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!• Introduction, Terminology and Notation 
In this section, we overview the main results on the topics of this 

chapter and give basic terminology and notation used throughout the 
chapter. 

1.1. Introduction 
The purpose of this chapter is to introduce the reader to recently de­

veloped concepts and results on exponential (size) neighborhoods and 
domination analysis for the traveling salesman problem (TSP). Even 
though these topics are of certain practical relevance, we restrict our-
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selves to the theoretical study. The body of computational experiments 
with exponential neighborhoods is insufficient yet to carry out mean­
ingful comparisons between new and classical approaches; we refer the 
reader to the papers [80, 162] and Chapter 9, where certain compu­
tational experience with exponential neighborhoods is reported. The 
reader may consult Chapters 9 and 10 of this book for discussion of the 
experimental performance of some heuristics studied in the domination 
analysis part of this chapter. 

It is worth noting that while the symmetric traveling salesman prob­
lem (STSP) can be considered, in many cases, as a subproblem of the 
asymmetric travehng salesman problem (ATSP), sometimes this view is 
too simplistic since the ATSP and STSP are defined on different graphs 
- complete directed and undirected. Thus, in particular, the number 
of tours in ATSP and STSP on n vertices is (n - 1)! and (n - l)!/2, 
respectively. Therefore, while we will mostly consider the ATSP in this 
chapter, we will provide a separate treatment of the STSP when needed. 
We will use the term TSP when it is not important whether the ATSP 
or STSP is under consideration. 

Local search heuristics are among the main tools to compute near 
optimal tours in large instances of the TSP in relatively short time, see, 
e.g.. Chapters 8, 9 and 10 of this book. In most cases the neighborhoods 
used in the local search algorithms are of polynomial cardinality. One 
may ask whether it is possible to have exponential size neighborhoods for 
the TSP such that the best tour in such a neighborhood can be computed 
in polynomial time. Fortunately, the answer to this question is positive. 
(This question is far from being trivial for some generalizations of the 
TSP, e.g. Deineko and Woeginger [248] conjecture that for the quadratic 
assignment problem there is no exponential neighborhood "searchable" 
in polynomial time.) 

There are only a few papers on exponential neighborhoods published 
before the 1990s: Klyaus [507], Sarvanov and Doroshko [743, 744] and 
Gutin [414, 415]. In particular, [744] and [414] independently showed 
the existence of (n/2)!-size neighborhood for the TSP with n vertices 
(n is even). In this neighborhood, the best tour can be computed in 
0{n^) time, i.e., asymptotically in at most the same time as a complete 
iteration of 3-Opt, which finds the best tour among only ©(n^) tours. 

Punnen [680] showed how to generalize the neighborhood from [414, 
744] and Gutin [416] proved that one of Punnen's extensions provides 
neighborhoods of size Q{exp{y/n/2){n/2)\/n^/'^). We study basic results 
on exponential neighborhoods in Section 2. We use the definition of 
a neighborhood from [248], the only survey paper on the topic. No­
tice that while Deineko and Woeginger [248], in their own words, "only 
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scratched the surface" in their survey on the topic, we provide more 
detailed treatment of some exponential neighborhoods. 

In Section 3, following Gutin and Yeo [421], we provide upper bounds 
on the size of ATSP neighborhood. In particular, we prove that there is 
no ATSP neighborhood of cardinality at least f3{n — k)\ for any constant 
/? > 0 and fixed integer k provided N P g P / p o l y . (We provide an informal 
description of the class P /poly in Section 3.2; for a formal introduction 
of the topic, see [82].) 

While it is natural to study the possible cardinality of neighborhoods, 
it is clear that the size of a neighborhood is not the only parameter 
of importance. Indeed, the neighborhood introduced in [414, 744] does 
not perform well in computational practice. This may be a result of 
an unfortunate property of the neighborhood: many tours of the TSP 
are not reachable from each other under the structure imposed by this 
neighborhood. Carlier and Villon [162] showed that their neighborhood 
is much better in this respect: each tour can be reached from any other 
tour in at most logarithmic number (in n) of iterations if the choice of 
a tour at every iteration is "right". Gutin and Yeo [418] introduced a 
neighborhood structure, which makes the tours much closer: for every 
pair of tours Ti, Ts there are three tours r2 , T3, T4 such that every Ti is 
in the neighborhood of T^_i, i — 2 ,3 ,4 ,5 . (The neighborhoods in [418] 
are polynomially searchable.) We study the "closeness" topic in Section 
4. 

Chapters 9 and 10 consider experimental performance of TSP heuris­
tics. While experimental analysis is of certain importance, it cannot 
cover all possible families of TSP instances and, in particular, it nor­
mally does not cover the most hard ones. Experimental analysis provides 
little theoretical explanation why certain heuristics are successful while 
some others are not. This limits our ability to improve on the quality 
and efficiency of existing algorithms. It also limits our ability to extend 
approaches successful for the TSP to other combinatorial optimization 
(CO) problems. 

Approximation analysis is a frequently used tool for theoretical eval­
uation of CO heuristics. Let 7Y be a heuristic for the TSP, and let Xn be 
the set of instances of the TSP of size n. In approximation analysis, we 
use the approximation ratio ry^{n) = m a x { / ( / ) / / * ( / ) : / 6 Xn}, where 
/ ( / ) ( /*( / ) ) is the cost of the heuristic (optimal) tour. Unfortunately, 
in most of cases, estimates for ry^{n) are not constants and provide only 
a vague picture of quality of heuristics. 

Domination analysis provides an alternative to approximation anal­
ysis. In domination analysis, we are interested in the number of feasible 
solutions tha t are worse or equal in quality to the heuristic one, which is 
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called the domination number of the heuristic solution. In many cases, 
domination analysis is very useful. In particular, some heuristics have 
domination number 1 for the TSP. In other words, those heuristics, in 
the worst case, produce the unique worst possible solution. At the same 
time, the approximation ratio is not bounded by any constant. In this 
case, domination number provides a far better insight into the perfor­
mance of the heuristics. 

Results on domination number of TSP heuristics are considered in 
Section 5. Domination number was formally introduced in a 1996 ver­
sion of [680] and [382]^. Interestingly, the first important results on 
domination number can be traced back to the 1970s, see Rublineckii 
[733] and Sarvanov [738]. The domination number domn{H^I) of a TSP 
heuristic H for a particular instance I of the TSP with n vertices is 
the number of tours in X which are at least as costly as the tour found 
by H. The domination number domn(?Y,n) of H is the minimum of 
domn(?Y,T) over all instances X with n vertices. Since the ATSP on n 
vertices has (n — 1)! tours, an algorithm for the ATSP with domination 
number (n — 1)! is exact. The domination number of an exact algorithm 
for the STSP is (n — l)!/2. Similarly, one can define the domination 
number of heuristics for other CO problems. 

Glover and Punnen [382] asked whether there exists a polynomial 
time STSP heuristic with domination number at least (n — l)!/p(n), 
where p{n) is a polynomial in n, provided P / N P . Answering the this 
question, Gutin and Yeo [423] introduced polynomial time heuristics for 
the ATSP with domination number at least (n — 2)!. Two years after 
[423] was completed, we found out that Rublineckii [733] and Sarvanov 
[739] answered the above question already in the the 1970s by showing 
that certain polynomial time heuristics for the STSP and the ATSP are 
of domination number at least (n — 2)! when n is odd and (n — 2)!/2 
when n is even. Punnen, Margot and Kabadi [684] proved that the 
best improvement'^ versions of some well-known local search heuristics 
for the TSP after polynomial number of steps produce tours which are 
not worse than at least i^{{n — 2)!) other tours. Punnen and Kabadi 
[683] obtained an 0{n?) time heuristic with domination number at least 
X^^Zi(A:!). Gutin and Yeo [420] investigated the existence of polynomial 
time heuristics with domination number G((n — 1)!). 

^Actually, an equivalent concept of domination ratio was introduced, which is the ratio of 
the domination number and the number of tours. 
^During every iteration, best improvement local search algorithms compute the best tour in 
the current neighborhood. 
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Some heuristics may have a small domination number (thus, indi­
cating that they are not useful, in general). For example, the "anti-
greedy" heuristic for the ATSP that starts by choosing an arc of max­
imum cost and proceeds by choosing the most expensive arc among 
remaining eligible ones, is of domination number 1 (consider an instance 
with c{i^i + 1) = 1 for every i = 1, 2,..., n— 1, c{n^ 1) = 1, and c(i, j) = 0 
for every j j^ i + 1 and (i, j) 7̂  (n, 1)). While the fact that the domi­
nation number of the anti-greedy heuristic equals one is quite expected, 
in Section 5, we prove that the same is true for the greedy and nearest 
neighbor algorithms for both the ATSP and STSP (these results were 
obtained by Gutin, Yeo and Zverovich in [424]). Punnen, Margot and 
Kabadi [684] proved that some other TSP algorithms are of very small 
domination number. In particular, they showed that the double tree 
heuristic and some variations of the Christofides heuristic for the STSP 
are of domination number 1. 

In this chapter we discuss approaches and results obtained mostly in 
the last decade. Despite limited time and effort in the areas of domi­
nation analysis and exponential neighborhoods, one can clearly see that 
significant progress has already been made. Although some of the ex­
isting results and approaches have already been used in practice (see 
Chapter 9 and [80, 162, 377]), it seems that much more research is re­
quired before the above mentioned areas can be used to design new high 
quality heuristics for the TSP and other CO problems. We hope that 
this chapter will provide motivation for scholars and practitioners to con­
tinue studying the domination analysis and exponential neighborhoods 
for the TSP and other CO problems. 

1.2. Basic Terminology and Nota t ion 

Recall that the ATSP is stated as follows. Given a weighted complete 

digraph {Kn^ c), find a Hamiltonian cycle in Kn of minimum cost. Here 

the cost function c is a mapping from A{Kn) to the set of reals. The 

cost of an arc (x,y) of Kn is c{x^y). It is assumed that V{Kn) = 
{1 ,2 , . . . , n}. The mapping c can be determined by the cost matrix [cij]. 
The STSP is defined similarly with the only difference that the graph 
under consideration is complete undirected (denoted by Kn). In this 
case, the matrix [cij] is symmetric. Unless it is specified otherwise, n is 
the number of vertices in the instance of^the TSP under consideration. 

