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1. Introduction 
In this chapter we deal with the problem of solving symmetric TSP 

(STSP) instances to optimality. Of course, STSP instances are particular 
cases of asymmetric TSP (ATSP) instances, those for which the distance 
between any two cities is irrelevant of the direction. Therefore we could 
transform any instance of the STSP to an asymmetric one and use the 
results of Chapter 4 to solve it. In fact the techniques of Chapter 4 do 
not perform well when the costs of the arcs (i, j ) and (j, i) only slightly 
differ. Progress in the solution techniques for the STSP is such that it 
is common to transform an ATSP into a symmetric one to solve it to 
optimality (see [474]). 

Various methods have been proposed, among which we can cite, for 
historical reasons, a Lagrangian relaxation algorithm based on 1-trees 
by Held and Karp (see [444] and [445]) and a dynamic programming 
approach that can be found in any text book dealing with dynamic 
programming. Both methods are very hmited, even today, in the size of 
problems they can solve to optimality. Belloni and Lucena have revisited 
the Lagrangian approach to the TSP in [98] and report promising results 
at least for instances that are not too large. The only method that has 
given good, not to say impressive, results is the Branch-and-Cut method 
using the double index formulation of the problem. This method finds 
its foundations in the seminal work of Dantzig, Fulkerson and Johnson 
all the way back in 1954 [239]. 
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The next section contains the double index integer hnear program­
ming model we will use. We will also mention other possible formula­
tions of the problem as integer linear programs. We will explain why 
a substantial amount of theoretical work has to be carried out in order 
to solve large instances of the problem. Those theoretical developments 
will be the subject of sections 3 to 12. The following three sections will 
be devoted to the use of these developments to solve TSP instances to 
optimality. From now on, in this chapter, solve will be understood as 
solve to optimality^ which includes a proof of optimality, even if this 
proof is not easily checkable. Numerical results will be given to show 
that the method indeed works very well on a large set of instances. 

We assume the reader knows the basic concepts of linear algebra deal­
ing with polyhedra. 

Except when specified, we assume that we deal with a complete graph 
Kn = {V^E)^ with n — \V\ representing the number of vertices. Let 
S C V^ then 6{S) (resp. 7(5)) represents the set of edges with exactly 
one endnode in S (resp. both endnodes in 5), i.e. 6{S) — {{u^v) G E : 
u e S,v ^ S} (resp.7(5) = {{u,v) e E : u e S,v e S}). The edge set 
6{S) is in general called the coboundary of S (some authors say cocycle 
of S or cut defined by S). We write S{v) instead of S{{v}) for v £ V. 
For S CV d^ndT CV\S we denote by (5 : T) = {T : S) the set of 
edges with one endnode in S and the other in T. We denote by M^ the 
set of vectors indexed by £", that is the components of a vector of M^ are 
in one to one correspondence with the elements of E. For E^ C E and 
X G M^ we let x(E'^) represent YleeE* ^e- Let G{S) denote the induced 
subgraph on 5, i.e. G{S) = (5,7(5')). Let x* G M^, with x* viewed as 
the capacity of edge e; for 5 C V̂  we call x*(5(5)), the value of the cut 
defined by 5. In the following we will abusively say cut 5 for cut defined 
by 5, that is for 6{S). 

The STSP instances we will mention are taken from the TSPLIB [709]. 
The number in the name of the instance represents the number of cities. 

2. Integer linear programming models 
There are various ways of modelling the STSP as an integer linear 

program. Some contain a polynomial (in n) number of variables and 
constraints, they are said to be compact^ some others only a polynomial 
number of variables but an exponential number of constraints. 

Since a STSP instance can be transformed into an asymmetric one 
by replacing each edge by two oppositely directed arcs of same cost, all 
the integer formulations for the ATSP yield formulations for the STSP. 
There are various known compact formulations for the ATSP, see for 
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example [650] and [291]. We will mention two compact formulations for 
the STSP tha t do not come from the ATSP. 

For computational reasons, which will become clear in this chapter, 
among two integer models, the best is the one whose linear relaxation 
has the highest objective function value. In order for this to make sense 
one must assume that the integer linear programming model is minimal 
in terms of inequalities, since any integer linear programming model 
can be strengthened by the use of vahd inequalities for the underlying 
polyhedron, which will be the subject of most of this chapter. This 
strengthening, at least theoretically, could achieve a value equal to the 
optimal integral value. 

Among all the integer linear programming models known, in this re­
spect, three models emerge and attain the same value for their linear 
relaxations. None is known that attains a higher value. These are the 
multistage insertion formulation of Arthanari [39] (see also [41]), the 
cycle shrink of Carr [169], and finally what is known as the double in­
dex or subtour elimination formulation. This latter formulation will be 
extensively described here since it is the only one that has been used 
so far in computational studies. The multistage-insertion is inspired by 
dynamic programming recursion, that is building up a tour step by step. 
Cycle shrink does the opposite, that is going from a tour to a node. It 
is not surprising then that these two formulations are equivalent, see 
Arthanari and Usha [42] (see also [40] for the equivalence with the dou­
ble index formulation). For the ATSP, Padberg and Sung [650] show 
that the double index formulation dominates all the other known ones. 

We now describe the double index formulation. To every edge e e E 
we associate a variable x^ which will take value 1 if e is in the resulting 
optimal tour and 0 else. The STSP can then be formulated as the 
following integer linear program: 

(IP(STSP)) m i n ^ C e X e (1) 

subject to 

x{5{v)) - 2 for veV (2) 

x{5{S)) > 2 for 3 < | 5 | < \V\/2 (3) 

0 < Xe < 1 for e G £: (4) 

Xe integer for e e E (5) 

Equations (2) just say that two edges have to be chosen incident to any 
vertex. Inequalities (3) forbid cycles which do not contain all the ver­
tices and are called subtour elimination inequalities. If 5 == {v}^ i.e. 
I^l = 1, the corresponding Inequahty (3) is implied by the Equation (2) 
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corresponding to v. Since 5{S) — S{V \ 5), we can restrict the subtour 
elimination inequalities to sets S with at most half the vertices. The 
number of subtour ehmination inequahties is still in ^2(2^ )̂, that is, ex­
ponential in the size of the problem. This may seem to be a serious 
problem, we will discuss this point later on. 

The name double index formulation comes from the ATSP in which 
both extremities of the arcs play different roles and therefore Xij is used 
instead of Xg, creating two indices. When dealing with the STSP this is 
not the case, so we stick to variables Xg and will avoid using the mislead­
ing terminology "double index" and rather use the other usual name of 
subtour elimination formulation which comes from the Inequalities (3). 

Why deal with an exponentially large integer model while the other 
two equivalent, in terms of strength, formulations only have a polynomial 
number of them? This has to do with the fact that separating these 
inequalities is not a problem. We will make this concept of separation 
more precise shortly. 

Why do we prefer formulations with high optimal linear relaxation 
value? This has to do with the solution technique which goes as follows. 

The linear relaxation LP{STSP) of IP{STSP) is the hnear program 
obtained by dropping the integrality conditions (5). The most obvious 
way to solve IP{STSP) is via Branch-and-Bound using as lower bound 
the value of the linear relaxation of the subproblems (see for example 
[209], [826]). The method goes as follows (assuming we are minimizing, 
which is our case) and that the term feasible relates to the integer linear 
program: 

A Branch-and-Bound algorithm for integer Unear program­
ming 

• Initialization: The set of subproblems to solve is initialized to the 
linear program obtained by dropping the integrality conditions on 
the variables. This problem is referred to as the root subproblem. 

• Choose a subproblem: If the list of open problems is empty, 
the best known feasible solution is optimal. Else choose an open 
subproblem and delete it from the list. 

• Treat subproblem: Solve the associated linear program. If the 
solution is integer, go back to Choose a subproblem after eventu­
ally updating the best known integer solution and the best known 
solution value. 

• If the value of the objective function exceeds that of the best known 
feasible solution, go back to Choose a subproblem. 
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• Else, using some linear inequality, partition the current subprob-
lem into two new subproblems. The union of the feasible (integer) 
solutions to each of these two subproblems contains all the fea­
sible solutions of the problem that has been partitioned. This is 
commonly done by choosing a variable with a current fractional 
value Xe, and by creating two subproblems which are added to the 
list of open problems, one in which we impose Xe > I and an­
other in which we impose Xg < 0. (There are other ways of doing 
this, which will be exposed in due time.) These two subproblems 
are called the sons of the current subproblem. Go to Choose a 
subproblem. 

The reader may realize that , as described here, the algorithm is not 
of any use for our problem since none of the linear programs could fit on 
any computer for even relatively small size instances. This is due to the 
number of constraints which is exponential in the number of cities of the 
TSP instance. One way of getting around this is known as constraint 
or row generation. One call to the solution of a linear program, in the 
previous algorithm, will now be replaced by a series of calls. In our case 
it goes as follows. 

Assume we have an algorithm that for a given vector x : E -^ R, seen 
as capacities on the edges of G, returns a minimum capacity cut of G. 
Such an algorithm returns a set 5 C V such that x{6{S)) is minimum. 
The Branch-and-Bound algorithm described above is modified in the 
initialization and the treatment of each subproblem as follows: 

• Init ial izat ion: The set of subproblems to solve is initialized to 
the linear program consisting of Constraints (2) and (4). 

• Treat subprob lem: Until the subproblem is not declared exam­
ined, repeat: Solve the current linear program which yields the 
optimal solution x. Search for S cV such tha t x{6{S)) < 2. If no 
such S exists, the subproblem is e x a m i n e d , else, add x{5{S)) > 2 
to the set of constraints of the current linear program. 

When one has finished treating the first subproblem, which we refer 
to as the rootnode problem^ one has optimized over the STSP subtour 
elimination polytope. 

We are now concerned with two questions: 

• Is there an efficient algorithm to find a minimum capacity cut in 
a weighted undirected graph? 

• Does the number of calls to the minimum capacity cut algorithm 
remain reasonable in practice? 
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To answer the first question, Nagamochi and Ibaraki in [622] and Nag-
amochi, Ono and Ibaraki in [623] give efficient minimum cut algorithms 
in the case of undirected graphs. Padberg and Rinaldi in [646] give very 
efficient preprocessing procedures that significantly accelerate any min­
imum cut algorithm. One can find a study of performances of several 
minimum cut algorithms in Jiinger, Rinaldi and Thienel [476] and in 
Chandra, Chekuri, Goldberg, Karger, Levine and Stein [181]. 

As for the second question, since finding a minimum capacity cut is 
polynomial, using the ellipsoid algorithm, one can, theoretically, finish 
in a polynomial number of iterations (see Grotschel, Lovasz and Schri-
jver [399]). If we use the procedure we just described, almost all problems 
of the TSPLIB require very few iterations. 

The value of the linear relaxation obtained from IP{STSP) by drop­
ping the integrality conditions on the variables (i.e. the root problem), is 
known as the Held and Karp bound or value on the subtour elimination 
polytope. 

Although the Held and Karp bound is very good, it is not good enough 
to be able to solve even average-size STSP instances by the procedure 
just described since the number of subproblems created is far too high. 
We mention here a conjecture, which seems difficult to trace back to its 
origin, but that can be found in Goemans [383] . 

Conjec ture 1 / / the edge costs satisfy the triangular inequality, then 
the optimal value of a tour is at most 4 /3 the value of the Held and 
Karp bound. 

Consider the partition of the vertex set V into V̂ -̂ , i — 0 , . . . , /c, j = 
1 , . . . , 3, with V^ = A and V^ == Z for j == 1 , . . . , 3, and fc > 3. In 
Section 6 this will be called a (/c — 1)- path configuration. Let Cg = 0 if 
e G '^(Yi) for all i and j , ĉ ^̂ ; = 1 if u G V^^ and v e V-^^^ for all i and j , 
Cuv ^^ k — 2 if u e A and v e Z. For all the other edges e = (^ , f ) , let 
Cuv equal the length of a shortest path finking u to v using only edges 
for which the cost has been defined in the preceding lines. For such an 
instance of STSP, the optimal value of a tour is 4/c — 2 and the Held 
and Karp bound is 3/c, therefore the ratio can be made as close as one 
desires from the bound of the conjecture. 

For all the examples of the TSPLIB, the gap is much less than the 
one we would expect from the conjecture. 

The more general procedure known as Branch-and-Cut differs from 
the algorithm described to optimize on the subtour elimination polytope 
in the way a subproblem is treated. One not only tries to generate 
constraints coming from the integer linear formulation but also any linear 
inequality that separates the current fractional solution from the feasible 
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solutions. Such an inequality is called a cutting plane or just a cut. 
Using the term cut would be confusing since it is also a set of edges that 
disconnects an undirected graph. In the following, except for the name 
Branch-and-Cut, we will avoid saying cut for an inequality. Remember 
that we will use cut S in place of cut S{S). 

The next sections will show the existence of a finite set of linear in­
equalities, which can be added to IP{STSP) in such a way that the 
linear relaxation of the newly obtained integer program is always inte­
gral and therefore corresponds to an optimal tour. Unfortunately, as we 
will see, this is only an existence theorem and it is unlikely that we will 
discover that complete set of hnear inequalities in a near future even 
for medium size instances. Table 3.1, which will be commented in the 
next section, gives the number of such inequalities for instances up to 
10 nodes. Fortunately, even a partial knowledge of that description is 
of precious help in solving STSP instances, and that will be the topic of 
the next sections. 

In view of all this the Treat subproblem phase of a Branch-and-Cut 
looks like this: 

Treat subproblem. Repeat until a stopping criterion is attained: 

• Solve the current Ip, let x be its fractional optimal solution x. 

• Find a linear inequality fx > /o satisfied by all incidence vectors 
(see definition in next section) of tours and such that fx< /Q. 

Two stopping criteria are given in Section 19.4. 

3. Introducing the symmetric TSP polytope and 
its various relaxations 

We let Tin (resp. HG) represent the set of tours of the complete 
graph Kn (resp. of graph G). To every tour T e Tin (resp. G HG), we 
associate a vector x^ E M^ such that x^ = 1 if e e T and x^ = 0, else. 
This vector is called indifferently incidence or representative vector of 
r . Some authors use characteristic vector of F. 

3.1. The symmetric TSP polytope 
The symmetric TSP polytope of G, STSPP(G)^ is the convex hull of 

ah the vectors x^ when F ranges over all Hamiltonian cycles of G. When 
G = Kn, we let STSPP{n) stand for STSPP{Kn), i.e. STSPP{n) = 
conv{x^ : F 6 Hn}- When not specified, we assume the underlying 
graph is i^^. 
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n 
3 
4 
5 
6 
7 
8 
9 
10 

# tours 
1 
3 
12 
60 
360 

2 520 
20 160 
181 440 

# different facets 
0 
3 

20 
100 

3 437 
194 187 

42 104 442 
> 51 043 900 866 

# facet classes 
0 
1 
2 
4 
6 
24 
192 

> 15 379 

Table 2.1. Some statistics on STSPP{n) 

It is well known from a theorem of Weyl [823], that STSPP{n) can 
be described by a finite set of linear equations and inequalities. The 
study of the symmetric TSP Polytope consists in finding such hnear 
equations and inequahties. All the Hnear equations are known in the 
case of STSPP{n)^ this is the basis of the proof of Theorem 2. This is 
not the case for STSPP{G) if G is an arbitrary connected graph. 

Before going further on we give an idea of the richness of the facial 
structure of STSPP(n). Table 3.1 is taken from Christof and Reinelt [186]. 
This table gives, for small values of n, the number of tours, the num­
ber of different facets and the number of classes in which they can be 
put. Two facet inducing inequahties for STSPP{n) are said to belong 
to the same class if a renumbering of the vertices transforms one into the 
other. One can observe that this polytope is highly degenerate, that is 
the number of facets incident to a vertex greatly exceeds the minimum 
number of facets needed to define that vertex. As can be seen from this 
table, the complexity of the polytope increases very fast and so does its 
degeneracy. The numbers in the last line are conjectured to be exact. 

The first thing to do, when studying a polyhedron, is to determine its 
dimension. That dimension is not known for STSPP{G) when G is a 
connected arbitrary graph. Note that STSPP{G) is non empty if and 
only if G is Hamiltonian. 

For complete graphs, the polytope,dimension is given by the following 
theorem. 

Theorem 2 The dimension ofSTSPP{n) is \E\ - \V\. 

Proof: (sketch): For n = 3 there is only one tour, so the theorem is true 
in that case. Equations (2) are linearly independent, so the dimension 
cannot be more that what is announced in the theorem. It is therefore 
enough to exhibit |£^| — |y | + 1 affinely independent tours. For this we 
use a theorem on the partition of the edges of Kn-i- If n == 2A: + 1, then 
the edges of Kn-i can be partitioned into k edge disjoint Hamiltonian 
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cycles. If n = 2/c, then the edges of Kn-i can be partitioned into fc — 1 
edge disjoint Hamiltonian cycles and a perfect matching. For n odd, 
for each of the (n — l ) / 2 disjoint Hamiltonian cycles tha t partition the 
edges of Kn-i and each edge of that cycle, we create one Hamiltonian 
cycle of Kn by inserting node n between the endnodes of tha t edge, i.e. 
if e = (^,i), we remove edge e and add the two edges ( i ,n) and (j , n) . 
In the other case, for the Hamiltonian cycles of the partition, we do the 
same thing. As for the perfect matching, we complete it arbitrarily to 
a Hamiltonian cycle, and do as previously only with the edges of the 
perfect matching. We leave it to the reader to check that in both case 
we have the right number of cycles and that the corresponding vectors 
are afRnely independent. • 

R e m a r k 3 Another proof not using the decomposition of the edges of 
Kn is given by Queyranne and Wang in [687]. 

Corollary 4 Any Equation in the description of STSPP{n) is a linear 
combination of the Equations (2). Therefore Equations (2) are the only 
necessary equations in a minimal description. 

R e m a r k 5 In Chapter 11, the problem of characterizing the cost func­
tions such that all Hamiltonian cycles have the same cost (constant TSP) 
is raised. If one knows a maximal linearly independent set of linear 
equations dx — CQ for i = 1^. . .p, satisfied by all the incidence vectors 
of Hamiltonian cycles, one has the dimension of STSPP{G) and also 
a solution to the constant STSP problem. Let c be a cost function on 
the edges such that all Hamiltonian cycles of G have the same cost CQ, 
then ex = CQ is a linear equations satisfied by all Hamiltonian cycles of 
G and is therefore a linear combination of the equations dx = CQ for 
i^l,...p. 

In the case of complete graphs this yields: 

Corol lary 6 (see also Chapter 11) The only cost functions on the edges 
that have the property that all Hamiltonian cycles of the complete graph 
have the same cost, are those obtained from any function TT : F —> M and 
by setting c^ — 7r(z) + 7r(j) for all e — (i^j). 

Proof: Let c : £* -^ M be such that all the tours have a cost of CQ. Then 
ex — Co is an equation satisfied by all tours, and therefore, by Theorem 2, 
must be a linear combination of the equations (2). The coefficients of 
that hnear combination are the 7r(i)'s. • 

Finding the dimension for general graphs is much more complex and 
only very few results are known. In fact deciding whether STSPP{G) 7̂  
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0 is NP-complete. The reason is that the set of equations is difficult 
to find, since some constraints written as inequahties turn out to be 
equations. Take for example the case of Figure 2.1. There is an impficit 
equation, linearly independent from the degree constraints, namely tha t 
all tours contain exactly two of the three horizontal edges, therefore the 
subtour inequality defined by one of the triangles is in fact an equation. 

Figure 2.1. The diamond graph 

For G a Hahn graphs (see Cornuejols, Naddef and Pulleyblank [220]), 
a complete description of STSPP{G) is known. This case was gener­
alized to classes of graphs which have the property to "decompose", in 
some way, using three-edge cutsets (see Cornuejols, Naddef and Pulley-
blank [221]). It would be a nice result to characterize those graphs for 
which Constraints (2) to (4) of the linear relaxation of IP{STSP) de­
scribe STSPP{G). We will mention, later on, such a result but for the 
convex hull of spanning closed walks^ a spanning closed walk being a cy­
cle visiting each vertex at least once (any edge can be used an arbitrary 
number of times). 

From now on we restrict to the case of complete graphs. Non full 
dimensional polyhedra have the undesirable property that an infinite 
number of linear inequalities define the same facet, unlike the case of 
full dimensional ones where a facet is described by a unique inequality 
up to scaling by a strictly positive factor. The following theorem, which 
in fact is a corollary of Theorem 2, deals with two representations of the 
same facet of STSPP{n)^ where A is the node-edge incidence matr ix of 

Kn. 

