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!• Introduction 
In this chapter we study the bottleneck traveling salesman problem 

(BTSP) introduced in Chapter 1. BTSP is a variation of the classical 
traveling salesman problem (TSP) that differs from the TSP only in the 
objective function. Let us first restate the problem. 

Let G — (A/', E) be a (directed or undirected) graph on node set 
Â  — {1 ,2 , . . . ,n} and let F be the family of all Hamiltonian cycles 
(tours) in G. For each edge e G £̂ , a cost c^ is prescribed. For any 
7Y G F, let CmaxC )̂ = max{ce '. e eH]. Then the BTSP is to find a 
Hamiltonian cycle 7î  G F such that CmaxĈ )̂ is as small as possible. 

Without loss of generality we replace G by K^ in the undirected case 

and Kn in the directed case by adding the missing edges with cost oc. 
Thus, the edge costs will be given in the form of an n x n matrix C, 
called the cost matrix, where any non-diagonal entry Cij corresponds 
to the cost Ce of the edge e — (i^j). As indicated in Chapter land 

Chapter 11, we can also represent a tour in Kn ^^ a cychc permutation 
7 on Â  == {1,2, . . . , n} . Let Cmax(7) = niax{q.y(^) : i G N}. Then the 
BTSP is to find a tour 7* on Â  such that Cniax(7*) = niin{cmax(7) • 7 is 
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a tour on N}. When the underlying cost matrix needs to be emphasized, 
we sometimes denote the BTSP with cost matrix C as BTSP(C). The 
BTSP can also be formulated as an integer programming problem: 

Minimize 

Subject to 
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where S = N\S. 

In fact each of the (mixed) integer programming formulations of TSP 
discussed in Chapter 1 leads to a corresponding (mixed) integer pro­
gramming formulation of the BTSP. 

To the best of our knowledge, the bottleneck TSP wa^ introduced 
by Gilmore and Gomory [360] assuming special structure of elements 
of C. Garfinkel and Gilbert [349] considered the general BTSP model 
and discussed an application of the problem in the context of machine 
scheduling. Meaningful interpretations of the BTSP model and its vari­
ations can be given in the context of some route planning problems and 
transportation of goods perishable in time. 

Another problem closely related to the BTSP is the maximum scatter 
traveling salesm^an problem (MSTSP) [33]. Here, each edge e in G is 
assigned a weight We and we seek a tour H in G such that the smallest 
edge weight in H is as large as possible. Let tt'min('^) = inin{we : e G 
n}. Then, the MSTSP is to find a Hamiltonian cycle H e¥ such that 

{H) is as large as possible. 
Applications of MSTSP and its variations include medical image pro­

cessing [666], obtaining revetting sequence in joining metals in the air­
craft industry [745, 746] etc. 

The problems MSTSP and BTSP are equivalent in the sense that an 
optimal solution to the MSTSP with weight matrix W can be obtained 
by solving the BTSP with cost matrix C — —W and vice versa. If we 
require the edge costs/weights to be positive, a large enough constant 
could be added to each of the edge costs/weights. However, this trans-
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formation may not be useful for some approximation algorithms that 
use special structure of C or W^ since the addition of a constant and/or 
multiphcation of edge costs/weights by - 1 may violate key properties 
of the matrix that are used by these algorithms. Thus in such cases, the 
characteristics of the two problems are different and warrant separate 
treatment. 

When the cost matrix C is symmetric, (equivalently the underlying 
graph is symmetric), we refer to the BTSP as symmetric bottleneck trav­
eling salesman problem (SBTSP); otherwise it is referred to as asym-
nfietric bottleneck traveling salesman problem (ABTSP). A special case 
of SBTSP, where the vertices of G correspond to points in the Euchdean 
plane and edge costs are Euclidean distances, is referred to as Euclidean 
bottleneck traveling salesman problem(EBTSF). Similarly we have sym­
metric, asymmetric, and Euclidean versions of the MSTSP. 

It is well known that the Hamiltonian cycle problem on a grid graph is 
NP-complete [466], As an immediate consequence we have that EBTSP 
is NP-hard and hence BTSP is NP-hard [466]. In fact BTSP is NP-
hard even if we restrict the graph G to a grid graph or a planar bi­
partite graph in which degree of each node is 3 or less. As in the case 
of TSP, this follows immediately by a reduction from the Hamiltonian 
cycle problem on these graphs which is known to be NP-complete [466] 
(see Appendix B). Similarly, MSTSP can be shown to be NP-hard on 
grid graphs and planar bipartite graphs in which degree of each node 
is 3 or less. Fekete [284] recently proved that MSTSP under Euclidean 
distances in M^ is NP-hard for any fixed d> 3. More complexity results 
are discussed is Section 3. 

2. Exact Algorithms 
Recall that an exact algorithm for an optimization problem is guaran­

teed to produce an optimal solution for any instance of the problem or 
declare that a feasible solution does not exist. Since BTSP and MSTSP 
are NP-hard, such algorithms are generally of implicit enumeration type. 
Exact algorithms for MSTSP have not been discussed explicitly in liter­
ature. However, the transformation discussed in Section 1 can be used 
to solve MSTSP as BTSP. 

2 . 1 . B T S P a s a T S P 

In the preceding chapters, we have seen several interesting properties 
of and solution approaches for the TSP. Let us now examine how the TSP 
is related to the BTSP. We will first show that BTSP can be formulated 
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£LS a TSP in the sense that an optimal solution to this TSP gives an 
optimal solution to the BTSP. 

Note that in solving BTSP to optimahty, the numerical values of the 
edge costs are unimportant; only the ordering of edge costs matters. Let 
the edges of G be labeled as {ei, e2 , . . . , e^} such that Cê  < Ce2 < • • • < 
Cg^. Let {de : e E E} be another set of costs for the edges of G. Let 
us denote by BTSP(C) and BTSP(D) the instances of BTSP with edge 
costs Cg's and dg's respectively. Let L and U respectively be known lower 
and upper bounds on the optimal objective function value of BTSP(C). 

Lemma 1 If de^ < de2 ^ • - - '^ d^^ with de^ < c?ei+i "whenever Cg- < 
Cei_̂ i /^^ '̂̂  ^ such that L < Ce^ < U, then every optimal solution to 
BTSP(D) is also an optimal solution to BTSP(C). 

The proof of the above lemma is straightforward. 
Let a i < a2 < • • • < at be an ascending arrangement of distinct costs 

Ce of edges of G such that L < Ce <U. Define Fr = {Ti e¥ : CmaxC'W) = 
max{ce : e e H} = ar} ior r = 1,.,., t, F^+i = {H e¥ : CmaxC )̂ > c^t}, 
and Ur = ^l=iFi^ r = 1 , . . . , /;+!. Consider new edge weights {de : e e E} 
satisfying, 

m i n { ^ de:neFr}> m i n { ^ de'.He t/^-i} (7) 
een een 

for all 2 < r < (t + 1). Here, minimum over empty set is taken as —oo. 
Let TSP(D) denote the TSP with edge weights deforeeE. 

Theorem 2 Every optimal solution to TSP(D) is also an optimal so­
lution to BTSP(C). 

Proof. Clearly, if k is the smallest index such that Fk is non-empty 
then any H E Fk is an optimal solution to BTSP(C) with the optimal 
objective function value a^. If H' is an optimal solution to TSP(£)) and 
n' e Fp, then, 

Y^de = m i n { ^ de'.He Fp}> m i n { ^ de'.He C/p-i}. 

Thus, Up-i must be empty and hence H' is optimal to BTSP(C). • 

Corollary 3 Let 6i = 0 and for j = 2 , . . . , t + 1, let bj = nbj-i + 1. Let 
the edge costs de ̂ s be defined as : 

de = 
0 
bj 

bt+i 

if Ce < ai 
if Ce = OLj, j = 2, . . 

if Ce > at 
.,t 



The Bottleneck TSP 701 

Then every optimal solution to TSP(D) is also an optimal solution to 
BTSP(C). 

Corollary 4 Let p be the largest index such that c^^ < U and TTI = |£^|. 
Define the edge costs de^ = 2^~^ for j = 1, 2 , . . . ,p and dej = 2^+^ for 
j = p + l ,p + 2 , . . . , m. Then every optimal solution TSP(D) is also an 
optimal solution to BTSP(C). 

Let ki be the number of edges e with Cg = a^, i = 1 , . . . , t. 

Corollary 5 Let 6i = 0. For j — 2 , . . . , ^ + 1, let Uj he the smallest 

positive integer such that YllZ^. ki < n. Define bj = Yli=u «̂̂ ^ + (n — 

^iZu- ^i)buj-i + 1- Let the edge costs d^^s he defined as : 

{ 0 if Ce< ai 

bj ifCe = Oij, j = 2,...,t 
h+i if Ce > at 

Then every optimal solution to TSP(D) is also an optimal solution to 
BTSP(C). 

The proofs of corollaries 3, 4 and 5 follow from the fact that the special 
edge costs defined satisfy the condition (7). 

Results analogous to Theorem 2 in the context of various bottleneck 
problems including the BTSP are well known [146, 410, 472, 691]. Al­
though, Theorem 2 shows that BTSP can be solved as a TSP, it is not 
of much practical value since the costs de used in TSP(D) grow expo­
nentially. However, when the number of distinct edge costs between 
given lower and upper bounds on the optimal objective function value 
is relatively small (say < 10), then the edge costs defined in corollar­
ies 3 and 5 are sometimes useful. This is exploited in the generalized 
threshold algorithm given in the next section. 

A result similar to Theorem 2 can be obtained for the case of MSTSP 
showing that MSTSP can be solved as a MAX TSP or as a TSP. 

2.2, Generalized Threshold Algorithm 
The generalized threshold algorithm [691] is a modification of the 

well known threshold algorithm for solving bottleneck problems [269]. 
It solves BTSP as a sequence of TSP's with relatively smaller edge costs 
utilizing Corollary 3. Without loss of generality, we assume the edge 
costs are positive. Thus L > 0. Let 5i , 5 2 , . . . , 5̂ ^ be an ordered partition 
of the index set {1 ,2 , . . . , t}, (that is, p e Si^ q e Sj, i < j implies Qp < 
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aq). We say that an edge e of G corresponds to Si if Ce = dp for some 
p e Si. For each edge e that corresponds to 5^, define c^ = i^ I < i < r. 
Define ĉ  - 0 if Ce < L and ĉ  - r + 1 if Ce > U. Let BTSP(CO 
represent the BTSP with edge costs {c^ : e e E}. Let W be an optimal 
solution to BTSP(C") with optimal objective function value k. (Note 
that / cG{l , . . . , r } . ) Let H* be an optimal solution to BTSP. 

Theorem 6 [691] miiii^Skic^i} < Cmax(^*) < maxie5fc{^i}. 

Note that BTSP(C") is an approximation to the problem BTSP(C). 
If r is small (say < 10), then BTSP(C') could be solved as a TSP with 
edge costs of moderate size using Corollary 3 or 5. Further, the solution 
to BTSP(C") provides new lower and/or upper bounds for the BTSP 
as guaranteed by Theorem 6. Using these new bounds, a 'better' ap­
proximation to BTSP can be constructed. Continuing this process, we 
eventually get an optimal solution to the BTSP. Our generalized thresh­
old algorithm is precisely this. A formal description of the algorithm is 
given below. 

The Generalized Threshold Algorithm 

Step 1: Construct a lower bound L and an upper bound U for the 
optimal objective function value. Set g = 1, (^ is the iteration 
counter). 

Step 2: Let a i < 0̂2 < • • • < â ^ be an ascending arrangement of 
distinct edge costs Cg such that L < c^ <U. 

Step 3: Construct the ordered partition 5i, ^ 2 , . . . , 5 (̂g) of {1 ,2 , . . . , tq}. 
Let every edge e with cost Ce < L correspond to SQ and every 
edge e with Ce > U correspond to Sj^^^q^^i. Let c^ = i for edges 
e that corresponds to 5^, 0 < i < r(^) -h 1. 