Let C — xiX2...XkX\ be a cycle in Kn- The operation of removal 
of a vertex Xi {1 < i < k) results in the cycle xiX2...x^_ix^+i .. .XkXi 
(thus, removal of xi is not deletion of xi from C; deletion of xi gives 
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the path Xij^iXi^2 • • • x/cXiX2 . . . x^_i). Let y be a vertex of Kn not in C. 
The operation of insertion of y into an arc (x^, x^+i) results in the cycle 
xiX2'"XiyXi-^i .. .XkXi. The cost of the insertion is defined as c{xi^y) + 
c{y^ XiJ^i) — c{xi^ Xi^i). For a set Z = {2:1,..., Zs} {s < k) of vertices not 
in C, an insertion of Z into C results in the tour obtained by inserting 
the nodes of Z into different arcs of the cycle. In particular, insertion of 
y into C involves insertion of y into one of the arcs of C. 

For a path P — xiX2."Xm in {Kn-^ c), the contraction^ of P in (K^, c), 

{Kn /P^c^)^ is a complete digraph with vertex set 

V{Kn/P) = V{Kn)^{vp}-V{P), 

where t'p ^ V{Kn)^ such that the cost c'{u^w)^ for u^w e V{Kn /P)^ is 
defined by c(ix, xi) ifw = vp^ c(x^, î ;) if u = fp, and c{u^ w)^ otherwise. 
We can consider an arc a = (x, y) as the path xy of length one; this 

allows us to look at Kn /^ as a special case of the above definition. 
The above definition has an obvious extension to a set of vertex-disjoint 
paths. 

Further definitions on directed and undirected graphs can be found 
in the corresponding appendix of this book; see also [84]. 

2. Exponential Neighborhoods 
We adapt the definition of a neighborhood for the TSP due to Deineko 

and Woeginger [248]. Let P be a set of permutations on n vertices. 
Then the neighborhood (with respect to P) of a tour T — 2:1X2 . . . XnXi 
is defined as follows: 

Np{T) ^ {^7r(l)^7r(2) • • • ^'K{n)^ix{l) • -^ ^ P}^ 

A neighborhood structure consists of neighborhoods for every tour T. 
The above definition of a neighborhood is quite restrictive"^ but reflects 
the very important "shifting" property of neighborhoods which distin­
guishes them from arbitrary sets of tours. Another important property 
usually imposed on a neighborhood N{T) of a tour T is that the best 
among tours of N{T) can be computed in time p{n) polynomial in n. 
This is necessary to guarantee an efficient local search. Neighborhoods 

^The operation is called path-contraction in [84], but since we do not consider any other type 
of contraction, we will use the shorter name. 
'^In particular, this definition implies that the neighborhood of every tour is of the same 
cardinality. 
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satisfying this property are called polynomially searchable or, more pre­
cisely, p{n)-searchable. 

In the rest of this section and in Section 4, we only consider the 
ATSP: the neighborhoods we describe below can be readily adapted to 
the STSP. 

2.1. The Pyramidal Neighborhood 
In this subsection, we consider the pyramidal neighborhood intro­

duced by Sarvanov and Doroshko [743]. Let H = x i X 2 . . . x ^ x i be a 
tour. Define the pyramidal neighborhood of iif, denoted by P y ( x i , i 7 ) , 
as follows. 

A tour G — Xi^Xi^Xi^ . . .xi^xi^^ with ii — 1, belongs to P y ( x i , H)^ if 
and only if there is an integer fc, such that 

i l < 22 < . . . < i/c > ik+i > ik+2 > .. . > in-

Observe that i^ = n. Note also that given {z2, . . . , i /c-i} (together 
with H and xi) G is uniquely determined, and given G, the set 

is uniquely determined. The neighborhood structure is not symmetrical 
as if i / = X1X2X3X4X1 and G — X1X3X4X2X1, then G E P F ( x i , i 7 ) , but 
H ^ P y ( x i , G ) . We first prove the well-known fact that the size of 
PY{xi^H) is exponential. 

T h e o r e m 1 \PY{xi,H)\ = 2^-2. 

Proof: As mentioned above the tours G G PY{xi^H) are uniquely 
determined by FORW{G^ i7), which is a subset of {2, 3 , . . . , n — 1} (of 
cardinahty n — 2). Since any subset (including the empty set and the 
whole set) determines a tour in PY{x\^H)^ and there are 2^"^ such 
subsets, we are done. • 

The fact that the pyramidal neighborhood can be searched in time 
0{n^) was proved for the first time by Klyaus [507]; for proofs of this 
assertion and its extensions, see Section 4 of Chapter 11. 

T h e o r e m 2 We can find an optimal tour in P y ( x i , H) in 0{n?) time. 

Since every tour in PY{xi,H), when H = xiX2 .. . x ^ x i , either uses 
the arc 0:1X2 or the arc X2X1 (and either Xn-iXn or XnXn-i)^ the al­
gorithm of Theorem 2 will not produce a good tour if these arcs are 
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expensive. One way of avoiding this problem is to consider the neigh­
borhood PCV{H) = U^=^PY{j,H) instead {PCV stands for pyramidal 
Carlier- Villon as Carlier and Villon [162] introduced this neighborhood). 
Clearly, by Theorem 2, we can find an optimal tour in PCV{H) in 0{n^) 
time, by just running the algorithm of Theorem 2 n times. 

It is not difficult to show that, for example, the well-known 2 — Opt 
neighborhood is a subset of PCV (i.e., 2 - Opt{H) C PCV{H)) for the 
STSP. Deineko and Woeginger [248] proved that PCV covers at least 75 
% of tours in 3-Opt. For some experimental results using PCV we refer 
the reader to [162]. 

2,2. The Assign Neighborhood and Its 
Variations 

For the special case of |Z| = L^/2J (see the definition of Z below), this 
neighborhood was introduced in [414, 744]. Punnen [680] introduced the 
general definition of this neighborhood as well as its further extension 
(see the last paragraphs of this subsection). 

Let T = xiX2...XnXi be a tour and let Z = {x^ ,̂ x^2,..., Xi^} be a set of 
non-adjacent vertices of T, i.e., 2 < \ik — ir\ < n —2 for all 1 < /c < r < 5. 
The assign neighborhood of T with respect to Z, A^(r, Z), consists of the 
tours that can be obtained from T by removal of the vertices in Z one by 
one followed by an insertion of Z into the cycle derived after the removal. 
(Recall that, by the definition of insertion of several vertices into a cycle 
C in Subsection 1.2, the vertices of Z are inserted into different arcs of 
C ) For example, 

A^(xiX2X3X4X5Xi,{xi,X3}) = 

{x2XiX4XjXsX2, X2XiX/^X^XjX2, X2X4XiXsXjX2 : {i, j} = {1,3}}. 

Theorem 3 [416, 680] The neighborhood N{T^Z) is 0[n^)-searchable. 

Proof: Let C = yiy2 .. .yn-sVi be the cycle obtained from T after 
removal of Z and let Z = {zi^Z2^ >.. ^Zs}. By the definition of inser­
tion, we have n — s > s. Let (/> be an injective mapping from Z to 
Y = {yi, y25 • • • 7 Un-s}- (The requirement that (f) is injective means that 
(l){zi) ^ (t>{zj) if i y^ j') If we insert some zi into an arc (yj^yj^i)^ then 
the weight of C will be increased by c{yj, Zi) + c{zi^ Vj-^-i) ~ ^{Vji Vj^i)-
Therefore, if we insert every ẑ , i — 1,2,... ,5, into (^(^(i), y(/,(i)-f-i), the 
weight of C will be increased by 

5 
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Clearly, to find a tour of A^(r, Z) of minimum weight, it suffices to 
minimize g{(f)) on the set of all injections (f) from Z to Y. This can be 
done using the following weighted complete bipartite graph B. The 
parti te sets of B are Z and Y. The weight of an edge ziyj is set to be 
c{yj,Zi) + c{z^,yj^l) - c{yj,yj+i). 

By the definition of 5 , every maximum matching M of B corresponds 
to an injection 0 M from Z to Y. Moreover, the weights of M and (J)M 
coincide. A minimum weight maximum matching in B can be found by 
solving the assignment problem. Therefore, in 0{n^) time, we can find 
the best tour in A^(r, Z). • 

Let ins(n, 5) be the number of tours in N{T,Z)^ s = |Z | , and let 
n > 5. Since there are k = n — s ways to insert xi in C, k — 1 ways to 
insert X2 in C when xi has been inserted, etc., we obtain tha t ins(n, s) = 
(n — s){n — s — l ) . . . (n — 2s + 1). It is natural to ask what is the largest 
possible size of the assign neighborhood for the ATSP with n vertices. 
This question is answered in the following theorem. For a real r, [r]o 
([r]i, resp.) is the maximum integer (semi-integer, respectively) tha t 
does not exceed r (a semi-integer is a number of the form p / 2 , where p 
is an odd integer); for an integer m, a{m) — m mod 2. 

T h e o r e m 4 [416] For a fixed n > 5, the maximum size of the assign 
neighborhood equals 

. (n /2 + po)! 
maxms(n) = (2po)! 

where po = \ / | ( n + | ) + 
a{n) 

Proof: Assume first that n is even. Consider f{p) — ins(n, n / 2 — p), 
where p is a non-negative integer smaller than n / 2 . For p > 1, the 
difference A / ( p ) - f{p)-f{p-\) = 6 ( - 2 p ( 2 p - l ) + ( n / 2 + p ) ) = hq{p)/2, 
where q{p) = -Sp^ -h 6p + n, 6 = (n /2 -\-p - l ) ( n / 2 -f- p - 2) • • • (2p -h 
1). Clearly, sign{Af{p)) = sign{q{p)). Therefore, f{p) increases when 
q{p) > 0, and f{p) decreases when q{p) < 0. For p > l^ q{p) decreases 

and has a positive root r = y i ( ^ + | ) + §• Thus, / ( p ) , where p G 

{!, . . . , n / 2 } is maximum for p = [r]o. 
Analogously, when n is odd, we obtain that f{p) is maximum for 

p = [ r ] i . • 

The following asymptotic formula provides us with an estimate on how 
large maxins(n) is. Note that , for 2m < n < 2m + l, ins(n ,m) = [^^]o!. 
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— 1 f l i ^ • 

The value of maxins(n) is the maximum known size of a neighbor­
hood searchable in time 0(71^^). We can combine several neighborhoods 
A^(r, Z) of T for various sets Z and construct a polynomially search­
able neighborhood of size 9(eV^/^[^^]!n '^) for every natural number 
k [416]. Do there exist larger polynomially searchable neighborhoods? 
Some stronger question is raised in Section 6. 