T h e o r e m 7 Let fx > fo be a facet inducing inequality of STSPP{n). 
The valid inequality gx > go defines the same facet if and only if there 
exists n : V —^ R and TTQ G M^ TTQ > 0, such that: g = TTQ/ + TTA and 
go = TTo/o -h 2 YlieV ^^ 

Testing whether two facet inducing linear inequalities define or not 
the same facet can be solved in 0{n'^) using the following algorithm 
of F.Margot [582]. Choose a spanning tree T and add an edge e* that 



Polyhedral Theory and Branch-and-Cut Algorithms for the STSP 39 

creates an odd cycle when added to the edges of T. Solve for the variables 
TT̂ , z > 1 as a function of TTQ using the set of n equations relative to each 
edge of T + {e*}. This can be performed in 0{n) time. Solve for TTQ 
using the right hand sides. In 0{ri^) time check whether the solution 
satisfies the equations relative to all the edges not in T + {e*}. 

The usual way to tackle the problem of multiple linear descriptions 
of the same facet, is to embed the non full dimensional polyhedron in a 
full dimensional one. In general we require the original polyhedron to 
be a face of the full dimensional one. The larger polyhedron is called a 
relaxation of the smaller one. A first step is to study a minimal linear 
description of the relaxation, which is unique (up to scahng by a positive 
integer), and then try to see which facets of the relaxation define facets 
of the original polyhedron. 

We now turn to the various relaxations that have been used to study 
STSPP(n) . 

3.2. The monotone Relaxation 
Historically this has been the first relaxation used in the study of 

STSPP(n) [195], [402], [401], [403], [404], [642]. The monotone STSP 
polytope is the convex hull of the incidence vectors of the tours and all 
edge subsets of tours of Kn- It is trivially of full dimension since the 
empty set is a subset of a tour, and the sets consisting of a single edge are 
also subsets of tours, since, in Kn^ every edge belongs to some tour (in 
fact each edge appears in (n—2)! different tours). Balas and Fischetti [74] 
give some very simple conditions under which facet inducing inequalities 
of the monotone STSP polytope yield facets of STSPP{n). 

We will not detail this relaxation since it seems to have attained its 
limits and is nowadays only very seldom used. We will pass over relax­
ations of STSPP{n) using the 2-matching polytope which has received 
very httle attention (see Cornuejols and Pulleyblank [224], [225], [223]) 
and turn to two much more interesting relaxations. 

3.3. The Hamiltonian path relaxation 
This relaxation is due to Queyranne and Wang [687]. They observed 

that there is a bijection between the tours of Kn^i and the Hamiltonian 
paths of Kn. Let HP(n) denote the convex hull of the representative 
vectors of all the Hamiltonian paths (no fixed extremities) of Kn^ The 
following theorem states that this polytope is near full dimensional. 

T h e o r e m 8 Dim(HP(n))='^^^^ - 1 
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Proof: Note that x{En) = n — 1 holds for all representative vectors of 
Hamiltonian paths of Kn- Hence the dimension cannot be more than 
stated. Let fx — /o be an equation satisfied by all Hamiltonian paths 
of Kn^ Let e\ and e^ be any two different edges of K^ and let F be a 
Hamiltonian cycle of K^ containing these two edges, which always exists. 
Let Pi — r \ { e i } , for i = 1,2, be two Hamiltonian paths obtained from F 
by removing one of the edges e\ and 62 respectively. We have jx^^ — /o 
and /x^2 := y-Q ^^^ therefore jx^^ — /x^^ — ^ — j^^ — f^^^ Therefore 
/ei = /e2, and since ei and 62 are arbitrary, /e is a constant for e G E^ 
tha t is fx = /o is a multiple of x[En) = n — 1. • 

The main interest of this approach is that it provides a normalized 
form for the linear inequalities defining facets of STSPP{n). A facet 
defining inequality fx < /o for STSPP{n) is in normalized form if: 

• /e = 0 for all e E 5({1}) 

• / e > O f o r a l l e G £ ; \ ( 5 ( { l } ) 

• 3 e G £ ; \ 5 ( { l } ) such t h a t / e = 0 

• min{/e :eeE\ 6{{1}) and /e > 0} = 1 

T h e o r e m 9 Every facet defining inequality of STSPP{n) has a unique 
normalized form 

Proof: See [687]. • 
How difficult is it to find the normalized form of the facet defined 

by a facet inducing inequality / x < /o? Queyranne and Wang give a 
0(71^) algorithm to do so. This yields another 0{n'^) algorithm to check 
whether or not two facet defining inequalities define the same facet of 
STSPP{n). To do so, find the normalized form of the facet defined 
by each. If they are identical, the facets are the same, else they are 
different. We will give later on another standard form for STSPP{n) 
facet defining inequalities, which will only lead to a 0{n^) algorithm for 
the problem of recognizing whether or not two inequalities define the 
same facet of STSPP{n). 

3.4. The graphical relaxation 
Let G = (y, E) be a connected, not necessarily complete, graph. A 

spanning closed walk H^ of G is a family of edges of G (in a family 
we assume a same element can appear more than once) such that the 
graph (y, W*) is eulerian^ where W* is a set of edges obtained from W 
by replicating an edge as many times as it appears in W. An eulerian 
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graph is a connected multigraph in which each vertex is incident to an 
even number of edges. Figure 2.2 shows a graph and one of its closed 
walks. We will a lways assume closed walks to be spanning and therefore 
omit the word spanning from now on. 

Figure 2.2. A graph and one of its closed walks 

We can assign a vector x w to a closed walk W such that x^ 
represents the number of times e appears in W. 

The Graphical Traveling Salesman Polyhedron of G, GTSPP{G)^ is 
the convex hull of all the representative vectors of closed walks of G. 
As we will see, GTSPP{n) = GTSPP{Kn) has very strong ties with 
STSPP{n)^ which explains why today this is the most used relax­
ation to study the latter polytope. Note that STSPP{n) is the face 
of GTSPP{n) defined by x{E) = n. 

If M̂  is a closed walk of G, then so is H^ + {2k){e} (the walk obtained 
from W by going k times back and forth along edge e) for any positive 
integer k , and therefore GTSPP{G) in an unbounded polyhedron if G 
is connected and has at least two vertices. 

The problem of finding a closed walk of minimum cost in G is called 
the Graphical Traveling Salesman Problem on G, GTSP{G). The term 
"graphical" may not be the most suitable, but at the time it was defined 
in [219], the idea was to reflect the fact that this version of the travehng 
salesman problem has an optimal solution as long as the graph is con­
nected. Note that if some edge e is such that Cg < 0, then the problem 
has no finite optimal solution since adding to any solution two copies 
of edge e strictly decreases its value. If all edge costs are non-negative, 
then there is an optimal solution in which no edge will appear more 
than twice. Finally note that if in addition the edge costs satisfy the 
triangular inequality and G — Kn^ then there is an optimal solution to 
GTSP[n) which is also a solution to STSP{n). 

T h e o r e m 10 If G is connected, then GTSPP{G) is of full dimension, 
otherwise it is empty. 
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Proof: If G is not connected, then no closed walk exists. Else let W be 
any given closed walk. Consider the |£^| closed walks We = W + 2{e} 
for all e G £ .̂ The representative vectors of those \E\ closed walks and 
tha t of W are affinely independent. • 

The following theorem shows that if G has no bridge^ tha t is an edge 
the removal of which disconnects the graph, then the convex hull of the 
extreme points of GTSPP{G) is a polytope of full dimension. If edge 
e is a bridge, then each closed walk which corresponds to an extreme 
point uses exactly twice that edge, and therefore Xg = 2 is an equation 
satisfied by all such walks. 

T h e o r e m 11 If G is connected with k bridges, then the convex hull of 
the extreme points of GTSPP{G) is a polytope of dimension \E\ — k. 

Proof: See [219]. • 

T h e o r e m 12 The inequality Xg > 0 defines a facet of GTSPP{G) if 
and only if the edge e is not a bridge. 

Proof: If e is a bridge, then Xe >2 holds for every closed walk of G, If 
e is not a bridge, then there exists a closed walk W of G \ {e}. Consider 
the \E\ - 1 closed walks Wj = W + 2 { / } for every f e E\ {e}. The 
representative vectors of these closed walks together with tha t of W are 
affinely independent. • 

T h e o r e m 13 Let S cV, then x{S{S)) >2 is a facet ofGTSPP{G) if 
and only if the induced subgraphs G{S) and G{V \ S) are connected. 

Proof: If, say, G{S) is not connected, then x(5(S)) > 4 holds for all 
closed walks and therefore the inequality x{5{S)) > 2 is not even sup­
porting for GTSPP{G). Conversely, for each e G ^(5) , let We be a closed 
walk tha t contains twice e and no other edge of 6{S). Let We* be one of 
the just defined closed walks. For all e ^ 5(5) , let We = We* + 2 { e } . The 
\E\ representative vectors of these closed walks are affinely independent 
and all satisfy the inequality with equality. • 

The reader may be surprised at this point that we did not give a 
formulation of GTSP{G) as an integer linear program. The problem is 
tha t no such formulation is known. All we can write is the following: 

mincx (6) 

subject to 

x{6{S)) > 2 and e v e n for 1 < | 5 | < \V\/2 (7) 

Xe>0 and integer for e e E (8) 
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Research Ques t ion 14 Find an integer linear formulation for the gra­
phical traveling salesman problem using only the variables of the double 
index formulation. 

The previous question needs to be made more precise. It is known 
that there does not exist a set of Unear inequahties with the property 
that all points with integral components inside the polyhedron defined 
by these inequalities correspond to closed walks. The question is to find 
a set of linear inequalities such that all integral extreme points of the 
polyhedron they define correspond to spanning closed walks. 

As suggested by M. Fischetti, one could change the space of variables, 
associating an integer variable 2/̂  ^ N to each node u^ and add the 
constraints x{S{u)) — 2yu. 

Fonlupt and Naddef [317] characterized those graphs G for which the 
following set of hnear inequahties defines GTSPP(G) 

x{5{S)) > 2 for 1 < \S\ < \V\/2 

Xe> 0 for e e E 
(9) 

(10) 

A minor of a graph G is any graph H tha t can be obtained from G 
by recursively performing the following operations in some order. 

1 (edge deletion) Remove an edge from the current graph 

2 (edge contraction) Remove an edge from the current graph and 
identify its two extremities. 

T h e o r e m 15 Inequalities (9) and (10) describe GTSPP{G) if and only 
if the graph G does not contain, as a minor, one of the three graphs shown 
in Figure 2.3. 

Proof: The proof is very long and technical. See [317]. • 

Figure 2.3. Excluded minors for Theorem 15 
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Graphs without such minors are well characterized, in the sense that 
they are easy to recognize. There is a small set of minimal graphs 
of the family called bricks. Given two graphs of the family, one can 
compose them in two ways to obtain a new graph of the family. One 
is by identifying a node of each, the second by identifying two nodes of 
each. Each non minimal graph of the family is obtained from two smaller 
ones of the family. Conversely, using disconnecting sets of one or two 
nodes, we can decompose the graph into smaller graphs recursively. At 
the end, if all obtained graphs belong to the list of possible starting 
bricks, then the graph belongs to the family. For more details see [317]. 

A similar characterization for the convex hull of Hamiltonian cycles 
is not known. Cornuejols, Naddef and PuUeyblank, in [220] and [221], 
give families of graphs, which includes the Halin graphs, for which the 
convex hull of the Hamiltonian cycles is given by the degree constraints 
and the subtour elimination inequalities. 

There are other known families of TSP instances that can be solved 
to optimahty using only these inequalities in the formulation. But in 
these families, this is due to the objective function. Papadimitriou and 
Steiglitz [654] gave a family of TSP instances known as the Papadim­
itriou and Steiglitz's traps designed to defeat any attempt to solve them 
by a fc — OPT procedure, that is a procedure in which at each iteration 
one tries to replace a tour by a better one differing from it by at most 
k edges. Padberg and T.Y Sung [649] have shown that these graphs 
always yield an integral solution to the linear program obtained by Con­
straints (2), (3) and (4). The polytope on these constraints is in general 
called the subtour elimination polytope. The same has been observed 
by Althaus and Mehlhorn [20] for TSP problems arising in curve recon­
struction. It yields a polynomial reconstruction algorithm. These two 
last examples are studied in Chapter 11. Moreover, in some experimen­
tal results, G. Rinaldi has observed that if the distance between cities is 
independently and uniformly randomly generated in some large interval, 
optimizing over the subtour elimination polytope almost always yields 
integer optimal solutions. 

We now study more in depth the strong relationship between 
GTSPP{n) and STSPP{n). 

4. The graphical relaxation Framework 
Except when otherwise specified, graphs are assumed to be complete. 
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4.1. General theorems 
We introduce first some notation. The same way that we represented 

the set of all tours of Kn by Hn, we represent the set of all closed walks of 
Kn by W*. A minimal closed walk is a closed walk tha t does not contain 
a subfamily of edges which is also a closed walk. In particular, a minimal 
closed walk never contains an edge more than twice. The converse is of 
course false. The set of minimal closed walks is represented by Wn-

From now on we do not differentiate sets of edges and the vectors tha t 
represent them. Therefore when we talk of a tour or a closed walk it is 
either a set of edges or its representative vector. 

Given an inequality / x > /o, valid for STSPP{n) (resp. GTSPP{n))^ 
we call extremal those tours (resp. minimal closed walks) which satisfy 
that inequality with equality. We let Tij (resp. W ? ) represent the set 
of extremal tours (resp. minimal walks) with respect to fx>fo. We 
will also often say that a tour of Hj is tight for / x > /o, the same for 
the closed walks. 

A trivial remark is tha t for any valid inequahty fx > /o of GTSPP{n)^ 
we have /e > 0 for all e e E. This comes from the fact that if fe* < 0 
for some e* G E^ then adding enough copies of e* to any closed walk will 
bring its value below /o, contradicting that it is a valid inequality. 

For any inequality fx > /o defined on K^ and for each node u e V, 
we define the set A / ( u ) by : 

Af{u) = {{v, w) e E : V ^ u,w ^ ujy^ = f^y -{- f ^ ^ } . (11) 

The set Af{u) plays a central role in our study of STSPP{n) and 
GTSPP{n). 

Another central notion in the study of GTSPP{n) is that of tight 
triangular inequality. 

Definit ion 16 An inequality fx > /o defined on K^ is said to be tight 
triangular or in tight triangular form if the following conditions are 
satisfied: 

(a) The coefficients fe satisfy the triangular inequality, i.e. fuv ^ 
fuw + fwv for each triplet {u^ v^ w) of distinct nodes of V. 

(h) Af{u) ^d) for allueV 

We will abbreviate "tight triangular" by "TT" . The following theorem 
shows that almost all facet defining inequalities for GTSPP{n) are tight 
triangular. 

T h e o r e m 17 A facet defining inequality fx > /o for GTSPP{n) falls 
in one of the following three categories: 
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(i) trivial inequalities Xe > 0 for all e ^ E 

(a) degree inequality x{6{v)) > 2 for all v E V 

(Hi) tight triangular inequalities 

Proof: Let fx > /o be a facet defining inequality for GTSPP{n). 
Suppose it does not satisfy condition (a) of Definition 16. Then there 
is a triplet of vertices u^ v^ w such that fuv > fuw + fwv If there 
is a walk Wuv G Wj containing the edge {u^v)^ then the closed walk 

W' = W^^ + {(?i,iL')}H- {{w^v)} — {{u^v)} is such that fx^ < /o, which 
contradicts the fact that the inequality is valid. Therefore no closed 
walk of WT contains the edge {u^ v) and the facet is tha t defined by 
^uv ^ 0. Now assume that the inequality satisfies (a) but not (b) of 
Definition 16. Therefore there exists u e V such that for all pairs of 
distinct nodes v and w oi V \ {u}^ we have fy^ < fuv + fuw If there 
is a closed walk W G W f such that the degree of î  in VF is at least 4, 
then there always exists two neighbors t and z (see Figure 2.4) of î  on 
W such that W = W -}- {{t^z)} — {(ix, t) , (i^, z)} is also a closed walk (if 
(li, t) or {u^ z) appears more than once in W^ we only remove one copy). 
We have by hypothesis, that fx^ < /o, contradicting the validity of 
the inequality. Therefore all closed walks W G W f which do satisfy 
condition (a) and not condition (b) satisfy x[5{u)) = 2 for some u EV . 

Figure 2.4- Examples of "shortcuts" 

Corollary 18 Let fx > fo be a facet defining TT inequality for 
GTSPP{n). Then 

(a) for every edge e E E there exists a closed walk W G WT such that 
ee W 

(h) for every node v EV there exists a closed walk W G Wj such that 
V has degree at least 4 ^^ W. 
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R e m a r k 19 All facet defining TT inequalities fx > /o for GTSPP{n) 
have the following structural property. There exists a unique partition 
V i , . . . , V^-,..., V/e of the vertex set V such that fe — fij > 0 for all 
e G (Vi : Vj), i / j , and f^ = 0 if and only if e e E{Vj) for some j , 
l<j<k. 

Proof: Let V i , . . . , l^-,..., V/. be the vertex sets of the connected com­
ponents of the graph G^ = {V, E^), where E^ = {e e E : fe = 0}. Let 
e e E{Vj) and We €  Wj such that e G We. Assume fe > 0. There is a 
path in Vj linking the extremities of e and for which all the edges have 
a coefficient of 0. The closed walk W* obtained from We by removing 
e and by adding the edges of that path is such that fx^* < /o, which 
contradicts the vaUdity of fx>fo. Now let e and e' be two edges of 
{Vi : Vj) and assume /g/ < fe- Let We G WT such that e e WQ. The 
closed walk VF* obtained from We by removing e and adding the edges 
of a path in Vi from the extremity of e to the one of e' it contains, the 
edge e' and the edges of a path in Vj from the extremity of e' to the one 
of e it contains, does not satisfy the inequality fx>fo. Note that the 
existence of We in all cases is guaranteed since otherwise the inequality 
would be Xe > 0, which is not tight triangular. • 

If, in the partition of Remark 19, all the sets have cardinality 1, we 
say that the inequality fx > /o is simple. As we will see, it is often 
convenient to study, first, simple inequalities and then to obtain the 
more general inequalities via the node lifting procedures described in 
Section 4.3. 

Definit ion 20 For every ordered triplet (u, t, z) of distinct nodes in V, 
we call shortcut on {u^ t, z) the vector Sutz ^ IK defined by: 

1 ife={t,z) 
5ntz(e) = <( - 1 ifee{{u,t),{u,z)} 

0 otherwise 

Let W G W f with strictly more than n edges. The following lemma 
will be very useful: 

L e m m a 21 Let fx > fo be a TT inequality supporting for GTSPP{n) 
and let W G Wj be a closed walk with t > n edges containing a certain 
edge e*. For every vertex u with degree k > A in W, there exists a 
shortcut Suvw such that x^ + Suvw ^ V^T, contains e* and has t — 1 
edges. 

Proof: Easy, see [618]. • 
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Corol lary 22 Let fx > fo be a facet defining TT inequality for 
GTSPP{n). Then, for each edge e e E, there exists H G Hj that 
contains e. 

The following lemma shows how to transform a facet inducing inequal­
ity for STSPP{n) into an equivalent one in T T form. 

L e m m a 23 Let hx > HQ be a facet defining inequality for STSPP{n). 
An inequality fx > fo equivalent to hx > ho is tight triangular if and 
only if f = 7rA + TTQ/I and fo = 2 Y^^^w ^u + TTQ/̂ O where (TT, TTQ) satisfy 

TTu = -7Tomax{h{v^ w) — h{u^ v) — h{u^ w) : u^v^w G V^u ^ v ^ w} (12) 

Proof: It is straightforward to check that if (TT, TTQ) satisfies Equa­
tion (12), the inequality fx > fo is tight triangular. Suppose tha t 
fx > fo is tight triangular. Condition (a) of the definition of tight 
triangularity imposes that 

TTu > -7Tomax{h{v, w) — h{u, v) — h{u, w) \ u^v^w eV,u ^ v ^ w] (13) 

The second condition of that definition implies the existence of a triple 
of distinct vertices u^ v^ w for which (13) holds with equality. • 

A basis of a facet defining inequality fx > fo for GTSPP{n) is a 
set Bf of \E\ closed walks in WT whose incidence vectors are linearly 
independent. A closed walk W is almost Hamiltonian inuiiu has degree 
4 in VF and all other vertices have degree 2. 

Defini t ion 24 A basis Bf of a facet defining inequality fx > fo of 
GTSPP{n) is called canonical if it contains \E\ — n Hamiltonian cycles 
and n almost Hamiltonian walks. 

T h e o r e m 25 A non-tivial TT inequality fx > fo which is facet defining 
forSTSPP{n) defines a facet ofGTSPP{n). 

Proof: We just show how to build a basis Bf. Since the inequahty 
is facet defining for STSPP[n), there exists \E\ — n linearly indepen­
dent Hamiltonian cycles in Hj. We now construct n almost Hamiltonian 
walks, one for each u eV. Let e — ( '̂, w) e A / (u ) and Fe G HJ a Hamil­
tonian cycle containing e, which exists as the inequality is not equivalent 
to the trivial inequahty Xg > 0. Let Wu = Fg — {e} + {(^^,^'), (u^w)}. 
All we have to prove is that the previously mentioned \E\ — n Hamilto­
nian cycles together with these n almost Hamiltonian walks are linearly 
independent. This can be found in [618]. • 
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Note that the facet inducing inequahty Xg < 1 for STSPP{n) has a 
TT-form which is x{6{{u,v})) > 2 where e — {u,v)^ which we already 
know is facet inducing for GTSPP{n). The following theorem shows 
the strong relationship between STSPP{n) and GTSPP{n). 