Step 4: Solve the BTSP with costs c^. (This is done by solving an 
equivalent TSP indicated in Theorem 2.) Let W be the optimal 
solution produced and let the optimal objective function value 
be k. (Note that A; 6 { 1 , . . . , r(g).) 

Step 5: If |5/c| = 1, then output H' and stop. Else update the lower 
and upper bounds 
L = mmi^Sk{^i} and 

Set q = q + 1 and go to Step 2. 

The validity of the generalized threshold algorithm follows from the 
preceding discussions. Note that the number of partitions, r (indicated 
as r{q) in the algorithm), is a function of the iteration counter and can 
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be changed from iteration to iteration. For a large value of r, the TSP 
in Step 4 will have very large edge costs, leading to overflow errors. A 
reasonable choice of r is a number less than or equal to 10. The com­
plexity of the algorithm depends on the number of iterations, which in 
turn depends on the way the partitions 51, ^ 2 , . . . , 5̂ ^ are constructed. 
If 5i, ^ 2 , . . . , Sr-i are selected as singletons and Sr contains all the re­
maining edges with cost Ce between L and [/, the algorithm could take 
0{n^/r) iterations in worst case, since t — 0{in?), We call this the in­
cremental search version of the generahzed threshold algorithm. If 15̂ 1 
is approximately equal to IS'jl for all 1 < i, j < r, the number of iter­
ations of the generalized threshold algorithm is 0(log^ n). We call this 
the r-section version of the generalized threshold algorithm. If the lower 
bound L is expected to be tight, the incremental search version may 
work well in practice and often terminates in one iteration, although its 
worst case complexity is too high. If r = 2 (which is desirable for very 
large n). Step 4 of the generalized threshold algorithm can be imple­
mented as testing hamiltonicity of an appropriate spanning subgraph of 
G. This special case of the generalized threshold algorithm is precisely 
the adaptation of the well known threshold algorithm to the BTSP. 

The generalized threshold algorithm could take advantage of existing 
powerful TSP codes to get a reasonably fast algorithm for the BTSP 
without much programming eff'ort. It is easy to develop a corresponding 
generalized threshold algorithm for the MSTSP which solves the prob­
lem as a sequence of MAX TSP's. We could also use the generalized 
threshold algorithm for BTSP to solve MSTSP using the transforma­
tion discussed in the Section 1. 

2,3. Branch and Bound Algorithms 
Branch and bound algorithms are classical approaches for solving 

'hard' combinatorial optimization problems. The power of a branch 
and bound algorithm depends on the ability to generate good lower and 
upper bounds on the optimal objective function value and establishing 
an efficient branching strategy to generate the search tree. Garfinkel and 
Gilbert [349], Carpaneto et al [165], and Sergeev and Chernyshenko [757] 
developed specialized branch and bound algorithms to solve BTSP. Com­
putational results based on problems of size less than or equal 200 are 
reported in [165, 349]. There is no recent experimental study published 
on the branch and bound algorithms for BTSP. The branching strategies 
used by Carpaneto et al [165] and Garfinkel and Gilbert [349] are similar 
to those studied for the case of TSP and will not be discussed here. For 
details we refer to the original papers. (See also Chapter 4.) 
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2.3.1 Lower Bounds. We now discuss some good lower bounds 
for the BTSP that can be obtained efficiently. 

2-max Bound: This lower bound is very simple and easy to compute. 
It is valid for the symmetric version of BTSP only. For each node i 
of G, let A(i) be the set of edges incident on i and /x̂  be the second 
smallest cost (counting multiplicity) of edges in A(i). Then maxi^jvi/^i} 
is a lower bound on the optimal objective function value of the BTSP. 
In a graph with m edges, this bound can be identified in 0{m) time. 
An asymmetric version of 2-max bound is introduced by Carpaneto et 
al [165]. 

Biconnected Spanning Subgraph Bound: We denote this lower 
bound as BSS bound and it is defined for the symmetric version of BTSP. 
Since every tour is biconnected, the optimum objective function value of 
a Bottleneck biconnected spanning subgraph problem (BBSSP) on the 
graph G is a lower bound for the BTSP. Several algorithms are avail­
able to solve the BBSSP. For example, in a graph with m edges and n 
nodes, Manku [578] proposed an 0{m) algorithm, Punnen and Nair [685] 
an 0{m + nlogn) algorithm, Timofeev [793] an 0{'n?) algorithm, and 
Parker and Rardin [661] an 0(n^ log n) algorithm to solve BBSSP. 

Strongly Connected Spanning Subgraph Bound: We denote this 
bound as SCSS bound and is used for the asymmetric version of the 
BTSP. Since every directed Hamiltonian cycle is strongly connected, 
the optimal objective function value of a bottleneck strongly connected 
spanning subgraph problem (BSSSP) on the digraph G is a lower bound 
for the ABTSP on G. In a digraph with m arcs, BSSSP can be solved 
in 0{m) time [677]. 

Assignment Bound: The assignment problem is used to compute 
lower bounds for the traveling salesman problem. In the same way, 
the bottleneck assignment problem (BAP) can be used to compute a 
lower bound for the BTSP. Carpaneto et al [165] used the assignment 
bound, among other lower bounds, in their branch and bound algorithm 
for BTSP. They also provided a heuristic search scheme to find alternate 
optimal solutions for the BAP that correspond to cychc permutations 
(tours). If the heuristic is successful in getting such a tour, it is indeed an 
optimal tour. BAP can be solved in 0{v?'^) time using an algorithm of 
Punnen and Nair [686]. For the case of sparse cost matrix (several edge 
costs are very large) an algorithm due to Gabow and Tarjan [343] runs 
faster. Other algorithms for BAP include Derigs and Zimmerman [253], 
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and Carpaneto and Toth [167]. 

2.4. Branch and Cut Algorithms 
Branch and cut algorithms are the state-of-the-art exact algorithms 

for the TSP (see Chapters 4and 2) that could solve reasonably large 
TSPs to optimahty. A branch and cut algorithm for the TSP is based 
on a partial linear programming representation of the TSP. The suc­
cess of the algorithm depends on the ability to generate facets or high 
dimensional faces of the TSP polytope that are violated by a 'current' 
infeasible solution. The BTSP can be formulated as a bottleneck hnear 
programming problem (BLP) [410] 

Minimize max{ce : Xg > 0} 
Subject to X G Tn, 

where Tn is the TSP polytope (symmetric or asymmetric depending 
on whether BTSP is symmetric or asymmetric) and entries of X = 
(xi, X2,. . . , Xm) correspond to edges of G. Since the objective function 
of the BLP is concave and quasi-convex, it can be shown that there exists 
an optimal solution to this BLP that is an extreme point of T^ and a local 
minimum is a global minimum. Thus branch and cut algorithms similar 
to those for TSP can be developed for the BTSP using cutting planes 
and a BLP solver. However, no implementation of such an algorithm is 
available in literature. 

A dynamic programming approach for the BTSP was proposed by 
Sergeev [756]. As in the case of TSP, this algorithm is primarily of 
theoretical importance only. 

3. Approximation Algorithms 
In Chapters 5 and 6 we have studied approximation algorithms for 

the TSP where a priori mathematical guarantee could be obtained on 
the performance of an approximation algorithm. Chapters 8, 9, and 
10 discussed implementation aspects of various practical approximation 
algorithms (heuristics) for TSP. The literature on approximation algo­
rithms for BTSP is not as extensive as that of the TSP. In this section 
we study approximation algorithms for BTSP and MSTSP. We assume 
throughout this section that the edge costs are positive. 

Recall that an algorithm yields a factor 6 approximation for a mini­
mization problem, if the algorithm is guaranteed to produce a solution 
whose objective function value is at most 6 times the optimal objective 
function value. An algorithm yields a factor ^-approximation for a max-
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imization problem if the algorithm is guaranteed to produce a solution 
whose objective function value is at least 1/5 times the optimal objective 
function value. 

Note that transformation used earlier between BTSP and MSTSP 
may not map a (5-approximate solution of BTSP to a 5-approximate 
solution of MSTSP. Thus, for worst case analysis of approximation al­
gorithms we treat these two problems separately. 

Theorem 7 [661, 33] Unless P = NP, there is no polynomial time 5-
approximation algorithm for the BTSP or MSTSP for any constant S, 
1 < S < oo. 

Proof. Let us first consider the case of symmetric BTSP. We prove 
the theorem by showing that any such approximation algorithm A^ if 
exists, can be used to solve the Hamiltonian cycle problem in polynomial 
time, implying P = NP. Suppose that we are given a graph G* and we 
wish to test if G* contains a Hamiltonian cycle. Convert the graph G* 
to a complete graph Kn by adding the missing edges and assign a cost of 
S + 1 to each of these new edges. Assign a cost 1 to each of the original 
edges. Now we have an instance of SBTSP on Kn- If G* contains a 
Hamiltonian cycle, the optimal objective function value, OPT, of our 
SBTSP is 1 and if the algorithm A is applied to this instance, it must 
produce a tour of value 5 or less (in fact exactly equal to 1). If G* has 
no Hamiltonian cycle, then OPT is 6 -j- 1. Thus the objective function 
value of the solution produced by A is less than or equal to S precisely 
when G* contains a Hamiltonian cycle. The result now follows from the 
NP-completeness of Hamiltonicity testing [347]. The proof for the case 
of ABTSP or MSTSP (symmetric and asymmetric) can be obtained in 
a similar way. • 

In view of Theorem 7, it is not very likely that we shall succeed in ob­
taining meaningful performance bound for polynomial time approxima­
tion algorithms for BTSP or MSTSP with arbitrary edge costs. However, 
by assuming special properties of edge costs, heuristics with guaranteed 
performance bounds can be obtained. 

3.1. Worst Case Analysis of Heuristics for BTSP 
Recall that for any r > 1/2, the edge costs Cg of a complete graph 

Kn satisfy the r-triangle inequality [22], if for any three nodes i^j^k of 
Kn^ Cij < T[cik + Ckj). If T = 1, T-triangle inequahty reduces to the 
triangle inequahty. r = 1/2 forces all the edges of Kn to be of same 
cost. If r > 1, r-triangle inequality can be viewed as a relaxation of the 
triangle inequahty, where as for 1/2 < r < 1, it is a restriction on the 
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triangle inequality. The following lemma is an immediate consequence 
of the r-triangle inequality. 

Lemma 8 Suppose the edge costs Cg of Kn satisfy the r-triangle in­
equality for some r > 1/2. Let P{i^j) — (ei, e2 , . . . , ê )̂ he a path in 
Kn joining vertices i and j . Then, Cij < min{5i,52}; where Si — 
r'-'ce. + Ell\ r'ce, and S2 = r^-'c,, + El'Ji r'c,^^,.,. 

The concept called the power of a graph plays a central role in our 
approximation algorithms for SBTSP 

Definition 9 Let G = (N^ E) he a graph (not necessarily complete) and 
t he a positive integer. The t^^ power of G is the graph G^ — {N^E^), 
where there is an edge (u, v) G E^ whenever there is a path from u to v 
in G with at most t edges. 

For any graph G — (N^E) with edge costs Cg for e e E^ Cniax(G) 
denotes max{ce : e e E}. Similarly, Cinin(G') = minjcg : e e E}. A 
similar notation will be used if G is replaced by a collection S of edges 
of G. We use the phrase e e G and e e E interchangeably. 

G^ is called the square of the graph G and G^ is the cube of G. 

Lemma 10 Suppose the edge costs Cg of Kn satisfy the r-triangle in­
equality for some r > 1/2. Let G he a suhgraph of Kn- Then 

^ Cmax(G) ifr = l 

_z_(2r^-i _ r^-2 _ i)c^^^(G) zf r > 1 
7 ^ ( r ^ - ' + T-2)cn,ax(G) zfr<l 

Proof. Let (i, j ) be an arbitrary edge of G^. By definition of G^ 
there exists a path P{i,j) = (ei, 62 , . . . , e^) in G* from i to j of length 
at most t. By Lemma 8, 

r - l 

Cij < r"^ Ĉĝ  + ^T^Cg^ < t Cmax(G) for r = 1. 
k=l 
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Similarly, if r > 1, then by Lemma 8 we have, 

r - l 

r - l 

fc=i 
t - i 

= - ^ ( 2 r * - i - T * - 2 - l ) c „ , a x ( G ) 
T — i 

The case r < 1 can be proved in a similar way. • 

Theorem 11 Suppose the edge costs Cg of Kn satisfy the r-triangle in­
equality for some r > 1/2. Let S be a spanning subgraph of Kj^ such 
that Cmax(5') is a lower bound for the optimal objective function value 
of BTSP and let 7i* be an optimal solution to BTSP on Kn- If S^, 
\ <t < n and integer t, contains a Hamiltonian cycle 7i, then 

( tc^^{H*) ifT = l 
Cm^iH) < { 7 ^ ( 2 r ' - l _ ^.-2 _ i)c„^(7^*) ^fr>l . 

