not necessarily (and usually doesn't) represent
a feasible graph structure for a TSP solution, since it typically produces
a subgraph containing vertices whose degrees differ from two. Such
subgraphs can be viewed as fragments of solutions (or partial tours).
When the subgraph resulting from a linear combination contains vertices
of degree greater than two, a very straightforward technique consists of
successively dropping edges with the smallest scores in the star (incident
edge set) of these vertices until their degree becomes equal to two. By
doing so, the subgraph obtained will be either feasible or fall into the
case where some of the vertices have degree 1. At this juncture there
are several possibilities to create a feasible solution subgraph and an
appropriate tradeoff has to be chosen. For example, a simple possibility
is to group vertices of degree 1 and use a heuristic that simply links them
two by two according to some distance measure or savings criterion.
Another possibility is to solve the linear assignment problem to match
each pair of nodes according to their relative distances.

4.3. Path Relinking
Scatter Search (SS) provides a natural evolutionary framework for

adaptive memory programming, as we have seen, by its incorporation
of strategic principles that are shared with certain components of Tabu
Search. Another strategy for integrating SS and TS principles consists of
replacing vector spaces with neighborhood spaces as a basis for combin­
ing solutions, which gives raise to a TS strategy called Path-Relinking
(PR).

More particularly, while SS considers linear combinations of solution
vectors, PR combines solutions by generating paths between them us­
ing local search neighborhoods, and selecting new solutions encountered
along these paths.

This generalization of SS can be described by the same general tem­
plate outlined in Figure 8.13. Figure 8.14 provides a visual interpretation
of the PR process. The lines leaving S in the figure shows an alternative
paths traced by the path-relinking strategy having the solutions denoted
by ^ i , ^2 and ^3 operate as guiding solutions^ which collectively deter­
mine the path trajectory taken from the initial solution S during the
local search process. In the simplest case, a single guiding solution can
be used.

The process of generating paths between solutions is accomplished
by selecting moves that introduce attributes contained in the solutions

Local Search and Metaheuristics 365

Figure 8.14- Path Relinking

that operate as guiding solutions. In the move generation process, these
attr ibutes are weighted to determine which moves are given higher pri­
ority. Again, by analogy with the SS design, each intermediate point
lying in a path between solution S and a given guiding solution S" can
be viewed as the result of a combination of these solutions.

By extension, a number of strategies are possible for a fuller explo­
ration of the solution space in a path-relinking framework. Alternative
paths from S under the influence of the guiding solutions can be gener­
ated by using memory structures of the type embodied in TS. Also, in
a given collection of elite solutions, the roles of initiating solution and
guiding solutions can be alternated. Tha t is, a set of current solutions
may be generated simultaneously, extending different paths, and allow­
ing an initiating solution to be replaced (as a guiding solution for others)
whenever its associated current solution satisfies a sufficiently strong as­
piration criterion. Because their roles are interchangeable, the initiating
and guiding solutions are collectively called reference solutions.

The possibility of exploring different trajectories in the neighborhood
space suggests the use of alternative neighborhood structures with the
objective of reaching solutions that might otherwise be bypassed. This
strategy, denoted in TS terminology by tunneling^ offers additional pos­
sibilities to explore boundaries between regions of feasible and infeasible
solutions as a form of strategic oscillation.

Path-relinking provides a useful means for integrating intensification
and diversification, by reference to groups (or clusters) of ehte solutions
that are organized according to some measure of relative difference or

366 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

distance that gives an indicator of their diversity. Solutions declared
"close" to each other according to a given criterion typically are as­
signed to the same cluster and the objective is to maintain a set of
clusters along the search that differ from each other by a significant de­
gree. Here the concept of proximity is broad rather than restrictive in
the sense that solutions may be considered close to one another if they
share some particular characteristics relevant in the context of the prob­
lem under consideration. In the TSP context, for example, proximate
solutions may be the ones containing edges that are common to many
good solutions. In a path rehnking strategy, choosing solutions S and S'
from the same cluster stimulates intensification (by preserving common
characteristics of these solutions), while choosing them from two dif­
ferent clusters stimulates diversification (by including attributes of the
guiding solutions notcontained in the initial ones). This approach can
go beyond the target solutions by extrapolation, creating an effect anal­
ogous to the creation of non-convex linear combinations allowed in the
Euclidian space. But if an attractive departure from a guided trajectory
is found along the way (using aspiration criteria), then this alternative
route can also be explored, providing a dynamic integration of intensifi­
cation and diversification.

