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1. Introduction 
Routing and Scheduling problems often require the determination of 

optimal sequences subject to a given set of constraints. The best known 
problem of this type is the classical Traveling Salesman Problem (TSP), 
calling for a minimum cost Hamiltonian cycle on a given graph. 

In several applications the cycle is allowed to visit only a subset of the 
nodes of the graph, chosen according to a specified criterion. A basic 
version of this problem is the following Simple Cycle Problem (SCP). We 
are given a complete undirected graph Kn = {V^ E) on n :— \V\ nodes, a 
cost Ce associated with each edge e G JS, and a prize py associated with 
each node v ^ V. Recall that a (simple) cycle of Kn is a subset E of 
J5, |£^| > 3, inducing a subgraph {V{E)^E) which is connected and in 
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which all nodes in V{E) have degree two. The cost of a cycle E is given 
by X^e^£;Ce — "^ZveViE) P'^' "^^^ problem is to find a min-cost cycle of 

Without loss of generality one can assume Cg > 0 for all e €  -E and 
Pv > 0 for all V ^ V^ since the addition of any constant to all edge costs 
and to all node prizes does not affect the cycle cost. 

SCP is a useful model for problems involving simultaneous selection 
and sequencing decisions. Indeed, the problem involves two related de­
cisions: 

1 choosing a convenient node subset S CV^ 

2 finding a minimum cost Hamiltonian cycle in the subgraph induced 
by 5. 

Many variants of SCP have been studied in the literature, a non-
exhaustive hst of which is given later in this section. Roughly speaking, 
we can classify these variants into two main classes, the first including 
all variants subsuming the TSP (i.e., those for which every Hamilto­
nian cycle is feasible), and the second including all the variants in which 
additional constraints may prevent some Hamiltonian cycles from be­
ing feasible. This property has important consequences when analyzing 
the structure of the polytope P associated with a certain SCP variant. 
Indeed, whenever P contains the TSP polytope, one can apply simple 
lifting constructions to extend known TSP facets to P , whereas more 
involved constructions are required for the problems in the second class. 
We will therefore describe in a rather detailed way a specific variant for 
each of the two classes, namely the Generalized TSP (Section 2) and the 
Orienteering Problem (Section 3). These two problems have been chosen 
as they seem to be the most-widely studied cycle-type problems, along 
with the Prize-Collecting TSP considered in Chapter 14. In particular, 
for both problems we will concentrate on exact solution methods based 
on the branch-and-cut approach, which proved to be the most eff'ective 
framework for optimally solving cycle-type problems, 

1.1. The Simple Cycle Problem 
The Simple Cycle Problem, SCP, has the following natural Integer 

Linear Programming formulation. For any S C V^ let S{S) represent 
the set of edges with exactly one endnode in 5, and let E{S) be the set 
of edges with both endnodes in 5, i.e., 

6{S) := {{iJ)eE:ieS,j^S}, 

E{S) := {it,j)eE:i,jeS}. 
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As it is customary, we write 6{v) instead of 6{{v}) for v e V. Moreover, 
for any real function / : Q -^ M on a finite domain Q and for any T C Q, 
we write f{T) instead of X^^^^ A-

Our model introduces a binary variable Xg associated with each edge 
e e E (where Xg = 1 if and only if e belongs to the optimal cycle), and 
a binary variable yy associated with each node v e V (where y^ = 1 if 
and only if v is visited by the optimal cycle). The model reads: 

v{SCP) = min2 
ee 

subject to: 

xiS{v)) = 2y, 

x{5{S)) > 2(2/, + yj - 1) 

yiv) > 3 
Xe€{0 , l } 

y. e { o , i } 

CgXg y ^ Pvyv 

E vev 

veV 
ScV,ieS,j€V\s 

eeE 
v€V. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Constraints (2) impose that the number of edges incident to a node v is 
either 2 (if?; is visited) or 0 (otherwise). Inequalities (3) are connectivity 
constraints saying that each cut separating two visited nodes (z and j) 
must be crossed at least twice. Constraint (4) forces at least three nodes 
to be visited by the cycle. 

A variant of SCP requires the cycle visits a specified "depot" node, 
say node 1. This can be easily obtained by adding a large positive value 
to prize pi, or by introducing explicitly the additional constraint: 

yi = 1- (7) 

In this case, the connectivity constraints (3) can be replaced by 

x{S{S)) >2yy ioY S GV,leS,veV\S. 

SCP is known to be strongly A/'P-hard, as it contains as a special 
case the problem of finding a Hamiltonian cycle of a given undirected 
arbitrary graph G = (V, E) (just set c^ — 0 for all e G ^ , Cg = 1 for all 
e ^ E\E^ Py — 1 iov diW V £ F , and check whether the min-cost cycle 
on Kn has cost equal to —n). 

1.2. The Weighted Girth Problem 
This problem arises from SCP when Py = 0 for all v E.V^ and negative 

edge costs are allowed. Notice that, because of (2), one can always 
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convert node prizes into edge costs, by redefining C(̂ j) := C(̂ j) — {pi + 
Pj)/2 for all (i, j ) €  E^ and p^ = 0 for all v e V. As a consequence, 
the Weighted Girth Problem (WGP) is equivalent to SCP, hence it is 
strongly ATT^-hard. 

A relevant polynomially-solvable special case arises when the graph 
does not contain negative cycles (negative costs being allowed). In­
deed, in this case the problem can be transformed into \V\ non-bipartite 
matching problems on G with loops (see, e.g., CouUard and PuUeyblank 
[227]), hence it can be solved in 0(1^1^) time. A simpler algorithm can 
be obtained along the following lines. 

We replace each edge e = (i^j) of G by two arcs (i, j ) and (j, z) with 
cost Cij := Cji := Cg (we set Cij := oo for all missing arcs, including loops). 
Observe that this construction induces a negative circuit of length 2 
for each negative-cost edge, but no negative-cost circuit involving more 
than 2 arcs. Therefore, WGP can be restated as the problem of finding 
a minimum-cost (possibly nonsimple) circuit (closed trail) on the new 
digraph, with the constraint that the circuit contains no 2-length circuit. 
As such, it can be solved by dynamic programming using the recursions 
originally proposed by Christofides, Mingozzi and Toth [192] to derive 
the so-called g-path lower bound for the Vehicle Routing Problem, as 
outlined next. 

Let us consider the case where a certain node r (e.g., r = 1) is assumed 
to be visited by the circuit (the most general case can be solved by trying 
all possible nodes r), and let j{j) := {i E V : {i^j) G E}. For each 
node j G V and for each integer /i = 1 , . . . ,n, let f{h^j) represent the 
minimum cost of a directed path (not necessarily simple) with h arcs that 
starts from node r, arrives at node j , and contains no 2-length circuit. 
Moreover, let 7r(/i, j ) denote the node immediately preceding node j in 
the path corresponding to f{h^j)^ and let g{h^j) be the minimum cost 
of a path having the same properties as the one corresponding to /(/i , j ) , 
but with the node immediately preceding j forced to be different from 
7r(/i, j ) . Initially, for each j e V we set / ( I , j) := Crj^ ^(1^ j ) '•= ^i and 
^(1, j) := oo. Then, for /i = 2 , . . . , n and for each j G V̂  we compute: 

i^yU) [gyh — l,z) + Cij otherwise, 

(let 7v{h,j) be the node corresponding to the minimum above) 

g{h,j):= min ifi^ - 1,^H c,, iMh-l,i)^j 
i^i{j)\{'^{hj)} I g{h — 1, z) -h Cij otherwise. 
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The optimal solution value of WGP can then be computed as: 

v{WGP) : - min{/(/z, r) : /i = 3 , . . . , n}. 