[ ^ ( r ' - ' + r - 2 ) c „ a x ( W * ) Z / T < 1 

Proof. Assume that r = 1. By definition of power of a graph, 
CmaxC )̂ ^ max(S'^) < t Cm&xiS), The last inequality follows from 
Lemma 10. From the optimality of W*, Cmax(5') < Cmaxl^*)- The 
result now follows immediately. The case 1/2 < r < 1 and r > 1 can be 
proved in a similar way. • 

Theorem 11 and Lemma 10 are generalizations of corresponding re­
sults by Hochbaum and Shmoys [449] proved for the case r = 1. 

Let us now discuss a simple heuristic for BTSP called the bottleneck 
double tree heuristic^ which is an adaptation of the double tree heuristic 
for the TSP 

Bottleneck Double Tree Heuristic 

Step 1: Compute a bottleneck spanning tree T of Kn-
Step 2: Duplicate the edges of T to form an Eulerian multigraph T*. 

Step 3: Identify an Eulerian tour in T*. Traverse T* along this Eule­
rian tour and introduce shortcuts whenever a previously visited 
node is encountered, to produce a tour in Kn-
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Note that Step 3 of the algorithm allows a lot of flexibility. It is pos­
sible to construct examples where the double tree heuristic produces the 
worst solution. The quality of the solution produced however depends on 
the order in which the edges are traversed in the Eulerian tour. The so­
lution generated by different orders of traversal may be diff'erent. Among 
all such solutions, identifying the best one can be shown to be a NP-
hard problem. It may be noted that the cube of any connected graph is 
Hamiltonian connected (and hence Hamiltonian) [448, 449]. It has been 
shown by Hobbs [448] that a tour can be generated in Step 3 of the al­
gorithm by introducing shortcuts to only paths of T* of length 3 or less 
and such a tour, say H\ belongs to T^. (See also [100].) By Theorem 11, 
if the edge costs satisfy r-triangle inequality, then 

f 3c„,ax(W*) i f r = . l 
Cmax(HO < < 7 ^ ( 2 T 2 _ ^ _ l)c^^^(U*) if ^ > 1 

[ Th^r^ + ^ - 2)cmax(W*) if 1/2 < T < 1 

where H* is an optimal solution to SBTSP. The short-cutting phase as 
described above can be done in 0{n) time, (see for example Hobbs [448]). 
Also, the bottleneck spanning tree in Step 1 can be obtained in 0{m) 
time, where m is the number of edges in G [153]. Thus we have the 
following theorem. 

Theorem 12 If the edge costs satisfy the r-triangle inequality, then the 
double tree algorithm produces a solution to the SBTSP in 0{n^) time 
with a performance bound 6, where 

6=i 
3 ifr = l 
_ ^ ( 2 r 2 - r - l ) 2 / r > l 
^ ( T 2 + T - 2 ) 2/1/2 < r < l 

Let us now consider a general heuristic algorithm for BTSP based on 
the concept of power of a graph. 

Algorithm Power(S,t) 

Step 1: Construct a connected spanning subgraph S of Kn such that 
Cmax(5') is a lower bound on the optimal objective function 
value of the BTSP. 

Step 2: Find the smallest positive integer t such that S^ is Hamiltonian. 

Step 3: Output any Hamiltonian cycle in S^. 

When 5 is a bottleneck spanning tree, and t = 3, Power(S,t) is iden­
tical to the double tree algorithm if Step 3 of power(S,t) is implemented 
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using Steps 2 and 3 of the double tree algorithm. The complexity and 
performance bound in this case are the same as those of the double tree 
algorithm. We now show that by investing the same amount of time a 
better performance bound can be achieved. 

Recall that the objective function value of the bottleneck biconnected 
spanning subgraph problem (BBSSP) is a lower bound on the optimal 
objective function value of BTSP. Thus, we could use a bottleneck bi­
connected spanning subgraph for S in Step 1 of algorithm Power(S,t). 
As we have seen earlier, BBSSP on Kn can be solved in 0{'n?) time, (see 
Timofeev [793], Parker and Rardin [661], Punnen and Nair [685], and 
Manku [578]). 

Now, for a biconnected graph, 5, what is the smallest value of t such 
that S^ is Hamiltonian? Fleischner [312] proved that this value of t is 2. 
We state this elegant result in the following theorem. 

Theorem 13 The square of every biconnected graph is Hamiltonian. 

We are now left with the task of generating a tour in the square of 
a biconnected graph. Lau [542, 543] suggested an 0{n?) algorithm to 
accomphsh this. (See also Rardin and Parker [697].) Thus, by Theo­
rem 11, the performance bound 5 of this algorithm is 2T (using ^ == 2) 
for r > 1/2. We thus have the following theorem. 

Theorem 14 / / the edge costs of Kn satisfy r-triangle inequality, then 
a 2T-approximate solution to the BTSP can he obtained in 0{TI?) time. 

Algorithm Power{S^ t) for t = 2^ and 3, with r = 1 was published 
first by Doroshko and Sarvanov [260] in a Russian paper in 1981. 
The case t = 2, r = 1 was obtained independently by Parker and 
Rardin [661]. Hochbaum and Shmoys [449] considered the case for 
general t with r = 1. We now show that improving the performance 
bound of Theorem 14 for any polynomial time algorithm and any r > 
1/2 amounts to P=NP. This result was proved by Doroshko and Sar­
vanov [260], Parker and Rardin [661], and Hochbaum and Shmoys [449] 
for the case r — 1. 

Theorem 15 Unless P — NP, there is no polynomial time 2r—e approx­
imation algorithm for BTSP on Kn, with edge costs satisfying r-triangle 
inequality, for any e > 0, r > 1/2. 

Proof. We prove the theorem by showing that for any e > 0, r > 1/2, 
a polynomial time 2r - e approximation algorithm A for the BTSP on 
Kn^ with edge costs satisfying r-triangle inequality, can be used to test 
Hamiltonicity of an arbitrary graph (digraph), estabhshing P=NP. Let 
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G be an arbitrary graph (digraph) with each edge of cost one. Convert 
G into a complete graph (digraph) by adding new edges of cost 2r each. 
Clearly the costs of edges of this complete graph (digraph) satisfy r -
triangle inequality. It can be verified that A produces a tour H with 
worst case error bound 2r — e precisely when 7t! is a tour in G, This 
completes the proof. • 

Bollobas, Fenner, and Frieze [128] discussed an approximation algo­
rithm for BTSP along with its probabihstic analysis. This algorithm 
uses a variation of the algorithm HAM discussed in Chapter 7. 

3,2, Approximation Algorithms for MSTSP 
Let us now consider an approximation algorithm for the MSTSP. Al­

though algorithms discussed in the previous subsection could be easily 
modified to generate corresponding algorithms for MSTSP, the perfor­
mance guarantees do not translate in the same way. 

The basic idea of this approximation algorithm is to solve a 'relax­
ation' of the MSTSP, which provides a lower bound on the optimal 
objective function value, and generate a Hamiltonian cycle from the op­
timal solution of this relaxation. Sufficient conditions for existence of a 
Hamiltonian cycle in a graph form the key to our algorithm. Some well 
known such conditions are summarized in the following theorem. 

T h e o r e m 16 / / a graph G = (AT, E) on n nodes satisfies any of the 
following properties P I , P 2 , . . . , 'P6, then G is Hamiltonian. 

VI : deg{v) > [n/2] for all v e N (Dirac [256]). 

V2 : deg{u) + deg{v) > n for all pairs of non-adjacent vertices u and v 
ofG. (Ore [636]). 

V3 : i < n/2 implies deg{i) > i or deg{n — 1) > n — i, where the 
nodes 1,2, . . . ,n of G are labeled in the ascending sequence of their 
degrees. (Chvdtal [194]). 

P 4 : hv[G) > a{G), where K,{G) is the connectivity number and a{G) is 
the independence number of G. (Chvdtal-Erdos [199]). 

Vb : e{G)n ^ a{G) where 9{G) - min{t(5) : 5 C A ,̂ 5 / 0} with 

t{S) - M ] | M and N{S) is the neighborhood of S (Lu [571]). 

P6 : G has minimum degree k, n > 6k and |£^| > ( ^ ] + k 

(Erdos [276]). 
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Let !F{V) be the family of all spanning subgraphs of Kn satisfying 
a prescribed property V which guarantees that elements of J^{V) are 
Hamiltonian. Consider the maxmin problem (MMP(P)) 

Maximize w^nmiS) 
Subject to S e T{V) 

Let Si(P) be an optimal solution to MMP('P) with optimal objective 
function value z{V) and W* be an optimal solution to the MSTSP. 
Clearly z('P) < w^\^{7V). Consider the following approximation al­
gorithm for MSTSP. 

The P-relaxation Algorithm 

Step 1: Solve MMP(P). Let S{V) be an optimal solution generated. 

Step 2: Output any Hamiltonian cycle H{V) in S[V). 

The complexity of this algorithm depends on the ability to solve 
MMPCP) and to generate JiiV) from S(V), which in turn depends on 
the property V. We will study the case when V = VI or V2. The 
P-relaxation algorithm is based on the original ideas of Arkin et al [33] 
where the case V — VI was considered. 

Let us first consider the case V — V2. In this case, MMP{V) can be 
solved using the binary search version of the threshold algorithm [269] 
for bottleneck problems. The complexity of the algorithm, in this case, 
would be 0(n^ logn). Since VI implies P2, the case V = VI can be 
solved by the algorithm for V — V2. However, this special case can be 
solved more efficiently in O(n^) time as observed by Arkin et al [33]. 
For each node i of Kn^ compute the [n/2]^^ largest weight of edges 
that are adjacent i (counting multiphcity). This can be done in 0(n) 
time [5]. Let 5 be the smallest of all these values. Remove all edges with 
weight less than 5 from Kn- The resulting graph is an optimal solution 
to MMP(7^1). 

A Hamiltonian cycle T-C{V1) in S{Vl) can be generated in 0{ri^) time, 
(see Arkin et al[33].) This algorithm is based on a constructive proof 
of sufficiency of P I for the existence of a Hamiltonian cycle in a graph. 
The same algorithm works for generating a Hamiltonian cycle in S(V2). 

The following lemma is useful in establishing a performance bound 
for the P-relaxation algorithm. 

Lemma 17 [33] Let R he a subset of nodes of Kn such that \R\ > 
[n/2j . Then for any Hamiltonian cycle of Kn, there exists an edge 
joining two nodes of R. 
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Let e* = {u^v) be an edge in S{V2) of smallest weight. Without loss 
of generality we assume S{V2) contains all edges of weight more than 
We* and it is 'minimal' in the sense that removal of any more edges of 
weight We* from S{V2) violates the condition of V2. Hence, there exists 
a node i in S{V2) such that degree of i is less than or equal to [n/2j . 
Consider the set 

R={i}U{j:{i,j)^S{V2)}, 

Since deg{i) < [n/2j , we have \R\ > [n/2]. Let H* be an optimal 
solution to MSTSP. By Lemma 17 W contains an edge / joining two 
nodes of R. Thus 

(H*) < Wf. 

Now, suppose the edge weights of Kn satisfy r-triangle inequality for 
some r > 1/2. Since for any j e R^j j^ i, weight of the edge (z, j ) is no 
more than We*, it follows that Wf < 2we*. Hence, for any Hamiltonian 
cycle n{V2) in S{P2), 

^min(W*) =Wf< 2rWe* < 2rWmin{n{V2)). 