For large values of n, the time 0{n^) appears to be too high to be 
used in local search algorithms. Thus, the following result is of interest 
(observe tha t (n - 1)! = 2®(^^^g^)): 

T h e o r e m 6 [4I6] 1. For every /?, 0 < /3 < 2, there is an 0 (n^+^ ) -
algorithm for finding the best among 

20(nlog„) 
tours. 

2, For every positive integer r there exists an 0{r^n)-tinie algorithm 
for constructing the best among Q.{r^) tours. 

Corollary 12 in Subsection 3.1 of this chapter implies tha t the first 
part of this theorem cannot be, in some sense, improved. 

Punnen [680] suggested an extension of the assign neighborhood. There 
we allow one to remove paths rather than vertices and insert them back. 
The rationale behind this extension is to preserve "good" parts of the 
current tour T. For example, one can use the following strategy: the 
cheaper an arc a in T the larger the probability to preserve a. The 
reader can easily add his/her own details to this approach. In practice 
this more general approach seems to be more promising. 

A small number of computational experiments on a fairly straight­
forward implementation of a local search heuristic using Punnen 's ex­
tension of the assign neighborhood were performed by Gutin, Punnen 
and Zverovich (unpublished). In general, the results appeared to be too 
modest in comparison to those of the state-of-the-art heuristics. To im­
prove the results, one should probably combine Punnen 's extension of 
the assign neighborhood with some "classical" neighborhoods. 

2.3. The Balas-Simonetti Neighborhood 
The following neighborhood, was introduced by Balas [66] and stud­

ied computationally by Balas and Simonetti in [80]. Although this 
neighborhood has been defined for both ATSP and STSP, we consider 
here only the ATSP case. Let k be any integer with 2 < /c < n, let 
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H = xiX2 .. .XnXi be a tour, and define the neighborhood of H^ de­
noted by BSk{xi^H)^ as follows (see [80]). 

A tour G = 3:^(i)X^(2)^7r(3) • • • ^7r(n)^7r(i) (with 7r(l) = 1) belongs to 
BSk{xi^ H) if and only if for ah integers i and j with j > i + k we have 
7r(z) < 7r(j). 

In other words if a vertex, Xj, lies k or more places after a vertex xi 
in i7, then Xj must lie after xi in G (when one walks along the tour, 
starting at xi). Furthermore, the inequality j > i + k is not taken 
modulo n, which is why the vertex xi has a special function in the 
above definition. The above neighborhood is not symmetric, as seen by 
the following example with n = 5 and k — 3. Let H — X1X2X3X4X5X1, 
G — X1X4X2X5X3X1, and note that G 6 BSk{xi^ i7), but H ^ BSk{xi^ G) 
as X3 does not come after X4 in / / . 

In the proof of Theorem 8, we will illustrate how to find an optimal 
solution in BSk{xi^H) in 0(n/c^2^) time, by reducing the problem to a 
shortest path problem in an auxiliary digraph, G*, with at most nk{k + 
1)2^~^ arcs. Note that for a fixed k this implies a hnear algorithm, which 
turns out to be quite eff"ective in practice [80]. 

To the best of our knowledge, the following theorem that provides 
bounds for the size of BSk{xi^H) is a new result. 

T h e o r e m 7 For n > k{k + 1), ( f ) ^ - ^ < \BSk{xi,H)\ < k'^'K Fur­
thermore, we have that \BS2{xi^H)\ = Fih{n), where Fih{n) is the n th 
Fibonacci number. 

Proof: We will start by proving that ( | ) ^ < \BSk(xuH)\. First 
assume that n = i/c + 1, where i is an integer, and without loss of 
generality let H = X1X2 .. .XnXi. Define T to be the set of all tours 
of the form x^(i)a:^(2)^7r(3) • • • ^7r(n)^7r(i) with 7r(l) = 1 and {T^{jk + 
2),7r(jA: + 3),. . . ,7r(jA: +fc + l )} = {jfc + 2, jfc + 3 , . . . , jA: + A: + 1}, 
for all j = 0 , 1 , . . . , i — 1. This means tha t we only allow tours that 
permute the first k vertices (not including x i ) , the next k vertices, 
etc, but not vertices between these sets. Clearly the number of tours 
in J^ is (fc!)̂  and T C BSk{xi,H). Using Stirling's formula we get 
{k\y > ( v S / c ^ e - ^ ) ( ^ - i ) / ^ > ( /c /e)^-^ This proves the case when 
n — 1 is divisible by k. 

If n = ik -\- j , where 1 < j < /c, then we proceed as follows. We 
still have i sets of size k we may permute, but now we have j — 1 ver­
tices left over (we do not count x i ) . We choose the i sets as follows: 
{x2,3:3 , . . . , Xk-\-i} is the first set, Xk-^2 is a left-over vertex, 

{x/e+3,^/c+4, • • • ,^2/0+2} 
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is the second set, X2k+3 is a left-over vertex, etc. After all j — I left­
over vertices have been used, the sets will not have any vertices between 
them. Since n > k{k + 1) this can be done. 

We can obtain a tour in BSk{x\^ H) by permuting the sets and then 
retaining every left-over vertex or inserting it in one of the places avail­
able. Since we have, on average, at least k possibilities for every left-over 
vertex, we obtain that 

\BSk{xi,H)\> {k/eY^k^ > {k/er-\ 

We win now prove that \BSk{xi,H)\ < k""'^. We will build the 
tour starting at xi, and show that we have at most k choices at each 
position. Assume that we have built a partial tour (i.e. a path), 
XIX^(^2)^7T(3) '' •̂ 7r(z)5 ^^^ 1̂ ^ ^ be the smallest index not used yet (i.e., 
/ = min({l ,2 , . . . ,n} — {l,7r(2),7r(3),... ,7r(z)}). Clearly we can only 
place Xj in the (i -h l)th position if I < j < I + k — I. Therefore we get 
that \BSk{xi,H)\ < A:^-^ 

Finally we prove that |J5S'2(xi, H)\ = Fib{n) by induction. Note that 
552(xi, H) contains all tours where we only have swapped positions of 
neighbors in H (and xi stays fixed). Observe that |552(xi, H)\ = Fib{n) 
holds for n === 2 and n = 3, and assume that it holds for n — 1 and 
n — 2, n > 4. Let H = xiX2 . . . XnXi^ and note that by the induction 
hypothesis there are Fih{n — 2) tours starting with X1X3X2, and that 
there are Fib{n — 1) tours starting with xiX2. Since there are no other 
possibihties we get that \BS2{xi,H)\ = Fib{n-2)-\-Fib{n-l) = Fib{n) 

Note that Fib{n) is approximately 0.7236 x 1.618^"^. 

Theorem 8 [66] We can find an optimum in BSk{xi^H) in 0(n/c^2^) 
time. 

Proof: We transform the problem to a minimum cost path problem, 
in an auxiliary digraph Dk{xi^H)^ which we will simply denote by Dk-
The vertices of Dk are tuples (i, j , 5~, 5"^), such that there exists some 
tour R — x^i^i^^x^[2) ' • • ^7r(n)̂ 7r(i) ^ BSk{xi^ H) (7r(l) = 1) such that the 
following holds: 

1. 7r(i) == j ; 

2. S- = {7r(l), 7r(2),..., 7r(z - 1)} H {z, z -|- 1 , . . . , n}; 

3. 5+ = {7r(i), 7r(z + 1 ) , . . . , 7r(n)} H {1, 2 , . . . , z - 1}. 

We furthermore say that the tuple {i,j,S~,S~^) is compatible with 
the tour i2. Note that l^-] = |5+| (= i - 1 - |{7r(l),7r(2),..., 7 r ( i - l ) }n 
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{ 1 , 2 , . . . , i - 1}|). An arc (x,y) is in Dk if x = {i,jx,S~,S^) and y = 
{i + l,jy,S~,S^), and there exists some tour R — 7r(l)7r(2) . . .7r(n)7r(l), 
for which both x and y are compatible. Furthermore, if this is the case, 
then S- = 5 j U ( { j , } n { z + l , i + 2 , . . . , n})-{i} and 5+ = S + U ( { i } n ( F -
S~)) — {jx}, where F = {1, 2 , . . . , n } . Since the last two formulas can be 
proved similarly, we will show only the second one. It is straightforward 
to see that 5 + = 5+ U ({7r(i), 7r(i + 1 ) , . . . , 7r(n)} n {i]) - {j^}. However, 

{7^(^),7^(^ + l ) , . . . , 7 r ( n ) } n { i } = 

({7r(^), 7r(i + 1 ) , . . . , 7r(n)} U {1, 2 , . . . , z - 1}) n [i) = 

( y - 5 - ) n { z } . 

We will use the fact that S~ and S^ are totally determined by 5 " , 

5 ^ , i and j : ^ several times below. 
We will now show that there is a one-to-one correspondence between 

tours in BSk{xi,H) and paths from (1,1,0,0) to (n + 1,1,0,0) in D^. 
For an example, see Figure 6.1. Clearly any tour in BSk{xi^H) has 
a corresponding path from (1,1,0,0) to (n -f 1,1,0,0) in D/^, so now 
let P be a path from (1,1,0,0) to (n + 1,1,0,0) in D^. Let P = 
( l , l , 0 , 0 ) ( 2 , 7 r ( 2 ) , 5 2 - , 5 2 + ) . . . ( n , ^ ( n ) , 5 - , 5 + ) ( n + 1,1,0,0). Now we 
show that Q ~ x\x^i^2)'^Tx{?>) • • • ^7r(n)^i is a tour in BS}^{x\^ H). 