T h e o r e m 26 Every non-tivial facet of STSPP{n) is contained in ex­
actly n + 1 facets of GTSPP{n), n of which are defined by the degree 
inequalities. 

Proof: Let F be a non-tivial facet of STSPP{n), Then F belongs to the 
n facets of GTSPP{n) defined by the degree inequalities x{5{{v])) > 2, 
for all V e V. Every other facet of GTSPP{n) containing F is defined 
by a TT-inequality. By Lemma 23, there is only one such facet and the 
theorem follows. • 

This theorem shows that the polyhedral structure of STSPP{n) is 
very closely related to tha t of GTSPP[n). 

A corollary of this theorem is that the TT-form is a canonical way of 
expressing the facets of STSPP{n). Therefore, together with Lemma 23, 
it leads to a 0{n'^) algorithm to recognize whether or not two facet in­
ducing inequalities of STSPP{n) define the same facet which, as already 
mentioned, it is not as good as Margot's or Queyranne and Wang's 0{n?) 
algorithms. 

We will study the polyhedral structure of GTSPP{n) in more detail 
in the next sections. At this point, the reader may want to skip the rest 
of this section which addresses very technical aspects of the study of 
STSPP{n). In particular, we address the problem of finding sufficient 
conditions for a facet defining inequality of GTSPP{n) to define a facet 
of STSPP(n). Note that , at the time of writing this chapter, no tight 
triangular facet inducing inequahty for GTSPP{n) is known tha t is not 
also one for STSPP{n) (except of course the degree inequalities). 

From Definition 24, a facet inducing T T inequality for GTSPP{n) 
defines a facet for STSPP{n) if and only if it has a canonical basis. In 
the following we investigate sufficient conditions for the existence of a 
canonical basis. The following remark is central in the approach to such 
conditions. 

R e m a r k 27 Let fx > fo be a TT facet defining inequality for 
GTSPP{n) and Bf be one of its bases. Let {Wu : u G V} be a set of n 
almost Hamiltonian walks of Wy, where Wu is almost Hamiltonian in 
u. If every closed walk of Bf can be reduced to a cycle of Tij by using 
only shortcuts obtained by a linear combination of the incidence vectors 
of elements of Af — Hj U {Wu : u G V}, then Af contains a canonical 
basis of fx > / Q . That is, all the incidence vectors of the closed walks T 
of Bf can be expressed as a linear combination of the incidence vectors 
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of elements in Af. In general, it is sufficient that every shortcut can be 
obtained as a linear combination of the incidence vectors of elements in 
Af with coefficients in M. To obtain simple sufficient conditions we will 
restrict the coefficients to { — 1,0,1}. 

Let e = {u^v) and e' — (w^y) be two distinct edges of E. We say 
tha t e and e' are f-adjacent if there exists a Hamiltonian cycle in Hj 
containing both e and e'. Let 2; be a vertex in F , we say that e and e' 
are f-adjacent in z if: 

(i) e and e' belong to Af{z)] 

(ii) There exists a closed walk Wz G WT almost Hamiltonian in z tha t 

contains {z^u)^ i^^"^)^ {^^^) ^^d (z^y); 

(iii) Wz — {(2:, u)^ (z, v)} + {e} is a Hamiltonian cycle (and therefore so 
isW,-{iz,w),iz,y)} + {e'}). 

A set of edges J C £̂  is said to be f-connected if for every pair 
of distinct edges ei , 62 G J , there exists a sequence of edges e'^ — 
ei, 6 2 , . . . , e'/e-i' ^k ~ ^2 in ^-> such that for i = 1 , . . . , fc — 1, ê  is / -
adjacent to ê _̂ ]̂ . A set of edges J C E is said to be f-connected in z if 
for every pair of distinct edges, ei and 62 G J , there exists a sequence 
of edges e[ — ei , 6 2 , . . . , e^_i, ^]^ — e^'w^ E (not necessarily in J ) , such 
that for i = 1 , . . . , /c — 1, ê  is /-adjacent in z to ê _̂ .̂ Observe tha t the 
notion of /-connectivity in z is weaker than that of /-connectivity. Any 
subset of a f-connected set in z is also f-connected in z. 

L e m m a 28 Let fx > fo be a TTfacet defining inequality ofGTSPP{n). 
If Af{u) is f-connected in u for every u E V, then fx > /o has a canon­
ical basis, hence it is facet defining for STSPP{n). 

Proof: Let u e V and {Wu : u G V} be any set of n almost Hamiltonian 
walks of W J . This set always exists, by Corollary 22, since fx > /o is 
tight triangular it can be constructed as in the proof of Theorem 25. By 
Lemma 21 there exists a shortcut Suyz with (y,^) G A/(i / ) that can be 
used to reduce Wu to a Hamiltonian cycle T G Hj. We therefore have 
Suyz — x^ — x^^^ hence Suyz is a linear combination with coefficients 
in {—1,1} of incidence vectors of elements from Af — Hj U {Wu : 
u G V}. If |A j (u ) | — 1, we are done. Else let e = {v^w) and e' = 
(y^z) be two distinct edges of Af{u) which are /-adjacent in u. Let us 
assume that the shortcut Suyz is a linear combination with coefficients 
in {—1,1} of incidence vectors of elements from Af. Since e and e' are 
/-adjacent in ix, there exist a closed walk W^ G Wj almost Hamiltonian 
in u which contains (u^v)^ ( '^ ,^) , ('^,2/) Q̂ nd {u^z). We have Fi = 
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W;, - {{u,y), {u,z)} + {{y,z)} G Hj and r2 = W^^ - {{u,v),{u,w)} + 
{{v,w)} e Hj, by triangular inequality. The shortcut 5̂ ,̂ ^̂ ; can be 

expressed as: Suvw = ^^^ — ^^^ + Suyz^ hence it is a linear combination 
with coefficients in {—1,1} of incidence vectors of closed walks from Af. 
By the assumption that Af{u) is /-connected in u, it follows tha t for all 
u e V and ah {v,w) e A/( t i ) , the shortcuts Suvw can be expressed as 
a linear combination of the incidence vectors of elements in Af^ and by 
Remark 27 the lemma follows. • 

The conditions of this lemma are too restrictive in general. We give 
now a weaker version, which is the one that is in general used in proving 
facet inducing results for STSPPin) from results for GTSPP(n). 

L e m m a 29 Let fx > fo be a TT facet defining inequality ofGTSPP{n). 
If there exists a basis Bf of fx > fo and for every u E V there exists 
a nonempty set of edges Ju Q Af{u), f-connected in u, such that ev­
ery closed walk W E Bf can be reduced to a tour of Hj by using only 
shortcuts from the set {suvw • i^^'^) ^ Ju^'a G V}, then fx > fo has a 
canonical basis, hence it is facet defining for STSPP{n). 

Proof: For every u eV^ let (v^w) be any edge in J^ By Corollary 22 
there exists F G Hj containing the edge (v^w). Let Wu be the almost 
Hamiltonian walk defined by W^ = F — (v^w) -{- {u^v) -f {u^w). By 
Remark 27 and a process analogous to that of the proof of the preceding 
lemma, it follows tha t the set Aj = Hj U {W^ : u e V} contains a 
canonical basis for fx > fo and the lemma follows. • 

We now turn to the problem of deriving facet inducing inequalities for 
GTSPP{n) and for STSPP{n) from other such inequahties. The first 
way we will s tudy is via composition of two facet inducing inequalities, 
the second will be via what we will call node lifting. 

4.2. Composition of inequalities 
In [616], a composition of vahd inequalities known as the s-sum is 

defined. We will focus here on the case of 2-sums. For sake of simplicity 
we will assume tha t the inequalities fx > fo we deal with are simple^ 
that is /e > 0 for all e e E. 

For the reader with some knowledge of the traveling salesman poly-
tope, the 2 — sum composition we describe here, can be used to build 
chque tree inequalities from comb inequalities. 

We say that two edge weighted graphs G^ = {V^, E^, f^) and G^ = 
(F^, E'^^ / ^ ) are isomorphic if there exists a one to one correspondence 
between their vertex sets that preserves the weights on the edges. 
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Defini t ion 30 Let f^x > /Q and px > /Q be two TT inequalities valid 
for GTSPP{ni) = lv\E^) and GTSPP{n2) = (V^^E^), respectively. 
Let ei == {ui^vi) G Ei and e^ = {u2^V2) G E2 he two edges such that 
fei — fe2 ~ ^ ^ ^' Then a 2 — sum inequality obtained by identifying 
ui with U2 (called now u) and vi with v^ (called now v) is the inequality 
fx>fQ+fQ— 2e defined on G = Kn with n — n\+ n2 — 2 as follows: 

1 Vn = {v^ \ {uu vi}) u (y2 \ {̂ ,2, ^2}) u {u, v} 
2 The weighted subgraph G(V'^) is isomorphic to the weighted graph 

G^, with u and v corresponding to ui and vi respectively, for i = 
1,2. 

3 The coefficients of the edges with one endpoint in V^ and the other 
in V'^, that we call the crossing edges of the 2 —sum, are computed 
in the following way 

(a) Order the crossing edges e i , . . . , e ^ , . . . , e/c 

(b) For j = 1 to k, let T^ be a minimum f-length closed walk 
among all closed walks of G containing Cj that uses only edges 
from EiU E2U { e i , . . . , Cj}. Let fe be such that the f-length 
ofTUsf^ + fi-2e. 

The condition /^^ = /^^ is not restrictive since we can always scale 
one of the inequalities in order to obtain this condition. 

The procedure described at point 3 of Definition 30 is called sequential 
lifting in the literature (see Padberg [640]). In general the coefficients of 
the crossing edges depend on the lifting sequence. If it is not the case 
we say that the 2 — sum is stable. Most of the known inequalities that 
come from 2 — sums are stable. 

If, in the sequential lifting, the coefficients of the crossing edges are 
such that the minimum over all closed walks is the same as the minimum 
over all Hamiltonian cycles, then the 2 — sum. inequality is called h-
liftable. 

For the sake of simplicity, when obvious, we do not mention the cor­
respondence between the two composing graphs and the corresponding 
elements of the isomorphic subgraphs of the 2 — sum.. 

Let fx > /o be an inequality supporting for GTSPP{n). A vertex 
;̂ G X̂  is said to be k-critical for that inequality if the / - length of a 

minimum /- length closed walk of Kn \{v} is f{) — k. 

R e m a r k 31 In the previous definition k must satisfy k < 2.min{fe : 
e G ^{v)}' We will only consider two types of vertices, the 0-critical and 
the A:-critical with k = 2.min{fe : e G S{v)} 
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We assume the 2 — sum is performed as described in Definition 30 and 
the notation is the one used in that definition. The following theorem, 
the proof of which can be found in [618], states conditions under which 
two facet inducing inequalities yield, by 2 — sum^ another facet inducing 
inequality. 

T h e o r e m 32 Let f^x > /Q and f'^x > /Q be two TT facet inducing 
inequalities for GTS PP{ni) and GT S P P (712), respectively. The2—sum 
inequality fx > /o is facet defining for GSTPP{n) if vi is 2e-critical 
for f^x > /Q and at least one of the two vertices U2 and V2 is 2e-critical 
forfx>fl 

The next theorem is the corresponding theorem for STSPP{n). 

T h e o r e m 33 Let f^x > f^ and f'^x > /Q be two TT facet inducing 
inequalities of STSPP{ni) and STSPP{n2), respectively. The 2 —sum 
inequality fx > /o is facet defining for STSPP{n) if it is h-liftable and: 

(a) vi is 2e-critical for f^x > f^, 

(b) 5{u2) is f"^-connected, 

and either (Case (A)) 

(c^) U2 is 2e-critical for f'^x > /Q^ 

(d^) 6{vi) is f^-connected, 

or (Case (B)) 

(c^^) V2 is 2e-critical for f'^x > f^, 

(d^^) 5{ui) is f^-connected, 

(e^^) there exists a Hamiltonian cycle Hi G T~Cji containing edge {ui^vi) 
and any edge ei G Afi{vi), 

(f^) there exists a Hamiltonian cycle H2 G HJ2 containing edge {u2^V2) 

and any edge 62 G Ap{v2), 

Proof: See [618] • 
The 2 — sum procedure can be carried out recursively. The only 

difficulty is to keep track of the "criticality" of the vertices after the 
composition. Various technical lemmas dealing with this aspect are given 
in [618]. 
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4,3. Node lifting 
As mentioned earlier, when studying a given family of facet inducing 

inequalities for STSPP(n), it is easier to first study the simple inequali­
ties of the class. Then the result is generahzed {lifted) to the non simple 
inequalities of that family. The tools to obtain these results are the aim 
of this section. Remark 19 states that a facet inducing inequality in 
TT form is such that the the components of the subgraph on the edges 
with zero coefficient are cliques. This may suggest that the only lifting 
operation is the replacement of nodes by chques. This is not the case. 
A comb (see next section) with no node inside the handle not contained 
in any tooth yields a facet inducing inequality. The same comb with a 
node in the handle not in any tooth also does. 

Let fx > /o be a simple vahd inequality for GTSPP{n). An inequal­
ity /*x > /o (same right hand side) is obtained by clique lifting from a 
simple one if each node u ^V \s replaced by a chque K]^ — {V^^E'^) of 
îx ^ 1 vertices and: 

1 /* = 0 for all e G £;^ for some ueV, 

2 for all e G (y^ : V^), ft = fuv. for all u.veV. 

That is all the edges of the newly formed cliques get a coefficient of zero, 
the edges between two newly formed chques inherit the coefficient of of 
the corresponding edge in the original graph. 

Theorem 34 Let fx > fo be a TT facet inducing inequality of 
GTSPP{n). Any inequality obtained from fx > /o by clique lifting is 
also facet inducing for GTSPP{n''), where n"" > n is the number of 
vertices of the resulting graph. 

Proof: The inequality is obviously valid since any closed walk on the 
"extended" graph induces a closed walk on Kn- It is supporting since 
any closed walk T of Kn can be extended to a closed walk T' on the 
extended graph with f{T) = f*{V). Assume /*x > /o is not facet 
inducing. Since it is valid and supporting, there is a facet that contains 
the face it induces. Let gx > /o be a linear representation of that facet 
(by scaling we can always assume the right hand side to be /o). Note 
that we have WJ; C W^. Let e e 7 (K) for some ueVn and V G WJ*, 
so V G yV=. The closed walk V -h 2{e} is also in WJ; and therefore 
in W^, which implies that g^ = f^ = 0. We are therefore left with 
the edges which correspond to some edge of the simple inequality, and 
proving that g^ — f^ — f^ for these amounts to proving that the simple 
inequality is facet inducing. • 
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Things are not that easy for STSPP{n). The chque Ufting can be 
seen as a recursive apphcation of an operation we will call zero-lifting of 
a node. We define now what we mean by node lifting. 

Let Kn = (Vn.En) and Kn* = {Vn*,En*), n* > n be two complete 
graphs. Let Vn = {ui,U2,.. .,Un} and Vn* = Ki U {i^n+i,. • • , ^n*}- We 
say that the inequality / * x > /Q defined on R^^* has been obtained by 
node-lifting of fx > /o defined on R^^ if 

f(u,uj) = fiu^uj) for all 1 < i < j < n. 

The special case where f^^ = 0 for some u E Vn and all v G 
{un-\-i^... ,t^n*} is called zero-lifting of node u. Note tha t by triangu­
larity one then have fT^^\ =" 0 for all v^w e {t^n-fi, • • • ? ^n*}- For a T T 
inequality obtained by zero-hfting, the following proposition is a direct 
consequence of Remark 19. 

P r o p o s i t i o n 35 For any facet inducing TT inequality f*x > /o ob­
tained from fx > /o by zero-lifting of node u, the following holds: 

^ f(vw) = f{vu) fo^ ^^^ V ^Vn- {u\ and w E {^Xn+i^.. •, '^n*}^ 

2 A/* [w) - A/(ix) U U i ^ K ) \ { K , ^ ) } : ^ ' e {u, ^ ^ + i , . . . , lin*}. 
w' 7̂  w\ for all w G {i^n+b • • • ?'^n*}; where 6{w') is a taken in 
En* . ^n* 

There are node-liftings which are not zero-liftings. For example the 
inequality of Figure 2.5 (b) is what is called in [618] a 1-node lifting of 
the inequality of Figure 2.5 (a), and that of Figure 2.5 (c) a 1-node-hfting 
of tha t of Figure 2.5 (b). In that figure the coefficient of the shown edges 
is the one shown; for the others the coefficient is that of a shortest path, 
in term of coefficient of the shown edges, between their end point. For 
example, in Figure 2.5 (a) a non shown edge linking a node of the top 
cycle to one of the bot tom cycle and not shown has a coefficient of 3, 
since a shortest path between its extremities consists of an horizontal 
edge and a vertical one. All right hand sides are 10. Note that these 
three inequalities are what we will call later on comb inequalities. 

A 1-node lifting of an inequality fx > /o defined on R^^ is an in-
equahty f*x > /o (same right hand side) defined on R^^+i and which 
is not a zero-hfting. The coefficients /*^^^, ^ for v e Vn, '^n+i being the 
new vertex, are not defined by this definition. They must satisfy the 
following necessary conditions. 

T h e o r e m 36 Let f*x > /Q be a facet defining inequality for GTSPP{n+ 
1) which is obtained by 1-node lifting of a TT facet inducing inequality 
for GTSPP(n); then the following conditions hold: 
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(a) (b) 

Figure 2.5. Examples of 1-node liftings 

1 f*x > /Q is tight triangular, 

2 /o = /o 

3 for all e G A/*(iin+i) there exists e! 7̂  e ,e ' 6 Ay* (7x^+1) tt^<^ 
r G TiT such that both e and e' belong to V. 

4 every connected component of the graph (Vm Af*{un-\-i)) contains 
at least one odd cycle. 

Proof: By Theorem 17, the only non T T facet inducing inequahties 
for GTSPP{n + 1) are the non negativity constraints or the degree 
constraints, and none can be obtained by 1-node hfting, so Statement 1 
follows. We can only have /Q > /o- Since the inequality is T T , let 
e G Ay* {un-\-i)' There is a closed walk W of Wj that contains e = (u, t*), 
and W' =^ W - {e} ^ { ( U , I A ^ + I ) , {v,Un+i)] is such tha t / * ( W ) ^ /o, 
which implies /Q = /Q . For the rest see [618]. • 

Facet inducing results on 1-node lifting for GTSPP{n) and STSPP{n) 
can be found in [618]. One can also find there some results on zero-
hftings for STSPP{n) (we have settled here the case of GTSPP{n)). 

We now give a 2-node lifting procedure, known as edge cloning., which 
concerns two vertices and that cannot be obtained by successive 1-node 
liftings. 

Let fx > /o be a T T inequality defined on M^ and e E En- We say 
that the inequality f*x > /Q defined on M^_^2/i' "^^^^ /i > 1, is obtained 
from fx > /o by cloning h times the edge e if it is obtained by node lifting 
of fx > /o a-nd, assuming without loss of generality that e = (t^n-i, '^n)-

f* 
+ j 

fuiUn-i for 1 < 2 < n — 2,1 < j < 2/i — 1 and j odd, 
fuiUn for 1 < i < n — 2,1 < j < 2/i — 1 and j even. 
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Un+2 

Figure 2.6. Examples of edge cloning 

f* 
+J 

2/e for — 1 < z < j < 2/i and j — i even, 
/e for —l<i<j<2h and j odd, 

Figure 2.6 shows the coefficients of the inequahty with edge e cloned and 
h=l. Let / x > /o be a T T inequality vahd for GTSPP{n). We say 
that e — {u^v) is f-clonable if: 

1 u and i; are 2/e-critical for / x > /o, 

2 the / - length of any closed walk W of Kn is at least fo + {d — 2)/e 
where ci = m m ( | ( 5 ( i / ) n r ) | , | ( ( 5 ( ^ ) n r ) | ) . 