The same performance bound holds for the case V = VI since VI 
implies V2. The forgoing discussion is summarized as follows. 

Theorem 18 The V-relaxation algorithm produces a solution to MSTSP 
on Kn with objective function value at least -^ times the optimal objective 
function value. When V — VI {or P2), the complexity of the algorithm 
is 0{v?){or 0(n^ logn)). 

It can be shown that the performance bound given above is the best 
possible for the MSTSP whenever the edge weights satisfy the r-triangle 
inequality for r > 1/2. 

3.3. Experimental Analysis of Heuristics 
Unlike the TSP, not much literature exists on experimental analysis 

of heuristics for the BTSP. The algorithms discussed in the previous 
subsections, without further modifications, may not work well in prac­
tice although they are best possible from the worst case analysis point 
of view. Some quick heuristics for BTSP can be obtained by straight­
forward modifications of well known construction and/or improvement 
heuristics for the TSP, such as arbitrary insertion heuristic and its vari­
ations, nearest neighbor algorithm, patching algorithms (especially in 
the case of asymmetric version of BTSP), fc-opt heuristic, etc. However, 
no computational results are reported in literature on any such adapta­
tions. Because of the close similarity of these heuristics with their TSP 
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counterparts, we shall not elaborate on them. Similar heuristics can be 
constructed for the case of MSTSP. Garfinkel and Gilbert [349] proposed 
a heuristic for BTSP which is based on the threshold algorithm. 

We now discuss a heuristic based on the generalized threshold al­
gorithm, called the approximate generalized threshold algorithm which 
can be considered as an extension of the heuristic by Garfinkel and 
Gilbert [349]. This algorithm differs from the generalized threshold algo­
rithm only in the way we solve the TSP in Step 4. In the approximation 
version, we simply use an approximation algorithm for TSP. Preliminary 
computational results discussed in [691], using Helsgaun's implementa­
tion [446] of the Lin-Kernighan Heuristic as the approximate TSP solver 
produced optimal solutions for many problems from the TSPLIB. For 
this implementation, the 2-max lower bound was used as the initial lower 
bound. For many Euclidean problems, this lower-bound turned out to 
be the optimal objective function value. The incremental search version 
produced optimal solutions for almost all these problems in one itera­
tion. Various refinements and hybrids of the approximate generalized 
threshold algorithm are discussed in [691] along with computational 
results. 

4, Polynomially Solvable Cases of B T S P 

In this section we use the permutation definition of BTSP mentioned 
in Section 1. This will keep the section consistent with analogous results 
for TSP discussed in Chapter 11. Though the diagonal elements of the 
cost matrix C do not play any role in the definition of BTSP, various 
results in this section require specific values of the elements cu. 

The following result will be useful in what follows. 

Lemma 19 [361] Let L be a lower bound on the optimal objective func­
tion value of BTSP(C). Define matrix C as c[- = maxJQj — I/,0}. 
Then a tour 7 is an optimal solution to BTSP(C) if and only if it is an 
optimal solution to BTSP(C'). 

We start with a minor generalization of the classical result of Lawler 
[546] (see also [361]). We call a cost matrix C a max-Lawler matrix if 
and only if it satisfies the following conditions. 

(i) For all 1 < i < j < fc < n, max{c/ci, Cji} > max{cfci, Cji}. 

(ii) For all 1 < 2 < j < fc < n, maxjc^i, c^j} < maxjc^j, Cki}. 

It may be noted that every upper triangular matrix C is a max-Lawler 
matrix. 
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Theorem 20 If C is a max-Lawler matrix then the problem BTSP(C) 
can he solved in 0{ri^'^) time. 

Proof. A modification of the Lawler's algorithm for TSP with upper 
triangular cost matrix (see Chapter 11, Section 4.5), with the initial 
permutation TT chosen as an optimal bottleneck assignment solution on 
C with 7r(n) — 1, produces an optimal solution to this subclass of BTSP. 
The proof is similar to the one in the case of TSP with upper triangular 
cost matrix. Since the bottleneck assignment problem can be solved in 
0{v?-^) time [686], the result follows. • 

If C is an upper triangular matrix, then the optimal objective function 
value of BTSP(C) is clearly non-negative. Therefore, using Lemma 19, 
we can assume that C is a non-negative, upper triangular matrix with 
diagonal entries as zeros. This allows us to convert the problem of find­
ing an optimal bottleneck assignment solution TT with 7r(n) = 1, to the 
problem of finding an optimal bottleneck path from node 1 to node n in 

Kn [361] and the latter can be solved in 0{ri^) time. 

4.1. Pyramidally Solvable Cases of BTSP 
In this section, we use extensively various notations and definitions in­

troduced in Chapter 11. An instance BTSP(C) is said to be pyramidally 
solvable if and only if there exists an optimal tour that is pyramidal. 
Given any cost matrix C, the problem of finding an optimal pyramidal 
tour for BTSP(C) can be solved in 0{v?) time by transforming it into 
the problem of finding an optimal bottleneck path of a certain type in a 
directed, acyclic multigraph using idea similar to that used in the case 
of pyramidal TSP in Chapter 11. We give below the details. 

Define a directed, acyclic multigraph G — {N^Eu U Ei) where, N — 
{1, 2 , . . . , n — 1} and for each 1 < i < j < n — 1, we have two arcs eji-
and ê -̂, each from node i to node j , with ê - E Eu and ^- G Ei. We 
call a path in G with arcs alternately in E^ and Ex an alternating path 
(a-path). We associate with each arc in G a set of arcs in Kn in such a 
way that every a-path in G from node 1 to node n — 1 corresponds to a 
unique pyramidal tour on Â  and vice versa. We give below an example. 

Let n = 12 and consider the pyramidal tour 7 — (1,4, 5, 6, 9,10,12,11, 
8,7,3,2,1). 

The fact that 7(1) = 4 impUes 7(8) = 2 and 7(2) = 1. Hence, we 

associate with arc e\^ the set of arcs {(1,4), (3, 2), (2,1)} in Ku and 
we assign to 65̂ ,3 weight Wi^ = max{ci^4, 03̂ 2, ^2,1}. Similarly, 7(6) = 
9 implies that 7(8) = 7. So we associate with e^g the set of arcs 
{(6,9), (8, 7)} and assign it weight WQ^ = max{c6,9, csj}. Using the 
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same argument, we associate with arcs e"Qj;^,e3g and eg JQ arc sets 
{(10,12), (12,11)}, {(7,3), (4,5), (5,6)} and {(11,8), (9,10)},' 
respectively, and assign them weights W'^Q ^^ = max{cio,i25 ci2,ii}, '̂ 3̂ e — 
max{c7^3, 4̂,5̂  ̂ 5̂ 6} and Wg Q̂ = max{cii^8, cg^io}. Then 7 corresponds to 
the a-path e^ 3 — ^3 g — eg g — eg Q̂ — ĵfo 11 i^ ^- ^̂  ^̂  ^^^ difficult to 
verify that if we assign the following weights to the arcs of G, then 
the bottleneck weight of each a-path equals the bottleneck cost of the 
corresponding pyramidal tour. 

For each l < i < j < n — 1, assign to ê -̂ and e\j weights 

w^^j = max{Qj4.i,max{cfc^/i;_i : k E Uij}} and 

w[j = max{cjH_i,̂ , max{c/e,/c+i :k e Lij}}, 

respectively. Here, for 1 < i < j < n — 1, Uij = {i + 2 , . . . , j } and 
Lij = {i -\- 1,... J - 1}] for 1 < j < n - 1, Uij = {2 , . . . , j} and Lij = 
{1,. . . , j - 1}; for 1 < i < n - l.Ui^n-i = {i + 2 , . . . , n} and Li^n-i = 
{z + 1 , . . . , n - 1} and C/i,n-i = {2 , . . . , n} and Z/i,n-i = { 1 , . . . , n - 1}. 

Our problem is thus, equivalent to the problem of finding an opti­
mal bottleneck a-path ( an a-path with largest edge weight as small as 
possible) in G from node 1 to node (n — 1). The weights of all the arcs 
in Eu U El can be calculated in 0{n?) time and an optimal bottleneck 
a-path in G can be obtained in 0{n?) time by simple modifications of 
standard shortest path algorithms. 

We now present results on polynomially testable sufficiency condi­
tions on C for BTSP(C) to be pyramidally solvable. Lemma 21 will 
be useful in proving the sufficiency conditions that follow. Here we use 
the concepts of upper minor C^̂ '̂ '-̂ '̂ ^ and lower minor C^^'^'^'^^ of a 
matrix C, hereditary matrix properties and a permutation TT̂ ^̂  corre­
sponding to any permutation TT on N and i e N. These are defined in 
Chapter 11. Also, we associate with any permutation TT on AT a digraph 
GTT = {N.ETT) where E^^ — {(z,7r(z)) : i e N}. For any matrix prop­
erty V, let MBVI(V) (minimum bottleneck violator index of V) be the 
smallest integer n, such that there exists an n x n matrix C, satisfying 
property V, for which BTSP(C) does not have any optimal tour that is 
pyramidal. Let P be a hereditary matrix property with MBVI{V) < 00. 
Let n^MBVI{V). 

Lemma 21 Suppose an n x n cost matrix C satisfies property V and 
none of the optimal tours to BTSP(C) is pyramidal. Then the following 
statements are true. 
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(i) If for all p^q^ 3 < p < g — 1 < n — 1, each of the upper minors 
Q{U,P+i,q.p) ^^^ c{U,q,p+i,p) satisfies property V, then every optimal 
tour to BTSP(C) has node (n — 1) as one of its peaks. 

(a) If for all p^q^ 1 < ^ < P — 1 ^ ^ — 4̂  each of the lower minors 
C{L,p-i,q,p) ^^^ Q{L,q,p-i,p) satisfies property V, then every optimal 
tour to BTSP(C) has node 2 as one of its valleys. 

Proof. We prove the result by contradiction. Thus, if possible, let C 
be an n X n matrix satisfying V such that, 

(i) none of the optimal tours for BTSP(C) is pyramidal; 

(a) for all p, g', 3 < p < g - 1 < n — 1, each of the upper minors 
CiU,p+i,q,p) ^^^ ^([/,9,p+i,p) satisfies V; and 

(Hi) there exists an optimal tour 7 to BTSP(C) with the second largest 
peak p < n— 1. 

(The case when the lower minors rather than the upper minors of C 
satisfy property V will follow similarly.) Then G^ contains a pyramidal 
subpath Puv on node set {p + 1 , . . . , n}, where either u — p-}-l < v < n 
OTv = p+l<u<n. Let 7' be the unique, non-trivial subtour of 
^(p+i) on node set {1,2, . . . , p + 1} and let C = C^^'^'^'^^. By the choice 
of the matrix C, there exists an optimal tour ip^ for BTSP(C") that is 
pyramidal. If we replace node (p+ 1) in G^f by the path Puv in G^, the 
resultant digraph corresponds to a pyramidal tour ip on N where 

v(^) 

Let a = max{cij : (i, j ) is an arc in Pu,v}- Then, 

Cmax('0) = m3x{a,c^^^{ip')} and Cniax(7) == niax{a,c'^^3,(V)}. 

Hence, Cinax('0) — Cmax(7) ^ 0- Thus, '0 is an optimal solution to 
BTSP(C), contradicting the choice of C. m 

As an immediate consequence of the above lemma we have the follow­
ing. 

Let P be a hereditary matrix property. Let n = MBVI{V) < 00. 

Corollary 22 Suppose property V is an upper hereditary (a lower hered­
itary) matrix property. Let C he an n x n matrix satisfying property V 
for which none of the optimal tours to BTSP(C) is pyramidal. Then 

^'{i) for alHG { l , 2 , . . . , p } -
u for 2 = IIJ'~^{JP + 1) 

'0'(p -f 1) ior i = V 
7(2) for all other i 

- { ^ ' - i ( p + i ) } 
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every optimal tour to BTSP(C) has node (n — 1) as one of its peaks 
(node 2 as one of its valleys). 