The above computation can be clearly performed in 0{\E\n) time, hence 
the method requires 0{n^) time in the worst case. 

WGP is a basic relaxation of several problems with important prac­
tical applications in routing and location, and has been studied mainly 
from a theoretical point of view. 

The polyhedral structure of the weighted girth problem has been 
deeply investigated by Bauer [92], who studied several classes of facet-
defining inequahties, some of which derived from the TSP polytope. 
Lifting theorems relating the TSP and the WGP polytopes are given 
in Salazar [736]. Balais and Oosten [79] investigated the corresponding 
polytope for a directed graph; see Chapter 14 for details. 

1.3. The Prize-Collecting TSP 
In the Prize-Collecting TSP each node v e V has an associated non-

negative weight Wy^ and a cycle E is considered to be feasible only if 
the total weight w{V{E)) of the visited nodes is not less than a given 
threshold WQ. Therefore, the problem can be formulated as (l)-(6), plus 
the additional constraint: 

Y^ WyVy > WQ. (8) 
vev 

Such an A/'P-hard problem arises, for instance, when a factory located 
at node 1 needs a given amount wo of a product, which can be provided 
by a set of suppliers located at nodes 2 , . . . , n. Let Wy be the indivisible 
amount supplied at node v^ —py be the corresponding cost (i; == 2 , . . . , n), 
and let C(̂ j) be the transportation cost from node i to node j {i^j G 
y,2 7̂  j). Assuming that only one trip is required, such a problem can 
be formulated as an instance of the Prize-Collecting TSP-in the version 
requiring the visit of node 1. 

The directed counterpart of the problem also arises in several schedul­
ing problems. Balas and Martin [77] introduced the Prize-Collecting 
TSP as a model for scheduling the daily operations of a steel rolling 
mill. A rolling mill produces steel sheets from slabs by hot or cold 
rolhng. The cost of arc (z, j) is given by the cost of processing order j 
just after order i, and Wy is the weight of the slab associated with order 
V. Scheduling the daily operations consists of selecting a subset of orders 
whose total weight satisfies a given lower bound WQ, and of sequencing 
them so as to minimize the global cost. 
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The Prize-Collecting TSP has been mainly investigated in its directed 
version. Heuristic methods have been proposed by Balas and Martin [77]. 
Balas [63, 65] analyzed the problem from a polyhedral point of view. 
Fischetti and Toth [302] proposed a branch-and-bound exact algorithm 
based on additive bounding procedures. Bienstock, Goemans, Simchi-
Levi and Williamson [109] presented an approximation algorithm with 
constant bound. The reader is referred to Chapter 14 of this book for a 
comprehensive treatment of the subject. 

lA. The Capacitated Prize-Collecting TSP 
The Capacitated Prize-Collecting TSP is an extension of the Prize-

Collecting TSP where (8) is replaced by 

Y^Wyyy <wo. (9) 
vev 

Here Wy represents the weight of node (customer) v^ and WQ is the ca­
pacity of a vehicle originally located at the depot (say node 1). Con­
straints (9) specify that the total load carried by the vehicle cannot 
exceed the vehicle capacity. This A/'P-hard problem was introduced by 
Bixby, Coullard and Simchi-Levi [110] as a column generation subprob-
lem in a set partitioning formulation of the classical Capacitated Vehicle 
Routing Problem (CVRP). They also presented a branch-and-cut algo­
rithm and solved to optimality instances ranging in size from 50 to 280 
nodes. 

1.5. The Orienteering Problem 
The Orienteering Problem (OP), also called the "Selective TSP", is 

in a sense the "dual" of the Prize-Collecting TSP. Here, the cycle cost 
only depends on the node prizes, i.e., Ce = 0 for all e E iS, and the 
objective is to maximize the global prize of the visited nodes. On the 
other hand, each edge e e E has an associated nonnegative duration tg, 
and a cycle E is considered to be feasible only if its total duration t{E) 
does not exceed a given threshold to- Moreover, the cycle is required to 
visit node 1. Model (l)-(7) then needs to be amended by the additional 
constraint: 

5^teXe <to (10) 
eeE 

OP is strongly ATP-hard as it contains as a special case the problem 
of finding a Hamiltonian cycle of a given undirected arbitrary graph 
G = {V, E) (just set py = 1 for all v ^V,te=^Q for all ee E,te = l for 
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dX\ e ^ E\E^ and to = 0, and check whether the optimal solution has 
value n). 

The problem derives its name from the Orienteering sport, where 
each participant has to maximize the total prize to be collected, while 
returning to the starting point within a given time hmit. OP also arises 
in several routing and scheduling applications, see, e.g.. Golden, Levy 
and Vohra [387]. 

Heuristic algorithms for OP and some generalizations have been pro­
posed by Tsihgirides [796], Golden, Levy and Vohra [387], Golden, Wang 
and Liu [389], Chao, Golden and Wasil [178] and Fink, Schneidereit and 
Voss [290]. Exact branch-and-bound methods have been proposed by 
Laporte and Martello [536], and by Ramesh, Yoon and Karwan [693]. 
Leifer and Rosenwein [553] have discussed an LP-based bounding proce­
dure. Recently, Fischetti, Salazar and Toth [301] and Gendreau, Laporte 
and Semet [355] have proposed branch-and-cut algorithms; see Section 
3 for more details. 

1,6. The Generalized TSP 
In the Generalized TSP (GTSP), also known as the "International 

TSP", we are given a proper partition of V into m > 3 clusters 

Ci ,C2 , . . . , C, m^ 

and the cycle is feasible only if it visits each cluster at least once. Typ­
ically we also have p^ — 0 for dW v ^V. The corresponding additional 
constraints for model (l)-(6) are: 

2_. 2/̂  — 1 for /l = 1, . . . , 777, (11) 

A different version of the problem, called E-GTSP (where E stands for 
Equality), arises when imposing that exactly one node of each cluster 
must be visited, i.e., (11) is replaced by: 

y^ Vv = ^ for ^ = 1, . . . ,m (12) 
veCh 

The two versions are clearly equivalent when the costs satisfy the triangle 
inequality, i.e., c^ ĵ) < C(̂ /.) + C(^kj) foi" ^H node triples (i^j^k). 