This definition is more restrictive than tha t given in [618]. The first 
condition is not required there, but is required in all the subsequent 
theorems. In Figure 2.7 the coefficients of the edges are shown next to 
them, if not equal to 1. The edges not shown have a coefficient equal to 
that of a shortest path, with edges among those shown, between their 
extremities. The first inequality is a comb inequality, the right hand side 
is 10, only the three edges in bold are /-clonable. The other edges in 
that example are not /-clonable because the six vertices incident to the 
bold edges are 2-critical and the other two are 0-critical, therefore no 
other edge has its two extremities 2/e-critical. An example of violation 
of the second condition is given in the second example (the right hand 
side is 14). The second inequality is what we will call, later on, a path 
inequality. None of the edges is /-clonable. All the vertices except the 
top and bot tom one are 2-critical, the other two vertices being 0-critical. 
In particular, vertices u and v (in black) are 2-critical. The shown closed 
walk W has /-value 14 = /o and both extremities of e have degree 4 in 
W^ which shows that edge e is not clonable. The case of the other edges 
follows by symmetry. 
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Figure 2.7. Examples of clonable and non clonable edges 

T h e o r e m 37 Let fx > fo be a TT facet inducing inequality for 
GTSPP{n) and e = (un-i^Un) be a f-clonable edge. Then the following 
holds: 

1 the inequality / * x > f^, obtained from fx > /o by cloning h > 1 
times edge e, is facet inducing for GTSPP{n + 2h), 

2 the edges O/ ( { t t n _ l , ^ n + b • • • 5'^n-h2/i-l} • {^n ,^n+2 , • • • ,'?^n+2;i}) 
are f"-clonable, 

3 if e' — (2:1,2:2) ^ e is an edge in En such that zi and z^ are 2fe'-
critical for fx > fo, then z\ and z^ are 2f^,-critical for f*x > /Q . 

Proof: See the proofs of Lemma 4.11 and Theorem 4.12 in [618]. • 
Note tha t Statement 2 imphes that the "new" vertices are 2/*-critical. 

The purpose of Statements 2 and 3 is to fix the status of the various 
vertices and edges in view of further edge clonings. The corresponding 
theorem for STSPP{n) is: 

T h e o r e m 38 Let fx > fo be a non-tivial TT facet inducing inequality 
for STSPP{n) and let e = (un-i^Un) be a f-clonable edge. Then the 
inequality f*x > /Q obtained from fx > /o by cloning h > 1 times edge 
e is facet inducing for STSPP{n + 2h) 

Proof: See the proof of Theorem 4.13 in [618]. • 
The family of chain inequalities defined by Padberg and Hong [643] 

can be obtained from the comb inequalities by edge cloning. 
We now turn to the study of specific classes of facet inducing inequal­

ities of GTSPP{n) and of STSPP{n). 

5. The Comb inequalities 
Comb inequalities were first discovered, in a more restrictive form, 

by Chvatal [195] who derived them from the 2-matching constraints of 
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Edmonds [265]. They were generalized to the current form and shown 
to be facet inducing for STSPP{n) by Grotschel and Padberg [403]. 

A comb inequality is usually defined by a set i7 C V^ called handle^ 
and an odd number t > 3 oi vertex subsets {Ti, r 2 , . . . , T^}, called teeth^ 
such that: 

HnT^^9 
T^\H^^ 
T^ r\Tj=$ 

for i = 1,..., t 
for i = 1, ...,i 

for I <i < j <t 

(14) 

(15) 

(16) 

Conditions (14) and (15) say that every tooth Ti intersects properly the 
handle H^ Condition (16) states that no two teeth intersect. 

The corresponding comb inequality is: 

t 

x{5{H)) + Y^x{5{Tj))>3t + l (17) 

i=i 

R e m a r k 39 Comb inequalities are better known in the following form: 

t t 

x{j{H)) + ^ x ( 7 ( r , ) ) < \H\ + ^{\T,\ -l)-{t + l ) / 2 (18) 
2 = 1 i=l 

This form still has a few adepts because: 

• It is a rank type inequality for the independence system associated 
with the monotonization of the polytope we mentioned earlier. 

• It is a mod-2 cut, fact which is used in some separation routines 
(see Caprara, Fischetti and Letchford [161], Letchford [559]). 

• It is sometimes sparser than the other form, fact which is useful 
when solving large linear programs. 

On the other hand it is not in TT form. We will never use this form. 

Note that Inequality (17) is closed under taking complements of sets 
since x{6{S)) — x[^{y \ S)) for ah proper subset S of V. The definition 
of a comb inequality is not very satisfactory since Condition (16) is not 
closed under taking complements. There is no real way around this 
problem as long as we do not deal directly with the edge sets. The most 
satisfactory one is to require that the given sets satisfy the conditions 
after eventually replacing some of them by their complements. Figure 2.8 
gives two sets S tha t give the same comb inequality, the first is a set as 
described in (14) to (16), the other with T3 replaced by its complement. 
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H 

Figure 2.8. Example of a comb {t = 3) 

Figure 2.8 enables us to define our convention for figures that will hold 
throughout this chapter. Sets with a black point have to be nonempty, 
those with a white filled point may or may not have nodes in them, those 
with no points must be empty. A point does not represent a unique node 
but a set of nodes in that position. 

We will give three proofs of validity of comb inequalities, an algebraic 
(classical) one and two others that will give more insight into what these 
inequalities say in term of closed walks. We have so far used the term 
tight in various ways. We now use it for sets and will use it frequently. A 
subset 5 C 1̂  is said to be tight for a Hamiltonian cycle or a closed walk 
r if | r n 5 ( 5 ) | = 2. in other terms, if x^ is the incidence vector of F, the 
corresponding subtour elimination inequality is tight, i.e. x^{S{S)) = 2. 

Theorem 40 Comb inequalities are valid for GTSPP{n) (and therefore 
for STSPP{n)). 

Proof: (1) It is easy to check that we have: 

t 

xi5{H)) + ^x{d{Tj)) > (19) 

1/2 j ; x{6{H n Tj)) + 5 ] x{S{Tj \ i/)) + j ; x{6{Tj)) > 3t 

Now the left part of (19), x{5{H)) + Yl]=i ^(^(^j))^ ^̂  ̂ ^ even integer as 
sum of even integers, when x represents a closed walk. Since 3t is odd, 
3^ can be replaced by 3t + 1. • 

This easy proof does not really explain why any Hamiltonian cycle or 
any closed walk, intersects these t+1 coboundaries in at least 3 t + l edges 
and not in 2t + 2 obtained by adding up the t + 1 corresponding subtour 
elimination inequalities. The following proof, taken from Naddef and 
Pochet [615], will give more insights into the vahdity of comb inequalities. 
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Proof: (2) A non-algebraic and induct ive proof of val idity of 
c o m b inequal i t ies . The comb inequality is assumed to be described by 
sets tha t satisfy Conditions (14) to (16). Assume first tha t t = 3 . Take a 
Hamiltonian cycle T, if \Vr\5{Tj)\ = 2 for j=l, 2 and 3, then rn{Ti\H : 
Tir\H)^ 0, so | r n 5{H)\ > 3. Since | r n S{H)\ must be even we have 
\rn6{H)\ > 4 and Inequality (17) is satisfied by all x representing such 
a cycle. If \Tn6{Tji^)\ i- 2, for some j * , | rn(5(r^*) | > 4, the 3 other sets 
having at least 2 edges of their coboundaries in F, again Inequality (17) 
is satisfied by all x representing such a cycle. Proving validity for the 
general case can be done by induction on the number of teeth t > 5. 
Assume validity for combs with t — 2 teeth. Take a Hamiltonian cycle F. 
If |F n (5(T;)| = 2 for j = 1 , . . . , t, then |F H b{E)\ > t and by parity one 
must have |Fri(5(iy)| >t+l and the result follows for those cycles. Else 
assume |Fn(^(r j*) | > 4, for some j'^^ let us assume for simplicity j"^ — t. 
By induction hypothesis we have that : |F n 6{H)\ + Yl^~^i 1^ H 6{Tj)\ > 
3t - 6 + 1, adding |F n 5{Tt)\ > 4 and |F H 6{Tt-i)\ > 2 we prove again 
that the inequality is valid. • 

This second proof shows why the teeth and the handle play a different 
role. The teeth, in some sense, "force" a certain number of edges to be 
present in the coboundary of the handle. 

The last proof is given because it may be adapted to prove validity of 
most of the inequalities of the coming sections. It is similar to a proof 
that can also be found in Applegate et al. [29]. 

Proof: (3) A non-algebraic and non- induct ive proof of val idity 
of c o m b inequal i t ies . Let F be any Hamiltonian cycle, and x^ its 
associated characteristic vector. Inequality (19) is satisfied by x^ if all 
teeth are tight for F using exactly the same argument as in the previous 
proof. It is also trivially satisfied whenever x^{5{H)) > t + 1. In the 
other cases, i.e. x^{6{H)) < t + 1, define r] by x^{6{H)) = t + 1 -2r]. 
Note that 77 > 0 is integer because t is odd, and x^{6{H)) even. As 
( t + 1 ) / 2 represents the minimum number of paths traversing H when all 
teeth are tight, 77 represents the reduction in number of paths traversing 
H with respect to the tight teeth case. We prove basically, and the comb 
inequality tells us essentially, that the number of non tight teeth has to 
be at least as large as 77. 

First, we consider each tooth Tj separately, and define 9j — 1 lix^iTjH 
H :Tj\H) = 0, Oj = 0 otherwise. It is readily seen that x^{S(Tj))/2 > 
1 + 6j because x^{5{Tj))/2 is the number of paths traversing Tj in the 
tour F, and the tooth Tj is traversed by at least two paths (i.e. is not 
tight) when Oj = 1. Thus, x^{5(Tj)) - 2 > 2(9̂ -. 
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Next, we consider the handle for which it is easy to check that x^{5{H)) > 
ZU ^^(^J ^ H ' Tj \ H) > EU^^ - Oj) = t - ZU ^3' Together with 
x^{5{H)) = t + 1 - 2r/, this gives Y!J=I <9J > 2r/ - 1 > r? where the last 
inequahty holds because 77 is a positive integer. 

Hence, we have shown that the reduction r] in the number of paths 
traversing H is at most Yl\^\ ^j^ which is at most, by definition of 9j^ 
the number of non-tight teeth. This suffices to prove validity because 
x^{6{H)) = t+l-2r]>t + l-2J2'ej>t + l-Y:]=i[x^{S{Tj))-2], 

Theorem 41 (Grotschel and Padberg [403], [404]) The comb inequal­
ities are facet inducing for STSPP{n) and therefore for GTSPP{n) 
(n > 6), 

Proof: The original proof is long and technical. It can be rewrit­
ten by proving that the simple comb inequalities are facet inducing for 
GTSPP{n) (very easy), then for STSPP(n) by using Lemma 29, and 
finally using the node lifting theorems of [618] to obtain the result for 
general comb inequalities. • 

Comb inequalities together with subtour elimination inequalities and 
non negativity inequalities, completely describe STSPP{6)^ but not 
STSPP{7) (see end of next section). Comb inequalities, as we will 
see, are central in solving large TSP instances to optimality. 

We now turn to more classes of inequalities. For most of them, comb 
inequalities can be seen as a subfamily. For the others, the comb in­
equalities can be seen as building blocks. 

6, The Star and Path inequahties 
Star inequalities (Fleischman [311]) are defined by two sets of subsets 

of y , /C = {//i,..., Hh}^ called handles and T = {Ti , . . . ,Ti}, called 
teeth^ with t > 3 and odd, together with non-zero integers a i , . . . ,a/^ 
associated with the handles, and non-zero integers /9i,. . . ,/3t associated 
with the teeth, such that: 

HicH2C---cH^c---cHh 
% r\Tj = ^ 
Hi DTj^fD 
Tj \Ht,^(D 

{H.+I\H)\[JUTJ=9 

ior 1 <i < j <t 
for j = l , . . . , t 

for j = l,...,t 

\fi,l <i<h-l 

(20) 
(21) 
(22) 
(23) 

(24) 
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And a condition that relates the integers f3j to the integers o î, which we 
caU the Interval Property. 

To define that property we will need a few definitions but we give first 
the corresponding Star inequality: 

E 
2 = 1 

^ a,x{6{H,)) + Yl f3jx{5{T,)) > (t + 1) ^ a, + 2 J ] /?, (25) 

j = i 2=1 J = l 

Given a tooth Tj, a maximal index set of (successive) handles which 

have the same intersection with Tj is called interval relatively to Tj . 

We call Yl^ti ^i ^^^ weight of the interval I = {£,£ + 1, ...,i + r}. 

Defini t ion 42 The Interval Property: for each tooth Tj, we have 13j 
at least equal to the maximum weight of an interval relative to Tj 

Figure 2.9 shows a tooth and the traces of the different handles on 
it. In the tooth, where a node is shown, there is at least one node, 
where none is shown there are no nodes. The handles, as suggested by 
the drawing, are numbered from top to bottom. There are 4 intervals, 
{1} ,{2 ,3} ,{4 ,5} ,{6 ,7} , of weight 3, 4, 5 and 4, and therefore the f3 
coefficient of that tooth must be at least 5. 

Figure 2.9. Example of intervals 

Path inequalities (see [219]) are the special case where all the intervals 
relative to a same tooth have the same weight and the coefficient of that 
tooth is exactly that value. Figure 2.10 gives an example of a Pa th 
inequality. The coefficients associated with the handles and teeth are 
beside each set. 
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Figure 2.10. Example of a path {h = 6, t = 3) 

In [219] a distinction is made between the case in which there is at least 
one vertex in the position of each of the two white filled points (path 
inequalities), only in one of these positions (wheelbarrow inequalities) 
or in none of these two positions (bicycle inequalities). We will here 
represent all three case under the same name: path inequality. Comb 
inequalities are exactly the path inequalities with a single handle. 

The rationale behind the Interval Property is far from being obvious. 
We will try to explain it. 

The RHS of Inequality (25) can easily be understood by the following 
argument. Consider Hamiltonian cycles for which all teeth are tight. 
Each handle must then have at least t + 1 edges of those cycles in its 
coboundary because t is odd (see comb inequalities), which leads to the 
first part of the RHS. The second part is due to the coboundaries of 
the teeth. This shows that for all such tours the inequality is valid. 
As one may suspect, the Interval Property is designed to make it valid 
for all the other tours. This property can be understood by looking at 
the tours F that are tight on all teeth except Tj and | r D S{Tj*)\ = 4. 
Let {r, • • • , 5 — 1} be an interval of Tj*. Assume P uses edges of the 
coboundaries of the handles Hr to Hs-i only inside the teeth Ti for 
i j^ j * . In other words, x{Tj* r\Hi : Tj* \IIi) = 0 for alH 6 {r, • • • ,5 — 1} 
(see Figure 2.11 where j'^ = 2 from Figure 2.10). Then the coboundaries 
of the handles Hr to Hs-i may contain only t — 1 edges, the coboundaries 
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of the other handles only t + 1. Therefore a loss to the LHS, relatively to 
the former case, of 2 Xli=r ^^ ^̂  compensated by an increase of 2/3j* due 
to the tooth Tj* having now four edges in its coboundary. Therefore, 
to have validity of the inequality one must have /3j* > X^^Z^ cxi- This 
argument is valid for all intervals of Tj* and therefore f3j* must be greater 
or equal to the largest weight of an interval. 

Figure 2.11. Example of minimal trace with T2 not tight {r = 3, s — 1 = 4) 

Of course, all this does not constitute a proof of validity. One can 
adapt the third proof of validity of combs to obtain one for the stars 
(see [615]). See [311] for a proof of: 

T h e o r e m 43 Star inequalities are valid for GTSP{n) and therefore for 
STSPP{n). 

Most star inequalities are not facet inducing even for GTSP{n)^ but 
we have: 

T h e o r e m 44 Path inequalities are facet inducing for GTSP{n). 

Proof: See [219] • 
In Naddef and Rinaldi [619], and unpubhshed work of Queyranne and 

Wang the corresponding theorem for STSPP{n) can be found. 
In the theoretical study of Goemans [383] on the comparison of valid 

inequalities for the TSP, the path inequalities turn out to be, at least 
in theory, the most powerful known inequalities in term of potential to 
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reduce the gap between the Held and Karp bound and the optimal value. 
We will see that they do turn out to be also useful in practice. 

We end this section with an example of a facet inducing star inequality 
for STSPP{n) which is not a path inequality. It is shown in Figure 2.12. 

Figure 2.12. A facet inducing star (non-path) inequality; RHS=24 

Research Question 45 Find a necessary and sufficient condition for 
a star inequality to be facet inducing for GTSPP{n). 

Chances are that this necessary and sufficient condition will also hold 
for STSPP{n). It is easy to find necessary conditions. One is that 
the interval property must be satisfied with equality, else the inequality 
is the sum of another star inequality and of a subtour ehmination in­
equality. Another necessary condition is that one cannot decompose the 
coefficients â  and [3j in such a way that the star inequality is the sum 
of two other star inequalities. 

To give an idea of the difficulty of the question, the first star inequality 
of Figure 2.13 is not facet inducing for GTSPP{n)^ ^ > 8, while the 
second is for n > 10. These two inequalities look pretty much like that 
of Figure 2.12. The RHS are 26 and 22, respectively. 

^ ^ E / 
Figure 2.13. Examples of non facet and facet inducing star inequalities 
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For n — 7 path inequalities together with comb inequahties, subtour 
ehmination inequahties and non-negativity constraints define entirely 
STSPP{7). For n = 8, to obtain such a description, one must add 
the crown inequalities ([617]) and four classes known as NEWl, NEW2, 
NEW3 and NEW4 that can be found in [473]. 

7. The Clique Tree and Bipartition inequalities 
Clique tree inequalities were defined by Grotschel and Pulleyblank 

[406]. A Clique tree is defined by two sets of subsets ofV^IC — { i^ i , . . . , i7/^} 
and T = {Ti , . . . , T^}, such that: 

H, nHj = 9 
Ti n Tj = 0 

^i\Utl^^^0 
tj=-\{i:TjnH,^$}\>l 

hi = |{j : iJ, n T, 7̂  0}| > 3 and odd 

If Tj 0 Hi 7̂  0, it is a disconnecting 

set of the hypergraph (V, /C U T). 

for 1 < i < j < /i 

for 1 < i < j < t 

for 1 < j < ^ 

for 1 < j < i 

ior I <i<h 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

In other words, handles are pairwise disjoint, and so are the teeth. 
No tooth is contained in a handle, every tooth has at least a vertex 
not in any handle and every handle intersects an odd number (> 3) of 
teeth. The tree-like structure is given by Condition (31). Further, in this 
section, we will drop this last condition together with Condition (28) to 
obtain a larger family of inequalities, the bipartition inequalities of Boyd 
and Cunningham [135]. When studying these inequalities, we will see 
the role of Condition (28) in the definition of a clique tree. 

Figure 2.14 gives an example of a clique tree. Handles are in bold 
lines. If there are no vertices in position "Z", then the clique tree spans 
the whole graph. 

The corresponding clique tree inequality is: 

h t h 

Y^x{5{H^)) + ^x{5{Tj)) > J^(/i, + l) + 2t = 2h + 3t-l (32) 
i=l j = l i—l 

in which hi is defined by Condition (30). 
As for all the inequalities that we will propose in this chapter, the 

RHS can easily be figured out by looking at tours for which all teeth 
are tight. For these tours, the handles must have at least hi + \ edges 
in their coboundaries, and this leads naturally to the RHS. To prove 
validity, one must prove that every time we augment the number of 
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Figure 2.14- Example of a Clique Tree 

edges in the coboundary of some teeth, we do not "save" more on the 
total number of edges in the coboundary of the handles. This is done 
in proofs of Applegate et al. [29] and in Naddef and Pochet [615]. An 
algebraic proof of validity is given in [406]. Moreover one can find there 
the following theorem: 

Theorem 46 (Grots chel-Pulley blank [406]) Clique tree inequalities are 
facet inducing for STSPP{n). 

A clique tree with a single handle is a comb. Some authors admit 
/C = 0 (which, by the way, does not satisfy Condition (29)), if so, subtour 
elimination inequalities are also clique tree inequalities. In [616], Naddef 
and Rinaldi show that the clique trees, which have at least a vertex in 
position "Z" of Figure 2.14, can be obtained by repeated 2-sums starting 
with two combs. 

We now turn to the bipartition inequalities of Boyd and Cunningham 
[135]. A bipartition is defined just like a clique tree but without Condi­
tions (28) and (31). There are coefficients /3i , . . . , / 3 j , . . . , /?̂  associated 
with the teeth. Let D be the set of indices of teeth that contain no 
vertex outside any handle, i.e. 

n 

TJ\[jH^ = 0 if and only if j e D (33) 
i=i 

A tooth in the set {Tj : j e D} is called degenerate by Boyd and 
Cunningham. We will define, later on, a more restrictive notion of de­
generacy which win not consider as degenerate those teeth with index in 
D which intersect only two handles. The intuitive explanation of the co-
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efficients, furtiier down, will explain why we will not qualify these teeth 
as degenerate. 

Let tj be as defined in Condition (29), that is the number of handles 
that tooth Tj intersects, then the coefficients /3j are defined by: 

(3, = 1 (34) 

(35) 

The corresponding bipartition inequality is: 

h t h 

Y^xi5{H,)) + J2/3ASiTj)) > ^ih, + l) + 2^P, (36) 
j = l 2=1 j = l i=l 

In Figure 2.15, in which handles are in bold hues, the two teeth T* 
and T are degenerate. The first one intersects three handles, therefore 
its coefficient is 3/2, the second only two and therefore its coefficient is 
2. 