Given that Ejection Chain methods, including the important special
case represented by the Lin-Kernighan approach, have provided some
of the most efficient algorithms for the TSP, a natural possibility is to
join such methods with path relinking to provide a broader range of
strategies. Such an approach, which is currently unexplored, can also
take advantage of other heuristic processes previously described. For
example, a combination of ejection chains and path relinking, can draw
upon a sequential fan method to generate paths within the path-relinking
procedure. The move components of a sequential fan candidate list can
be organized in this setting to include the attributes of the designated
guiding solutions. By applying ejection chain constructions to provide
a look-ahead process in the sequential fan method, high evaluation trial
solutions can be chosen to update the reference set {RS) of guiding
solutions for a multi-parent path-relinking strategy. In such a strategy,
it is important to consider appropriate measures of distance between the
initial solution and the guiding solutions so that solutions in RS differ by
approximately the same degree from the initial solution. By extension, if
a sufficient number of ejection chain levels is generated to reach solutions
that lie at distances beyond those of the current guiding solutions, then
high quality solutions found in this extended neighborhood space can
be used as guiding points for an extrapolated path-relinking process.
Approaches of this form can be relevant not only for TSPs but also for

Local Search and Metaheuristics 367

generalizations that include additional constraints and "embedded TSP"
structures.

Finally, we observe that additional metaheuristic approaches exist
that offer the potential to create useful hybrid methods for the TSP
and its variants. It is beyond the scope of this chapter to provide a
detailed description of such methods, but we refer the reader to Glover
and Kochenberger [378] for an extensive coverage of these alternative
procedures.

5. Conclusions and Research Opportunities
The current state-of-the-art discloses that the key to designing effi­

cient algorithms for large scale traveling salesman problems is to combine
powerful neighborhood structures with speciahzed candidate list strate­
gies, while giving careful attention to appropriate data structures for
implementation. As reported in Chapter 9, the Lin-Kernighan (LK)
procedure and the Stem-and-Cycle procedure, which represent alterna­
tive instances of Ejection Chain (EC) methods, currently provide the
most effective algorithms for solving large TSPs. The merit of the EC
approaches derives from the use of reference structures to generate com­
pound moves from simpler components, where the evaluation of a move
at each level of construction is subdivided into independent operations
to gain efficiency. The definition of the reference structure is highly im­
portant in these methods, and more advanced reference structures (such
as the doubly-rooted loop constructions of [372], for example) invite
examination in the future. Such structures provide an opportunity to
generate moves with special properties not incorporated in fc-opt moves
generated by present TSP procedures.

Another potential strategic enhancement comes from the fact that the
LK and the Stem-and-Cycle procedures characteristically create paths
in neighborhood space by elaborating only a single thread of alternatives
throughout successive levels of construction. A more aggressive way to
employ such processes is to embed them in special neighborhood search
trees, as described by Sequential Fan (SF) and Filter and Fan (F&F)
methods. This affords the possibihty to go beyond "greedy one-step
choices" in the creation of neighborhood paths, while utilizing mecha­
nisms that are highly susceptible to parallel implementation. SF and
F&F approaches can also be used to merge neighborhoods of varying
characteristics within different stages and threads of the search. Cou­
pling such elements with more carefully designed memory-based strate­
gies, such as those derived from adaptive memory programming consid­
erations, provide additional avenues for future investigation.

368 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Acknowledgements

We are indebted to David Johnson whose perceptive and detailed obser­
vations have improved this chapter in a number of places.

This research was supported in part by the Office of Naval Research
(ONR) grant N000140110917.

	Chapter 8
LOCAL SEARCH AND METAHEURISTICS
	1. Background on Heuristic Methods
	2. Improvement Methods
	2.1. Basic Improvement Procedures
	2.2. The Classical Lin-Kernighan Procedure
	2.3. Ejection Chain Methods
	2.4. New Methods for Variable Depth Search

	3. Tabu Search
	3.1. Candidate List Strategies
	3.2. Intensification and Diversification Strategies
	3.3. Strategic Oscillation

	4. Recent Unconventional Evolutionary
Methods
	4.1. Scatter Search Overview
	4.2. Scatter Search for the TSP
	4.3. Path Relinking

	5. Conclusions and Research Opportunities
	Acknowledgements