Both GTSP and E-GTSP find practical apphcations in the design of 
ring networks, sequencing of computer files, routing of welfare customers 
through governmental agencies, airport selection and routing for courier 
planes, flexible manufacturing scheduling, and postal routing; see, e.g.. 
Noon [629], Noon and Bean [630], and Laporte, Asef-Vaziri and Sriskan-
darajah [535]. 
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The two problems are clearly A^P-hard, as they reduce to the TSP 
when m — n^ i.e., \Ch\ — 1 for all h. They have been studied, among 
others, by Laporte and Nobert [538], Salazar [735], Sepehri [749], and 
Fischetti, Salazar and Toth [299, 300]. Their asymmetric counterparts 
have been investigated in Laporte, Mercure and Nobert [537], and Noon 
and Bean [630]. Transformations from the GTSP to the asymmetric 
TSP have been proposed by Noon and Bean [631], Lien, Ma and Wah 
[561], Dimitrijevic and Saric [255], and Laporte and Semet [541]. See 
also Cvetkrovic, Dimitrijevic and Milosavljevic [236]. Semet and Renaud 
[748] presented a tabu-search algorithm for the E-GTSP. 

A more detailed analysis of both GTSP and E-GTSP will be given in 
Section 2. 

1.7. The Covering Tour Problem 
The Covering Tour Problem is a variant of the Generalized TSP aris­

ing when the clusters C^ are not necessarily disjoint. This problem was 
introduced by Gendreau, Laporte and Semet [354] as a model for the 
location of post boxes and for the planning of routes for medical teams 
in developing countries, where each cluster Ck corresponds to the subset 
of nodes located within a given distance of a certain customer k. They 
analyzed the polyhedral structure of the problem, presented a branch-
and-cut algorithm, and tested its performance on random instances with 
up to 100 nodes. Current and Schilling [233] studied a multi-objective 
version of the same problem, that they called the Covering Salesman 
Problem. 

1.8. The Median Cycle Problem 
The Median Cycle Problem looks for a min-cost cycle E such that the 

sum of the distances between each node not in E and its closest node in 
E does not exceed a given value d^. In other words, the Median Cycle 
Problem looks for a min-cost cycle E such that 

y^ min dij < do^ 

where dij represents the distance between nodes i and j . 
This problem was introduced by Labbe, Laporte, Rodriguez and Sa­

lazar [527] as a location model for circular-shaped transportation infras­
tructures. These authors provided a polyhedral analysis and a branch-
and-cut algorithm tested on random instances with up to 150 nodes. 
Current and Schilling [234] proposed heuristics for a variant of this prob­
lem which consists of finding a cycle E visiting no more than p nodes, 
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while minimizing the weighted sum of the cycle cost and of the largest 
distance of the nodes in E from the unrouted nodes (the latter being 
computed as max^^y.^x min.^y/^N dij). They also studied the problem 
of minimizing the cycle cost while imposing 

max min dij < C/Q-
i^V{E)jeV{E) 

1.9. The Traveling Purchaser Problem 
In the Traveling Purchaser Problem node 1 corresponds to the pur­

chaser's domicile, and the other nodes to markets. There are m products 
to be purchased, the kth product being available in a given cluster of 
markets Ck- The problem looks for a cycle starting at the domicile and 
purchasing each product while minimizing the sum of the cycle cost plus 
the purchasing costs. To be more specific, let fik be the cost of pur­
chasing product k at node i e Ck- As in the Covering Tour problem, a 
cycle E is considered feasible if and only if 1 G V{E) and V{E)r)Ck 7̂  0 
for all k — 1 , . . . ,m. The Traveling Purchaser Problem then calls for a 
min-cost feasible cycle, the cost of a feasible cycle E being computed as 

m 

^ Ce + ^ min{/,fc :ieCkn V[E)] 
eeE ^=1 

In the Capacitated Traveling Purchaser Problem^ for each product k 
we also have a required amount d^ to be purchased, while the quantity 
of product k available at each node i e Cj^ is qik- In this version, fik 
represents the cost of purchasing one unit of product k at node i e C^j 
and the objective is to find a route collecting the required amount d^ 
for each product fc, while minimizing the sum of the routing and the 
purchasing costs. 

The uncapacitated version of the problem was originally introduced by 
Burstall [152] and Ramesh [694]. Heuristic methods have been proposed 
by, e.g., Voss [814], Golden, Levy and Dahl [386], Ong [632], Pearn and 
Chien [662], and Doctor, Laporte and Renaud [119], 

Branch-and-bound exact algorithms have been studied by, e.g., Singh 
and van Oudheusden [762], reporting the solution of 25-node instances. 
Laporte, Riera and Salazar [540] proposed a branch-and-cut algorithm 
for the exact solution of the capacitated version, which is capable of 
solving random instances involving up to 200 nodes. 

2. The Generalized Traveling Salesman Problem 
As already stated, in the GTSP we are given a proper partition of V 

into 771 > 3 node subsets C i , . . . , Cm^ called clusters. A cycle is consid-
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ered feasible if it goes through each cluster at least once. The GTSP 
then consists of finding a feasible cycle E C E whose global cost J2eeE ^^ 
is a minimum, and can be formulated as 

v{GTSP) = min ^ Ce Xe (13) 
eeE 

subject to 

^ Xe = 2yy for ^ e V (14) 
eeS(v) 

y ^ Vv ̂  ^ for /i = 1 , . . . , m (15) 
veCh 

J2 ^e>2{y^ + yj - 1) for 5 C F, 2 < | 5 | < n - 2, (16) 
ee6{s) ies, j ev\s 

:CeG{0,l} for e e E (17) 

y^G{0, l} fo r i ;Ey . (18) 

As to the E-GTSP, arising when imposing that each cluster must be 
visited exactly once, a mathematical model is obtained from (13)-(18) 
by replacing (15) with 

y yy — \ for h = 1 , . . . , ?Ti. (19) 

Model (13)-(18) heavily rehes on the integrality of the y variables. 
If this requirement is relaxed, solutions like those of Figure 2 become 
feasible. Therefore, the LP relaxation of this model can be very poor. 
Additional valid inequalities will be described in the sequel, whose in­
troduction in the model leads to a considerable strengthening of its LP 
relaxation. 

As shown in [300], the E-GTSP is polynomially solvable when the se­
quence of the clusters is known, which implies the polynomial solvability 
for fixed m (see Subsection 2.5 for more details). 

The remaining part of the present section is mainly based on the re­
sults given by Fischetti, Salazar and Toth in [299] and [300]. We first 
analyze the facial structure of the GTSP and the E-GTSP polytopes; 
in particular, in Section 2.2 we introduce a general theorem that allows 
one to lift any facet of the TSP polytope into a facet of the GTSP poly-
tope. This result is used to derive classes of facet-inducing inequalities 
related to the subtour elimination and comb constraints. In Section 2.3 
we analyze the E-GTSP polytope and discuss the cases in which the 
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Figure 13.1. Infeasible GTSP solution satisfying (14)-(17). The drawn edges have 
Xe = \^ the blank nodes yv = 0, and the black nodes yv — 1/2. 

inequalities of Section 2.2 are facet-inducing. The analysis is based on 
a general result which allows one to inductively reduce the polyhedral 
analysis of the E-GTSP polytope to that of the TSP polytope. 