3/2 T* 

o 
Z 

Figure 2.15. Example of a Bipar t i t ion 

The right hand side is again understood by looking at the tours for 
which all teeth are tight. An example of the trace of such a tour on 
the various coboundaries, involved in the inequality, is given in the first 
drawing of Figure 2.16, which minimizes the total number of edges in 
these coboundaries. In such a tour each handle must have at least hi + \ 
edges, where hi is the number of teeth that handle Hi intersects. 

Assume that we look at tours which intersect tooth T in four edges. 
The second drawing of Figure 2.16 shows the trace of such a tour. Note 
that the increase of two edges in the coboundary of T is compensated for 
by a decrease of two edges in each of the coboundaries of the two only 
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handles it intersects. Enabling tours to use more edges in the coboundary 
of T does not yield any further gain in the minimum number of edges 
of the coboundaries of the handles. This explains the coefficient of 2, in 
order to maintain vahdity of the inequality. 

Figure 2.16. Traces of tight tours with 2 and 4 edges in S(T) 

Now we turn to tooth T*. The first drawing of Figure 2.17 shows 
again a minimal trace on the handles of a tour tight for all teeth. In 
the second, the trace corresponds to tours that intersect the coboundary 
of tooth T* in four edges. We also gain two edges on the coboundaries 
of the handles. If we go one step further, and enable six edges in the 
coboundary of tooth T*, that is four more than the minimum, this time 
we gain four edges in the coboundaries of the handles from the previous 
tour and six from the first one. If the tours, the traces of which are 
shown in the first and third drawing of Figure 2.17, are to be tight for 
the inequality, then the loss of 4 edges on the coboundary of T* cannot 
be more than compensated by the gain of 6 edges on the coboundaries of 
the handles, therefore /3x* ^ 6/4 = 3/2. Since enabling yet more edges 
in the coboundary of T* does not decrease further the minimum number 
of edges in the coboundaries of the handles, if fSx* > 3/2, then the only 
tight tours would be those which are tight on T*, and therefore the 
inequality would be contained in the facet x{6{T*)) > 2. This explains 
the coefficient tj/{tj — 1) of some teeth. 

In Section 9, the technique that we just used in order to define the 
coefficients of T and T* will be developed into a general procedure. In 
some sense, the coefficient of teeth should normally be defined by the 
case of four edges in their coboundary, so we will call degenerate only 
those teeth for which the coefficient is defined by tours having six or 
more edges in their coboundaries. Therefore tooth T of our example 
will no longer be considered as degenerate. We make this more precise 
in Section 9. 
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Figure 2.17. Traces of tight tours with 2, 4 and 6 edges in 6{T*) 

Of course, since all we use is that a cycle intersects a coboundary in an 
even number of edges, so do closed walks, in all the preceding material, 
tours can be replaced by closed walks. In no case have we given a proof 
of validity of the bipartition inequality. This is done by: 

Theorem 47 (Boyd-Cunningham [135]) Bipartition inequalities are va­
lid for ST SPP{n), 

In [232] W. Cunningham and Y. Wang give two necessary conditions 
for such an inequality to be facet defining. The first is that there be 
no subset of degenerate teeth which is disconnecting for the underlying 
hypergraph (as a consequence, the bipartition of our example is not facet 
inducing). The second is that for each edge there exists a tight tour that 
contains it, which as already mentioned is necessary for any non-tivial 
inequality to be facet inducing. The next section gives an example of 
a bipartition which does not yield a facet inducing inequality, but for 
which there is a way around, via a correcting term, to get a facet inducing 
inequality. Cunningham and Wang conjecture that together these two 
conditions are sufficient. 

8. The Ladder inequalities 
A ladder inequality is defined by two handles H\ and H2 an even 

number t > 4 of teeth {Ti , . . . , T j , . . . , r t } , with integer coefficients 
/3i , . . . , / 3 j , . . . , /3t associated with them, such that (see Figure 2.18 in 
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which the coefficients (3 are written next to the corresponding teeth): 

/ / i n //2 = 0 
Tj n Tfc = 0 

HinTij^(D,H2nTi = $ 
//2 n Ts ^ 0, Hi n Ts = 0 

T,\Hiy^0,T2\H2y^(D 
Tj r)Hij^$ 

'i-<j <k<t 

for i — 1,2 and j > 3 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

if Tj \ {Hi U H2) ^ 0, then pj = 1, else l3j = 2; for j > 3 (43) 

/3i - /32 = 1 (44) 

Figure 2.18. Example of a ladder 

Teeth Ti and T2 play a special role. The first one only intersects Hi 
and the second only H2^ all other teeth intersect both handles. The 
ladder inequality is: 

Y,x{5{H,)) + Y,Pjx{6{Tj))-2x{HinTi : ffsHTs) > 2 t + 2 ^ / 3 , (45) 
1=1 j=zl j = l 

The coefficients on the teeth can be explained just as in the case of 
the bipartition inequalities. Note the special correcting (or lifting) term 
—2x{Hi n Ti : 7̂ 2 n T2) on the left hand side of Inequality (45) without 
which this would only be a particular case of bipartition inequahties. 

Again we try to give the reader some insight into the validity of this 
inequality. Observe first that no tour that is tight for the corresponding 
bipartition (not ladder) inequality contains an edge of {HiHTi : 7^2nT2) 
(we leave it to the reader to convince himself/herself of this fact or 
consult [615]), and therefore the corresponding face is contained in the 
intersection of the facets Xe > 0 for e G {Hi Pi Ti : i72 H r2). Figure 2.19 
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gives the trace of a tight tour for the ladder inequahty, that contains 
such an edge and with all teeth tight. Extension of this tour to the case 
t > 6 is straightforward. 

Figure 2.19. Trace of a tight tour containing e G [Hi D Ti : i/2 H T2) 

T h e o r e m 48 (Boyd, Cunningham, Queyranne and Wang [136]) The 
ladder inequalities are facet defining for STSPP{n). 

9. A general approach to some T S P valid 
inequalities 

Let S — {5i , . . . . , 5i , . . . . , S'p} be a set of distinct (possibly overlapping) 
subsets of V. Let a i , . . . . ,a i , ....,ap be strictly positive integers. An in­
equality is said to be in closed-set form if it can be written as: 

Y,a,x{5{Si))>r{S) (46) 

where r{S) is the minimum of the LHS on all tours. 
Path, star, bipartition inequalities are inequalities in closed-set form, 

and therefore so are the comb and clique tree inequalities. Inequalities 
containing path, star and clique trees, and named binested inequalities 
in [613], are also inequalities in closed-set form. Ladder inequahties are 
not in closed-set form because of the correcting term on the LHS. 

In most of the known closed-set form inequalities for STSPP{n)^ 
the set S of subsets of V is partitioned into two sets /C and T where 
/C = { i ^ i , . . . , Hh} is the set of so called handles^ T — {Ti , . . . , Tt} is the 
set of so called teeth. 

We also have non-zero integers a i , . . . , a/^, associated with the han­
dles, and (not necessarily integer) rationals /3i , . . . , /? t , associated with 
the teeth. 
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These inequalities in closed-set form read: 

h t t 

J2 c^r<5{H,)) + E (^A^)) > A + 2 E /?,• (47) 
Z=l j = l j = l 

or equivalently 

h t 

J2a,x{S{H,) > A - Y.(5, {x{6{T,))-2). (48) 
i=i j=i 

Expression (48) suggests the following interpretation, which can be 
used in order to define a general procedure for computing the coefficients 
A and /3j, j = 1, • • • , t, of the valid inequality. 

When all teeth are tight for a given Hamiltonian cycle F that is 
x^{S{Tj)) = 2 for all j = I,--- ,t, Inequality (48) then reduces to 
J2i=i OLix[5{Hi)) > A. Hence, for vahdity, the largest possible value 
of A is the minimum value of the left hand side of (48) over all Hamil­
tonian cycles r with all teeth tight. Formally, 

h 

A = min {^a^\TnH^\ : |F H (^(T^)| = 2 for all j = 1, • • • , t} (49) 
1=1 

and does not depend on the coefficients /3j. 
Now we describe a general procedure to compute the coefficients /Sj 

in the valid Inequality (48) when the coefficients of the handles are as­
sumed to be fixed. First we order the teeth. We assume without loss of 
generality that the teeth have been renumbered in such a way that their 
order is Ti, • • • , r j , • • • ^Tf. Next, we compute the coefficients /3j from 
j = 1 to j = t using a sequential lifting procedure. The lifted variables 
are the non-negative integer slack variables Sj associated to the subtour 
elimination inequalities defined on the teeth, namely Sj = x{S{Tj)) — 2 
for j = I,--- ,t. Initially, to compute the coefficient A in Expres­
sion (49), all slacks Sj are projected to zero and we obtain the inequality 
"^i^i aix{6{Hi) > A which is valid for the subspace where Sj — 0 for 
j — 1, • • • ,t, that is when all teeth are tight. Then, sequentially, from 
j = 1 to j = t, all slacks 5j are lifted. 

For k €  {1, ' • • 7 0 ' assuming coefficients /3i, • • • , ^k-\ have been al­
ready computed, the lifting coefficient /3/c is taken as the minimum value 
/? for which the inequality 

h k~\ 

Y,c,x^{b{Ei)) ^Y.^,\x\b{T,)) - 2] + ii\x^{^{n)) -2\>A (50) 
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is satisfied by all Hamiltonian cycles F with Sj = x^{6{Tj)) — 2 — 0, for 
all j > k. 

We let B^ denote the set of Hamiltonian cycles for which all the teeth 
T/c+i,' •' ,Tt are tight and intersect the coboundary of Tk in 2i edges. 
Then the value of /3/e is defined by 

where 

b^ — min 
h 

^a,x^i6{H,)) + J2PA^^iS{T,)) - 2] I (52) 
^1=1 j<k 

We call degenerate those teeth T^ for which the coefficient (3^ cannot 
be obtained for £ == 2 in Equation (51). 

Note that by construction of /3/e, we must have 6^ = A for all k E 
{!,••• , t } . Also note that the f3k are not necessarily integer. The con­
struction is summarized in the following theorem. 

T h e o r e m 49 Let /C = {Hi,.. .,Hh}, let T := { T i , . . . , T J , be an or­
dered set of teeth, and let ai,... ^a^ be nonzero integers associated with 
the handles. If A is defined by Expression (49), and, for fc G {1, • • • , / : } ; 
if /3/e is the coefficient of tooth Tk determined by Expressions (52) and 
(51), then the following inequality is valid: 

h t 

J ] a^x{S{H,)) >A-Y,t3, [x{S{T,)) - 2] (53) 
i=i i = i 

Proof: Trivial by the way we constructed the coefficients of the teeth. 
• 
R e m a r k 50 The above procedure provides a way of defining valid in­
equalities for the TSP. The difficulty in using Theorem 49 to prove va­
lidity of inequalities is the exponential growth in the number of cases to 
study when the number of teeth increases. 

R e m a r k 51 In all the inequalities seen so far in this chapter, the coef­
ficients of the teeth are order independent, that is they can be computed 
as if they are the first in the sequential lifting. This is not always the 
case. We give now an example. 

Figure 2.20, which has been provided by M. Queyranne, illustrates 
this. Here, the lifting coefficients are defined as in Theorem 49, but we 
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Figure 2.20. Example of a facet defining inequality 

will see that their values are sequence dependent, and in fact only one 
order will lead to an inequality. Handles have all coefficients of 1. 

The support in Figure 2.20 would give an inequality of the form 

Y^x{5{Hi))> 12 - J]/?,[x(5(r,))-2]. (54) 

3 = 1 

If you authorize a Hamiltonian cycle to intersect the coboundary of T4 
in 4 or more edges restricting all the other teeth to be tight, we cannot 
compensate by "saving" anything on the coboundaries of the handles. 
Therefore, this procedure will always produce an inequality which is just 
the addition of the inequality obtained without tooth T4 and the subtour 
elimination inequality associated to that tooth. In other words, lifting 
T4 first gives /34 = 0. 

The coefficients of Ti and T2 can be defined in the manner used so far. 
This gives /3i = 1 and /?2 = 3. Let us authorize a Hamiltonian cycle to 
intersect the coboundary of Ta in 4 edges, imposing T^ to be tight. We 
can only save 2 edges on the coboundaries of the handles (whether or 
not we impose Ti and T2 to be tight); see Figure 2.21(a). These 2 edges 
we save are 2 of the 4 that crossed the border of Hi when we imposed 
all teeth to be tight. This yields a coefficient of /Ja = 1 for Ta, instead 
of a coefficient of 2 in the star inequality made up of the same handles 
and teeth Ti, T2 and Ta. Now that the coefficients of T\, T^ and T3 are 
known we can define the coefficient of T4. 

The trace of a tour shown in Figure 2.21(b), shows that we can save 4 
edges on the coboundaries of the handles by enabling a cycle to intersect 
the coboundary of T^ in 4 edges. Two of these 4 edges are compensated 
for, by the extra 2 edges in the coboundary of Ta, the 2 others by the 
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(a) (b) 

Figure 2.21. Some traces of Hamiltonian cycles 

extra 2 edges in the coboundary of r4 , which yields a coefficient of /34 = 1 
for tooth T4. This inequahty is facet defining for STSP{n)^ n > 9. 

We use the developments of this section to describe a family of inequal­
ities that contains the inequalities described in the previous sections. 

10. A unifying family of inequalities 

This section may be skipped by most readers. It would be too long to 
expose here the binested inequalities (see [613]). They contain the star 
(and therefore path) , the clique tree, and the bipartition inequalities 
without degenerate teeth (in the sense of the previous section). They do 
not contain the ladder inequahties. One way of making them contain all 
remaining bipartition inequalities and the ladder inequalities would be 
as follows: 

1 Recompute the coefficient of the teeth using the method of the 
previous section, 

2 Arbitrarily order all edges which do not appear in a tight tour 
with the newly computed coefficients and compute sequentially 
the coefficient of the correcting term corresponding to them. The 
correcting coefficients will be subtracted to the LHS just like in 
the ladder inequalities. 

We conjecture that the first calculation (the one for the teeth) is order 
independent. The second one is not. One can find an example in [615] 
in relation with generalizations of the ladder inequalities, for which this 
lifting is not order independent. 
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11. Domino inequalities 
In the previous sections, teeth in some sense forced edges to cross the 

border of the handles or had to be no longer tight. This was obtained 
either because of parity or by the situation of nodes in key positions. 
There is another way of forcing edges in the border of the handles, that is 
by penalizing some edges, which must be taken in some circumstances if 
one does not cross the border of the handle. This is the rationale behind 
the Domino Parity inequahties defined by Letchford [559], although this 
is not explicit in his exposition. We describe here a large subclass of these 
inequalities which we will call Domino inequahties. 

Let H CV, referred to as the handle, T = {Ti , . . . , T^ , . . . ,TJ , t > 3 
and odd, where Ti — Ai U Bi C V, referred to as the set of teeth, such 
that: 

AinB^ = (l} f o r 2 = l , . . . , t (55) 

A^uBiy^V forz = l,...,t (56) 

(Ai : B,) n {Aj : Bj) = 0 foil<i<j<t (57) 

We say that Ai and Bi are the two half dominoes of the domino (or 
tooth) Tj. Note that there are no further restrictions on the elements of 
T, i.e. they can for example intersect. 

The main difference with the Domino Parity configurations of Letch­
ford is that we added the non crossing Condition 57. Naddef proves 
in [614] that the only facet inducing Domino Parity configurations that 
do not satisfy this condition have two teeth, say Ti and T2 such that 
T1UT2 = V with Ti nT2 7̂  0, but in that case there exists a domino 
inequality satisfying condition 57, which includes the same facet. Let 
C = {[Jl^i{Ai : Bi)) \ 6{H) be the set of edges inside the teeth and 
crossing from one half domino to the other without crossing the bound­
ary of the handle. The domino inequality is defined by: 

t 

x{S{H)) + Y,^i^{Tj)) + 2x{C) > 3t + 1 (58) 

Theorem 52 Domino inequalities are valid for STSP(n). 

Proof: Call LHS the left hand sides of these inequalities, it is easy to 
check that: 

2 = 1 2 = 1 i = l 

Since LHS is even for all tours, we can raise 3t to 3/; + L • 
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Note the similarity with the algebraic proof of vahdity of comb in-
equahties. To understand the role of the partition {Ai^ Bi] of each tooth, 
consider the example of Figure 2.22, where, except for T7, Ai = TiD H 
and B^ = T^\ H. For T7, we have A7 2 Ts U T4, By 2 T5 U TQ. All 
teeth Ti to TQ are pairwise node disjoint. A tour for which all teeth are 
tight does not necessarily force more than six edges in the coboundary 
of H as seen in Figure 2.23(a), but then it necessarily uses an edge of 
{Ai : Bi) \ 6{H) which is penalized by two units. So either such a tour 
goes from Ai to Bi by using an edge of the coboundary of H as in Fig­
ure 2.23(b), or it uses a penahzed edge to do so. In this example none 
of the other domino partitions play a role. The domino inequality cor­
responding to this example is facet inducing since it is a twisted comb 
inequality (definition below, see also [161]). 

Figure 2.22. Example of domino inequality 

(a) (b) 

Figure 2.23. Tight tours for the example of Figure 2.22 

We now turn to necessary conditions in order for a domino inequality 
to be facet inducing. A minimal domino configuration is one such tha t 
the number of non minimal (by inclusion) teeth is minimum, among all 
domino configurations that yield the same domino inequality. A comb 
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can be seen as a domino with only minimal teeth, but also as a domino 
configuration with one tooth containing all the others and such tha t 
one of its half dominoes contains all the teeth, the other half domino 
contains none, is non empty and has an empty intersection with the 
handle. Finally there is a node not in any tooth nor in the handle. 
Naddef in [614], proves the following propositions: 

P r o p o s i t i o n 53 The teeth of a facet inducing minimal domino inequal­
ity are nested. 

P r o p o s i t i o n 54 / / Ti is a minimal tooth in a facet defining domino 
inequality, then {Ai^ Bi} — {Ti fl i / , T̂  \ H}. 

Corol lary 55 Only the domino partition for non-minimal teeth has 
some interest. We will omit, from now on, giving the domino partition 
of minimal teeth. 

Minimal teeth are similar to comb teeth. For non minimal teeth, each 
tooth they contain must be contained in one of the half domino of that 
tooth. For minimal domino configurations it is shown in [614] that in 
a non minimal tooth each half domino must contain at least two odd 
teeth of immediate lower rank in the nesting. A tooth is odd if either it 
is minimal or it contains, including itself, an odd number of teeth. 

Conjec ture 56 Minimal Domino inequalities with at least three odd 
maximal teeth and such that each half domino of a non minimal tooth 
contains at least two odd teeth, are facet inducing for STSPP(n). 

One can find in [614] the proof that a large subfamily of these inequal­
ities is facet inducing for the graphical relaxation. 

We end this section with a family of facet inducing domino inequal­
ities. Boyd, Cockburn and Viella define in [134] the following twisted 
combs. A twisted comb inequality is a domino inequality satisfying all 
the previous necessary conditions and which has a unique maximal tooth 
which is not also minimal. Note that the example of Figure 2.22 refers 
to a twisted comb. 

T h e o r e m 57 (Boyd, Cockburn, Vella [134]) The twisted comb inequal­
ities are facet inducing for STSPP(n). 

For more on the domino inequalities, besides the papers already men­
tioned, one can also read Cockburn [204]. 

Research Ques t ion 58 How can one generalize the domino partition 
for non minimal teeth to inequalities with more than one handle? 

A first answer to this question can be found in [614] where a general­
ization of path inequahties can be found. 
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12. Other inequalities 
There are many other inequahties which do not fall in one of the 

classes defined so far. The best known example are the hypohamiltonian 
inequalities (see [195]). A graph is said to be hypohamiltonian if it is not 
Hamiltonian but the deletion of any vertex yields a Hamiltonian graph. 
A hypohamiltonian graph is said to be edge maximal if it is hypohamil­
tonian and the addition of any non existing edge yields a Hamiltonian 
graph. The Petersen graph is an edge maximal hypohamiltonian graph. 

Let G = (y, £^*) be an edge maximal hypohamiltonian graph and 
Kn = {V^ E) be the complete graph on the same vertex set. The simple 
hypohamiltonian inequahty fx > /o is given by: 

1 /e - 1 if e G E* 

2 /e = 2 if e E £; \ £;* 

3 /o = |V |̂ + l 

A general hypohamiltonian inequality is obtained by clique lifting of 
a simple hypohamiltonian inequality, that is replacing each vertex by a 
chque of some size, the coefficients of the inequality on the edges linking 
two nodes of the same clique is 0, the other coefficients are inherited 
from the ones of the simple inequality. In other words a hypohamiltonian 
inequality fx > /o is such that the partition of V into V^i,..., V^, . . . , 1^, 
the vertex sets of the connected components of the graph Go = (^, ^o) 
with JE'o = { e G £ ' : / e = 0} induces an edge maximal hypohamiltonian 
graph when one shrinks each Vi to a single node in Gi = {V^Ei)^ with 
Ei = {eeE:fe^ 1}. 

T h e o r e m 59 Hypohamiltonian inequalities are facet inducing for 
GTSPP{n). 