Note that if i? is a tour compatible with (i, 7r(i), 5 " , S^)^ then one can 
uniquely determine the first i elements in R (but not their order), as they 
are the ones with the following indices, S '~U({1 ,2 , . . . , z —1} —5^^)U7r(z). 
We will now show by induction that (z, 7r(z), 5 ~ , S^) is compatible with 
Q and 1, 7r(2), 7r(3), . . ., n^i) are distinct. Clearly this is t rue for z = 2. 
So assume that it is t rue for z — 1 (z > 3). As 1,7r(2), 7r(3) . . . , 7r(z — 1) 
are uniquely determined by (z — l,7r(z — l)^ S~_^^ S^_^)^ and there is 
an arc from (z — l,7r(z — 1), 5'~_^, 5^^^) to (z, 7r(z), iS^", 5^^) we must 
have that n{i) is distinct from 1,7r(2), 7r(3) . . . , 7r(z — 1) (as there is 
a tour that is compatible with both (z — l,7r(z — I), S^_^^ S^_'^) and 
(z, 7r(z), 5 " , S*^ )̂). Furthermore S^ and S^ are totally determined by 
S~_i^ S^-ij ^ — 1 ^^d 7r(z — 1), so therefore (z, 7r(z), S~^S^) is compatible 
with Q. This completes the inductive proof. It now follows that all 
(1 ,1 , 0, 0), (2,7r(2), S^,S^) ...{n-h 1,1, 0, 0) are compatible with Q and 
Q is a tour. Therefore Q is a tour in BSk{xi^ H). 

Now by setting the cost of the arc xy, where x = (i^jx^S~^S^) and 
y = (z-l-1, jy, Sy , -S*^), to the cost of the arc Xj^Xj^ the cost of a path from 
(1 ,1 , 0, 0) to (n + 1,1, 0, 0) is equal to the cost of the corresponding tour 
given by this path. For an example, see the path illustrated by the thick 
rectangles in Figure 6.1, which corresponds to the tour xiXsX4X2Xex^xi. 
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» . | 6.6. 0, 0~| »al 7. 1.0. 0*1 

Figure 6.1. Example when n = 6 and /c = 3. The path connecting the thick nodes 
correspond to the tour XIX2,X4,X2XQX^X\. 

In [66] Balas proved that the number of vertices in Dk of the form 
{i^jx, S~,S^) is equal to {k + 1)2^~^, for any given i, with k + 1 <i < 
n — k + \. It is easy to see that for every remaining i there are at most 
(fc + 1)2^^"^ such vertices. This implies that the total number of vertices 
in Dk is at most n{k + 1)2^~^. 

We win now prove that the out-degree of any vertex in Dk is at most k. 
Let X = (i, jx5 S~^ S^) be some vertex in Dk-, and let y — (i + l, /, S", S^) 
be an out-neighbor of x. As mentioned above, Sy and 5+ are totally 
determined by 5 " , 5+, z and j ^ - Let p = minl^^ U {i -H 1}}, (or 
min{5^ U {i,z -h 1} — jx}^ which is equivalent), and note that p is the 
smallest index, such that Xp is not used in the path x^(^i>^x^(^2) • • •^7r(i)-
Now it is not difficult to see that p<l<p + k — 1. Therefore, the 
out-degree of x is at most k. 

This implies that the number of arcs in Dk is bounded by nk{k + 
1)2^~^. So finding a cheapest path of length n in Dk can be done in 
0{nk{k + 1)2^-2) = 0{nk^2^) time. Since any tour in BSk{xi,H) cor­
responds to a path of length n in Dk and any path of length n in Dk 
corresponds to a tour in BSk{xi^H)^ we are done. • 

The above algorithm can be generalized, such that the constant k 
depends on the position on the tour. That is, given a set of integers 
{k{i) : i — 1,2,... , n} , in the definition of the neighborhood, we have 
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that, if j > i + k{i) then n{i) < 7r(j). This generaUzation is not too 
difficult to implement and a description of this can be found in [80]. 

Furthermore, using the above generalizations the algorithm can be 
extended to time window problems as well as the time target problems. 
We refer the reader to [80] for more details. 

The algorithm of this subsection has been tested in [80], and seems to 
work well as a local search algorithm. One may compare the algorithm 
in this subsection with /c-Opt as they both perform local changes. How­
ever, the neighborhood described here has exponential size, and can be 
searched in hnear time (for constant fc), whereas A:-Opt has polynomial 
size neighborhoods, and non-linear running time (in n). The algorithms 
of this subsection seem to perform particularly well on TSP instances 
that model actual cities and distances between cities. One reason for 
this could be that cities tend to cluster in metropolitan areas. For a 
more detailed discussion of this topic we refer the reader to [80]. 

Finally we note that the digraphs D/̂ , described in the proof of Theo­
rem 8, can be computed using the values n and /c, independently of the 

input {Kn^ c). Then it remains to add the costs, when the input becomes 
known. This preprocessing may, in many cases, save considerable time 
as actually constructing the digraphs D^ is more time consuming than 
computing the shortest path in D^. 

S. Upper Bounds for Neighborhood Size 
The aim of this section is to provide upper bounds for ATSP neigh­

borhood sizes. In Subsection 3.1 we prove upper bounds depending on 
the time to search the neighborhood. In Subsection 3.2 we obtain an 
upper bound of the size of polynomially searchable neighborhoods. 

3.1. General Upper Bounds 
This subsection is based on [421]. The next theorem provides an 

upper bound on the size of an ATSP neighborhood depending on the 
time to search the neighborhood. It is realistic to assume that the search 
algorithm spends at least one unit of time on every arc that it considers. 

Theorem 9 Let Nn be an ATSP neighborhood that can be searched in 
time t[n). Then \Nn\ < maxi<^/<^(t(n)/n')'^'. 

Proof: Let D = {Kn, c) be an instance of the ATSP and let H be the 
tour that our search algorithm returns, when run on D. Let E denote the 
set of arcs in D, which the search algorithm actually examine; observe 
that \E\ < t{n) by the assumption above. Let the arcs of A{H) - E have 
high enough cost and the arcs in A{D) - E - A{H) have low enough 
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cost, such that all tours in Â ^ must use all arcs in A{H) — E and no arc 
in A{D) — E — A{H). This can be done as H has the lowest cost of all 
tours in Nn- Now let D^ be the digraph obtained by contracting the arcs 
in A{H) — E and deleting the arcs not in E, and let n ' be the number 
of vertices in D\ Note that every tour in N^ corresponds to a tour in 
D^ and, thus, the number of tours in D ' is an upper bound on |A^n|- In 
a tour of D\ there are at most d'^{i) possibilities for the successor of a 
vertex z, where d'^{i) is the out-degree of i in D\ Hence we obtain tha t 

iA'„i<fi<in.)<(ii:<i+(>)) < (^)" . 
where we applied the arithmetic-geometric mean inequality. • 

Corol lary 10 Let Nn be an ATSP neighborhood that can be searched in 
time t{n). Then \Nn\ < maxje^^^)/^, {t{n)/n)^}, where e is the basis of 
natural logarithms. 

Proof: Let U{n) — maxi<^/<^(^(n)/n ' )^ ' . By differentiating / ( n ' ) = 
{t[n)/n'Y with respect to n' we can readily obtain that f{n') increases 
for I < n! < t{n)/e^ and decreases for t{n)/e < n' < n. Thus, if n < 
t(n)/e^ then f{n') increases for every value of n' < n and U{n) = f{n) — 
{t{n)/n)^. On the other hand, if n > t{n)/e then the maximum of f{n') 
is for n' = t{n)/e and, hence, U{n) — e^^^^/^. • 

It follows from the proof of Corollary 10 that 

Corol lary 11 For t{n) > en, we have \Nn\ < [t{n)/n)'^. 

Note that the restriction t{n) > en is important since otherwise the 
bound of Corollary 11 can be invalid. Indeed, if t{n) is a constant, then 
for n large enough the upper bound implies tha t |A^^| = 0, which is 
not correct since there are neighborhoods of constant size tha t can be 
searched in constant time: consider a tour T, delete three arcs in T 
and add three other arcs to form a new tour V. Clearly, the best of 
the two tours can be found in constant time by considering only the six 
arcs mentioned above. Notice that this observation was not taken into 
account in [248], where the bound |A^n| ^ {2t{n)/n)^ was claimed. Tha t 
bound is invalid for t{n) < n/2. 

Corollary 10 immediately implies that linear-time algorithms can be 
used only for neighborhoods of size at most 2^^^\ Using Corollary 10, 
it is also easy to show the following: 
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Corol lary 12 The time required to search an ATSP neighborhood of 
size 2®(^^°s )̂ ig Q^i^ri^^^) for some positive constant a. 

3.2. Upper Bounds for Polynomial Time 
Searchable Neighborhoods 

Deineko and Woeginger [248] conjectured that there is no ATSP neigh­
borhood of cardinahty at least (3{n — 1)! for any positive constant j3 pro­
vided P T ^ N P . In this subsection based on [421] we prove tha t there is no 
ATSP neighborhood of cardinahty at least (3{n — k)\ for any constant 
/? > 0 and fixed integer k provided N P g P / p o l y 

P /poly is a well-known complexity class in structural complexity the­
ory see e.g. [82], and it is widely beheved that N P g P / p o l y for otherwise, 
as proved in the well-known paper by Karp and Lipton [499], it would 
imply that the so-called polynomial hierarchy collapses on the second 
level, which is thought to be very unlikely The idea that defines P /poly 
is that , for each input size n, one is able to compute a polynomial-sized 
''key for size n inputs". This is called the "advice for size n inputs". It 
is allowed that the computation of this "key" may take time exponen­
tial in n (or worse). P /poly stands for the class of problems solvable in 
polynomial time (in input size n) given the poly-sized general advice for 
inputs of size n. For formal definitions of P /poly and related non-uniform 
complexity classes, consult [82]. 

Let 5 be a finite set and JT be a family of subsets of S such that JF is a 
cover oi 5 , i.e., U{F : F 6 J-] — S. The well-known covering problem is 
to find a cover of 5 containing the minimum number of sets in T. While 
the following greedy covering algorithm (GCA) does not always produce 
a cover with minimum number of sets, GCA finds asymptotically optimal 
results for some wide classes of families, see e.g. [526]. GCA starts by 
choosing a set F in JT of maximum cardinality, deleting F from JT and 
initiating a "cover" C — { F } . Then GCA deletes the elements of F from 
every remaining set in T and chooses a set H of maximum cardinality 
in T^ appends it to C and updates T as above. The algorithm stops 
when C becomes a cover of 5*. The following lemma have been obtained 
independently by several authors, see Proposition 10.1.1 in [47]. 

L e m m a 13 Let \S\ — s, let T contain f sets, and let every element of S 
be in at least 5 sets of T. Then the cover found by GCA is of cardinality 
at most 1 + / ( I + lnlSs/f))/5. 

Using this lemma we can prove the following: 
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Theorem 14 Let T be the set of all tours of the ATSP on n vertices. 
For every fixed integer k > 1 and constant /3 > 0, unless NPC. P/poly, 
there is no set 11 of permutations on {1, 2 , . . . , n} of cardinality at least 
/3(n — k)\ such that every neighborhood Nii(T), T ^ T, is polynomial 
time searchable. 