These theoretical results are used in Section 2.6 to design a branch-
and-cut algorithm for the exact solution of large-scale E-GTSP instances. 
The algorithm is based on exact/heuristic separation procedures for the 
main classes of inequalities previously analyzed. We finally report re­
sults on test instances involving up to 442 nodes, showing that these 
inequalities lead to a substantial improvement of the LP relaxation of 
the original model. 

2.1. Basic nota t ions 
Let P, P=, and Q denote, respectively, the GTSP, E-GTSP, and TSP 

polytopes, defined as 

P : - conv{(x,y) e M^^^ : (14)-(18) hold}, 

p= :=Pn {(x, y) e R^""^ : (19) holds}, 

and 
Q'= Pn {(x, y) e M^^^ : Vv^l for all v e V}. 

Clearly, P"^ and Q are faces of P . These faces are disjoint when m < n, 
whereas for m = n the three polytopes P , P"", and Q coincide. 

We assume the reader is familiar with the foundations of polyhedral 
theory. For the sake of simplicity, in the following we will not distinguish 
between a GTSP (or E-GTSP) solution and its characteristic vector, and 
assume m > 5. Moreover, we will make use of the following notation: 

/^{S) := \{h : Ch CS}\ for 5 C F, 

Tj{S) := \{h '.ChDS^ 0}| for SCV, 
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and denote by C^y^ the cluster containing a given node v. We also 
define 

W:^{veV : | Q ( , ) | - 1 } . 

2.2. Facet-defining inequalities for the GTSP 
polytope 

In this section we study the GTSP polytope, P. The facial structure 
of P is clearly related to that of the TSP polytope, Q, arising when 
imposing the additional equations yv = ^ for dl\ v E V. In order to link 
these two polytopes, let us define the intermediate polytopes 

P{F) :=Pn {(x, y) G R^^^ : yv = I for all v e F } , 

where 0 C F C y . By definition, P{V) = Q and P(0) = P. 
Our first order of business is to determine the dimension of P{F) for 

any given F. This amounts to studying the equation system for P{F). 
This system includes the \V\ linearly independent equations (14), plus 
the variable fixing equations 

yy = 1 for all i; E F U W, (20) 

where W has been defined previously. Actually, no other linearly inde­
pendent equations satisfied by all the points of P(F) exist, as implied 
by the following result. 

Theorem 1 For all F CV, dim{P{F)) = \E\ -\FuW\, 

Proof: Clearly dim(P(F)) < |£;| -\FuW\ since P{F) C R^^^ and 
the | y | + |F U W\ valid equations (14) and (20) are linearly independent. 
We claim the existence of|jB| — | F U W | + 1 afhnely independent points 
in P{F). This will prove dim(P(F)) > |£;| - \FuWl and hence the 
theorem. The proof of the claim is by induction on the cardinality of F. 

When |F | = n the claim is true, since P{F) corresponds to the TSP 
polytope (see, e.g., Grotschel and Padberg [405] or Chapter 2). 

Assume now the claim holds for |F | = a, and consider any node 
set F ' with \F'\ = a — 1. Let v be any node not in F\ and define 
F := F' U {v}. Because of the induction hypothesis, there exist \E\ — 
\FuW\ + 1 affinely independent points belonging to P{F) hence to 
P{F'). IfveW then |F U I^| = | F U W\, and we are done. Otherwise, 
|P U Ŵ l = \F^ U VF| H- 1, i.e., we need an additional point. Such a point 
always exists, and corresponds to any Hamiltonian cycle in the subgraph 
induced by F \ {t'}. • 

file:///FuWl
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Corollary 2 dim{P) = \E\ - \W\. 

According to Theorem 1, given any nonempty F CV and any v e F 
one has the following: ii v e W then dim(P(F \ {v})) = dim(P(F)), 
else d im(P(F \ {f})) = dim(P(F)) + 1. In other words, the removal of a 
node from F increases the dimension of P(P) by, at most, one unit. As 
a consequence, any facet-defining inequality for P{F) can be lifted in a 
simple way so as to be facet-inducing for P{F \ {v}) as well. 

Theorem 3 Let F CV and u ^ F. In addition, let 

eeE vev 

be any facet-inducing inequality for P{F). Then the lifted inequality 

^ a e Xe + Yl (^vi^~ Vv) + ^n (1 - Vu) > 7 
eeE vQy\{u} 

is valid and facet-defining for P{F\ {u}), where /3u is an arbitrary value 
if u ^ W, whereas 

[eeE veV\{u} 

holds when u ^ W. 

Proof: The claim follows from the well-known sequential lifting theorem 
(Padberg [641]), as described, e.g., in Grotschel and Padberg [405]. • 

Theorem 3 leads to a lifting procedure to be used to derive facet-
inducing inequahties for the GTSP polytope from those of the TSP poly-
tope. To this end one has to choose any lifting sequence for the nodes, 
say {vi^... ,Vn}^ and iteratively derive a facet of P{{vt-}-i^... ^Vn}) from 
a facet of P{{vt^ • • •, Vn}) for t = 1 , . . . , n. Different hfting sequences can 
produce different facets. 

By using the above lifting procedure one can easily prove the following 
results. 
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Theorem 4 The following inequalities define facets of P: 

3̂e > 0 for every e G £", (21) 

Xe < 1 whenever e G E{W), (22) 

yv < 1 whenever v ^ W^ (23) 

V X > 2 forScV' 2 < |5 | < n - 2, 

eeS{S) 
2 < | 5 | < n - 2 , 

X ^ x e > 2 y , / o r 5 c V : M 5 ) - 0 , / / ( y \ 5 ) ^ 0 , (25) 
eeS{S) I G 5, 

2 < |5 | < n - 2 , 
Y, Xe>2(y , + % - l ) / o r S c V : ^(5) = M ^ \ 5) - 0, (26) 

ee5{s) ie sj ev\s. 
By possibly interchanging tlie role of S and V \ S^ one can always 

assume that inequalities (24) and (26) are written for 5 C V̂  such that 
\S\ < L^/2J. The same holds for inequalities (25) by choosing i e V\S 
when ti{S) ^ 0 and fi{V \ 5) = 0. 

Notice that (25) are also valid (but not facet-inducing) when /x(S') 7̂  0. 
Analogously, inequahties (26) hold for any S cV and coincide with (16). 

By exploiting equations (14), inequalities (24), (25) and (26) above 
can be rewritten, for any S C V with 2 < l^l < n — 2, as the following 
Generalized Subtour Elimination Constraints (GSEC's): 

Y,Xe<Y,yv-^ f o r / x ( 5 ) ^ 0 , / x ( y \ 5 ) 7 ^ 0 , (27) 
eeE{S) ves 

Y, xe< Y. y- f̂^ M^)-0, / i (y\5)7^0, (28) 
eeE{S) veS\{i] i G 5 , 

Y ^e< Y yv-yj + ^ for f^{s) = ^i{v\s) = o, (29) 
eeE{S) ves\{i} i e SJ ^ S. 