Proof: Let / x > /o == p + 1 be a hypohamiltonian inequality. Let the 
sets V i , . . . , 1 ^ , . . . , V^ be the the partition of V induced by the connected 
components of Go = (V^EQ). Inequality fx > /o is trivially valid since 
any closed walk must either contain an edge with coefficient 2, or two 
edges of coefficient 1 in some (Vi : Vj)^ i ^ j . Therefore the coefficients 
sum up to at least p + 1 on the closed walk. Assume fx > /o is not 
facet inducing, i.e. the face it defines is strictly contained in some facet. 
Let hx > /o (same RHS), be the corresponding linear inequality. Every 
closed walk W e Wj is also in W ^ . Let W e Wy. For e e E{Vi) for 
some i, we have W + 2k{e} G Wj for all integer /c, and therefore also 
in W ^ , which proves that h^ — 0 for these edges. As mentioned earlier, 
necessarily he = jij for all e G (V̂ i : VJ,). Let Wi be a Hamiltonian cycle 



82 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

of G\Vi that contains only edges of / value 0 or 1. Such a cycle exists 
since picking a single vertex in each Vi and the edges of /-value 1 linking 
them yields an hypohamiltonian graph. Let e G S{Vi) be such that 
fe = 1. We have that Wi + 2{e} G WJ, so also in W^. this proves that 
all these edges have the same value he = ji. Since a hypohamiltonian 
graph is necessarily connected, we have that for /ig == 7 for all e E £̂  
such that /e = 1, and therefore 7 = 1, since we chose the same RHS. 
Now for any edge e G (Vi : Vj) such that fe — 2, there is a Hamiltonian 
cycle containing it and only edges of /-value 0 and 1, which proves that 
he = 2 for these edges, and we have proved that he = fe for all e e E. 
m 

We have described most of the known facet inducing inequalities that 
can be found in the literature, with the exception of the crown in­
equalities of Naddef and Rinaldi [617]. Most of the other known in­
equalities come from chque hfting of the inequahties obtained from the 
complete description of polytopes for small instances by Christof and 
Reinelt and which are available at: www.informatik.uni-heidelberg.de/ 
groups/comopt/software/SMAPO/tsp/tsp.html. 

13. The separation problem 
The separation problem for the STSP is the following: Given a frac­

tional solution x'^, find a valid inequality, preferably facet inducing for 
STSPP{n), say fx>fo, such that /x* < /o and such that /o — fx"^ is 
not too small. 

We may search for a violated inequality in two ways. Either by 
searching among known classes of inequalities, for example among those 
we described in the previous sections, or in a very general form. Ap-
plegate et al. in [31] refer to the first type of search as a template 
paradigm separation. This has been for a long time the only type 
of STSP separation framework (see Padberg and Rinaldi [645], [647] 
and [648], Grotschel [397], Padberg and Crowder [229]). More recently 
Christof, Reinelt and Wenger have tried to use the complete knowledge 
of the STSPP{n) for n < 10. We will give a brief description of their 
method in Section 15. Applegate, Bixby, Chvatal and Cook [31] uses a 
more elaborate method which we will sketch in Section 18. 

We end this section with the few complexity results known so far. Sep­
arating subtour elimination constraints is polynomial because it amounts 
to finding a minimum cut in an undirected weighted graph- we already 
addressed this point in Section 2. There also exists a polynomial time 
separation algorithm for 2-matching constraints i.e. simple comb in­
equalities (see Padberg and Rao [644]). 

http://www.informatik.uni-heidelberg.de/
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Another result deals with bipartition inequahties with a fixed number 
of handles and teeth. Carr [170] and [171] showed tha t there is a poly­
nomial separation algorithm in this case. We give the nice and elegant 
argument in the particular case of a comb with t teeth. 

• Choose 2t vertices and, among these, choose t vertices that will 
belong to the handle. Match each of these t vertices of the handle 
to one of the t others to form t disjoint pairs. 

• Find a minimum cut that separates the t nodes chosen to be in the 
handle from the t others. This can be done in polynomial time. 

• For each pair of matched vertices, find a minimum cut tha t sepa­
rates the pair from the other t — 2 vertices. Choose one shore of 
the minimum cut to be a tooth. 

• If the teeth intersect, there is an uncrossing argument that enables 
to obtain non intersecting teeth with the same coboundary values 
in x^. 

• Check for violation. 

Since there is only a polynomial number of choices for the 2t vertices, 
and for each such choice a polynomial number of choices thereafter, the 
whole procedure is polynomial for any fixed t. Of course this does not 
lead to a practical separation routine, but some of the separation routines 
that we will describe can be seen as trying to guess clever choices of some 
of these 2t vertices. 

Fleischer and Tardos [310], designed a polynomial algorithm to sepa­
rate maximally violated comb inequalities as long as the support graph 
of X* (the graph induced by the edges e with Xg* > 0) is planar. A comb 
is said to be maximally violated if the diff'erence between the RHS and 
the LHS is 1 (.5 if in the standard "<" form). 

In case of planar support graphs, Letchford [559] gives a polynomial 
algorithm that separates combs without the maximal violation require­
ment. This same algorithm also separates the domino inequalities under 
the same conditions. 

The following has never been implemented and is so far of only a 
theoretical interest. Caprara, Fischetti and Letchford [161] address the 
separation of maximally violated cuts in the general context of ILP's of 
the form minjcx : Ax < b^x integer}, where A is an m x n integer matrix 
and b an m-dimensional integer vector. For any given integer k they 
study mod-k cuts of the form XAx < [Xb\ for any A G {0,1/A:,. . . , (/c — 
l)/k}'^ such tha t XA is integer. A mod-fc cut is called maximally violated 
if it is violated hy {k — l)/k by the given fractional point x*. It is 
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shown that , for any given A:, separation of maximally violated mod-/c cuts 
requires 0 ( m n m i n { m , n } ) time. This result has applications to both 
the symmetric and asymmetric TSP. Indeed, for any given A:, Caprara 
et al. propose an 0 ( | F p | £ * | ) - t i m e exact separation algorithm for mod-
k cuts which are maximally violated by a given fractional (symmetric 
or asymmetric) TSP solution with support graph G* = (V^E*), This 
implies that one can identify in 0 ( |yp |£^* | ) time a maximally violated 
mod-2 cut for the symmetric TSP whenever a maximally violated comb 
inequahty exists. The reader is referred to [161] for more details. 

We now turn to the heuristic separation of specific classes of inequal­
ities. 

14, Greedy heuristic for minimum cut 
Finding a minimum cut that contains a given set 5*0 is polynomial. In 

some of the following separation heuristics this search has to be per­
formed so many times that we will instead use the following greedy 
heuristic - also known as max-back. 

Consider a graph G = (F, E) and a weight function x* on the edges 
such that x*{5{v)) = 2 for all v eV. Let S cV, we say tha t v ^ S sees 
S by an amount of b{v) = J2ueS ^uv ^^ ^^^ K^) ^he max-back value of 
V relatively to S. A vertex not linked to S by any edge has a max-back 
value of zero. Note that this definition still makes sense ii v e S^ and 
we will sometimes use it also in this case. 

T h e max-back heuristic: Input ^o C V̂  and x*. 

• Cutmin — YleeSiS ) ^e^ ^^^ ^^^ v ^ SQ^ b{v) = max-back value of v 
relative to SQ. Set S — Smin = SQ^ Cutval — Cutmin 

• While S ^ V\ Choose v ^ S oi maximum max-back value. S = 
S + {v}, Cutval = Cutval -h 2 - 2 * b{v). For all t ^ S, set 
b{t) = b{t)+xl^. If Cutval < Cutmin then Cutmin = Cutval and 
Smin = S. 

The idea behind this heuristic is that if one wants to keep the cut 
small then one should take the vertices that see the current set by the 
largest amount. Note that the max-back idea is the key notion of the 
Nagamoshi-Ibaraki minimum cut algorithm (see [622],[623]). The termi­
nology comes from A. Frank. 

In general we will not explore the whole graph and will stop the pre­
vious loop after a certain number of iterations. We will also store the 
nodes not in S with a non zero max-back value in three lists: 

• A list s u p t o l which contains the nodes that see S by more than 1 
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• A list i n f t o l which contains the nodes that see S by strictly less 
than 1. 

• A hst e q u a l t o l which contains the nodes that see S by exactly 1 

These definitions may vary depending on the use we make of them. At 
this point we will just note that the insertion into S of nodes of the list 
suptol strictly decreases the value of the cut, and if not empty, the next 
chosen vertex is in that list. Those of equa l to l will leave the value of 
the cut unchanged, whereas those of the last list will increase the value 
of the cut. 

Some separation procedures use another greedy heuristic to find min­
imum cuts which we will describe later. In that heuristic a path is added 
at each iteration. 

15. G r a p h associated to a vector x* G M^ 

The support graph of x^ G M^ is the graph G* = (V, JS*) where 
E'^ = {e £ E : x^ > 0}. Before performing separation it is useful to do 
some transformations on this graph. 

By shrinking a set 5 C V, we mean replacing all vertices in S by 
a single one 5, called a pseudo-node^ and deleting all edges with both 
extremities in S. All the edges having exactly one extremity in S are 
replaced by edges whose extremity in S is replaced by 5, the other is 
unchanged. This may lead to a multigraph, that is there may be more 
than one edge between a pair of vertices. It is convenient in that case to 
only deal with a single edge e whose associated weight Xg is the sum of 
all the weights of these edges. As the reader has observed, we will use 
the same notation, that is x"*", for solution induced by x'^ on the shrunk 
graph. 

If one desires the degree inequality to be satisfied on the new node s 
only sets S with x~^{S{S)) = 2 can be shrunk. 

We say that the shrinking of a set 5 C V̂  is legal if every violated 
inequality in the the original graph yields such a inequality in the shrunk 
graph. This concept is very restrictive. Checking wether there is a 
violated inequality amounts to checking wether or not vector x^ is a 
convex combination of representative vectors of tours. We will come 
back to this later. Finally we define a shrinking legal for a class of 
inequalities, as a shrinking such that if the original graph contains a 
violated inequality of that class, then so does the shrunk graph. 

Some easy recognizable cases of shrinkings are given in [647], two of 
them are given below. It is very important to perform these shrinkings 
before starting any separation heuristic, since they very often consid-
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erably simplify the solution and reduce the size of the graph we work 
on. 

A path of 1-edges is a maximal path P in the support graph G^ such 
that xl = l for all ee P. 

Most authors advocate replacing a path of 1-edges by a single edge, 
that is shrinking all the nodes except one extremity of the path. This 
shrinking is not legal in general for a given class of inequalities, but it 
is for comb separation. Naddef and Thienel [620] found useful to reduce 
only those paths with more than 4 edges and then shrink all nodes except 
the 4 vertices of the two extreme edges. This will leave a path of 4 edges, 
the middle vertex being the one to which all nodes have been shrunk into. 
The advantage is that this is legal for most classes of known inequalities 
and that if one uses the two extremities of one of the extreme edges as 
a tooth, then we know exactly what vertices we are dealing with. 

The second shrinking concerns a path of 1-edges, the extremities u and 
V of which are adjacent to a common node w with x^^^ + x^^ = 1. In this 
case we can shrink the node set S of the path. Note that this yields a new 
edge (s^w) with x^^ = 1, which could yield another shrinking, therefore 
these shrinking operations have to be done recursively. Padberg and 
Rinaldi [647] show that this is a legal shrinking. 

From now on we assume that these operations have been performed. 
An example of a graph obtained by such shrinkings is given in Figure 2.25 
from the solution of Figure 2.24. 

Christof, Reinelt and Wenger use the list of all minimum cuts to 
shrink the graph down to a graph on fc < 10 nodes, in all possible ways, 
and look for a violated inequality in the list of inequalities describing 
STSPP{n) for n < 10, see [184], [185], [187], [822] for more details. 

16. Heuristics for Comb Separation 
Comb separation has received a lot of attention. The reason is that 

comb inequalities are the first discovered and the simplest inequalities 
that do not appear in the integer formulation of the traveling salesman 
problem. We have already mentioned that the exact separation of the 
special case of 2-matching inequalities is polynomial. 

It is useful to understand how a comb inequality can be violated by x*. 
Assuming that all subtour inequalities are satisfied by x^^ each tooth has 
a coboundary of value at least 2. If each tooth has coboundary value 2, 
the previously mentioned proof of validity, shows that the coboundary of 
the handle cannot be less than 2/c + 1 and therefore maximum violation 
is 1 if all subtour ehmination inequalities are satisfied. Therefore if the 
handle has a coboundary of 2A: + 2 or more, no violated comb with 2fc + 1 



Polyhedral Theory and Branch-and-Cut Algorithms for the STSP 87 

teeth can be violated. In general to have violation we must have that the 
sum of the excesses of the values of the coboundaries over their minimum 
values be less than 1. That is: 

2/c+l 

x^{6{H)) - (2fc + 1) + X; i^^i^m - 2) < 1 (60) 

16.1. The biconnected component heuristic 
A cutnode of a graph is a vertex whose removal disconnects the graph. 

If a graph does not contain any cutnode it is said to be biconnected. A 
block of a graph is a maximal biconnected induced subgraph. Finding 
all blocks is easy and can be done in hnear time (see [787]). 

Let C^i be obtained from G* by deleting all edges with x* = 1. 
Padberg and Rinaldi [647] use a heuristic in which each block or union 
of adjacent blocks of G^i is considered as a potential handle i7 of a 
comb. The sets of extremities of an edge e = {u^ v) with v e H^ u ^ H, 
x^ = 1 are used as teeth. The other teeth are chosen among the adjacent 
blocks, that is blocks which share a vertex with H. We advocate to try 
to grow by the max-back procedure a tooth from each cutnode of G^^ 
contained in H. This procedure is quite effective in the beginning of the 
Branch-and-Cut procedure. Moreover, it is very fast. 

Note that if the paths of edges of value 1 have not been contracted to 
a unique edge, then one must add to each block the nodes of such paths 
linking two of its nodes. 

Figure 2.24 gives an example of a fractional point of kroAlOO, the 
dotted edges correspond to value .5, the others to value 1. Figure 2.25 
gives that same graph after contraction following the rules described 
earlier. The blocks happen here to be exactly the connected components 
of the graph from which the edges e with x^ = 1 have been removed and 
correspond to the nodes of the 6 triangles. Note that in the original graph 
there was one more block. Several violated 2-matching inequalities are 
easily found, some in the original graph are comb inequalities which are 
not 2-matching inequalities. Figure 2.26 shows two of these inequalities 
and one of the four 2-matching inequalities. 

16.2. The max-back Heuristic 
In this heuristic, starting from a given node chosen in a certain subset 

5 , we grow a handle using a modified max-back procedure. Once in 
a while we stop growing the handle and try to grow a number of teeth 
using again a max-back procedure. If a violated comb has been obtained 
we stop, else we go back to grow the handle, and so on as long as no 
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Figure 2.24- Example of a fractional point 

Figure 2.25. The graph of Figure 2.24 after shrinking 

Figure 2.26. Examples of violated combs from Figure 2.24 

violated comb has been found and the maximum number of iterations 
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has not been exceeded. We then choose another node from B until we 
have tried with all nodes in B. We make this more precise now. 

In our case we chose B to be all extremities of paths of 1-edges. Let 
7i E B , we grow 5 by max-back starting with ^o = {u}. Let v be 
such that x*^ = 1, the idea is that {u^v} will be the first tooth. One 
therefore forbids the max-back procedure to pick up any other node of 
the path of 1-edges one extremity of which is u. Nodes of max-back 
value at least one and not incident to a 1-edge linking it to the current 
growing handle are included in the handle under construction. Those 
nodes incident to a 1-edge are chosen if their max-back value is greater 
than a prescribed value (say 1.7). The idea is that we lose a potential 
"nice" tooth, but on the other hand the coboundary of the handle will 
decrease in value. Whenever we introduce a node v in the handle, we 
also update the max-back value of all the nodes adjacent to it, including 
those which are already in the handle under construction. 

Every time the previous procedure would choose a node of max-back 
value strictly less than 1 and the coboundary value is not too close to 
an even number, we first try to find a violated comb by searching for 
the right number of teeth. This number is easily computed knowing the 
value of the coboundary of the current handle. If that value is strictly 
between 2k and 2k -f 2, we need 2k -\- 1 teeth. One tooth is already 
known, as already mentioned. Nodes of the handle which are incident 
to a 1-edge the other extremity of which is not in the handle, give us 
additional teeth. For the remaining teeth, we greedily choose the vertex 
in the handle with minimum max-back value among those not already 
in a tooth as the starting node for the next tooth. The rationale behind 
this is that if a node is poorly linked to the other nodes of the handle, it 
is likely that we will find a set with small coboundary value containing 
it that will yield a tooth. The tooth is grown by pure max-back from 
that node, leaving it grow freely inside or outside the handle, except 
that it cannot intersect already existing teeth. We do so until either we 
reach a value very close to 2, or a maximum number of iteration has 
been exceeded. We then return the best set found. In fact, in view of 
the search for other inequalities, we return more sets than just the best 
one, especially if that set contains only one node outside the handle. For 
other inequalities we will need the information on the best tooth having 
at least two vertices outside the handle. The weakness of this procedure 
is that we never change a previously found tooth, hence depending on 
the order in which we consider the starting nodes, we may or may not 
succeed in finding a violated comb. This is however unavoidable due to 
the nature of the greedy heuristics. In the code of Naddef and Thienel 
[620], the minimum max-back value for the choice of the starting node 
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of a tooth suffers many exceptions, the main one is as follows. If a path 
of 1-edges linking say u and v is entirely inside the handle, it is very 
often the case that a useful tooth will contain the whole path. In this 
case we consider that u and v as having a max-back value equal to the 
sum of their real max-back value minus two. 

This heuristic is fast, pretty effective and easy to implement. It suffers 
from the fact that in many instances many max-back values are identical 
and one has to be lucky to choose the right node. This is especially true 
at the beginning of the cutting phase procedure. This is why Naddef 
and Thienel prefer the much slower but much more successful heuristic 
described in the next section. 

Note that, in some way, this relates to Carr's comb separation algo­
rithm. Once the handle is chosen, we choose the nodes in the handle 
which will be the seeds, as Carr calls them, of the teeth. The difference 
is that Carr's method also chooses one seed outside the handle for each 
tooth. 

16.3. The Ear Heuristic 
We now give another greedy way of growing sets. Given 5 C V, 

an ear relative to 5 is a (possibly closed) path in G with intermediate 
nodes not in 5. In most graph theoretic domains where ears are used, 
i.e. connectivity or matching theory, a single edge between two nodes of 
S is considered as an ear, and this path need not be minimal in terms of 
vertices outside S. Here we will assume that there is at least one node 
not in S in the path and that, except for the first and last node of the 
path outside S', none of the nodes of that path are incident to nodes of 
5. 

Given S C V^ by "increasing S by an ear", we mean adding to S 
the ear that yields a set of minimum coboundary value among all sets 
that can be obtained this way. Of course, like in the case of the max-
back procedure, when growing handles we are faced with the dilemma of 
choosing or not nodes linked to 5 by a 1-edge. We use the same rule as 
in the previous case. In fact the only difference with the previous section 
is the way sets are grown. In some way we control better the way the 
set grows and therefore this method typically gives much better results. 
The only problem is that one has not yet found an efficient method to 
find the best ear: if we could improve this part substantially, the running 
times reported below using the Naddef and Thienel separation heuristics 
would be drastically decreased. 
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16.4. About minimum cuts 
The two comb separation heuristics we wih describe later on, as well 

as the exact separation algorithms for violated combs and domino in­
equalities in planar graphs we have mentioned, make extensive use of 
the structure of minimum cuts. Let us assume that all subtour elimina­
tion are satisfied by x*, that is x*(5(5)) > 2 for all S C V. Therefore 
the value of a minimum cut is 2, since each node defines such a cut. 
Finding all cuts of value 2 is relatively easy. There are several ways of 
storing all these cuts in a compact form, either by a cactus represen­
tation of Lemonosov, Karzanov and Timofeev (see for example [310], 
[309], [241], [822]), by a PQ-tree of Booth and Lueker [131] or by a poset 
representation (see [342]). 

The main property of minimum cuts which is used is that if the sets Si 
and 52 define minimum crossing cuts^ tha t is Si\J S2 ^ V ^ ̂ i fl 52 7̂  0, 
5i \ 52 7̂  0 and 52 \ 5 i 7̂  0, then Si U 52, Si fl 52, Si \ S^ and 52 \ Si 
all define minimum cuts. In particular, x^ representing the capacities of 
the edges, w e h a v e x * ( 5 i : V\{Si\JS2)) = x * ( 5 i \ 5 2 : 5 i n 5 2 ) = x*(52 : 
y \ ( 5 i U 5 2 ) ) = x * ( 5 2 \ 5 i : 5 i n 5 2 ) = l, x * ( 5 i n 5 2 : y \ ( 5 i U 5 2 ) ) = 0 
and x*(5i \ 52 : 52 \ 5 i ) = 0. Figure 2.27 summarizes this. 