Proof: Assume that, for some k>l and /3 > 0, there exists a set H of 
permutations on {1 ,2 , . . . , n} of cardinahty at least (3{n — k)\ such that 
every neighborhood Nii{T)^ T G T, is polynomial time searchable. Let 
J\f = {Nu{T) : T eT}. Consider the covering problem with S = T and 
J^ = J\f, Observe that |5 | = \T\ = (n — 1)!. To see that every tour is in at 
least 6 = {n — k)\ neighborhoods of AT, consider a tour Y — yiy2 . ̂ . ynVi 
and observe that for every TT G 11, 

Y ^ ^n(2/7r-l(l)2/7r-l(2) • • • 2/7r-l(n)y7r-l(l))-

By Lemma 13 there is a cover C of 5 with at most O(ri^lnn) neigh­
borhoods from J\f. Since every neighborhood in C is polynomial time 
searchable and C contains only polynomial number of neighborhoods, 
we can construct the best tour in polynomial time provided C is found. 
To find C (which depends only on n, and not on the instance of the 
ATSP) we need exponential time and, thus, the fact that the best tour 
can be computed in polynomial time implies that NPC P/poly. • 

4. Diameters of Neighborhood Structure 
Digraphs 

The distance from a vertex x to a vertex y of an unweighted digraph 
D is 0 if X = y^ the length of the shortest path from x to ?/, if D has 
one, and oo, otherwise. The diameter of a digraph D is the maximum 

distance in D. Given neighborhood N{T) for every tour T in Kn (i-^., 
a neighborhood structure), the corresponding neighborhood digraph (of 
order (n — 1)!) is a directed graph with vertex set consisting of all tours 

in Kn and arc set containing a pair (T',T") if and only if T" G N{T'). 
The diameter of the neighborhood graph is one of the most important 
characteristics of the neighborhood structure and the corresponding local 
search scheme [162, 248, 372]. Clearly, a neighborhood structure with 
a neighborhood digraph of smaller diameter seems to be more powerful 
than one with a neighborhood digraph of larger diameter, let alone a 
neighborhood structure whose digraph has infinite diameter (in the last 
case, some tours are not "reachable" from the initial tour during local 
search procedure). 
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4.1. Diameters of Pyramidal and the 
Balas-Simonetti Neighborhood Digraphs 

If the diameter of the pyramidal neighborhood digraph is dpy, then 
Theorem 1 imphes tha t (2^-2)^P>^ > ( n - 1)! and, thus, dpy = f^(logn). 
The next theorem imphes that dpy = 0 ( l o g n ) . 

T h e o r e m 15 [162] The diameter of the neighborhood digraph corre­
sponding to PY{xi^H) is at most [ log2n]. 

Observe that this theorem imphes that the diameter dpcv of the 
pyramidal Carlier-Villon neighborhood introduced in the end of Sub­
section 2.1 is also e ( l o g n ) . Indeed, \PCV{H)\ < uT"-^ and, thus, 
dpcv = f7(logn). On the other hand, PY{xx,E) C PCV{H) and, 
hence, dpcv ^ dpy. The next theorem is a new result. 

T h e o r e m 16 The neighborhood digraph of BSk{xi^H) is of diameter 
0{n). 

Proof: Since BSk{xi^H) includes BS^^xi^H) for every fc > 2, it suf­
fices to prove this theorem for /c = 2. Let H — x i X 2 . . . x ^ x i and 
G — ^7r(i)^7r(2) • • • ^7r(n)^7r(i)- We will show that there is a sequence 
of tours G — Gi , G25 • • • 5 G^+i = H^ such tha t G^+i G BS^ixi^Gi)^ 
i = 1, 2 , . . . , n . 

We find Gi as follows. When i is even, and Gi-\ — x\Xz2 • • -^z^^i 
then let Gi — x\Xyj^ . . .Xyj^x\ such that the following holds. The first 
two vertices on Gi are a sorted version of the first two vertices on Gi-\ 
(i.e., {x^^^x^^ = {xuj^^Xuj2} and wi < W2)^ the next two vertices are a 
sorted version of the next two vertices on Gi_i , etc. When i is odd, we 
leave the first vertex unchanged, but then the next two vertices are a 
sorted version of the next two vertices on G^_i, etc. 

Observe that Gi G BSk{xi^Gi-i) holds. The claim tha t G^+i — H 
is equivalent to the assertion that tours Gi , G2,.. . , G^-f 1 "sort" numbers 
7r(l), 7 r (2) , . . . , 7r(n) (to 1 ,2 , . . . , n) . It remains to observe that this as­
sertion follows from Par t (c) of Problem 28-1 in [218], p. 651, i.e., from 
the fact that every odd-even sorting network is a sorting network. The 
details are left to the interested reader. • 

The result of this theorem can be improved to 0{n/k). We leave details 
to the interested reader. 

4.2, Diameter of Assign Neighborhood Digraphs 
For a positive integer k < n / 2 , the neighborhood digraph r ( n , k) of 

the assign neighborhood has vertex set formed by all tours in Kn- An 
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arc (T, R) is in r (n , k) if there exists a set Z oi k non-adjacent vertices 
of T such that R e N{T, Z). Clearly, (T, R) is in r (n , fc) if and only if 
{R^T) is in r(n,/c), i.e., r (n , fc) is symmetric. We denote by dist/c(T,i?) 
the distance (i.e., the length of a shortest path) from T to i? in r (n , k). 

For a tour T in Kn^ let Ink denote the family of all sets of k non-
adjacent vertices in T. Clearly, the neighborhood Nk{T) of a tour T in 
r (n , k) equals 

Thus if, for some fc, i{n^k) = \Ink\ is polynomial in n, then from the 
fact that N{T^Z) is polynomially searchable it follows that Nk{T) is 
polynomially searchable. Otherwise, Nk{T) may be non-polynomially 
searchable. Since polynomially searchable Nk{T) are of our interest, we 
start with evaluating i(n, k) in Theorem 17. It follows from Theorem 17 
that, for fixed /c, i(n, /c) and i(n, n — k) are polynomial. 

Theorem 17 [4I8J i{n,k) = (";̂ '=) + ("^^J^). 

Corollary 18 /^i(S/ If p is a non-negative fixed integer, then Np^i(T) 
and Nun-p)/2\{T) are polynomially searchable [p < [n/2j). 

Proof: This follows from Theorem 17 taking into consideration that 

\k) ~ \m-k)' " 

One can easily prove that if n is even, then r (n , n/2) consists of 
an exponential number of strongly connected components and, thus, 
its diameter is infinite (for example, xiX2-.'XnXi and xi...Xn-2XnXn-ixi 
belong to different strong components of this digraph). Therefore, below 
we consider r (n , k) for k < n/2 only. 

Theorem 19 diam(r(n, [(n - 1)/2J)) < 4. 

Proof: We assume that n > 5, as for 2 < n < 4 this claim can be 
verified directly. Let C = xia:2 .. • XnXi and T = yiy2 . . . ynVi be a 

•«—> 
pair of distinct tours in Kn- Put k — [(n — 1)/2J. We will prove that 
dist/,(T, C) < 4, thus showing that diam(r(n, k)) < 4. 

We call a vertex v even {odd) with respect to C if i; = Xj, where 
1 ^ j ^ ^ and j is even (odd). For a set of vertices X of Km let Xodd 
(Xeven) bc the sct of odd (even) vertices in X. 

First we consider the case of even n, i.e. k — n/2 — 1. The proof in this 
case consists of two steps. At the first step, we show that there exists a 
tour T'^ whose vertices alternate in parity and such that dist/c(r, T'^) < 2. 
Moreover, V^ has a pair of consecutive vertices which are also consecutive 



Exponential Neighborhoods and Domination Analysis 243 

in C. At the second step, we will see that distk{T^'^C) < 2 as the 
odd and even vertices of T'' (except for the vertices of the above pair) 
can be separately reordered to form C. Thus, we will conclude tha t 
dist/c(T, C) < 4. Now, we proceed with the proof. 

Clearly, T has a pair ^ j , yj^i such that yj_^i is odd and yj is even. Let 

Z = {%+2,%-f4,.-.,yj+2/c} 

and let \Zodd\ = s- Remove the vertices of Z from T and then insert the 
s odd vertices of Z into the arcs y j + i ^ j + s , . . . , yj^2s-iyj+2s+i and k — s 
even vertices of Z into the arcs 

yj+2s+iyj+2s-\-3, yj+2s+3yj+2s+5, • • • , yj+2k-iyj+2k+l' 

We have obtained a tour 

r = yjyj+i^j+2yj+3Vj+4yj+5. • • yj-{-2k-iVj+2kyj-{-2k+iyj, 

where {vj+2^ • • •, Vj+2k} = Z. 
Let Z' = {yj+3, yj+5, • . . , yj+2k+i} and let |Z^^enl = -̂ Since the num­

ber of odd vertices in V{Kn) - {yj, yj+i} is equal to fc = \Zodd\ + IZ^ddl "^ 
s + k — t^ we obtain that s = t. Remove Z' from T' and insert the t even 
vertices of Z^ into the arcs yj^iVj^2, 'i^j+2'^j+4, Vj+eVj+s, • • •, Vj+2s-2yj+2s 
and the /c — 5 odd vertices of Z' into the arcs 

'^jH-25+2'^j+25+4, • • • , yj+2k-2yj-{-2k, '^j-f2/c?/j-

We have derived a tour V^ — uiu^ . . . UnUi. Clearly, the vertices of T" 
alternate in parity, i.e., for every m, if Um is odd, then Um+i is even. 

Now we prove that the processes of insertion of Z and Z' can be 
performed in such a way that T" contains a pair of consecutive vertices 
which are also consecutive in C (i.e. there exist indices p and q such tha t 
Up = Xq and Up^i = Xg_|_i). Since 1 < |Z ' | < n, there exists a pair of 
distinct indices z, m such that x^, Xm G Z^ and x^+i, Xm-i ^ Z'. Without 
loss of generality, we assume that i is odd. We consider two cases. 