This form of the constraints has the advantage of having fewer nonzero 
coefficients (assuming l^l < [n/2J), hence it is more suitable for a cut­
ting plane approach. 

Particular cases of GSEC's arise when l^l = 2, leading to 

Xe <yv for ^ G y, e G S{v). (30) 

Note that inequality J^veC^ ^^ — -'• ^^^^ ^^^ define a facet of P for 
any h — 1 , . . . ,m. Indeed, because of (14), constraint (15) is equivalent 
t o E eeS{Ch) ^e + ^^J^eeEiCh) ^^ - ^̂  ^eucc it is dominated by the valid 
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inequality YjeeSiCn) ^e > 2 when E{Ch) ^ 0, whereas for E{Ch) = 0 
(i.e., when IC/̂ I == 1) it defines the improper face of P. 

We finally consider the TSP comb inequalities. A comb is a family C = 
(i7, T i , . . . , Ts) of s -f 1 node subsets, where s > 3 is an odd integer. H 
is called the handle of C, whereas T i , . . . , T̂  are called teeth. Moreover, 
the following conditions must be satisfied: (i) T i , . . . ,Ts are pairwise 
disjoint; (ii) Tj D H ^ (/) and T̂ - \ i / 7̂  0 for j = 1 , . . . , 5. The size of C 
is defined as a{C) := \H\ + Ej^id^^l - 1) - (̂  + l) /2. 

The comb inequality associated with C is 
s 

E ^̂  + E E ^e<a(C), (31) 
eeEiH) j=leeE{Tj) 

and is valid and facet-defining for the TSP (see Grotschel and Padberg 
[405], or Chapter 2). It is well known that interchanging the role of H 
and V \ H produces an equivalent formulation of (31). 

Starting with (31), one can obtain related facet-defining inequalities 
for the GTSP by using the hfting Theorem 3 (trivially modified so as to 
deal with "<" inequalities). 

Theorem 5 Let C = (i/, T i , . . . , Ts) be a comb. For j = 1 , . . . , ŝ  let 
aj be any node in Tj D H if ii{Tj Pi H) — 0, aj = 0 (a dummy value) 
otherwise; and let bj be any node in Tj \ H if f^iTj \ H) — ̂ , bj = 0 
otherwise. Then the following generalized comb inequality is valid and 
facet-defining for P: 

s 

E -̂ + E E ê + ;^^.(l-j/.)<a(C), (32) 
e^E{H) 3 = 1 eeE(Tj) veV 

where ^y =^ 0 for all v e V \ {H U Ti U ... U Ts), Py = 1 for all v e 
/ / \ (Ti U . . . U r , ) , and /or j - 1 , . . . , s: ^y = 2 for v e Tj OH, v i^ ay, 
^a, = 1 tfaj 7̂  0; py = lforve T, \H, Vy^ by h, = 0 if b^ ̂  0. 

2.3. Facet-defining inequalities for the E-GTSP 
polytope 

We now address the polyhedral structure of the E-GTSP polytope, 
P ^ . This polytope is clearly a face of P , hence all facet-defining in-
equahties for P studied in Section 2.2 are also valid (but not necessarily 
facet-defining) for P^. 

Since in the E-GTSP exactly one node of each cluster must be visited, 
we can drop intra-cluster edges, and re-define the edge-set as 

E:={{i,j):zeV,JEV\Chi^)}. 
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In view of this reduction, constraints (19) are equivalent to 

y ^ Xe = 2 for all /i = 1 , . . . , m, 

eeS{C, h) 

and a simplified model for the E-GTSP can be obtained by replacing 
constraints (16) and (18) by the two families of constraints: 

^ Xe < r - 1 for 5 - Ul^iQ. and 3 < r < m - 3, (33) 

eeE{S) 

V j ^e ^Vw for / = 1 , . . . , m and w ^V \Ci^ (34) 
eE5(COn(5(ti;) 

respectively. 
Inequalities (33) will be called Basic Generalized Suhtour Elimination 

Constraints (Basic GSEC's), and (34) will be called fan inequalities. 
Both are particular cases of the GSEC's (27) because of (19). Indeed, 
(33) are equivalent to the GSEC's (27) written for S = uy^^C/., where 
E ^ E 5 yv = r since E T ; G Q . y^ = 1 for Z = 1 , . . . , r . Analogously, (34) arise 
from (27) when S = CiU{w}, since E{S) = 6{Ci)nS{w) and Y^y^sVv = 
YlveCi Vv + yw = ^ + yw' Notice that constraints (34) dominate (30). 

As in the previous subsection, we aim at relating the facial s tructure 
of P^ to that of the TSP polytope, Q, even thought Q is not a relaxation 
of P^. To this end, let us introduce some basic definitions. 

Definit ion 6 Given a valid inequality ax+f3y < 7 for P^, let 7i^ ^ := 

P^ n {{x^y) G R^*^^ : a x == /3y -h 7} denote the face of P"^ induced 
by ax + f3y < 7. Let v E V \W be an arbitrary but fixed node, and 
let P^ denote the E-GTSP polytope associated with the subgraph of G 
induced by V \ {v}. The ?;-restriction of ax + /Sy < ^ is the inequality 
obtained from ax + (3y < ^y by dropping the variables yy and x^ for all 
e €  5{v). The t'-compatibility graph of ax + l3y < j is the graph G% — 
{V\Ch(^y),E*) with {u,w) e E* if and only if there exists (x,y) G 'Wa,/3,7 
with X(̂ ^ )̂ = X(^^^) = 1. 

The rank of a graph is defined as the rank of its edge-node incidence 
matrix^ i.e., the number of its nodes minus the number of its bipartite 
connected components. The graph is said to be of full rank when its 
edge-node incidence matrix is of full rank, i.e., when it has an odd cycle 
for each connected component. 

L e m m a 7 For every valid inequality ax+f3y < 7 forP^ and every node 
V E V \W the dimension ofH^g is greater or equal to the dimension 
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of the face of P^ induced by its v-restriction^ plus the rank of its v-
compatibility graph. 

Proof: Let X be the matrix in which every row is an extreme point of 
H^R^' Since H^ n is contained in a hyperplane not passing through 
the origin (e.g., that induced by (19) for /i = 1), a subset of rows of X is 
afRnely independent if and only if it is hnearly independent. Hence the 
dimension of H^ g coincides with the rank of X minus 1. Now, X can 
be partitioned into 

X 
Xn 0 0 
X21 X22 1 

where the last column corresponds to variable yy^ and the columns of X22 
correspond to variables Xe for e G S{v). Then the rank of X is, at least, 
the sum of the rank of Xn plus the rank of [X22 !]• By construction, 
the rank of Xu is the dimension of the face of P^ induced by the v-
restriction of ax + /3y < 7, plus 1. As to X22, we observe that each 
of its rows contains exactly two I's and (barring repeated rows) can be 
viewed as the edge-node incidence matrix of the t'-compatibility graph 
G* associated with ax + /3y < 7. Moreover, the last column of [X22 1] is 
a linear combination (with coefficients 1/2) of the other columns. This 
proves the claim. • 

Lemma 7 allows us to extend some known results from the TSP poly-
tope to the E-GTSP case by using induction on p = ^^=i{\Ch\ — 1) == 
n — 771. 