The property defined below is the 'max-version' of the property BK-
II(/c) discussed in Chapter 11. 

Defini t ion 23 For any integer k > A, an nxn matrix C satisfies prop­
erty max-BK-II(k) if and only if the following two conditions hold. 

1 For any p^q^ k — l<p<q<n^ consider any two sets {zi, 2̂? • • • 7 
ifk-2)} ^'^^ {Jl)J2^' • • iJ(k-2)} of {k — 2) distinct integers each such 
that, 

(i) 1 < il,i2,...,^(A:-2) < P ; (^'^d 1 < j l , j2 , . . . , i ( fc -2) < P/ 

(a) iu 7̂  jv for all u ^ V] and 

(Hi) | { n , 2 2 , . . . , ^ / c - 2 } U { j i , J 2 , . . . , j / c - 2 } | > k - l . 

Then for the kxk submatrix C ofC corresponding to the rows and 
columns {11,12, •..,i{k-2)^V^P+^] ci^d {jij2^--- J{k-2)^PiQ} or 
{zi , i2 , . . '^i{k-2)^P^Q} «^^ {j i , J 2 , . . . , J ( /c-2) .P)P+l} , respectively, 
there exists an optimal solution 7 to BTSP(C') in which node {k — 
1) is adjacent to node k, (that is, either ^{k) — k—1 or ^{k — 1) = 
k). 

2 For any r < /c, BTSP(C^^^'^^) is pyramidally solvable. 

T h e o r e m 24 If C is a max-BK-II(k) matrix for some integer 4 < /c < 
n, then BTSP(C) is pyramidally solvable. 

Proof. It is easy to see that the property max-BK-II(fc) is upper 
hereditary. If the result is not true then there exist A:, n, 4 < fc < n < 00, 
such that MBVI{rnax — BK-II{k)) — n. Let C be an n x n cost matrix 
satisfying the property max-BK-II(fc) such that there does not exist any 
optimal solution to BTSP(C) that is pyramidal. Let 7 be an optimal 
solution to BTSP(C) . By Lemma 21, (n — 1) is a peak of 7. Choose a 
set {21,^2,.. •, i/c-2} of distinct nodes in { 1 , 2 , . . . , n — 2} including the 
nodes 7~^(n - 1) and 7~-^(n). Remove the arcs {(^j,7(ij)) : 1 < j < 
/c —2}U {(n ,7(n) ) , (n— l , 7 ( n — 1))} from G^ to get fc — 2 node-disjoint, 
paths {Pui.vi '- I < i < k — 2}, in addition to isolated nodes n and 
(n — 1). If we contract the paths {Pui,Vi : 1 < i < fc — 2} in Gj to nodes 
{1' , 2 ' , . . . , (/c — 2) '} , respectively, the resultant digraph defines a tour 7 ' 
on the node set {1' , 2 ' , . • •, (^ - 2)', n - 1, n } . Let C be the submatrix 
of C corresponding to the rows {t'l, "̂2, • • •, V{k-i)^^ ~ 1) ^ } ^^id columns 
{ui,U2, • • •, ^(/c-i)^ ^— I5 ^ } - Let us index the rows and columns of C' by 
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{V,2', (/c — 2 ) ' , n - l , n } , in that order. Then, by property max-BK-II(/c), 
there exists an optimal solution ijj' for BTSP(C') such that node n is ad­
jacent to node (n—1) in '0^ In G^/, replace the nodes {!' ^2' ̂ ... ^{k — 2)'} 
by the respective paths {Pm.vi : 1 < ^ < A: — 2} to get the digraph cor­
responding to a tour V̂  on N. Let a — maxjcrs : {v^s) is an arc in 
Pu,^vi for some z, 1 < i < A: - 2}. Then Cmax(7) = inax{a, c'j^^x(y)} 
a n d Cmax 

('0) = max{a,c'j^^x('0')}. Hence, Cmax(7) > Cniax('0) and V̂  is an 
optimal solution to BTSP(C). But node (n - 1) is not a peak node of 
V̂ . We thus have a contradiction. • 

The diagonal elements of the cost matrix C do not form part of any 
tour. However, solutions produced by certain algorithms for TSP and 
BTSP such as the Gilmore-Gomory type algorithms, and some suffi­
ciency conditions for validity of these algorithms depend on the values 
of diagonal elements. The sufficiency condition below falls in this cate­
gory. 

A cost matrix C satisfies property Vi if and only if 

(i) for any z, j , k such that 1 < i^j < k < n and i / j , maxjcf/., c^j} > 
md.x{cij,Ckk}] 

(it) for any i, j such that 1 < i < j < n, max{cj,2_i, c^} > maxjcj^, 
Q,z —1 J 5 

(in) C^ satisfies conditions (i) and (ii) where C^ is the transpose of C 

Theorem 25 / / matrix C satisfies property Vj then BTSP(C) is pyra­
midally solvable. 

Proof. If the result is not true, then there exists some n < oo such 
that MBVI{Vi) — n. Let C be an n x n matrix satisfying the property 
Vi such that none of the optimal tours for BTSP(C) is pyramidal. Let 7 
be an optimal solution to BTSP(C). Let ^~^{n) = a and 7(n) = b. We 
assume that a < b. Since the property Vi is an upper hereditary matrix 
property, it follows by Lemma 21 that node (n — 1) is a peak node of 7 
and hence, b < n — 1. Define a tour 7' on Â  as follows: 

y( i ) 3.7^(2) Vie {1 ,2 , . . . , 6 } - { a } ; y{a) = n] y ( 2 ) - i - l V i E 
{6-h 1 , . . . , n}. The digraph Gy can be obtained from Gj by adding and 
removing arcs in the following sequence. For z = n — 1 , . . . , 6-f 1, in that 
order, remove arcs (ui^i)^ {h^i) ^^^ add arcs [ui^Vi) and (2,2); then for 
i == 6 + 1 , . . . , n — 1, in that order, remove arcs (n, i — \) and (i, i) and 
add arcs (i, z — 1) and (n, i). By property P/ , each time the maximum of 
the costs of the arcs in the modified digraph either decreases or remains 
the same. Hence, Cĵ ax (7O ^ Cmax(7) and thus, 7' is an optimal solu­
tion to BTSP(C). But (n — 1) is not a peak of 7' and this contradicts 
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Lemma 21. • 

A cost matrix C is called a max-distribution matrix if and only if 

max{ci-i;, Cju} > max{c^^i, Cjy} for all i < j and u < v. 

Every max-distribution matrix satisfies both the properties Vj and max-
BK-II(4). Hence, Corollary 26 below follows from theorems 24 and 25. 

Corollary 26 m'^] If C is a max-distribution matrix, then BTSP(C) 
is pyramidally solvable. 

A cost matrix C is said to be upward (downward) graded on its rows 
if and only if Cij < c^j+i {cij > cij^i) for all z, j . It is said to be 
upward (downward) graded on its columns if and only if C^ is downward 
(upward) graded on its rows. A matrix is said to be doubly graded if 
and only if it is graded (upward or downward) on both its rows and its 
columns. We call a matrix graded upward on its rows and downward on 
its columns a (UD)-graded matrix and we similarly define (UU)-gradedj 
(DU)-graded and (DD)-graded maXvices. 

A matrix C is diagonally outward graded if and only if 

(i) Cij < Cijj^i for sl\ i e N and j = z , . . . , n — 1; 

(ii) Cij > Cijj^i for alH G Â  and j = 1 , . . . , i — 1; and 

(Hi) C^ satisfies conditions (i) and (ii). 

C is diagonally inward graded if and only if —C is diagonally outward 
graded. 

Every doubly graded matrix C can be transformed into a (UU)-graded 
matrix or a (UD)-graded matrix by renumbering the elements of N and 
reordering the rows and columns of C accordingly. Every (UU)-graded 
matrix is a max-distribution matrix. Also, if C is diagonally outward 
graded, then it is a max-distribution matrix [801]. Hence by Corol­
lary 26, in each of these cases BTSP(C) is pyramidally solvable. In the 
former case, the following stronger result is proved in [361]. 

Theorem 27 [361] IfC is a (UU)-graded matrix, then 7 = (1 ,2 , . . . , n, 1) 
25 an optimal solution to BTSP(C). 

Proof. Since C is a (UU)-graded matrix, Cmax(7) = maxjci^i-^ 1 : i G 
{1 ,2 , . . . , n—1} = Cu^u+i for some u. Now for any tour '0 on AT, there exist 
i, V such that i < u < v and ip{i) = v. But then Cinax('0) ^ Qf ^ Cu^u-^-i- • 

Using the same arguments as in the proof of Theorem 24, we can 
prove the following result. 
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Theorem 28 Suppose matrix C satisfies the following conditions: 

(i) for any distinct i^j^ k such that 1 < i, j < fc < n, max{Qfc, c^j} > 
Cij] 

(a) for any i^j such that 1 < i < j < n, Cj^i-i > maxjcji, Ci^i-i}] 

(Hi) C^ satisfies (i) and (ii). 

Then J BTSP(C) is pyramidally solvable. 

A matrix C is a max-Klyaus matrix if and only if for any i, j , k such 
that i < j < k^ 

Cki > mdix{ckj,Cji} and cik > maxJQj, Cj^}. 

A max-Klyaus matrix satisfies both property max-BK-II(4) and the 
conditions of Theorem 28. Hence, as a corollary to theorem 28, we get 
the following. 

Corollary 29 /i-^7/ If C is a max-Klyaus matrix, then BTSP(C) is 
pyramidally solvable. 

For other pyramidally solvable cases of BTSP, we refer the reader 
to [801]. 

4.2. Subclass of BTSP Solvable Using 
GG-Patchings 

We now modify the GG scheme for TSP discussed in Chapter 11 in 
the context of BTSP. We call it BTGG scheme. 

For any S ' C { l , 2 , . . . , n — 1}, let P{S) be the set of all permutations 
of elements of S. We denote 

d[C,S] = min{cinax(V^) • "^P "= f^h ^ " ' ^ Piu^ (n,...,^tx) ^ P{S)}. 

(See Appendix A for the definitions of permutation Pi and operation o.) 
For any cost matrix C and any two permutations JLL and a on N^ the 
permuted cost matrix C^'^ is defined as c^f = c^u\ ^(A\. We denote C^'^ 

u by C^, where ^ is the identity permutation. 
The BTGG scheme works as follows. We start with a given permu­

tation IT. If TT is a tour, the algorithm outputs this tour. Otherwise, 
we patch the subtours of TT by constructing a patching pseudograph 
Gl = {N^,E^), finding an optimal spanning tree E^[T*] of GJ, find­
ing an optimal ordering of elements of Ep[T*] and performing patching 
operations corresponding to the edges in Ep[T*] in the optimal order. 
For details of various terms used above and insight into the basics of the 
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algorithm we refer to Chapter 11. A formal description of the algorithm 
is given below. 

Algorithm : BTGG Scheme 

Input: An n x n cost matrix C and a permutation TT on A'̂ . 

Step 1: If TT is a tour then output n and stop. Suppose TT has m sub-
tours, for some m > 1, on node sets A' l , . . . , A^ .̂ 

Step 2: Construct the patching pseudograph G^ = {Np.Ep) where, 
Â ^ = { l , . . . , m } and E^ = {ei ^ {u,v) : 1 < i < n;z G 

Step 3: Find a spanning tree in Gp with edge set Ep[r*] such that 
d[C^,T*] is minimum. Let ( i i , i2, . . • ,im-i) be an ordering of 
the elements of T* such that (i[C^,r*] = Cma.x{^ o Ai ^ • • • o 
f^im-i)' The tour 7* = TT o /Ĵ ^ o • • • o f3i^_^ is the desired output. 
Stop. 

4.2.1 Sufficiency Conditions for Validity of BTGG Scheme. 
Now we give sets of sufficiency conditions on matrix C under which 

for any C and n such that C^ = C\ the BTGG Scheme, with TT as the 
starting permutation, produces an optimal solution to BTSP(C). For 
any set y C A" with at least two elements, we define the range of y as 
the set {i, i + 1 , . . . , j} such that i < j , Y C {i, i + 1 , . . . , j + 1} and i 
and j -i- 1 are in Y and we denote it by [̂ , j ] . For definitions of various 
other terms used below, we refer to Chapter 11. 