Case 1: |^^^^| > 2. We prove that we may choose index q — i. Since 
Xij^x 0 Z' and i + 1 is even, either yj — XiJ^\ or x^+i G Z^yen- If ^i+i ^ 
Zê ;en5 in the process of insertion of Z, we insert x^+i into yj^2k-iyj+2k-\-ij 
i.e. Xi+i = Vj-{-2k' In the process of insertion of Z\ we insert x^ into 
yj+2kyj if ^i+i = %• or into ^^+2/c-2^j+2/c, otherwise (i.e. x^+i = 'i;j+2/c)-

Case 2: \Z'^^^\ = 1. Thus, m is even. Since n > 6, it follows that 
\Zeven\ ^ 2. Aualogously to Case 1, one may take q = m — 1. 
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Therefore, without loss of generaUty, we assume that Un-i = Xi^ Un = 
Xi-^i. Since {u2,U4,... ,U2k,Xi-^i} = Ceven, we can delete {t̂ 2, • • •,'^2/c} 
from T'^ and insert it into the obtained cycle to get the tour C given 
by C =^ uiXi^^usXiJ^^us .. .U2k-iXi-iUn-iXi^iui. Analogously, we can 
delete {ui^u^^... ^U2k-i} from C and insert it into the obtained cycle 
to get C. We conclude that dist/,(r, C) < 4. 

Now let n be odd; then k — {n — l ) /2 . Notice that, without loss 
of generality, we may assume that Xn = Vn (to fix the initial label-
ings of T and C). Consider tours X — xiX2 . . . x^x^+ixi and Y — 

2/12/2 . " yn-iynVn-hiyi in Kn+1, whcrC yn = Xn, 2/n+l = ^ n + l - If WC aS-
sume that j = n^ j + 1 = n + 1 , we can obtain, analogously to the case of 
even n, a tour y such that the vertices of y alternate in parity (with re­
spect to their indices in X), x^+i follows Xn in Y'^ and distfc(y, Y'^) < 2. 
Now if i = n and z + 1 = n + 1, then we can show, similarly to the case 
of even n, that distk{Y^\ X) <2 and, thus, dist/c(y, X) < 4. Notice that, 
in the whole process of constructing X from y , we have never removed 
Xn and Xn+i or inserted any vertex into the arc XnXn+i- Thus, we could 
contract the arc x^x^+i to Xn and obtain C from T in four "steps". This 
shows that dist/j.(r, C) < 4. • 

We can extend Theorem 19 using the following: 

Theorem 20 [4^^] Let dist/e(r, C) = 1 for tours T and C and let m he 
an integer smaller than k. Then, dist^ (T,C) < \k/m'\. 

Corollary 21 For every positivem, 

diam(r(n,m)) < 4[[(n - l ) /2J /m] . 

In particular, if p is a positive integral constant, then diam(r(n, |_(n — 
p)/2j)) < 8 for every n >2p+ 1. 

Proof: The first inequality follows directly from the above two theorems 
and the triangle inequality for distances in graphs. The first inequality 

''implies the second one. Indeed, n >2p + 1 implies 

( n - l ) / 2 ^ 2 L(^-1)/2J ^r^ 
{n-p-l)/2- ' [{n-p)/2\ 

5. Domination Analysis 
Recall that the domination number, domn(H, n), of a heuristic H for 

the TSP is the maximum integer k = k{n) such that, for every instance 
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I of the TSP on n vertices, H produces a tour T which is not worse than 
at least k tours in I including T itself. 

In this section, we describe some important results in domination anal­
ysis of TSP heuristics. In Subsection 5.1, domination numbers of ATSP 
and STSP heuristics are compared. In Subsection 5.2, we consider TSP 
heuristics of large domination number, at least Q{{n — 2)!). It turns out 
that several well-known heuristics have a large domination number. In 
Subsection 5.3 we briefly discuss bounds on the largest possible domi­
nation number of a polynomial time TSP heuristic. TSP heuristics of 
small domination number are considered in Subsection 5.4. It is some­
what surprising that such heuristics as the greedy, nearest neighbor and 
double tree algorithms are all of domination number 1. 

5.1. Domination Number of Heuristics for the 
STSP and ATSP 

In this subsection we observe that, in certain cases (e.g., for lower 
bounds on domination number), it is enough to study heuristics for the 
ATSP since one can readily obtain similar results on heuristics for the 
STSP from the corresponding ones for the ATSP. This justifies that we 
mostly study ATSP heuristics in this section. We also prove an assertion 
that relates the maximum possible domination numbers of polynomial 
time heuristics for the ATSP and STSP. 

For a tour H — xiX2 . . . x^xi in Km the tour XnXn-.i . . . xiXn will be 
denoted by H. 

Since an instance of the STSP can be transformed into an "equivalent" 
instance of the ATSP by replacing every edge xy of Kn by the pair xy^ yx 
of arcs of costs equal to the cost of the edge xy^ every heuristic for 
the ATSP can be used for the STSP^. Observe that a polynomial time 
heuristic A for the ATSP with domination number d{n) has domination 
number at least d{n)/2 for the STSP. The factor ^ is due to the fact 

that a pair Q, Q of tours in Kn is indistinguishable in Kn-
One of the central natural questions on the domination number is 

to determine the maximum domination number of a polynomial time 
heuristic for the ATSP. We call it the maximum domination number of 
the ATSP. We can introduce the similar parameter for the STSP. The 
STSP being, in a sense, a special case of the ATSP, one may suspect 
that the maximum domination number of the STSP is larger than that 
of the ATSP. We will now show that this is not true. 

^This, in particular, allows one to apply ATSP heuristics to the STSP without redefining 
them, see, e.g. Subsection 5.4. 
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Theorem 22 [4^V For every polynomial heuristic 7Y for the STSP, 
there is a polynomial heuristic H' for the ATSP such that domn(7Y', n) > 
domn(W,n). 

Proof: To an instance of ATSP with cost function c assign an instance of 
STSP defined on the same set of vertices and with cost function c' defined 
by c\x^y) — ^(c(x,y) + c(y,x)) for every x ^ y. Let T = xiX2'>'XnXi 
be a tour found by the heuristic TH, apphed to [Kn^c') and let S be 
the set of all tours R in {Kn^c') such that c'{T) < c'{R). The cycle 

T = xiX2...x^xi can be considered as a tour in {Kn-, c). For a tour Q in 

(Xn^c), let Q'^Q^ be defined as follows: 

{Q",Q+} = {(?,Q},c(Q-) = min{c(Q),c(Q)}. 

This theorem now follows from the fact that for every Z G 5, c(T~) < 
c{Z^) as c(T-) < c\T) < c\Z) < c{Z-^). • 

5.2. Heuristics of Domination Number 
fi((n-2)!) 

While the assertion of the next theorem for odd n was already known 
to Rev Kirkman (see [104], p. 187), the even case result was only estab­
lished by Tillson [792] as a solution to the corresponding conjecture by 
J.C. Bermond and V. Faber (who observed that the decomposition does 
not exist for n = 4 and n = 6). 

Theorem 23 For every n>_2, n ^ A, n ^ Q, there exists a decomposi­

tion of A[Kn) ^^^o tours. 
• < — ^ 

Let T{Kn) {jij^^c)) be the total cost of all tours (the average cost 
<—>• •<-^ 

of a tour) in {Kn-ic). Since every arc of Kn is contained in (n — 2)! 
tours, T{n,c) = T{Kn)/{n - 1)! = (n - 2)\c{Kn)/{ri - 1)!, and hence, 

T{n^ c) = c (Kn) / ( ^ - l ) . This formula can also be shown using linearity of 
expectation. For the STSP, it is easy to see that T{n^ c) — 2c{Kn)/{Ti—l)^ 
where as above r{n^ c) is the average cost of a tour. 

The following result was first obtained by Sarvanov [739] when n is 
odd, and Gutin and Yeo [423] when n is even. As we see below Theorem 
24 allows us to show that certain heuristics are of domination number 
at least (n - 2)!. 

Theorem 24 Consider any instance of the ATSP and a tour H such 
that c{H) < r{n^ c). If n ^ Q, then H is not worse than at least (n — 2)! 
tours. 
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Proof: The result is trivial for n = 2, 3. If n == 4, the result follows 

from the simple fact that the most expensive tour T in Kn has cost 

c{T) > c{H). 

Assume that n > 5 and n 7̂  6. Let Di = { C i , . . . , C ^ - i } be a 

decomposition of the arcs of Kn into tours (such a decomposition exists 

by Theorem 23). Given a tour R in Kn, clearly there is an automorphism 

of Kn tha t maps Ci into R. Therefore, if we consider Di together with 
•<—>• 

the decompositions ( D i , . . . , D(^^_iy) of Kn obtained from Di using all 
-«—> 

automorphisms of Kn which map the vertex 1 into itself, we will have 
<—>• 

every tour of Kn in one of D^'s. Moreover, every tour is in exactly n — 1 
decompositions A ' s (by mapping a tour Q into a tour Cj 1 < i 7̂  j < 
n — 1) we fix the automorphism). 

Choose the most expensive tour in each of Di and form a set £ from 
all distinct tours obtained in this manner. Clearly, |^ | > (n — 2)!. As 
YA=I ^i^i) — c{Kn), every tour T oi £ has cost c(T) > T{n^c). There­
fore, c{H) < c{T) for every T e£. • 

To see that the assertion of Theorem 24 is almost best possible, choose 
a tour H and an arc a not in H. Let every arc in H be of cost one, let 
c{a) = n{n — 1) and let every arc not in A{H) U {a} be of cost zero. 
Clearly the cost of H is less than the average (which is n^ / (n — 1)), but 
only tours using the arc a have higher cost. Thus, H is not worse than 
exactly (n — 2)! + 1 tours (including itself). 

The first remark in Subsection 5.1 and Theorem 24 imply that , for the 
STSP, the assertion similar to Theorem 24 holds with (n — 2)! replaced 
by (n — 2)!/2. However, Rubhneckii [733] proved the following stronger 
result. 

T h e o r e m 25 Consider an instance (Kn^c) of the STSP and a tour H 
such that c{H) < r{n^c). Then H is not worse than at least (n — 2)! 
tours when n is odd and {n — 2)!/2 tours when n is even. 

The ideas in the proof of Theorem 25 are similar to those used in 
the proof of Theorem 24. Instead of Theorem 23, Rublineckii [733] used 
a much simpler result that the edges Kn {2Kn) can be decomposed in 
edge-disjoint tours when n is odd (even), where 2Kn is the complete 
multigraph with 2 edges between every pair of distinct vertices. 