As shown in Lemma 7, the rank of the t^-compatibility graph G* 
associated with a given inequality ax + /?y < 7 plays a central role when 
analyzing the polyhedral structure of P^. Unfortunately, determining 
whether an edge is present in G* requires the construction of a suitable 
E-GTSP solution (x, y) with ax = f3y -{- 7, hence it is an A/'P-hard 
problem in general. In practice, one is interested in finding sufficient 
conditions for the existence of an edge in G*. We next describe one 
such condition, related to the work of Naddef and Rinaldi [618] for the 
graphical TSP, and of Balas and Fischetti [72, 73] for the asymmetric 
TSP. 

Definition 8 An inequality ax + /3y < j is said to be Tight-Triangular 
(TT, for short) when for all v £ V one has 

(3y ^ ma.x{aiy + ajy - aij : {iJ)eE\5{Ch(^y))}. 

For V ^ V, we denote by 

A(t;) := {{ij) eE\ S{Ch{y)) : f3y = aiy + ajy - aij} 
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the set of the tight edges for v. 

Recall that a face H of P^ is called trivial when H C {(x,y) e R^^^ : 
Xg = 0} for some e ^ E] nontrivial otherwise. 

L e m m a 9 Let v EV\ W, and let ax + l3y < ^y be a valid TT inequality 
for P"^ whose v-restriction defines a nontrivial face of P^. Then G* 
contains all the edges in ^iv). 

A more sophisticated lifting procedure for the E-GTSP, which allows 
one to extend any given facet of the TSP polytope to a facet of P^^ is 
given in [299]. 

We are now ready to study the facial structure of P"^. 

T h e o r e m 10 dim{P=) = \E\ - m. 

Proof: Clearly, d im(P^ ) < \E\ — m as equations (14) and (19) are 
linearly independent. Hence, it remains to be proved tha t the dimension 
of the (improper and nontrivial) face 7Y(0,0,0) induced by Ox < Oy + 0 
is not less than \E\ — m. We use induction on p = n — m. 

When p == 0 we have the standard TSP case, and the claim is true. 
Assume now the claim holds for p — p^ and consider any E-GTSP 

instance with p == p + 1 . Then there exists a node v '^V\W. Because of 
Lemma 7, we have dim(?Y(0,0,0)) > <ii + c?2, where d\ is the dimension 
of the face of P^ induced by the t'-restriction of Ox < Oy 4- 0, and d^ is 
the rank of the t'-compatibility graph G* associated with Ox < Oy -f 0. 
By the induction hypothesis, d\'>_\E\ ^{y)\ — m, thus it remains to be 
shown tha t d^ — |^(^) | — | ^ \ ^'/^(i;)^ i-̂ -? that G* is of full rank. But 
this follows easily from Lemma 9, since A(t') contains all the edges in 
£* \ (^(C/i(^)) and, therefore, G* is connected and contains an odd cycle 
(recall that m > 5 is assumed). • 

Using similar arguments, one can prove the following results. 

T h e o r e m 11 The following inequalities define facets of P^: 

(1) Xe > 0 for all ee E. 

(2) Xe < 1 for all ee E{W). 

(3) the GSEC (27) whenever one of the following conditions holds: 

(i) s e w and \S\ = 2, 

(a) S =:CiU {w} for some w eV\{CiU W), 

(iii) r]{S) > 3 and rj{V \ 5) > 3, 
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where r]{') has been defined in Subsection 2.1. 

(4) The fan inequality (34) for all w ^ W. 

(5) The GSEC inequality (27) whenever both S and V \S overlap, at 
least, 3 clusters each, i.e., when r]{S) > 3 and r]{V \ 5) > 3. 

Note that, because of (34), yv ^ 0 does not define a facet for any 
V e V. Analogously, the GSEC's (28) and (29) do not define facets of 
P=. Indeed, a GSEC (29) can be written as ^eeE{S) ^e ~ X/'u65\{i} ̂ '̂  "̂  
yj — I < 0. If C^(i) == C'̂ (j)5 then yi + yj < 1, hence the inequahty (29) 
is a weakening of J2eeE{S) ̂ e - Jlves Vv ^ ^ which is, in turn, strictly 
dominated by the equation ^^y^siYjeeS{v)^e - 2?/̂ ) = 0. Otherwise 
(29) is dominated by the GSEC (28) written for S' := S\ C/,(^), i.e., by 

Similarly, one can show that a GSEC (28) is dominated by the GSEC 
(27) written for S' := S U C^^ 

The bound constraint X(̂  -̂̂  < 1 does not define a facet whenever 
i ^W OY j ^W, since in this case it is dominated by the fan inequality 
^eG^(C,(,))n<5(0 ^e < Vi (if i ^ W), or EeG^(C,(,))n50-) ^e < Vj (if J i Ŵ )_. 
In addition, the bound constraints yv ^ ^ never define a facet of P^ 
because of equations (19). 

Finally, the GSEC's (27) not covered by Theorems 11 do not define 
facets in that E{S^ induces a bipartite graph, hence they can be obtained 
as the sum of certain fan inequalities, as shown in [299]. 

2.4, Separation algorithms 
In this subsection we address the following separation (or identifica­

tion) problem: Given a (fractional) point (x*,?/*) G [0,1]^^^, find a 
member ax + /3y > 7 of a given family T of vahd inequalities for GTSP 
(or E-GTSP), such that ax* + jSy"" < 7. An effective exact/heuristic so­
lution of this problem is of fundamental importance in order to use the 
inequalities of T within a cutting plane algorithm for the exact/heuristic 
solution of the problem. In the following we describe the separation al­
gorithms proposed by Fischetti, Salazar and Toth [300]. 

2.4.1 An exact separation algorithm for GSEC's. We 
consider the family J^ of the generalized subtour ehmination constraints, 
in their cut form (24)-(26). We will assume that node subset S C V 
satisfies 2<\S\<n-2. 
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We start with constraints (26): 

J ] xe>2{yi + yj-l) ii^i{S) = ii{V\S) = 0,ieSJeV\S. 
eeS{S) 

Suppose nodes i and j have been fixed. Then, finding a most violated 
inequahty (26) calls for the minimum-capacity cut (5, V\S) with i E S 
and j £ V \ S in the capacitated undirected graph G* obtained from 
G by imposing a capacity x* for each e e E. This can be done in 
0(71^) time, as it amounts to finding the maximum flow from i to j 
(see, e.g., Ahuja, Magnanti, Orlin [6]). If the maximum flow value is 
not less than 2{y* + y^ — 1), then all the inequalities (26) for the given 
pair (z, j ) are satisfied; otherwise the capacity of the minimum cut sep­
arating i and j is strictly less than 2(y* + y^ — 1) and a most violated 
inequality (26) has been detected among those for the given pair (i, j ) . 
Trying all possible pairs (i, j ) then produces an 0{n^) overall separa­
tion algorithm. Actually, a better algorithm having overall 0{n'^) time 
complexity can be obtained, in analogy with the TSP case (see Padberg 
and Grotschel [642] or Chapter 2) by using the Gomory-Hu [390] scheme 
for the multiterminal fiow problem. A simpler algorithm with the same 
time complexity is based on the simple observation that, for any 5, the 
most violated inequality (26) arises when the chosen i and j are such 
that y* = max{7/* : v e S} and ?/* = max{y* : v e V \S}, Therefore, 
any node s with y* = max{y* : v e V} can always be fixed to play the 
role of, say, node i. In this way, one as to solve (at most) n— 1 max-flow 
problems in the attempt to send 2(y* + y* — 1) units of flow from s to 
any j e V \ {s}. Clearly, nodes j with y* + y* — 1 < 0 need not be 
considered. 