Definition 30 An n x n matrix C satisfies max patching property I 
(MPP-I) if and only if the following condition holds. 

Let i/j be an arbitrary permutation on N with i non-trivial subtours on 
the vertex sets N^, A'^,. . . , A"̂ . Let {S'l, ^ 2 , . . . , 5^} be pairwise disjoint 
subsets of N and S — ^[^iSi such that 

(i) for each i, each element of Si lies in the range of N'^ and each region 
of N'^ contains at the most one element of Si] and 

(n) \S\ ^ {Eliim - I) {mod 2), 

Then, c^^^{^) > d[C,S]. 

Theorem 31 If an n x n matrix C' satisfies the property MPP-I, then 
for any cost matrix C and any permutation TT on N such that C' — 
C^, the BTGG scheme with TT as the starting permutation produces an 
optimal solution to BTSP(C). 

Proof. Suppose C' satisfies the property MPP-I and let a cost matrix 
C and a permutation TT on Â  be such that C = C^. Let 77 be an optimal 
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solution to BTSP(C) and let V̂  == TT"^ o 7?. Suppose ip has i non-trivial 
subtours on node sets i V \ A^^,. . . , A^̂ . By Corollary 42 of Chapter 11, 
there exists a subset S of N with partition {5i , ^ 2 , . . . , S^} such tha t 
(i) for each z, every element of Si lies in the range Â ^ and every region 
of Â ^ contains at the most one element of Si] (ii) Ep[S] is the edge set 
of a spanning tree of the patching pseudograph G^, and therefore, (iii) 

\S\ = ( ( E L i d ^ i - 1) (inod 2). Let (21,22,... ,2m) be an ordering of 
the elements of S for which c^^axlAi ^ A2 ^ • • • o A ^ ) - c?[C^, S]. Then, 
7* = TT o /3î  o /3̂ 2 o . . . o f3i^ is a tour on N, Cmax(^) = cj^ax(^) ^nd 
Cmax(7*) = o?[C'',S']. Hence, Cmax(^) > Cmax(7*) and 7* is an optimal 
solution to BTSP(C) . • 

Def init ion 32 A matrix C satisfies max patching property II (MPP-II) 
if and only if the following condition holds. 

Let ip be an arbitrary permutation on N. Suppose ip has i non-trivial 
subtours and GL (for definition, see Chapter 11, Section ^.2) has r 

connected components of sizes i;i, t ' 2 , . . . , I'r • ^et X l , X 3 , , . . . , XJ^ be the 
unions of the node sets of the non-trivial subtours of ip corresponding, 
respectively, to nodes of the r connected components ofCL- Let S be any 
subset of N with a partition {51, S2^ •.. ^Sr}^ such that 

(i) for each i, every element of Si lies in the range X\^ every region of 
X\ contains at the most one element of Si and \Si\ < {\X\\ — Vi)] 
and 

(ii) | 5 | = ( ( E U I ^ ; | ) - ^ ) {mod2).Thenc^,,{i^)>d[C,S]. 

T h e o r e m 33 / / a matrix C satisfies property MPP-II then for any cost 
matrix C and any permutation TT on N such that C — C^, the BTGG 
scheme with n as the starting permutation produces an optimal solution 
to BTSP(C). 

Theorem 33 can be proved along the same lines as Theorem 31 using 
Corollary 43 of Chapter 11. 

As a corollary, we get the following result. 

Corol lary 34 Suppose C^ is a max-distribution matrix. Then the 
BTGG scheme with IT as the starting permutation produces an optimal 
solution to BTSP(C). 

Outl ine of Proof. It will be sufficient to show that C^ satisfies 
the property MMP-II. Thus, consider an arbitrary permutation ip on 
N. Suppose -0 has £ non-trivial subtours £ 1 , ^ 2 , . . . , £^ and G^ has r 
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connected components of sizes t'l, t '2 , . . . , t'r- Let X3,, X l , . . . , Xl. be the 
unions of the node sets of the non-trivial subtours of ip corresponding, 
respectively, to nodes of the r connected components of GL and let 
Ipi^Qi])''' ')\Pr^(}r] be the ranges of the sets X3, , . . . , X!^, respectively. 
Let S be any subset of Â  with a partition {S'l, ^ 2 , . . . , AŜ }̂, such that for 
ŝ ny 1 < i < r, every element of Si lies in the range XI , every region of 
Xj^ contains at the most one element of 5^ and l̂ l̂ < (|X1| — Vi). 

For any distinct i, j belonging to the same connected component of 
G:̂ , there exist nodes /c, u of Ĉ  and Cj, respectively, such that the ranges 
of {k,ip{k)} and {u,ip{u)} intersect and cj^ax('0 ^ ^k,u) ^ ĉ axCV )̂- Let 
^' = ^ o a^^w By repeating this process, we get a permutation r/ such 
that cj^ax(^) ^ <̂ max('̂ ) ^^^ ^^c uode sets of the non-trivial subtours of 
r ? a r e X i , X 2 , . . . , X ; . 

For any i, 1 < i < r, and any j G [pi, gi]—XI, there exists u 6 X I such 
that u < j < r]{u). Let rj' = rjoauj. Then cj^ax(^0 ^ ^max(^)- By repeat­
ing this process, we get a permutation </> such that cjĵ ax(^) — ^max('̂ ) 
and (f) is dense on the node set X = U^^^jpi,..., g^}. Since C^ is a max-
distribution matrix, it follows by Corollary 26 that (i[C^,X] < cj^ax(^)-
The result now follows from the fact that since 5 C X, c?[C^,5] < 
d[C^,X]. 

We do not know the complexity of implementation of the BTGG 
scheme when C^ is a max-distribution matrix. However when the patch­
ing pseudograph Gp is a multi-path or a multi-tree, BTGG-scheme can 
be implemented in polynomial time using the same idea as in the case 
of GG-scheme discussed in Chapter 11. 

For an arbitrary permutation TT on A ,̂ let A^^,..., Â ^ be the node sets 
of the non-trivial subtours, (that is, subtours with at least two nodes) 
of TT. Let 

d^^(C,7r) = max{q,^(^) : i G U^^iN^}. 

For any 5 C {1 ,2 , . . . , n - 1}, let P{S) be the set of all permutations of 
elements of S. Let 

d'^[C, S] = mm{d'^{C, ^) : ̂  - Ai o • • • o A^ and ( n , . . . , i,) G P{S)}. 

Suppose TT is an optimal solution to the bottleneck assignment problem 
on C (and therefore, the identity permutation ^ is an optimal solution 
to the bottleneck assignment problem on C^). Then, if we modify the 
properties MPP-I and MPP-II as well as the BTGG scheme by replacing 
the functions Cmax 

(TT) and d[C,S] by functions d^^(C,7r) and d^^[C,5], 
respectively, the modified properties can be shown to be sufficient for the 
modified BTGG scheme to produce an optimal solution to BTSP(C). It 
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may be noted that if C^ is a max-distribution matrix, then n is an 
optimal solution to the bottleneck assignment problem on C. If C^ is a 
(UU)-graded matrix, then by Theorem 27, for 5 = {u^u + 1,... ,v} for 
any 1 < u < ?; < n, d^^[C^, S] = max{cj^-^i :ie S}. Thus, Step 3 of the 
modified BTGG scheme reduces to a bottleneck spanning tree problem, 
where each edge ê  G E^ is assigned a weight cĵ j_̂ i, and this problem 
can be solved in 0{n) [361]. We thus have the following result. 

Corollary 35 [361] If C is a (UU)-graded matrix, then the BTGG-
scheme with IT as the starting permutation and with the function dlC^^ T*] 
replaced by the function d^'^[C^,r*] produces an optimal solution to 
BTSP(C) in 0{n) time. 

If C^ is a (UD)-graded matrix then for permutation ip defined as 
^(i) = n - i + 1, C^°^ is a (UU)-graded matrix. Thus, BTSP when 
C^ is a (UD)-graded matrix can be solved in 0{n) time. Suppose C 
is a Gilmore-Gomory type matrix (see Chapter 11) with / (x) > 0 and 
g{x) = 0 for all x and let us assume, without loss of generality, that 
^1 ^ • • • ̂  ^n- If we define a permutation TT on TV such that a^(^i) < • • • < 
a7r(n), then C^ is a (UU)-graded matrix. Finding such a permutation 
TT takes 0 (n log n) time. Thus, in this case BTSP(C) can be solved in 
0 (n log n) time [360]. 

If C is a sum matrix, (that is, Cij = ai + bj for all i, j ) , or a small 
matrix, (that is, Cij — min{ai,6j}), then let us assume without loss of 
generality that ai > • • • > â .̂ If we define n such that 67̂ (1) ^ * • • ̂  K{n)^ 
then in each of these cases, C^ is a (UU)-graded matrix. Again, finding 
such a permutation n takes 0 (n log n) time. Hence, in each of these 
cases BTSP(C) can be solved in 0 (n log n) time. For the small matrix 
case, BTGG scheme can be implemented in 0{n) time using the same 
idea as in the case of TSP on such matrices, as discussed in Chapter 11, 
Section 4.3. An alternate 0{n) scheme for the small matrix case is given 
in [798] that is similar to the scheme by Gabovich [340] for TSP on such 
matrices. If C is a large matrix, then every tour on N has the same 
bottleneck cost and thus the problem is trivial. 

In [361] it is shown that if the cost matrix C is a graded matrix, then 
BTSP(C) can be solved in 0{n'^) time using a modification of the BTGG 
scheme that allows patchings that are not GG-patchings. 

4.3. BTSP on Ordered Product Matrices 
A cost matrix C is called an ordered product matrix if and only if there 

exist {a^, bi : i E N} such that ai < a2 < • • • < a^, ^i > 2̂ > • • • > 6^ 
a n d Cij = Oibj. 
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The following result by Van Der Veen [801] improved upon the previ­
ous 0{ii?) algorithm of [147] for BTSP on ordered product matrices. 

Theorem 36 [801] BTSP on an ordered product cost matrix can be 
solved in 0(n) time. 

Proof. If all the a^'s have the same sign or all the hj's have the same 
sign then the cost matrix C is a doubly graded matrix and an 0{n) 
algorithm follows from Corollary 35. Suppose there exist \ < u^v < n 
such that â ^ < 0 < Ou^i and 6̂  > 0 > 6^+i. 

Case (i): u — v. Let m = n — v.ln this case, we can partition the 
matrix C as 

^ 2 , 1 ^ 2 , 2 C = 

where matrices Z)^'^,D^'^, D^'^ and D^'^ are of sizes uxu^ uxm, mxu 
and m X m, respectively, and D^'^ < 0, D^'^ < 0,D^'^ > 0 and D^'^ > 
0. Obviously, for every tour 7 on N^ c^&x{^) ^ 0 and hence, using 
Lemma 19, we consider matrix C where, c[j = maxjC^j, 0}. The matrix 
C has the form: 

^ 0 A'^^ 
A '̂̂  0 

C" = 

where A^^'^ is a positive (UU)-graded matrix and A '̂̂  is a non-negative 
(DD)-graded matrix and therefore, C" is a max-distribution matrix. 
Hence, BTSP(C') is pyramidally solvable. For any pyramidal tour 7 
on N there is exactly one pair {i^j} C Â  such that i < u < 7(2) and 
j > u> -f{j) and c'^^^{-f) = maxjc'.^^^.^ c .̂̂ ^ .̂̂ }. Since ^^'^ is a (UU)-

graded matrix and A '̂̂  is a (DD)-graded matrix, an optimal choice of 
such a pair of arcs {(z, 7(i)), (j, 7(j))} belongs to the set 

5 = {{{u, u + 2),{u + l,u- 1)}, {{u -l,u+ 1), {u + 2, u)}, 

{{u -l,u + 2), {u + 1, u)}, {(u, u + l),{u + 2,u- 1)}}. 

An optimal tour can thus be obtained by finding {(x,?/), (5, t)} E S 
with minimum value of maxjcxy, Cst} and constructing a pyramidal tour 
containing these arcs. 