The vertex insertion algorithm for the ATSP work as follows. First, 

we fix some ordering ^ ' l , . . . , t"̂  of the vertices of Kn- Then, we perform 
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n — 1 steps. On the first step we form the cycle ^?l̂ '2 '̂l. On step /c, 
2 < /c < n — 1, given the /c-cycle f7r(i)'̂ 7r(2) • • • ^7T{k)'^n{i) from the previous 
step, we find the value jo of i , which minimizes the expression 

C(^7r0>^/c+l) + c(^A:+l,^^7r(j-fl)) " c(^7r(j), ^7r(j + l ) ) , 

1 ^ j ^ 5̂ ^^^ insert Vk-\-i between VJ^^JQ) and V^(^JQ_^I^ forming a (fc + 1)-
cycle. Clearly, the vertex insertion algorithm for the STSP differs from 
the ATSP one in the fact that it starts from a cycle with three vertices. 
The following theorem was first proved by E.M. Lifshitz (see [733]) for 
the STSP. 

Theorem 26 Let Hn be a tour constructed by the vertex insertion al­
gorithm A for the TSP with n vertices. Then c{Hn) < r{n^c). 

Proof: We prove this result only for the ATSP by induction on n. The 
theorem is trivially true for n = 2. Let Hn-i — V'K{i)^7r{2) • • • '̂ 7r(n-i)^7r(i) 
be the cycle constructed in Step n — 2 of the algorithm and assume that 
in Step n — 1, it was decided to insert Vn between fyryo) ^^^ V^(^JQ_^I) in 

order to obtain Hn- Let V be the vertex set of Kn and, for a partition 
XUY = V,\et (X, Y) = {{x,y): x e X,y e Y}. Then, we have 

c{Hn-l) + c K ( ^ o ) , ^ n ) + cK,^7rOo-f l ) ) " ^ K O o ) ' ^ T T O O + I ) ) ^ 

.rr X , YA=1 ^i'^Ai)^^ri) + c{Vn,V^(i^l)) - c{v^^i),V^^i^l)) 
cytLn-i) H :; = 

n — 1 
C{V - Vn.Vn) + c{Vn,V - Vn) - c[Hn-\) ^ 

c[nn-l) H :; S 
n — 1 

(n - 2)r{n - 1, c) + c{vn, V - Vn) + c{V - v^, Vn) _ 
n-1 

c{Kn -Vn) + c{Vn, V - Vn) + c{V - Vn, Vn) 

n-1 
= r{n,c), 

where T{n — 1, c) is the average cost of a tour in Kn —Vn- B 

Theorems 24 and 26 imply the following result (similar result holds 
for the STSP, see Theorem 25). 
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T h e o r e m 27 [683] For the ATSP vertex insertion algorithm A and n 7̂  
6 we have domn(.4, n) > (n — 2)!. 

Gutin and Yeo [423] proved that the following ATSP algorithm always 
produces a tour of cost at most the average cost: choose an arc e such 
that the average cost of a tour through e is minimum, contract e and 
repeat the above choice and contraction until only two arcs remain. 
The output is the tour obtained from the two arcs together with the 
contracted ones. A similar algorithm was described by Vizing [810]. 

Given neighborhood structure Â ", the best improvement local search 
(LS) algorithm starts from an arbitrary tour; at every iteration it finds 
the best tour T' in the neighborhood N{T) of the current tour T and 
replaces T by T'. The algorithm stops when c ( r ' ) = c{T)^ in which case 
T is a local optimum with respect to N. Normally practical LS codes do 
not use the best improvement strategy; instead they find a better (than 
r ) tour T ' at every iteration as long as it is possible. This strategy 
saves running time and often yields better practical results, but the first 
improvement LS is difficult to formalize since the way to find the first 
improvement varies from code to code. Thus, let us restrict ourselves to 
the best improvement versions of 2-Opt and 3-Opt. 

The fc-Opt, /c > 2, neighborhood of a tour T consists of all tours that 
can be obtained by deleting a collection of k edges (arcs) and adding 
another collection of k edges (arcs). Rublineckii [733] showed that every 
local optimum for 2-Opt and 3-Opt for the STSP is of cost at least 
the average cost of a tour and, thus, by Theorem 25 is of domination 
number at least (n — 2)!/2 when n is even and (n — 2)! when n is odd. 
Observe that this result is of restricted interest since, to reach a fc-
Opt local optimum, one may need exponential time (see Section 3 in 
[463]). However, Punnen, Margot and Kabadi [684] managed to prove 
the following result. 

T h e o r e m 28 For the STSP the best improvement 2-Opt algorithm pro­
duces a tour of cost at most r{n^ c) in at most 

0(min{n^ /o^n,nlog(c(i7o) — r{c^n))}) 

iterations, where HQ is the initial tour. 

Punnen, Margot and Kabadi observed that Theorem 28 holds also for 
3-Opt and the pyramidal Carher-Villon neighborhood. The last result 
can be extended to the ATSP because of Theorem 22. It is pointed 
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out in [684] that analogous results hold also for the well-known Lin-
Kernighan algorithm [563] and shortest path ejection chain algorithm of 
Glover [372, 682] (see also Chapter 8). 

5.3. Bounds on Maximum Domination Number 
of Polynomial Heuristics 

Clearly, unless P=NP, there is no polynomial time ATSP algorithm 
with domination number (n — 1)!. Punnen, Margot and Kabadi [684] 
proved that unless P=NP, there is no polynomial time ATSP algorithm 
with domination number at least (n — 1)! — fc for any constant k. This 
result can be extended from constant k to some function in n [684]. 

Gut in and Yeo [420] showed that, if there is a constant r > 1 such 
that for every sufficiently large k a /c-regular digraph of order at most 
rk — 1 can be decomposed into Hamiltonian cycles in polynomial time in 
n, then the maximum domination number of the ATSP is G((n — 1)!). 
This result is of interest due to the fact that Haggkvist [428, 429] an­
nounced (not published) that the above Hamiltonian decomposition ex­
ists for every 1 < r < 2, see also Alspach et al. [19]. His approach is 
constructive and implies a polynomial algorithm to find such a decom­
position. If Haggkvist's result holds, the main theorem in [420] implies 
that, in polynomial time, one can always find a tour, which is not worse 
than 50% of all tours. 

Notice that the 50% threshold may seem to be easily achievable at 
first glance: just find the best in a large sample S of randomly chosen 
tours. A random tour has approximately a 50% chance of being better 
than 50% of all tours. However, in this approach the probability that 
the best tour of S is more expensive than 50% of all tours is always 
positive (if we consider only polynomial size samples of random tours). 
The difficulty of the problem by Glover and Punnen is well illustrated by 
the problem [605] to find a tournament on n vertices with the number of 
Hamiltonian cycles exceeding the average number of Hamiltonian cycles 
in a tournament of order n. This problem formulated long time ago has 
not been solved yet. 

5A. Heuristics with Small Domination Numbers 
Chapters 9 and 10 describe experimental results indicating that the 

greedy algorithm performs rather badly in the computational practice 
of the ATSP and STSP, see also [200, 377, 425, 463]. The aim of this 
subsection is to show that greedy-type algorithms are no match, with 
respect to the domination number, to heuristics considered in Subsection 
5.2. This provides some theoretical explanation why "being greedy" is 
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not so good for the TSP. This subsection is based on Gutin, Yeo and 
Zverovich [424]. 

Before considering greedy-type algorithms in detail, we would like 
to notice that Punnen, Margot and Kabadi [684] recently constructed 
STSP instances for which the well-know double tree heuristic produces 
the unique worst tour. Note that these instances even satisfy the trian­
gle inequality, i.e., for them the double tree heuristic computes a tour 
which is at most only twice more expensive than the cheapest tour. The 
authors of [684] also showed that the famous Christofides heuristic is of 
domination number at most [n/2]!. 

The greedy algorithm (GR) builds a tour in (Kn^c) by repeatedly 
choosing the cheapest eligible arc until the chosen arcs form a tour; an 
arc a = uv is eligible if the out-degree of u in D and the in-degree of v 
in D equal zero, where D is the digraph induced by the set S of chosen 
arcs, and a can be added to S without creating a non-Hamiltonian cycle. 
The nearest neighbor algorithm (NN) starts its tour from a fixed vertex 
zi, goes to the nearest vertex Z2 (i.e., 0(21,22) = min{c(zi, j) : j ^ ii}), 
then to the nearest vertex 23 (from 22) distinct from zi and 22, etc. 
Computational experience with NN for the ATSP and STSP is discussed 
in Chapters 9 and 10, and [200, 463]. We will also consider a stronger 
version of NN, the repetitive NN algorithm (RNN)^ which starts NN from 
each of the vertices in turn and chooses the best tour. In the rest of the 
chapter we assume that NN starts from vertex 1. 

The following theorem was first proved in [424]. We give a diff'erent 
proof by adapting the proof of a much more general result from [419]. 
The result holds for a wide family of CO problems including the assign­
ment problem, i.e., the domination number of the greedy algorithm for 
the assignment problem is proved to be 1. 

Theorem 29 The domination number of GR for the TSP is 1. 

Proof: This proof holds for both ATSP and STSP, but for simphcity 
we assume that we deal with the STSP. We will consider tours of STSP 
as sets of their edges. For a set S = {e i , . . . , e^} of edges forming a 
partial tour in Kn (i.e., this set of edges can be extended to a tour), 
Z ( e i , . . . , 65) denotes the set of edges not in S such that each edge from 
Z(e i , . . . , 65) can be added to S to form a (larger) partial tour. 

Let V — {e^, 62 , . . . , e^} be an arbitrary fixed tour and let T be an 
arbitrary tour distinct from ^^ It is easy to see that 

n - l 

^ |Z(e;, e^2,..., e;-) n r | < n{n + l ) /2 . (1) 
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Let M > n, let c{e[) = iM for each e- €  T and, for e ^ V, let 
c(e) = 1 + j M i f e G Z(ei, 65 , . . . , ê ._;̂ ) but e ^ ^(6^, 6 3 , . . . , e^). Clearly, 
GR constructs T' and c(V) = Mn(n + l ) /2 . 