We now address inequahties (25): 

5 ^ xe>2y^ i f / i ( 5 ) - 0 , / i ( y \ 5 ) ^ 0 , z G 5 . 
ee6{S) 

As before, we assume that cluster Ch and node i ^ Ch are fixed. In this 
case a most violated constraint (25) corresponds to a minimum-capacity 
cut (iS, V \ S) with i e S and Ch C V̂  \ 5 in the capacitated graph 
G*. Hence it can be detected by finding the maximum flow from i to t, 
where t is an additional node connected with each j G C^ through an 
edge having very large capacity (this corresponds to shrinking cluster 
Ch into a single node). Trying all (i, Ch) pairs leads to an 0{mn^) time 
algorithm. Clearly, nodes i with y* = 0 need not to be considered. 

We now address constraints (24) 

J2 ^e>2 iifi{S)^0,^iiV\S)^0. 
e&5{S) 
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For all pairs (C/^, Ck) of distinct clusters, a most violated inequality (24) 
is detected by finding the maximum flow from s to /;, where s (resp. t) is 
an additional node connected with each j E Ch (resp. j 6 Ck) by means 
of an edge having very large capacity. The overall t ime complexity of 
this phase is 0{m?n^). 

Notice that a violated inequality (25) or (26) found by the above 
described separation algorithm, is not necessarily facet-defining. For 
(26) this occurs when there exists a cluster C^ contained in 5 or F \ 5 ; 
for (25), this happens when there exists a cluster contained in the shore 
of the cut including node i. In these cases one should obviously reject 
the inequality in favor of its facet-inducing strengthening (24) or (25). 

According to the above scheme, the separation algorithm for the over­
all family T containing inequahties (24)-(26) requires 0{mn^) t ime in 
the worst case. In practice, the computing time required is typically 
much smaller as the capacitated graph G* is very sparse, and has many 
isolated nodes. Moreover, as previously explained, several max-flow com­
putations can be avoided because some entries of y* have a small value. 
In addition, parametric considerations on the structure of the cuts can 
further reduce the number of max-flows computations. 

We now consider the important case in which y* := max{y* : v e 
V} = 1, that arises very frequently during the cutting-plane algorithm. 
In this case one can find a most violated generalized subtour elimination 
constraint by computing no more than n-f-m —2 max-flows, with overall 
0{n'^) time complexity. Indeed, the degree of violation of any inequality 
(24) with, say, Ch ^ S and Ck C V\S is the same as tha t associated with 
inequality (25) written for the same S and for i = s. Hence inequalities 
(24) need not to be considered. Now consider any inequality (25) with 
i 7̂  5. To fix the ideas, let z G 5 and C^ QV\S. li s e S, then the 
degree of violation of the inequality does not decrease by replacing i with 
5. Otherwise, the degree of violation is the same as tha t of inequality 
(26) written for j = s. It follows that inequalities (25) with i y^ s need 
not be considered. As a result, one has to consider explicitly only the 
inequalities (25) with i = s^ and the inequalities (26) (for which i = s 
can again be assumed). 

The reader is referred to [300] for an efficient (parametric) imple­
mentation of the above separation procedures, called GSEC_SEP in the 
sequel. 

A heuris t ic separat ion a lgor i thm for G S E C ' s The exact separa­
tion algorithm given in the previous subsection can be excessively time 
consuming. We now outline two faster heuristic procedures. 
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The first procedure, GSEC_H1, considers the following subset of the 
inequaUties (24): 

Y, ^ e > 2 i f / . ( 5 ) ^ 0 , / . ( y \ 5 ) 7 ^ 0 , 
eeS{S) 

with S containing a cluster Ci of smallest size. For each /i G { 1 , . . . , m} \ 
{/}, the procedure computes a most violated inequahty (24) with Q C S 
and Ch Q V \ S by finding the maximum flow from Q to Ch- This 
procedure has 0{mn^) time complexity, and typically runs much faster 
than GSECSER 

Both the exact separation procedure and GSEC_H1 produce a list 
of violated inequalities chosen on the basis of their individual degree 
of violation, rather than on their combined effect. In order to speed 
up the convergence of the cutting plane phase, instead, for each round 
of separation it is advisable to produce a family of violated inequali­
ties "spanning" the overall graph. To support this point, consider the 
simplest problem involving subtour-elimination constraints, namely the 
Shortest Spanning Tree (SST) problem. It is known from matroid theory 
that the node subsets whose associated subtour elimination constraints 
are active at the optimum, define a nested family covering all the nodes 
of the graph. Therefore, a cutting plane SST algorithm that adds vio­
lated cuts chosen only on the basis of their individual degree of violation, 
is likely to require a high number of iterations before producing the opti­
mal family of cuts. In this view, the shrinking technique used in Padberg 
and Rinaldi [645, 647] for the TSP, besides reducing the computational 
effort spent in each separation, has the advantage of quickly producing 
a nested family of constraints spanning the graph. 

We next describe a heuristic separation algorithm for GSEC's, based 
on the previous considerations. In order to illustrate the basic idea 
underlying the algorithm, let us restrict our attention to the standard 
TSP. Given the fractional point x*, we look for a family of violated 
subtour elimination constraints. To this end, let us consider the polytope 

Q^EC _ 1^ > Q . Y^ Xe<\S\- 1, for S CV, \S\ > 2}, 
eeE{S) 

whose vertices are the incidence vectors of the forests spanning the graph. 
A node of Q^^^ "close" to x*, say i , is found, and the violation of (some 
of) the subtour elimination constraints defining facets of Q^^^ passing 
through X is checked. To be more specific, x is determined by solving 
the problem max{x*x : x €  Q^^^}^ i.e., by finding a maximum weight 
spanning tree of G with edge weights x* > 0, e 6 £ .̂ The classical 
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greedy algorithm of Kruskal [523] is used, and a check is performed on 
the violation of the n — 1 SEC's associated with the subsets Si C V^ 
z = l , . . . , n — 1, corresponding to the connected components iteratively 
found. From matroid theory (see, e.g., Nemhauser and Wolsey [625, 
page 669]), the SEC's associated with these subsets Si are the only 
ones needed to prove the optimahty of x (since all other SEC's can 
be relaxed without affecting the optimality of x), hence they are likely 
to be violated by x*. Notice that (some of) the 5^ sets found by the 
above sketched procedure could equivalently be found by detecting the 
connected components of the subgraphs induced by E{'d) \— {e ^ E : 
xl > -d] for all possible threshold values ^ G { x * > 0 : e G £ ^ } . In 
this view, the above heuristic is an improved version of the one used in 
Grotschel and Holland [398], that checks the connected components of 
the subgraph G' = (F, E{d)) for d = min{x* >0:eeE}. 