Case (ii): u < v. Let £ = v — u and m. = n — v. We can partition 
the matrix C as 

^ 1 , 1 jjl,2 jjl,3 

^ 2 , 1 ^ 2 , 2 jj2,3 

^ 3 , 1 jj3,2 ^ 3 , 3 
c -

where D^^^ < 0, D^'^ < 0,^^'^ > O,^^'! > 0,^^,2 > 0^752,3 < QJJ3,I > 
0, D^''^ > 0 and D^^^ < 0. In this case too, it is easy to see that Cniax(7) ^ 
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0 for every tour j on N and hence, using Lemma 19, we consider matrix 
C\ where for ah 1 < i , i < n, c[j = max{cij,0}. We can partition C as 

where A^'^ is a non-negative (UU)-graded matrix and each of A^'^^ A'^''^^ 
A^'^ and A '̂̂  is a non-negative (DD)-graded matrix. Therefore, C is a 
max-distribution matrix and hence, BTSP(C) is pyramidally solvable. 
The bottleneck cost of any tour on Â  will be decided by the arcs in the 
tour corresponding to the entries of the matrices A^^^^ A^^^^ A?"^^ A?'^ 
and A^"^. Using the structure of these matrices, it has been shown in 
[801] that there exists an optimal pyramidal tour for which the set of 
the arcs of the tour corresponding to the entries of these five matrices 
belongs to the set 

S = {{(x, X - 2)}, {{u -\,v^ 2)}, {{y + 2, v), [u-\,v-^ 1)}, 

{{u + 1, ̂  - 1), [u, V + 2)}, {{u + 1, u - 1), {v + 2, v), {u, V + 1)}}, 

where x E {u + 2,,.. ,v + 1} is such that c^^_2 = min{c^ •_2 : i G 
{̂ i -h 2 , . . . , i; -|- 1}}. Thus, an optimal pyramidal tour can be obtained 
in 0{n) time. 

Case (iii): u > v. In this case, the result can be proved along the 
same lines as in case (ii). • 

4.4. BTSP on Symmetric, Diagonally Circular 
Inward Graded Matrix 

In [33], 0{n) algorithms are presented for two subclasses of MSTSP. 
In the first case, each node in Â  is associated with a point on a fine, while 
in the second case, each node is associated with a point on a circle. In 
each case, for any i, j 6 Â , weight wij is the Euchdean distance between 
the corresponding points. We consider this as instances of BTSP with 
edge costs cij — —Wij. The case corresponding to points on a line is 
obviously a special case of the case of points on a circle. In the case 
of points on a line, the cost matrix is a symmetric, diagonally inward 
graded matrix and it is a Gilmore-Gomory type matrix (see Chapter 11) 
with Qi — hi for all i E N and f{x) = g{x) < 0 for all x. In the case 
of points on a circle, the cost matrix is a special case of what we call 
a symmetric, diagonally circular inward graded matrix (SDCI-matrix), 
and which we define below. We assume here that all indices and node 
labels are taken modulo n. 

A symmetric cost matrix C is an SDCI-matrix if only if there exist 
1 < i{l) < i{2) <"< i{n) < 2n such that for all i e N, 
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(i) i < £{i) <n + i] 

(a) Ci^x-i ^ Cix for all X e {i + l , . . . ,^ ( i )} and Cî ^+i ^ Qx for all 
xe {^(i) + l , . . . , n + i - l } ; 

(in) Cx^i^y < Cxy for all y > £{i) + 1 and x = 2 — l , i — 2, . . . , y — n and 
Cx+l,y ^ Cxy for all y < i{i) and x = i, i + 1 , . . . , y — 1. 

We say that C is an SDCI-matrix with respect to {^(1),^(2),... ,^(n)}. 
It should be noted that a symmetric, diagonally inward graded matrix 

is an SDCI-matrix with i{i) = n for all i; and the negative of a symmetric 
diagonally inward graded matrix is a max-Klyaus matrix. In the case 
of points on a circle, if for each point i, we define ^(i) such that each 
of the sets of points {i, i + 1 , . . . , £(z)} and {i, i - 1 , . . . , £{i) + 1} lies on 
an arc subtending an angle less than 180^ at the centre of the circle, 
then the cost matrix is an SDCI-matrix with respect to these values of 
{£(l),£(2),. . . ,^(n)}. 

For any set S C N^ let us define A5 = minjcij : ij E S}. 
The following facts given in [33] will be useful. Facts 37 and 38 are 

easy to verify and Fact 39 follows from Fact 38. 

Fact 37 / / n = 2/c-t-1; for some positive integer fc, then for any subset S 
of N of cardinality k+l and any tour 7 on N^ there exist u^v in S such 
that 'y{u) = V. Therefore, A5 is a lower bound on the optimal objective 
function value of BTSP(C). 

Fact 38 If n = 2k, for some positive integer k, then for any pair of 
subsets Si and S2 of N of cardinality k each, such that S*! H ^2 7̂  0, and 
any tour 7 on N, either {u, 7('u)} Q Si for some u or {v^ 7(^)} Q S2 for 
some V. Hence, mm{Xsi^ ^82} ^̂  ^ lower bound on the optimal objective 
function value of BTSP(C). 

Fact 39 Suppose n — 2/c, for some positive integer k. Let Si, S2 and 
Ss be subsets of N of cardinality k each such that Xs^ > A52 ^ A53 
and A53 > Xs for any other subset S of N of cardinality k. Then, the 
following are true. 

(i) A53 is a lower bound on the optimal objective function value of 
BTSP(C), 

(a) If 5i n ^2 7̂  0, then A52 'is a lower bound on the optimal objective 
function value of BTSP(C). 

Theorem 40 / / C is an SDCI-matrix then BTSP(C) can be solved in 
0{n) time. 

Proof. We follow the proof technique in [33] for the case of points on 
a circle. 



The Bottleneck TSP 729 

Case (i) n = 2k + 1 for some k: For any i e N, let Fi = {i,i + 
1, . . . ^i + k} and Bi = {i,i — 1 , . . . ,z —fc}. It follows from Fact 37 that A = 
max{Ai?., A^. : 1 < i < n} is a lower bound to the optimal objective func­
tion value of BTSP(C). Since, C is an SDCI-matrix, max{Ai?., A^.} = 
indix{ci^i^k^ Ci,i-k} for dlli E N and hence, A = max{{cî _̂̂ A:, Q^^^/C} : i G 
N}. Let 7* - (1, fc + 2, 2A: + 3 , . . . , 2k{k + 1) + 1,1). Then, CmUl*) = ^ 
and, it follows from the fact that gcd{n, k + 1} = 1 that 7* is a tour on 
Â . Hence, 7* is an optimal solution to BTSP(C). 

Case (ii) n = 2k: In this case, let us define for any i e N^ Fi = 
{2,2 + l , . . . , i + /c — 1}. Since C is an SDCI-matrix, we have the following. 
For any i e N^ 

(i) if i(i) >i + k-l, then Ci^i^k-i = ^F^; 
(ii) if^(z) < i+fc-1, thenci^i^k-i < mm{ci^i^k+i^ Ci_i^i^k^ Ci_2,i+k-i}^ 

and from (i) we have that Ci^ij^k-\-i = ^Fi+k+i^^i~i,i+k = ><Fi^k ^^^ 
Ci_2,i+jt-i = ^F,+fc_i- Hence, if ^l,^2,^3 in N are such that Ai?.̂  > 

for j = 1, 2, 3. It now follows from Fact 39 that if { i i , . . . , ii + /c — 1} fl 
{22,... ,i2+A: —1} 7̂  0, then Q2,22+/C-I is a lower bound on the optimal ob­
jective function value of BTSP(C); else, Ci^^i^^k-i is a lower bound. Con­
sider the tour 7 = (ii, (fc+l + n ) , (2( /c+l)-hn) , . . . , (2/c(A: + l )+H) , i i ) = 
(ii, l i i , . . . , U2k^ H)' Let j be minimum index such that Uj G {ii + k — 
l , i i + 2A; —1}. Let 7* be the tour (21,1^1,... ^ Uj^ U2k^ U2k~iT Uj+i^ h)- The 
tour 7* attains the lower bound stated above. • 

4.5. B T S P on Symmetr ic , Circulant Digraph 

The complexities of both TSP and BTSP on a circulant digraph (See 
definition in Chapter 11 ,Section 10.5) are open. An 0 (n log n) scheme 
for BTSP on symmetric circulant digraphs is given in [147] and we dis­
cuss it next. 

Theorem 41 [14 V ^^^ ^ — (^?^) ^̂  ^^^ undirected graph obtained 
from a symmetric circulant digraph G(n^ ai, —ai, a2, —^2, . . . , a^, —cim)^ 
with m < n^ by replacing every pair of arcs {(^, j ) , (j^i)} by edge {i^j). 
Let gcd{n,ai , . . . ,am} = g- Then G has precisely g connected compo­
nents G i , . . . ^Gg on node sets Ni = {i + kg : k e {0^,.. ^ {n/g — 1)}}, 
respectively, and each connected component is Hamiltonian. 

Proof. Let us prove the result by induction on m. For m = 1, let 
gcd{n, ai} = gi. In this case, the result follows from elementary results 
in number theory [434] and for each i G { 1 , . . . , ^ } , the connected com­
ponent Gi has a Hamiltonian tour 7̂^ = (i, {i + ai) mod n , . . . , {i + {n/g — 
l)ai) mod n,i) . 
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Suppose now that the result is true for all m < u for some u < n. 
Let us prove the result for m — u. Let gcd{n, a i , . . . , au] — Qu and let 
gcd{n, a i , . . . , au-i] = Qu-i- Let n = TQU-I and QU-I = kgu- By induc­
tion, G', the undirected graph corresponding to G{n^ ai, —ai , . . . , a^_i, 
—a^i-i), has gf̂ i-i connected components, each having a Hamiltonian 
tour. It follows from elementary number theory [434] that the nodes 
xi = 1,0:2 = 1 + a^x,... ,Xfc = 1 + (k — l)au belong to different con­
nected components of & which we denote by G'̂ , G25 • • •, G'A:' respec­
tively. Also, edges {(x^, x^+i) : i G { 1 , . . . , k—1}} are in G and the k com­
ponents G ' j , . . . , G'̂  combine to form a connected component Hi of H. 
Let ((1 =)io, M7 • • • ^ '̂S5 ̂ 0) be a tour in G[. Then, by symmetry, it follows 
that (xj, ii + Xj — 1 , . . . , Zs -h Xj — 1, Xj) is a tour in G'- for j G { 1 , . . . , fc} 
and edges {{xj+ iy-l,Xj^i-\-iy- 1) : j G { 1 , . . . , fc - 1}, 1; G {0, . . . ,5}} 
are in G. It is now easy to verify that the following process produces a 
tour in the Gi. Remove edges (ig, 1) and (is -h X2 — 1, X2) and add edges 
(1, X2) and (is, î  -h X2 — 1); recursively, for j = 2 , . . . , /c — 1, remove edges 
(xj + ij_2 —l,Xj-hi(j_i) —1) and (xj+i-|-2j-2 —1, Xj+i-fij-i —1) and add 
edges (xj-h2j_2-l,Xj4.i - h i j - 2 - 1) and {xj + ij-i -l.Xj^i +ij-i - 1 ) , 
where for any j y s^ij = i. ^^^^ .̂ Because of symmetry, similar method 
can be used to obtain a tour in every other connected component of H. 
• 

Now consider an instance BTSP(G) where for some symmetric circu-
lant digraph G{n^ ai, —ai, a2, —^2, . . . , a^, —a^) and numbers ( i i , . . . , d^, 
the cost matrix C is defined as follows: for any 1 < i, j < n, if |i — j | = 
au mod n for some li G { 1 , . . . ,m}, then QJ = du] else, QJ = 00. The 
following 0 ( n log n) scheme for this problem, based on Theorem 41, is 
given in [147]. Without loss of generality, let us assume that di < 
^2 < • • • < dm- For each i = l , . . . , m , find gcd{n, a i , . . . ,a i} . All 
these gcd values can be calculated in 0{nlogn) time. Find minimum 
u G { l , . . . , m } such that gcd{n, a i , . . . , â }̂ = 1. Find a tour 7* in 
G{n^ ai, —ai, 02, —a2,... , â ,̂ —â )̂ as in the proof of Theorem 41. Then 
7* is the desired optimal solution. 