Figure 2.27. Two crossing min imum cuts 

We only briefly describe here the PQ-tree structure to store minimum 
cuts. For each cut the shore that does not contain a prescribed node a 
is stored. A PQ-tree is a rooted tree with each internal node having at 
least two children and labelled either P-node or Q-node. Following [28], 
for a node ix of a PQ-tree , we let D{u) be the set of leaves of that tree 
that are descendants of u. 

A PQ-t ree represents all the shores of the minimum cuts not contain­
ing node a if and only if each shore is either: 

(i) D{u) for some node u of the PQ-t ree 

(ii) The union of D{u)s for consecutive sons of a Q-node 

(iii) The union of D{u)s for any subset of sons of a P-node 

and each such set is the shore of a minimum cut. Note that the leaves 
are exactly the nodes of G \ {a}. Without going into the details of the 
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PQ-tree structure, from the preceding lines it is obvious that the sons 
of a Q-node are not placed in an arbitrary order. 

16.5. The Domino Heuristic 
Assuming all subtour elimination inequalities are satisfied, a 2/c + 1 

tooth comb is maximally violated if the handle has a coboundary value 
of 2fc + 1 and each tooth is tight. That is, all teeth define minimum 
cuts, but also so do the intersection of each one with the handle and its 
intersection with the complement of the handle. Moreover for each tooth 
Ti we have: x^{TinH : H) = x*(T,ni7 : T^\H) = x''{T^\H : V\H) = 1 
and therefore x'^iH :V\{H U Jj"^ Ti)) = 0; see Figure 2.28 where the 
only edges that can cross the boundary of one of the sets that define the 
comb are shown. 

Figure 2.28. Edges in maximally violated comb 

Applegate et al. [28] call a set T = A U S, such that Ar\B = ^ 
and x''{5{T)) = x''{5{A)) ^ x*(5(S)) = 2 a domino. We call an edge 
e G (A : S) such that x* > 0 a crossing edge of the domino T =^ AU B. 

If we find a set of 2/c + 1 pairwise node disjoint dominoes such that 
the union of their crossing edges form a cut of the support graph of x*, 
then we have found a maximally violated comb. The handle is one of 
the shores of that cut. Such a set is called a cutter in [28]. This is the 
idea behind the heuristic proposed by Applegate et al. [28]. 

A necklace is a partition VQ^ ... ^Vi^... ^Vk of V into tight sets such 
that S = (ViUVi^i) forms a domino for all i, where subscripts are taken 
modulo k. Each Q-node t; of a PQ-tree compatible with x* defines a 
necklace with VQ =^ V\ D{v) and Vi = D{vi) where t ' l , . . . , t'^,..., '̂/̂  are 
the sons of v in that order. 

Given a PQ-tree compatible with x"*", let V be the set of all dominoes 
of all the necklaces obtained from the Q-node of that tree. Applegate 
et al. in [28] search D in a clever way in order to find a set of dominoes 
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which defines a cutter and therefore yields a violated comb. We refer the 
reader to [28] for more details. It very often happens that the support 
graph of a fractional solution is planar and therefore, one may now rather 
t ry to use the newly available algorithms of Fleischer and Tardos [310], 
of Letchford [559] or of Caprara, Fischetti and Letchford [161], although 
this latter has, so far, not yet been implemented. 

16.6. The Consecutive Ones Heuristic 
We just give here a flavor of the consecutive ones heuristic of Ap-

plegate et al [28]. It is easier to understand if one assumes that the 
minimum cut has a value of two, and tha t we have a PQ-t ree that rep­
resents the set of all minimum cuts. This is not really a restriction since 
some TSP codes as the one of Naddef and Thienel [620] and [621], only 
separate on other constraints when all subtour elimination inequalities 
are satisfied. 

A set of subsets of a given ground set is said to have the consecutive 
ones property if one can number the elements of the ground set in such 
a way that all the elements of any subset have consecutive numbers. 
Given Si C V \ {a}, i — 1 , . . . , /c, where a is as prescribed node as in 
Section 16.4, if all these subsets are tight for a certain tour F, then they 
satisfy the consecutive ones property since numbering consecutively the 
nodes in the order induced by F yields the desired property. 

Let i / be a vertex set such that x'^{5{H)) < 4. Any tour F either 
intersects the coboundary of H in two or at least four edges. Let's t ry 
and see if it is possible in two edges, that is we want to test whether H 
can be tight, when all the currently tight sets remain tight. There is an 
algorithm tha t enables to refine the current PQ- t ree to incorporate the 
cut defined by H or returns a failure message together with a certificate 
explaining why this is not possible. This certificate has the form of three 
tight sets Ti^T2,Ts which are incompatible with the fact tha t H could 
be added to our set of subsets preserving the consecutive ones property. 
The sets i 7 ,T i ,T2 , r3 define a violated comb inequality since the three 
sets Ti, r2 ,T3 are either pairwise disjoint or one contains the two others, 
which do not intersect. 

The problem is the choice of the set H. It could be the handle of a 
former violated comb, plus or minus some nodes. Tha t is, one starts with 
the handle of a former comb, and possibly increase it by the max-back 
procedure described earlier. 

Research Ques t ion 60 Assume the set of minimum cuts is stored in 
a cactus instead of a PQ-tree. Can we obtain a certificate that a given 
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Figure 2.29. Examples of non violated comb inequalities 

set cannot define a minimum cut if all the current minimum cuts remain 
minimum? Same question if one uses a poset representation. 

To make the question more precise: Take a set S which does not 
define a minimum cut. Assume the solution x* has changed in such a 
way that all the minimum cuts remain minimum. Can S now also define 
a minimum cut? In case of a NO answer a good certificate is asked for. 

17, Separation of multi-handle inequalities 

17.1. How do multiple handles help? 
Most of the non-comb inequalities for STSPP{n) we have described 

have combs as building blocks and therefore have more than one han­
dle. If one wants to design specific separation heuristics (in a template 
paradigm) it is important to understand how the addition of a handle 
can yield a violation when none of the constituting comb inequalities 
is violated. This is explained in details in Naddef and Thienel [621]. 
Figure 2.29 shows non violated (in fact, tight) comb inequalities. These 
could have been found in our search for violated combs. 

All the figures of this section will follow the following convention as 
far as numbers are concerned: cut values will be given in floating point 
format, i.e. 2.0, 3.2, to distinguish them from set coefficients which are 
integers. In some of the forthcoming figures we also have drawn in bold 
the non violated comb inequality from which we have started the search 
for a multi-handle violated inequahty. 

The key remark in understanding how one of these inequalities can be 
violated, is to see that if a tooth with large cut value intersects properly 
enough handles with cut value close to an odd integer, then it is likely 
to be part of a violated inequality. We illustrate this in the following 
figures. 

Figure 2.30 shows how violated path inequalities can be found on the 
two first cases of Figure 2.29, as long as one can find a second handle that 
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Figure 2.30. Examples of violated path inequalities with 2 handles 

Figure 2.31. Example of a violated path inequality in ts225 

intersects the teeth as shown (this is what we meant by properly). The 
last of these drawings shows a case in which the second handle intersects 
one of the teeth in such a way that the tooth gets a higher coefficient, 
yielding a weaker inequality. In the two first drawings, the inequalities 
are violated by 1, it is violated by only .5 in the last one. Note that teeth 
with cut value close to 2.0 are penalized only marginally if they receive 
higher coefficients. Figure 2.31 shows an example on the instance ts225, 
of a non violated comb inequality (central handle in bold) and a violated 
path inequahty with the same set of teeth. The RHS is 76 and the LHS 
70.3. 

The same argument on teeth with high cut value holds if the handles 
are disjoint instead of being nested. This yields either bipartition or 
clique tree inequalities. Figure 2.32 refers to the case of clique trees if 
only one tooth has a large cut value, and Figure 2.33 to the case in which 
more than a tooth has such a cut value. 
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2.0 \J 3.0 

Figure 2.32. Examples of violated clique trees 

2.0 I * - . 
Vy2.0 / 2.0 \ ' / 2.0 

Figure 2.33. Example of violated clique tree 
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Figure 2.34- Violated clique tree and path inequalities from pr299 

H, 3.0 _ H, 3.0 

Figure 2.35. Example how ladders can be violated 

Figure 2.34 gives an example of a clique tree inequality that can be 
found this way. It is taken from pr299. The RHS is 18 and the LHS 
17.333. In this case there is also a violated path inequality, as shown in 
the second part of the figure; the two teeth made up by an edge have 
coefficient 3, the RHS 26 is and the LHS is 24.667. The path inequalities 
defined by any two of these three handles is also violated. 

Ladder inequalities may also help in the same way, but since there 
can only have two handles, one cannot expect them to accept too high 
cut values for the teeth. Using the handles to compensate for high cut 
values for the teeth adds up in using a ladder inequality as a bipartition 
inequality on two handles (see Figure 2.35). We will see later on how 
ladders can help to compensate for bad cut values of handles, that is 
values too close to an even number. The correcting term will then be 
the key factor. Figure 2.36 gives an example of ladder violation in gil262, 
the RHS is 16, the LHS is 15. Figure 2.37 gives two violated ladders in 
a fractional solution to pr439, one with disjoint handles, the other with 
nested handles, in both cases the RHS is 18, the LHS is 17.667. 

Note that so far we have shown how to deal with cases related to 
combs of the two first types of Figure 2.29, that is in the case in which 
non-violation is due to teeth of too high cut value. In the last case of 
that figure, the handle has a too high cut value and finding extra handles 
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H2 3.0 

Figure 2.36. Example of ladder violation in gil262 

Figure 2.37. Example of violated ladders from pr439 

in a way or another would not help. The only known possibility is to use 
the correcting term of the ladder inequalities. Figure 2.38 shows how 
this can happen on an example from a fractional solution to prl36. The 
first drawing shows a tight comb with a handle of cut value 4, the second 
shows a violated ladder in which the violation comes from the correcting 
term induced by the edge with black filled extremities. Figure 2.39 gives 
two examples taken from two fractional solutions to pr439 in which the 
handles are nested. In both cases the violation comes from the correcting 
term given by the edge, the two extremities of which are filled in black. 
All combs that can be built using one of the handles and the three teeth 
it intersects are not violated. The violation in the first case is 2/3 and 
0.518 in the second. 

How can we hope to find such violated multi-handle inequalities? Nad-
def and Thienel [621] suggest the following strategy. 

When searching for teeth in combs, if the best found tooth only has 
one node outside the handle and its cut value is not close to 2, also 
return the best tooth with at least two nodes outside the handle. For 
example, in Figure 2.31 the edge of value .78 in the coboundary of the 
inner handle yields a tooth of cut value 2.44 which is better than the 2.57 
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Figure 2.38. Violated ladder from prl36 with correcting term 

Tz 2.01 

Figure 2.39. Violated ladders from pr439 with correcting term 
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cut value of the chosen tooth. This is not computationally expensive, 
since in the search for a tooth one goes anyway beyond the set which is 
finally returned. The idea is that a tooth with large cut value having 
only one node outside the handle will be a handicap towards violation 
that cannot be compensated by finding extra handles as shown in the 
previous section. 

The general strategy is based on a non-violated comb. If we have 
large enough teeth, in terms of number of nodes outside the handle, we 
search for a violated path inequality. We try to grow handles, starting 
with the current one such tha t their cut values are low enough and tha t 
they yield small coefficients for the teeth with large cut value. We can 
also try to find handles included in the previous one. All this is done by 
the max-back or the ear procedure described earlier. 

If one does not succeed, then one tries to find another type of violated 
inequality, either in a way similar to that for paths (ladder inequahties 
with nested handle) or by first growing a new handle which intersects 
one or several teeth of large cut value, and then searching for new teeth 
and so on. Everything is done in a greedy way. These simple greedy 
procedures give surprisingly good results as will be reported in the sec­
tion on computational results. The interested reader is referred to [620] 
and [621] for more details. 

18. Separation outside the template paradigm 
So far we have developed separation heuristics that try to find a vi­

olated inequality from a prescribed family of valid inequalities. Some 
other paths have been explored. Applegate, Bixby, Chvatal and Cook 
in [30] and in [31] have explored another direction which is the topic of 
this section. 

Figure 2.40 shows a portion of a fractional point of the instance 
fnl4461. When developing a STSP solver, one very often looks at such 
drawing of a fractional solution. The fact that one can quite easily vi­
sualize fractional solutions, is certainly one of the keys to the progress 
that has been possible for this particular problem. 

When doing so, one looks at small parts of the drawing to t ry and 
figure out what one has missed in terms of violated inequalities. In other 
words, one locally searches for violated inequalities. Therefore we will 
refer to the following procedure as the local cut procedure (which in 
fact was the first name their authors gave it). For example one may 
wonder if there is a violated inequality involving the black filled nodes 
of Figure 2.40. We will see that the answer "yes" will be very easy to 
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Figure 2.40. Part of a fractional solution of fnl4461 

find. Much harder will be the answer to the question of knowing which 
valid inequality is violated. 

Let us contract all the other nodes into a single one to obtain the 
graph of Figure 2.41 in which the larger circled node represents the 
node obtained from the shrinking. We will refer to that node as the 
pseudo-node. Note tha t in both figures, all nodes may in fact represent 
more than a single node in the original problem because we have applied 
the traditional legal graph reductions described earlier. This will only 
matter at the end of our computations. 

It happens here that the sum of the x^ on the star of the pseudo-node 
is two. If we impose this condition, then the local search for violated 
inequalities may turn short for lack of interesting sets. This is why in 
their development, Applegate et al. [31], do not require this condition. 
If that value is less than two we have a violated subtour elimination 
inequality, else it could be anything greater or equal to two. To make 
things easier to expose, we will assume tha t this sum is two and try to 
adapt their method to this case. Let G = (V", E) be the small graph 
obtained after shrinking a very large set of nodes into a single pseudo 
node. We continue calling x* the fractional solution induced on it by 
our fractional vector x*. 

If in G the solution x* (see Figure 2.41) is a convex combination 
of incidence vectors of Hamiltonian cycles, then x* violates no valid 
inequality in O. Else there is necessarily at least one such inequality. 
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Figure 2.41- The same solution after shrinking 

Note that any Hamiltonian cycle candidate to be used in such a convex 
combination must contain all edges e such that x* == 1 and no edge for 
which x'^ — 0. We call such tours compatible with x*. In our example 
there are only four possible such Hamiltonian cycles. None uses the edge 
of value .18 not incident to the pseudo node, and therefore this solution 
is not a convex combination of incidence vectors of Hamiltonian cycles 
and it is worthwhile to search for a violated inequality in this graph. 

To make things more precise, one can solve the following linear pro­
gram which tries to write x'^ as a convex combination of incidence vectors 
of Hamiltonian cycles. The summations are on all compatible Hamilto­
nian cycles r except when expressed differently: 

max 

E r̂ 
r:eGr} 

p 
1 

Ar 

E pOAr 

= 

= 

> 

X* for all e €  £• 

1 

0 for all r 

(61) 

(62) 

(63) 

(64) 

This problem can be solved by generating first ah compatible Hamilto­
nian cycles, which in general are in small number if the number of nodes 
is small and we have some edges e with x^ = 1, since these restrict a 
lot the number of choices. Note that G is in general not dense since, 
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as we will see in the next section, we work on a very restricted set of 
edges (variables). This problem can be also solved by dynamic column 
generation. Each column generation is a TSP problem using the dual 
variables as costs, but on a small instance with many fixed variables. 
We will comment on this point later on. 

If the above LP has a solution then we are out of business, else by 
the Farkas lemma there exists an inequality fx < /o which explains this 
infeasibility, i.e. such that fx < /o for all compatible tours and fx'^ > /Q . 
Some commercial linear programming software, such as CPLEX, provide 
a function that return the coefficients fe for e e E of such an inequahty. 

In [31] the following slightly different linear program is solved in order 
to get the coefficients fe directly from the dual without having to use an 
ad hoc procedure. Here again F is a generic compatible tour. 

max s (65) 

- ^ Ar + s < + i^e = 0 for all e G ^ (66) 
{r:eGr} 

^ A r - 5 = 0 (67) 
r 

- 1 < ^e < 1 for all eeE (68) 

Ar > 0 for all F (69) 

This linear program is unbounded if and only if x* is a convex combi­
nation of incidence vectors of tours of G. Else letting fe, for e e E be the 
dual variables associated to constraints (66), /o that associated to con­
straint (67), Ue and Ve those associated to the bounds on the components 
of w, the dual writes: 

^ ^ ^ E e G ^ K + ^e) (70) 

- ^ /e + /o > 0 for all compatible tour F (71) 
eer 

J^fexl-fo - 1 (72) 
eeE 

fe ~\-Ue-Ve = 0 for 8il\ 6 E E (73) 

Ue>0,Ve>0 for all e G E (74) 

Any feasible solution to this dual problem yields an inequality fx < /o 
which is valid for all compatible tours as shown by constraints (71) and 
such that fx"" = /Q -|- 1 > /o by Constraint (72). Note that due to 
the Objective Function (70), if one finds a violated inequality, one finds 
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one which minimizes J2eeE l/^l' ^^ ^̂  ^̂  ^^ some sense a most violated 
inequahty. 

The steps in [31] (shghtly modified for sake of simphcity to the case 
of a pseudo-node of "degree" two) are: 

1 Turn the inequahty fx < /o into one with integer coefficients. 

2 Transform it into an inequahty vahd for ah tours which only use 
edges in E. 

3 Transform it into a facet inducing inequality on G. 

4 Perform a sequential lifting to compute the coefficients on the edges 
not in E. Assume one has transformed the inequality into one in 
"greater or equal" form, gx > go^ which can easily be done by mul­
tiplying by —1 both sides and then adding some degree equalities 
in order to bring back all coefficients non negative. Then each lift­
ing operation refers again to a STSP on a very small graph, which 
does not mean that things will be necessarily easy. Experiments 
carried out by Jiinger, Reinelt and Rinaldi [474] show that when 
the coefficients of the objective function are those of weird facet 
inducing inequalities, then the TSP may be extremely difficult to 
solve by Branch and Cut even for very small instances. For this 
last reason it is advisable to put a time limit on this phase and 
return a failure message if it exceeds that time. 

5 Transform the inequahty into a facet inducing inequality using a 
tilting procedure inspired by Minkowski. Procedure also used in 
Step (2). Note that Applegate et al. do not need this step, but 
when dealing with Hamiltonian cycles lifting an edge may increase 
the dimension of the underlying poly tope by more than one unit, 
which is not the case when one uses closed walks. On the other 
hand, Applegate et al. need a more sophisticated routine for the 
column generations and the lifting procedures which are no longer 
TSPs. 

6 Pu t in T T form. For technical reasons due to their Branch-and-
Cut code, Applegate et al. only keep those T T inequalities tha t 
can be put in closed set form. 

7 Finally the shrunk nodes are expanded using 0-liftings. 

Applegate et al. report excellent results with their procedure. We 
will report some of their results in the section devoted to computational 
results. 
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19. Branch-and-Cut implementation of the 
STSP 

The Branch-and-Cut method is very simple in its principle, but once 
we want to use it there are many technical points to address. Figure 2.42, 
taken from Jiinger, Reinelt and Rinaldi [474], shows the flowchart of a 
Branch-and-Cut implementation. For a detailed study on Branch-and-
Cut we refer the reader to Jiinger and Thienel [477], [478], Thienel [790], 
Jiinger, Reinelt and Rinaldi [474]. From now on Ip stands for linear 
program. We will only address the following points: 

• Management of variables 

act ive variables: What variables should one work with? 

pricing: How often should we apply variable pricing, and how 
should one do it? 

fixing: How to perform variable fixing? 

• Management of constraints 

separat ion: What separation strategy should one choose? 

storing: How should one store the constraints? 

cleaning: How to keep the Ip of reasonable size? 

• How to obtain a good feasible solution? 

• Branching 

W h e n should one decide to stop separating and start branching? 

H o w should we perform the branching and how much effort should 
one invest in it? 

W h i c h subproblem has to be solved next? 

We will have to refer very often to two implementations of the Branch-
and-Cut algorithm for the STSP, that of Applegate, Bixby, Chvatal and 
Cook, and that of Jiinger, Naddef, Reinelt and Thienel. We will refer to 
them by ABCC and JNRT. 