Let T = {ei, 62, . . . , e/c}. Assume that c(ei) G {aM, aM + 1}. Then 
clearly 

ei e Z(ei,e2,. . . ,e '^_i), 

but ei ^ Z(ei, 62 , . . . , e^), so ê  lies in Z{e[, 62 , . . . , e^}) fl T, provided 
j < a — L Thus, ef is counted a times in the sum in (1). Hence, 

n n—1 

c(r) - 5^c (e , )<n + M^|Z({6l ,e '2 , . . . , e ; .} )nr | 
i=l j=0 

< n + M(n(n + l ) / 2 - 1 ) - n - M + c(r ' ) , 

which is less than the cost of T' as M > n. Since GR finds T', and T is 
arbitrary, we see that GR finds the unique most expensive tour. • 

The proof of Theorem 29 implies that the domination number of NN 
for TSP is also 1 (indeed, NN will construct the same tour as GR). 
However, the following two theorems show that the situation is slightly 
better for RNN. 

Theorem 30 [4^4j Let n > 4. The domination number of RNN for the 
ATSP is at least n/2 and at most n — 1. 

Proof: We first consider the following instance of the ATSP, which 
proves that RNN for the ATSP has domination number at most n — 1. 
Let N > 2n. Let all arcs (i,z -f 1), 1 < i < n, have cost iAT, all arcs 
(i, i + 2), 1 < i < n — 2, cost iN-\-1, and all remaining forward arcs (i, j ) 
cost iN + 2. Let a backward arc (i, j ) have cost (j — 1)A .̂ 

When NN tour T starts at i ^ {1, n}, it has the form (i, 1,2,.. . , i — 
1, i + 1, i + 2 , . . . , n, i) and cost 

n - l 

i = Y^kN-N + l. 

When T starts at 1 or n, we simply have T = (1, 2 , . . . ,n, 1) of cost 
Yll^Zi ^^ > ^' Let T denote the set of all tours T described above (note 
that 1̂ 1 — n — 1). Observe that any tour in J^ has cost at least £. Let 
C be any tour not in T. Let B denote the set of backward arcs in C, 
and define the length of a backward arc (i, j ) by z — j . Let q denote the 
sum of the lengths of the arcs in B. Since C is a tour (and therefore 
there is a path from n to 1) we have q > n — 1. The cost of C is at 
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most X]iLi(^^ + 2) - qN - \B\N, since if (ij) is an arc in S, then the 
corresponding term iN + 2 in the sum can be replaced by the real cost 
{j - 1)N = iN + 2-{i-j + 1)N - 2 of the arc. We have 

^{iN + 2)-qN - \B\N <i + 2n + N{n + l - q - \B\) - 1. 

Since C is not in T we have |B| > 2, implying that 2n + N{n + 1 -
q — \B\) — 1 is negative except for the case oi q — n — 1 and | 5 | — 2. We 
may conclude that the cost of C is less than £, as ^ = n — 1 and | 5 | = 2 
would imply that C belongs to J^. Therefore all cycles not in T have 
cost less than those in T. 

In order to prove that RNN has domination number at least n/2, 
assume that this is false, and proceed as follows. RNN constructs n 
tours, but several of them may coincide. By the assumption, there exist 
at least three tours that coincide. Let F = xiX2 . . . XnXi be a tour such 
that F — Fi — Fj = Fk^ where Fs is the tour obtained by starting 
NN at Xs and xi^Xj and Xk are distinct. Without loss of generality, 
we may assume that i — \ and 2 < jf < 1 + (n/2). For every TTI, 
with j < m < n^ let Cm be the tour obtained by deleting the arcs 
(xi, Xi+i), (xj, Xj+i), {xm, Xm-\-i) and adding the arcs 

Note that c{Cm) > c(F), since c{xi^Xi^i) < c(xj,Xj+i) (because we 
used NN from Xi to construct F^), c(xj,Xj+i) < c{xj^Xm-\-i) (since we 
used NN from Xj to construct Fj) and c(x^,x^+i) < c{xm^Xi^i) (since 
NN chose the arc XmXm-i-i on Fj, when the arc XmXi-^i was available). 
Therefore the cost of F is at most that of F, Cj+i, Cj+25 • • • 5 C'̂ , implying 
that the domination number is at least n — j + 1 > n/2, a contradiction. 

We call a tour X1X2 . . . x^xi, xi = 1, of the STSP pyramidal if xi < 
X2 < . . . < x/c > x/c+i > . . . > Xn for some index k. Since every pyrami­
dal tour X1X2 . . . XnXi^ xi — 1, is determined by the set {x2, X3, . . . , x/e_i} 
or the set {x/e+i, Xfc+25 • • •, ^n} (clearly, x/̂  = n), we obtain that the num­
ber of pyramidal tours of the STSP is 2^~^. 

The next theorem gives an upper bound for the domination number 
of RNN for the STSP. Even though the theorem leaves a possibility 
that this domination number is exponential, it is still much smaller than 
e ( ( n - 2 ) ! ) . 

Theorem 31 [424.] Let n > 4. The domination number of RNN for the 
STSP is at most 2"-^. 
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Proof: We consider the following instance of the STSP, which proves 
that RNN for the STSP has domination number at most 2"^'^. Let Â  > 
2n. Let all edges (i, i + 1), 1 < i < n, have cost iN^ all edges (i, i + 2), 
1 < i < n — 2, cost iN + 1, and all remaining edges (i, j ) , i < j , cost 
iN + 2. 

Let CRNN be the cost of the cheapest tour constructed by RNN. It is 
straightforward to verify that 

n - l 

CRNN = c(12 . . . nl) - J ^ zAT + iV + 2. (2) 
i=i 

Let T = xiX2 '.. XnXi be a tour in K^^ xi = 1; we orient all edges of T 
such that T becomes a directed cycle T^ Some of arcs in T' are forward, 
others are backward. For a backward arc e = ( j , ^ , we define its length 
as q{e) = j — i. We denote the sum of the lengths of backward arcs in 
T' by q{T'). (By the definition of a backward arc the length of every 
backward arc is positive.) Let Cmax be the cost of the most expensive 
non-pyramidal tour T. Since the number of pyramidal tours is 2^~^, to 
prove this theorem it suffices to show that Cmax < CRNN-

Observe that q{V) > n for every T' corresponding to a non-pyramidal 
tour T. Let i? be a non-pyramidal tour of cost Cmax, and let ei = {hj) be 
an arc of H'. If ê  is forward, then c{ei) < iN -\- 2, and if ê  is backward, 
then c{ei) <jN + 2 = iN + 2- q{ei)N. Thus, 

n n —1 

Cmax < X ] ( ^ ^ + 2) - q{H')N <Y^iN ^ 2n 

as q{H') > n. Since N > 2n and by (2), we conclude that indeed Cmax < 
CRNN- • 

By the observation in the first paragraph of Subsection 5.1 and the 
lower bound in Theorem 30, the domination number of RNN for the 
STSP is at least n/4. It would be interesting to find the exact values of 
the domination number of RNN for the ATSP and STSP. 

6. Further Research 
Exponential neighborhoods can be included into a quite general ap­

proach in combinatorial optimization (CO): restrict the feasible set of 
solutions of a CO problem such that one can find the best solution of the 
restricted problem in polynomial time. This method, which we suggest 
to call the polynomial restriction approach (PRA) is somewhat dual to 
the analysis of polynomial solvable cases of the TSP: while in the latter 
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one restricts instances to consider, in the PRA we restrict the solution 
set for all instances of the TSP. There is some interaction between the 
two approaches, see e.g. Glover and Punnen [382], but in essence they 
are quite different. Notice that PRA may be of interest not only for 
exponential neighborhoods; non-neighborhood type sets of exponential 
size, where the best tour can be computed in polynomial time, may be 
used in exact algorithms (see below) or in certain meta-heuristics. 

The following approach is obviously hardly practical, but perhaps its 
modifications may be of interest to practical exact algorithms. All tours 
of the ATSP can be enumerated and represented as leaves of a special 
rooted tree T as follows. The root of T (e.g. the first level of T) is 
the vertex 1. Every node of the t th level of T corresponds to a path 

iii2...it in Kn such tha t ii = 1, and every edge of T is of the form 
{iii2...it-i^iii2"'H} and has weight c{it-iit) (except for t = n when 
the weight is c{in-iin) + c(znn))- It is clear how to develop a simple 
branch-and-bound algorithm using T: search T by the means of the 
depth first search. The well-known Held-Karp dynamic programming 
algorithm [443] solves the ATSP to optimality in time 0(n^2 ' ' ) . A simple 
modification of this algorithm can be used to find a cheapest Hamiltonian 

path between a pair of given vertices in Kiogn in time 0 ( n l o g n) . This 
modification can be apphed to cut logn last levels of T , i.e., visit in the 
worst case less than n^^^'^{n — logn)! leaves instead of (n — 1)! leaves. 

Our study of exponential neighborhoods for the ATSP suggests the 
following natural question. 

P r o b l e m 32 Do there exist polynomially searchable neighborhoods of 

size more than G(ev ^/^[^^iijln^) for any positive integer k? 

The following question is stronger in a sense; it was raised by Deineko 
and Woeginger [248], who conjectured that the answer to Problem 33 is 
yes (under the assumption that P T ^ N P ) . 

P r o b l e m 33 Do there exist polynomially searchable neighborhoods of 
size at least [a{n — 1)J! for some fixed a > ^? 

While one can see certain progress in the theoretical study of expo­
nential neighborhoods, their use in computational algorithms has been 
less successful so far. We hope that this chapter will motivate extensive 
experimental study of various exponential neighborhoods. 

The following problem, which we raised earlier, is one of the central 
questions in domination analysis for the TSP. 



256 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

Problem 34 Determine the maximum domination number of a polyno­
mial heuristic for the ATSP (STSP), 

We provided exact values and bounds for the domination number of 
various heuristics for the ATSP and STSP. Observe that, for a given TSP 
instance I , most of TSP heuristics will retain domination number if we 
increase the cost of every arc (edge) in I by the same positive constant 
M. This implies that such heuristics will have the same domination 
number even if we restrict the set of instances from all ATSP (STSP) 
instances to those for which the triangle inequality holds. 

The Euclidean TSP is a special class of STSP instances with tri­
angle inequality and it is of great importance to practice. It would be 
quite interesting to obtain domination number results for Euclidean TSP 
heuristics (where the set of instances is restricted to the Euclidean TSP 
ones). 

The domination number reflects the worst case behavior of a heuristic. 
If the worst case instances of the TSP are rather untypical for some 
heuristic, the domination number may not indicate the true value of the 
heuristic. Perhaps, certain probabilistic parameters, such as the average 
domination number, may provide further indication of the quality of the 
heuristic. 
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