4,6. BTSP on a Halin Graph 
In this section we consider the BTSP restricted to a Halin graph. In 

Chapter 11, we have seen that TSP on a Hahn graph with n nodes can 
be solved in 0{n) time. Using this algorithm within the binary search 
version of the threshold algorithm [269] for bottleneck problems, BTSP 
on a Halin graph can be solved in 0 (n log n) time. We now discuss an 
0{n) algorithm to solve BTSP on a Hahn graph [668]. 
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Recall that a Halin graph G is obtained by embedding a tree T with 
no node of degree two in the plane and joining the leaf nodes by a cycle 
so that the resulting graph is planar, (see appendix A.) The nodes of 
G corresponding to the pendant nodes of T are called outer nodes. All 
other nodes are internal nodes. A Hahn graph with exactly one internal 
node is called a wheel. It is easy to see that BTSP on a wheel can be 
solved in 0{n) time. As in the case of TSP on a Halin graph discussed 
in Chapter 11, we solve BTSP on a Hahn graph by recursively collapsing 
fans. However, unlike the TSP, for BTSP we need an auxihary objective 
function to record information generated during the iterations, and to 
maintain the invariant property of the objective function value in each 
iteration. 

Let F be the family of all the Hamiltonian cycles (tours) in G. For 
each outer node i of G, let e^ î, ei^2 â nd ê ŝ be the edges incident to i. 
Any tour H in F uses precisely two of these three edges. Let p ( e i j , 62̂ 2) 
be the 'penalty' incurred if H uses the edges e^j and ei^2] ^(^2,2,^2^3) be 
the 'penalty' incurred if 7Y uses the edges ei^2 ^^^ ^1,3] a-nd p(ei^i^ei^s) 
be the 'penalty' incurred if Ti uses the edges ê î and e^^s. Thus, for the 
tour H and outer node i, define 

{ p(ei,1,6^,2) if ei^i and 6̂ ,2 G 'W 
p(ez,2,ei,3) if ei,2 and 6̂ ,3 G H (8) 

p(ei,i,ei,3) if ei^i and 6̂ ,3 G H 
Consider the modified bottleneck TSP on a Hahn graph defined as 

follows: 

MBTSP: Minimize / (W) 
Subject to 

H G F , 

where 
f{H) = max{max{ce|e G W}, max{Pi(7Y)|z is an outer node of G}} 

Note that for each outer node i and tour H in F, Pi[H) can be iden­
tified in 0 (1) time using the triplet [p(ei,i, 6^,2),p(ei,i, 6^,3),p(e^,2, ^^,3)], 
called penalty triplet. At the beginning of the algorithm, we may choose 
p(ez,1,6^,2) = p(ef,i,e^,3) = p(ei,2,ei,3) = 0. Thus, with this choice of 
the penalty triplets, MBTSP is equivalent to BTSP. In our algorithm, 
we successively collapse fans into a pseudo-nodes and then update the 
values of the penalty triplets. Note that this fan collapsing scheme will 
eventually result in a wheel and hence we have to solve MBTSP on a 
wheel. 
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4.6.1 Algorithm for M B T S P on a wheel. Consider a wheel 
W = (V, E) with u as its internal node. Let 1,2,... , n be the outer nodes 
such that ê  = (z, i + 1) G £", i = 1, 2 , . . . , n, where n + 1 = 1. Consider 
the cycle A = (1, 2 , . . . , n, 1). Let e* and e** be edges of A such that 

Ce* = max{ce I e G A} 

and 
Ce** = max{ce I e G A — {e*}}. 

Every tour on W is obtained by deleting from A some edge Cr and 
introducing edges (tx, r) and (u, r +1). We denote this tour by Hr- Thus, 
Pr{y^r) = p(e^_i,(iz,r)), Pr+i{Hr) = p{er+i,{u,r + 1)), and for every 
other 2 : z 7̂  r, r H- 1, PiiTir) = p{^i^ ^i-vi)- Define 

5i = max{c(^^i), c^u,iJ^i)^v{^i+i, {u,i + l)),p(ei_i, {u,i))]. 

Choose r, 5, t such that 

p{er,er+i) = max{p(ei,ei+i) I ê  G A} 

p{es, e^+i) = max{p(ei, e^+i) | ê  G A, ê  7̂  e^} 

p{eu et+i) = max{p(ei, 6̂ 4.1) | ê  G A, ê  ^̂  e^, e j . 

(Here, e^+i — ei.) Now, given the values of (5i,p(er-, er+i),p(e5,es+i) 
and p(et, et-i-i), we can compute f{Hi), the objective function value of 
the tour TYi = A-ei + {{u,i),{u,i-\-l)} for MBTSP on W, in 0(1) time 
by considering 10 different cases [668]. 

Choose q such that f{Hq) = min{/(?i^i)|l < i < n}. Then the tour 
Tiq is an optimal solution to MBTSP on W. Now 

e*, e**, p(e^, e^+i), ^(e^, e^+i), and p{et, e^+i) 

can be identified in 0{n) time. The quantity 6i can be identified in 0(1) 
time for each z = 1,2,.. . , n. Thus, MBTSP on W can be solved in 0{n) 
time. 

4.6.2 M B T S P on a Halin Graph. We now consider MBTSP 
on a Halin graph G = {N^ E) which is not a wheel. Note that such a 
graph, has at least two fans. Let 5 be a fan of G with center u and outer 
nodes ui, 1̂ 2, • • •, '̂ m, where (t^i, ̂ 2, • • •, ̂ m) is a path in S. The cutset 
{S', N — S} contains precisely three edges 65^1, 65̂ 2, â nd 65̂ 3 incident with 
nodes ui^u^ and Um^ respectively. 

Any tour H in G uses exactly two of the three edges 65̂ 1,65̂ 2? ^nd 
65^3. If H uses ê î and 65^3, then Hn S has the structure 
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{ui,U2, . . . , Uj, U, Uj^i, . . . , Um) (9) 

If H uses 65̂ 1 and 33,2, then 'H fl 5 is of the form 

{u, Um, Um-l, . . . , tt2, ^l) (10) 

and if H uses 65̂ 2 Q-nd 65-̂ 3, then HO S will be of the form 

{Um, Um-1, . . . , ^̂ 2, ^ 1 , ^) (H) 

Let g{es,2,es,3) be the contribution of S to the MBTSP objective 
function value of an optimal tour in G using edges es^2 and 65^3. Then 

where 

and 

9{es,2,es,3) = max{xi,2/i} 

xi = max{{c^,.,^,.^J 1 < 2 < m - l } , c ^ , , ^ J 

yi == max {{p((zxi,?ii+i), (1x^+1,^^+2))|1 < ^ < ^ - 2}, 
;?(('a^_l, 'U^), es,3),p{{ui,U2), {u, ui)),p{{u, ixi), 65,2)} • 

Similarly, let g{es^i,es^2) be the contribution of S to the objective 
function value of an optimal tour in G using edges es^i and 63^2- Then 

where. 

9{es,i,es^2) = max{x2,y2} 

X2 = max{{c^,,^,.^J 1 < 2 < m - l } , c ^ , ^ ^ } 

and 

y2 = max {{p{{ui, i^i+i), (i^i+i, 1̂ 1+2)), 1 < ^ < ^ - 2}, 

p{{Um-l, Um), {Um, u)),p{{ui, U2), 63,1),p{{u, IXm), €5,2) } • 

We similarly define 5(65^1,65^3), the contribution of S to the objec­
tive function value of an optimal tour in G using edges 65̂ 1 and 65^3. 
The quantities 5(65,1,65,2), 5(^5,1, 65^3), and 5(65,2,^5,3) can be com­
puted in 0{p) time by appropriate modifications of the procedure for 
solving MBTSP on a wheel. 

Consider the Halin graph G x S obtained from G by collapsing S 
into a pseudo-node v. Let 6 ,̂1,6 )̂,2, 6-0,3 be the edges in G x 5 inci­
dent on node v which correspond to edges 65,1,65,2,65,3, respectively. 
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Assign to the penalty triplet [p{ey^i,ey^2),v{^v,i^^v,2>)'>v{^va^^v,'i)] ^he 
values [^(65,1,65,2), ^(65,1^^5,3), ̂ (65,2, 65,3)], respectively. Further, let 

The optimal objective function value of MBTSP on G and the optimal 
objective function value of the corresponding instance of MBTSP on 
G X S are the same. Note that G x 5 is also a Halin graph. If it is 
a wheel then MBTSP on the wheel can be solved using the algorithm 
discussed earlier. If it is not a wheel, then it contains at least two fans 
and the fan collapsing scheme can be continued and eventually we reach a 
wheel. Backtracking from the optimal solution on this wheel, an optimal 
solution to MBTSP (and hence to BTSP) on G can be constructed by 
expanding the pseudo-nodes. We leave it to the reader to verify that the 
procedure can be implemented in 0{n) time. 

5. Variations of the Bottleneck TSP 
Let us now discuss some variations of the BTSP that subsume both 

TSP and BTSP. We first consider traveling salesman problem under 
categorization [678]. Let 5i, 5 2 , . . . , 5^ be a partition of the edge set 
E of the graph (digraph) G = (A ,̂ E) and let F be the family of all 
Hamiltonian cycles in G. Let Cg be the cost of edge e e E. For any 
W G F, define 

/ i ( ? ^ , C ) = m a x Y^ ce 
eennSi 

and 
p 

where summation over the empty set yields a value — oc and maximum 
over the emplty set yields zero. 

There are two versions of the traveling salesman problem under cat­
egorization which are denoted by TSPC-1 and TSPC-2. TSPC-1 seeks 
a Hamiltonian cycle H^ in G such that / i (W, C) is as small as possible, 
whereas TSPC-2 attempts find a Hamiltonian cycle of G that minimizes 
/2(W,C). For p - 1, TSPC-1 reduces to the TSP and TSPC-2 reduces 
to the BTSP. For p = \El TSPC-1 reduces to the BTSP and TSPC-2 
reduces to the TSP. Thus TSPC-1 and TSPC-2 are proper generahza-
tions of both TSP and BTSP and hence are NP-hard. We have seen 
that BTSP and TSP can be solved in linear time on Halin graph. How­
ever, it is possible to show that both TSPC-1 and TSPC-2 are strongly 
NP-hard on Hahn graphs [678]. However, for fixed p, TSPC-2 is solvable 
in polynomial time on a Hahn graph whereas TSPC-1 remains NP-hard 
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on Halin graphs even for p = 2 [678]. Similar generalizations of MAX 
TSP and MSTSP can be constructed. 

Suppose tha t a Hamiltonian cycle represents the order in which n jobs 
are to be processed sequentially in an assembly line. Then the objective 
function of the TSP measures the total processing time. Under this 
model, each of TSPC-1 and TSPC-2 can be interpreted as the problem 
of minimizing the completion time of jobs in an assembl}^ line when 
there is some series-parallel order relation for processing the jobs. More 
precisely, if jobs corresponding to the same subset are to be processed 
sequentially, where as different subsets can be processed in parallel, then 
the TSPC-1 objective function measures the total processing time. If 
jobs corresponding to the same subsets can be done in parallel, but a 
new subset of jobs can be taken only after processing all jobs from the 
current set, TSPC-2 objective function measures the total processing 
time. 

Another problem that simultaneously generalizes BTSP and TSP is 
the fc-sum traveling salesman problem (/c-sum TSP) [411, 681, 802]. In 
a /c-sum TSP, one seeks a Hamiltonian cycle ?Y of a graph (digraph) G 
on n nodes where the sum of the k largest edge-weights of H is as small 
as possible. For k = n^ /c-sum TSP reduces to the TSP and for /c = 1 
it reduces to the BTSP. The A:-sum TSP can be solved by solving 0{m) 
TSP's where m is the number of edges in G. 
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