19.1. Variables 
Since we are working on complete graphs it is out of question to have 

all the variables present in the Ips. One starts with a reasonably sized 
set of variables. The set of corresponding edges is usually referred to as 
the edge set of the sparse graph. There are various ways of choosing the 
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Figure 2.42. Flowchart of a Branch-and-Cut algorithm 

initial sparse graph. One can use the graph of the k nearest neighbors, 
that is for each node we keep the edges that link this node to its k 
nearest neighbors. A good choice of /c is 3. The resulting graph may not 
be Hamiltonian, not even connected if one has clusters of nodes. One 
therefore adds the edges of the tour yielding the initial upper bound (see 
further down). Another way, in the case of Euclidean instances, is to use 
edges of the Delaunay triangulation. This also may not be Hamiltonian, 
therefore one must add the edges of a tour. Helsgaun [446] has noted 
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tha t the k nearest neighbors is not in general a good choice since some 
instances have optimal solutions containing edges hnking some nodes to 
far neighbors. For example he points out that in the optimal solution to 
att532 there is an edge that links a node to its 22nd nearest neighbor. 
Helsgaun also noted that an optimal tour contains between 70% and 
80% of the edges of the minimum cost 1—tree. A minimum cost 1—tree 
is obtained by taking a minimum cost spanning tree of G \ {1} to which 
one adds the two least cost edges incident to node 1. The marginal 
value /ig of an edge e not in the minimum cost 1—tree T, is defined as 
the minimum cost of a 1—tree containing edge e minus the cost of T. 
A marginal cost of zero means that there exists a minimum cost 1—tree 
that contains e, else this cost is positive. A good choice of the sparse 
graph is to take all edges of T and all the edges with marginal value 
less than a given value a. Helsgaun shows in [446] how this can be done 
efficiently. 

Of course we have no guarantee that the optimal solution is among 
those edges. Therefore one must regularly perform what is called a 
pricing^ complete or partial. If one started with the k nearest neighbor 
graph, it seems quite logical to first search among the edges in the k + t 
nearest neighbor graph, with t small (e.g., t = 2 or 4). The edges of 
the distance 2 closure of the Delaunay triangulation, that is the edges 
hnking nodes at distance 2 on the Delaunay triangulation, seems also a 
good choice in the other case. These edges are often referred to as those 
of the reserve graph. We will see that this pricing operation, in some 
sense, guides many decisions in the design of the Branch-and-Cut code. 
The pricing is done using the optimal solution to the dual problem. 
How often should it be performed is not an easy question to answer. 
For separation heuristics based on template paradigms, too many edges 
seem to be a handicap because the Ip solutions seem to become too 
fractional. For example starting directly with the five nearest neighbor 
graph (instead of the three), very often yields a worse running time 
and more branch and cut nodes in the enumeration tree. Conversely, it 
happens that trying to avoid a complete pricing, one will spend quite 
some time separating while the lower bound is over the (yet unknown) 
optimal value. In the JNRT code, a reserve pricing is performed every 10 
iterations, a complete pricing is performed if less than 2 variables were 
priced in from the reserve graph. A complete pricing is necessary in all 
cases when the solution to the Ip is feasible (integral), or when the lower 
bounds exceeds the upper bound. Even in this case, only a restricted 
number of variables is generated before one reoptimizes. In all cases of 
the TSPLIB only a very small percentage of the variables are used. 
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Variable fixing is an important point in Branch-and-Cut. A variable 
can be fixed to 0 (resp. 1) if one does not cut off" all optimal solutions 
when we never (resp. always) take that edge. This can be done in various 
ways. The first is by reduced cost. Let GUB (Global Upper Bound) be 
the best known value of a tour, LB (Lower Bound) be the optimal value 
of our current Ip and assume that a complete pricing has shown that 
the current Ip solution x* is globally optimal. Let e be such tha t either 
Xg = 0 or Xg is not a variable of the Ip. Let Cg be its reduced cost and 
assume Cg > 0. If Ce + LB > GUB on can fix the corresponding variable 
to zero, delete it from the Ip, if necessary, and definitively forget about 
it. One advantage is that pricing will not have to be performed on it 
again. Note that the case "=" in the preceding formula may eliminate all 
optimal solutions, but in this case it is not important since one already 
has at hand such an optimal solution, namely the solution that yields 
the current GUB. With the same argument one can fix a variable Xg to 
1 which is such that x\ — 1 and LB — Cg > GUB (this variable is non 
basic and at its upper bound value). 

Variables can be fixed also by logical implication. For example, if two 
incident edges have been fixed to 1, then all other edges incident to the 
common node can be fixed to 0. If all edges incident to a node except 
two are fixed to 0, then the two remaining ones can be fixed to 1. The 
edge linking the extremities of a path of edges fixed to 1 can be fixed to 
0. These variable fixings can be done at any node of the search tree, but 
are only valid in the corresponding subtree. One usually talks of variable 
setting in case the node is not the current rootnode of the search tree, 
where by current rootnode we mean the lowest node in the search tree 
which is a common ancestor of all active nodes. 

19.2. Constraints 
As one would expect from the name of the method, constraint genera­

tion is the key point in a Branch-and-Cut code. As seen in the previous 
sections there are a variety of different constraint types. Should one 
give priority to some over the others? The strategies of the two latest 
codes devoted to the TSP diverge quite a bit in the separation strate­
gies. The JNRT code will first search for violated subtour inequalities 
and only search for other violated inequalities once no subtour inequal­
ity is violated. It was generally taught that it was too costly to do 
so. The computational results that will be reported in the next section 
show that it is not the case. The ABCC code does not do so, following 
the strategy of all the preceding codes of Hong and Padberg, Grotschel 
and Holland, and Padberg and Rinaldi. The JNRT code only relies on 
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template paradigms, the ABCC code also uses more general separation 
procedures. 

There are many theoretical ways of measuring the strength of a facet 
inducing inequality (see [618]). 

• The number of tours that are on the facet. 

• The volume of the subtour elimination polytope it cuts off. 

• Its distance to the closest vertex of the subtour elimination poly­
tope it cuts off. 

Practically, the only measure that counts is the help in solving an 
instance? In this respect subtour elimination inequalities and comb in­
equalities are the strongest inequalities. For the other inequalities it 
depends a lot on the instance. Pa th inequalities seem to be the next 
useful family. 

Before the work of Applegate, Bixby, Chvatal and Cook, several 
groups have thought of using general cutting planes for integer pro­
gramming such as the Gomory cuts or the lift and project cuts of Balas, 
Ceria and Cornuejols [68] and [69]. The major difficulty with this ap­
proach deals with the management of the variables. Remember that we 
are working with a sparse graph, that is not all variables are considered 
at a given time, and that one must be able to do pricing efficiently. To 
do so one must be able to retrieve very easily the coefficient of any vari­
able in a given inequality without storing it explicitly. This can easily 
be done if the inequality is in closed-set form: one stores each set that 
defines the inequality, together with its coefficient, then the coefficient 
of an edge is just the weighted sum of the coboundaries it belongs to. 
This is why the ABCC code only keeps closed-set form inequalities in 
its general separation procedure. 

Linear programs tend to grow very big, therefore one has to remove 
regularly those constraints that are no longer active. A good idea is 
also to remove those that have been very little active in the past k 
iterations, that is have had an optimal associated dual variable close to 
zero. This has to be done with caution in order not to destroy the basis. 
Note that we never delete variables except when fixing to 0. This may 
be necessary for some large instances in which variables would flow in. 
Removed subtour elimination inequalities are discarded since they can 
easily be recovered, the others are put into a pool which is regularly 
searched through. A too costly strategy for large and difficult instances 
and which has been in use in the first TSP codes, is to search first the 
pool for violated inequalities, and then call the separation heuristics in 
case of failure. This has the advantage of guaranteeing that no inequality 
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is duplicated in the pool. This strategy is no longer used because the pool 
of constraints grows very big and searching it is very time consuming. 
One must then make sure not to store the same inequality twice. 

19.3. Upperbounding 
We now address the problem of finding a good tour. The aim is on one 

hand to enable efficient variable fixing, and on the other not to explore 
useless branches of the search tree. Moreover, a very good upper bound 
makes the choice of the tree exploration strategy less critical. 

Traditionally a heuristic is called to yield a first value and a tour, the 
edges of which are used in the sparse graph. Most codes try to exploit 
the Ip solution, i.e., they try to take advantage of the information the 
Ip solution x'^ carries. It seems more probable that an edge e with x~^ 
close to 1 is in an optimal solution than one with such a value close to 0. 
Based on this, an initial tour is built and a Lin-Kernighan ([563],[446]) 
type heuristic is called to try and improve it. It is important not to t ry 
and improve twice a same tour. This can be done using a hash function, 
see [475], [446] and [587]. 

Any integer feasible solution of the Ip encountered on the way also 
can yield a better tour. 

19.4. Branching 
Branching occurs when one has renounced to solve the instance with 

the pure cutting plane method. This may occur either because one does 
not find any more violated inequalities or because the lower bound has 
not progressed in a significant manner in the past iterations. This last 
phenomenon is known as tailing off. Before branching a complete pricing 
is performed in order to be able to fix as many variables as possible, since 
these fixings will be definitive. The value of the objective function of 
the current Ip, that is the lower bound, is known as the root value or 
root bound. We assume the reader familiar with the Branch and Bound 
terminology. 

Since, in some sense, resorting to branching is felt as a failure, not 
much attention has been dedicated for a long time to this operation. 
Unfortunately powers of 2 grow very fast and it has become obvious 
that one must do that operation carefully. 

The objective of branching is to split a certain subset of tours into 
two smaller subsets, to each subset corresponds a Ip relaxation which 
does not contain the current fractional solution as a feasible solution. 
This can be done in various ways. The classical way is to choose some 
edge e such that the corresponding variable x* is fractional. The tours 
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are split into those that contain e and those that do not. This is done 
by modifying the bounds of the corresponding variable in the current 
Ip, moving the lower-bound to 1 in one case, the upper-bound to 0 in 
the other. This creates two new problems tha t are added to the list of 
problems to solve. To choose among all fractional variables, the mostly 
used criterion is to choose one of value close .5, and among those one 
with highest cost. Clochard and Naddef [203] advocate using subtour 
inequalities to perform branching. Let S C V^ with x*(5(S')) not too 
close to an integer value, say 2k < x^{6{S)) < 2k + 2. Then one can 
split the tours into those that cross the boundary of S at most 2k times 
and those that do so at least 2k + 2 times. This is done by adding the 
appropriate inequality to the current Ip. The difficulty is in finding a 
convenient set S. In the JNRT code this is done by using handles of 
previously found combs, star or clique trees, but there is a lot of room 
for improvement in this choice. 

The branching inequality could be anything else. Another possibility 
is, given two disjoint sets 5, T C 1 ,̂ split the tours between those which 
use at least an edge from (S : T) and those which don't . This is efficient 
if the shortest edge of ( 5 : T) , in terms of cost (not x* value) is large 
and a fractional amount of these edges are used in the solution x'^^ an 
amount close to .5 also seems a good choice. Figure 2.43 illustrates this 
last branching rule on a fractional solution to fll400. We have not put 
in the edge values. Each cluster of nodes A, B and C contains several 
hundreds of nodes. We have x*(yl : B) = x^(A : C) = x*(B : C) = 0.5. 
There is only one edge e between B and C with non-zero x* value, and 
it is hkely to be selected by the standard criterion (close to .5 and high 
cost). What will happen on the side of the search tree in which one will 
have set Xe = 0? Since many edges linking B and C have costs very close 
to that of e, it is very likely that one will appear with that same value (or 
several adding up to that value). The result will be a problem that will 
have a lower bound almost equal to that of its father and no progress 
will have been made. This is typical of a case in which one should branch 
by saying that x{B : C) = 0 on one side and x{B : C) > 1 on the other 
side. Two other candidates are of course x{A : C) and x{A : B). Note 
that this fractional point contains some maximally violated combs which 
most certainly could be found using the domino separation procedure, 
but not by the heuristics of Naddef and Thienel, which is certainly why 
some codes such as the ABCC code do very well on this instance and the 
JNRT code does very poorly. One of these combs is shown in Figure 2.43, 
the set C which is one of the teeth, the other sets defining the comb are 
shown in thin lines. 
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In general branching on variables does pretty well, but it is disastrous 
on difficult instances. Trying to perform better on these instances un­
fortunately has a price on the easier instances. But this is not specific 
to the TSP. In fact, NP-hardness means that there are very difficult in­
stances which may be rare. One has at some point to decide how much 
one is willing to sacrifice on the solution time for the easy instances in 
order to perform not too badly on those rare instances. 

' "'If "^ifii^'»>ffyyKBeg^ 

Figure 2.43. Illustration for the third branching rule 

Applegate et al. introduced strong branching in an effort to optimize 
the probability of performing a good choice. It roughly goes as follows: 
choose a large enough set of candidates for branching (variables or in­
equalities) . Test each of them by solving the corresponding Ip relaxation 
only. The standard criterion is to choose the candidate for which the 
smallest of the two lower bounds of its sons, is the largest. Jiinger et al. 
adapted this criterion a httle by choosing among those with the same 
rounded smallest lower bound, the one with largest other lower bound, 
that is between a candidate yielding two bounds of 125.85 and 125.99 
and one with 125.45 and 127.36, they choose the second. There is no 
reason, other than simplicity, to restrict to the rounded value; a better 
choice would be to choose among those which are within a certain inter­
val, the one which has a larger upperbound. Computational experiments 
show that the time spent in choosing a good candidate definitively pays 
off, at least on difficult instances. 
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While performing this strong branching, one may encounter a bound 
which exceeds the upper bound. One has to take advantage of this by 
either setting the corresponding variable to the other value, or by adding 
the converse inequality to the Ip. 

We are left with the problem of choosing which open problem to solve 
next. It is well known in Branch-and-Bound that if the initial upper-
bound equals the optimal value, whatever exploration strategy one uses, 
the same tree will be explored. This is no longer true in Branch-and-Cut. 
This is due to the fact that the inequalities one generates are globally 
valid, that is wherever they have been generated in the search tree, they 
are valid at any node of the search tree. The non-tivial inequalities, 
as already mentioned, are stored in a pool through which one searches 
regularly. The content of that pool depends on the previously visited 
nodes of the search tree, and since Branch-and-Cut is highly unrobust, 
the whole search may be considerably changed. Nevertheless it seems a 
good idea to go depth first if one believes that the current feasible so­
lution is optimal. If not it seems that branching on the most promising 
open problem (the one with lowest lower bound) is the best choice. 

20. Computational results 
The two latest implementations of the Branch-and-Cut method for the 

TSP are that of Applegate, Bixby, Chvatal and Cook (ABCC) known as 
CONCORDE, and that of Jiinger, Naddef, Reinelt and Thienel (JNRT). 
The latter relies on a general purpose Branch-and-Cut system known as 
ABACUS and uses the separation heuristics of Padberg and Rinaldi for 
subtours, and the ones of Naddef and Thienel for the other inequalities. 
The initial upperbounding is done using Andre Rohe's TSP implemen­
tation of Lin Kernighan. ABACUS is a system that manages all parts 
of Branch-and-Cut which are problem independent, making the devel­
opment of optimization software based on Branch-and-Cut much easier 
since one may concentrate on problem-specific technicalities. Of course 
there is a price, which for the TSP ranges somewhere between 10% and 
25% on CPU time. 

Another main difference between these two codes is the separation 
strategies. JNRT only calls for separation of violated inequahties which 
are not subtour elimination inequalities when none of the latter are vi­
olated. They also restrict to separation into known classes of facet in­
ducing inequalities. This is not the case for ABCC, as already seen. 

Table 20 gives a comparison of times and number of nodes of the search 
tree between the two codes. The times reported below are for JNRT on a 
Sun Ultra-60 with a 295 MHz processor. For CONCORDE (ABCC) on 
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a 500 MHz Compaq XPIOOO workstation. Following some benchmarking 
of ABCC, and due to the fact that JNRT use a general purpose Branch-
and-Cut code, a factor of 4 or 5 seems to be reasonable to compare CPU 
times. These times, hke all other figures should be taken with caution. 
Branch-and-Cut is a highly unrobust method: a slight change in some 
parameter setting may change considerably the number of nodes of the 
Branch-and-Cut tree and the CPU time. Times also fluctuate consider­
ably depending on whether or not the upper-bound has been found early 
enough to save useless computations. For the JNRT code we also give, 
for some relevant instances, the results of runs in which the optimum 
value was entered as the initial upper bound. The interest of such data 
is to differentiate those instances for which the separation of valid in­
equalities is the difficulty from those for which it is the upperbounding. 
The data for the instance fnl4461 for the ABCC code also corresponds 
to the initial upperbound set to the optimal value and for pcb3038, in 
the ABCC code the initial tour happens to be the optimal one. JNRT 
chose the option to privilege separation over branching, in the aim of 
testing how good the separation heuristics are. It may have been faster 
sometimes to branch much earlier. 

A first conclusion is that separation using template paradigms does 
pretty well in most cases. The local cut separation procedures helps in 
some difficult instances. Another conclusion is that the size of a problem 
is not really what makes it difficult. Finally, if one looks into the recent 
history of TSP solving, one realizes that good separation is the first clue 
to success, the second being clever branching. The instance ts225 was 
solved by Applegate et al. for the first time in over 5000 BC nodes in 
about two years of CPU time, then in a little over an hour and about 
40 BC nodes by Naddef and Thienel using their separation routines, 
and now is solved in only a few seconds by CONCORDE. The same is 
illustrated by the instances pcb3038 and fnl4461 which were first solved 
in a few years of CPU time and now in less than one day of CPU. 
Table 2.2 gives the results of CONCORDE on very large instances. The 
parameter settings are in general different from the ones used for the 
previous table. Sometimes the optimal tour value was an input. See the 
web page of CONCORDE for more information. 

21. Conclusion 

In this chapter we have seen an example of the efforts that must 
be carried out in order to achieve good performance in the search for 
optimal solutions of large instances of the symmetric TSP via Branch-
and-Cut. This effort is two-fold. First a deep theoretical research in 
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Name 
pr76 
grl20 
prl36 
prl44 
prl52 
ul59 
ratl95 
dl98 
kroA200 
kroB200 
gr202 
ts225 
pr226 
gr229 
gil262 
pr264 
pr299 
lin318 
rd400 
fl417 
gr431 
pr439 
pcb442 
d493 
att532 
ali535 
pa561 
u574 
rat575 
p654 
gr666 
u724 
rat783 
dsjlOOO 
prl002 
ul060 
vml084 
pcbll73 
rll304 
rll323 
nrwl379 
dl655 
vml748 
pr2392 
pcb3038 
fnl4461 

BC nodes 
JNRTopt 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

13 
-
9 
-
-
-
5 
-
7 
-
7 
-
-
9 
-
-
-
7 
7 
13 
-

33 
-
-
9 
-

265 
409 

JNRT 
1 
1 
1 
1 
1 
1 
1 
3 
1 
1 
1 

57 
1 
3 
1 
1 
1 
1 

15 
1 
9 
5 
9 
1 
5 
1 
9 
1 

11 
1 
1 
9 
1 
1 
1 

29 
7 

25 
1 

55 
7 
1 

19 
1 
-
-

ABCC 

15 

13 
15 
9 
5 
7 
3 
17 
1 

25 
3 
3 
11 
1 
7 
1 

21 
11 
19 
1 

25 
19 
5 
17 
1 

313 
213 

time 
JNRTopt 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2:39 
-

7:02 
-
-
-

6:23 
-

27:16 
-

4:47 
-
-

10.05 
-
-
-

9:11 
66:25 
21:49 

-
327:35 

-
-

155:56 
-

5771mn 
9410mn 

in mn:ss 
JNRT 
0:35 
0:01 
0:02 
0:01 
0:02 
0:01 
1:41 
0:20 
0:18 
0:11 
0:09 

86:26 
0:03 
3:31 
0:43 
0:03 
1:06 
0:40 
4:38 
0:55 
10:40 
8:39 
1:33 

10:29 
9:47 
2:18 

43:20 
0:35 
20:38 
0:15 
8:18 

20:45 
2:13 

75:27 
0:59 

55:09 
81:21 
77:23 
12:01 

407:01 
29:09 
25:33 

318:57 
7:44 

-
-

ABCC 
"0T02 

0:02 
0:04 
0:02 
0:08 
0:01 
0:22 
0:12 
0:07 
0:04 
0:05 
0:21 
0:04 
0:39 
0:13 
0:03 
0:17 
0:10 
2:28 
0:58 
2:13 
3:36 
0:50 
1:53 
1:50 
0:53 
4:07 
0:23 
6:03 
0:15 
0:50 
3:45 
0:38 
6:50 
0:34 
9:31 
10:04 
7:48 
3:09 

62:20 
9:38 
4:23 
37:03 
1:47 

1347mn 
890mn 

Table 2.2. Computational results 
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Name 
rl5915 
rl5934 
pla7397 
rlll849 
usal3509 
dl5112 

BC nodes 
161 
205 
101 
431 
9539 

164569 

time 
644h 20mn 
163h 35mn 
119h lOmn 
~ 155 days 
~ 4 years 

~ 22.6 years 

Table 2.3. Very large instances with Concorde 

order to study the convex hull of the solutions. Note that even if one 
uses separation routine outside the template paradigm, this study is 
necessary, since some steps of the algorithm need these theoretical results 
to justify them. Following that theoretical study, one must invest in a 
relevant algorithmic and implementation effort. The implementation 
effort is unfortunately now far too high for a newcomer. If this very 
exciting field is not to die, the only hope is that large pieces of existing 
source code be made available to anybody interested in developing a 
new challenging program. We hope that this will be the case in a near 
future. 
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