The above scheme can easily be adapted to deal with generalized 
SEC's, leading to the heuristic separation procedure called GSEC_H2 in 
[300]. 

Heuristic separation algorithms for generalized comb inequal­
ities Two simple heuristic separation procedures for generalized comb 
inequalities are next described. 

We first consider the generalized 2-matching constraints . Using a 
construction similar to that proposed by Padberg and Rao [644] for 
the fc-matching problem, one can transform the separation problem for 
generalized 2-matching inequalities into a minimum capacity odd cut 
problem; hence this separation problem is exactly solvable in polynomial 
time. This task is however rather time consuming, hence the branch-
and-cut code makes use of the following simple heuristic, derived from 
similar TSP procedures [642]. Given the fractional point (x*,y*), the 
subgraph G = (V", E) induced by E \= {e e E : 0 < xl < 1} is defined. 
Then, each connected component H oi G is considered, in turn, as the 
handle of a possibly violated generalized 2-matching inequality, whose 2-
node teeth correspond to the edges e G S{H) with x* == 1 (if the number 
of these edges is even, the inequality is clearly rejected). The procedure 
takes 0{n + l̂ "!) time, if properly implemented. 

The second separation procedure consists of applying the above de­
scribed heuristic for generalized 2-matching inequahties after having 
shrunk each cluster into a single supernode, in a vein similar to that 
described in Padberg and Rinaldi [647]. 
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2.5, Heuristic algorithms 
A number of known tour construction and tour improvement heuristic 

algorithms for the TSP (see, e.g., Golden and Stewart [388] or Chapter 
8) can be adapted to both GTSP and E-GTSP. We next concentrate on 
the heuristics producing feasible E-GTSP (and hence GTSP) solutions 
proposed by Fischetti, Salazar and Toth [300]. 

As to tour construction procedures, we describe a possible adaptation 
of the well-known farthest insertion TSP procedure; nearest insertion 
and cheapest insertion procedures can be adapted in a similar way. For 
each pair of clusters Ch and C/t, let the corresponding distance dhk be 
defined as d^k '-— min{cij : i G C'/i,j G C^}. The procedure starts 
by choosing the two clusters, say C^ and C5, that are farthest from 
each other (with respect to distances dhk)-, and defines a partial tour T 
between the two closest nodes i E Ca and j £ Cb. At each iteration, 
T is enlarged by first determining the uncovered cluster C^ farthest 
from the clusters currently visited by T, and then by inserting a node 
V of Ch between two consecutive nodes i and j of T so as to minimize 
Civ + Cyj — Cij. The procedure stops when T covers all the clusters. As in 
the TSP case, the procedure is hkely to produce better solutions when 
the costs satisfy the triangle inequality. 

We next describe two tour improvement procedures. 
The first procedure, RPl, is based on 2-opt and 3-opt exchanges. 

Let T be the current E-GTSP solution, visiting exactly one node for 
each cluster, and let 5 C y be the set of the visited nodes. Clearly, 
any near-optimal TSP solution on the subgraph induced by 5 (found 
heuristically through, e.g., 2- or 3-opt exchanges) can lead to an im­
proved GTSP solution. This approach has however the drawback of 
leaving the set of visited nodes unchanged. In order to remove this 
restriction, the following generalized 2-opt scheme has been proposed. 
Let (. . . , Co,, C^ , . . . , C^, Q , . . . ) be the cluster sequence corresponding 
to the current tour T. All the edges of T not incident with the nodes in 
CaU CpUC^U Cs are fixed. The scheme tries to exchange the current 
cluster sequence into (. . . , C^, C^, . . . , C^, Q , . . . ) . To this end, two node 
pairs {u*^w*) and {v*^z*) are determined such that 

Ciu* + Cu*w* + Cyj*h = mm{cia + Cab + Cbh ' CI ^ Ca, b G C^}, 

Cjv* + Cy*z* + Cz*k = minjcja + Cab + Cbk ' d ^ Cp, b G Cs}, 

where nodes i, j , h and k are the nodes visited by T belonging to the 
clusters preceding C^, following C^, and preceding Cj and following Cs, 
respectively. 
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This computation requires |Ca| |C^| + |C/3| [C l̂ comparisons. On the 
whole, trying all the possible pairs (Ca^Cp) and (C^^Cs) leads to an 
0(71^) time complexity, since each edge of G needs to be considered only 
twice. 

Moreover, RPl considers a 3-opt exchange trying to modify the clus­
ter sequence (. . . , Ca, C^, C^, . . . , Cs^ Cs^...) into (. . . , C^, Cj^..., C^, 

We next describe a second refinement procedure, RP2, that proved 
to be quite effective in our computational study. Let T be the current 
E-GTSP solution, and let (Ch^,... ,Ch^) be the sequence in which T 
goes through the clusters. The refinement consists of finding the best 
featsible tour, T*, visiting the clusters according to the given sequence. 
This can be done, in polynomial time, by solving |C/iJ shortest path 
problems, as described below. 

We construct a layered acyclic network, LN^ having m + 1 layers cor­
responding to clusters C/^^,..., Ch^,Ch^\ see Figure 2.5, where all edges 
are directed from left to right. LN contains all the nodes of G, plus an 
extra node j ' for each j G C^i- There is an arc (i, j ) for each i 6 C^t 
and j G C^^^^ (t = 1 , . . . ,m - 1), having cost Cij, Moreover, there is 
an arc ( i , / ) for each i G C^^ and j G C/^i, having cost Cij (these arcs 
connect the last two layers of the network). For a given w G C/̂ ,̂ any 
path in LN from w to w' visits exactly one node for each layer (cluster), 
hence it gives a feasible E-GTSP tour. Conversely, every E-GTSP tour 
visiting the clusters according to sequence (C/^^,... jCh^) corresponds 
to a path in LN from a certain w G Ch^ to w\ It then follows that the 
best E-GTSP tour T* visiting the clusters in the same sequence, can be 
found by determining the shortest path from each w G C^^ to the corre­
sponding w\ The overall time complexity is then \Ch-^ \ 0{n?)^ i.e., 0{n^) 
in the worst case. In practice, the time typically spent is significantly 
reduced by choosing Ch^ as the cluster with minimum cardinality, and 
using a shortest-path algorithm specialized for acyclic digraphs (e.g.. 
Bang-Jensen and Gutin [84] and Gormen, Leiserson and Rivest [218]). 

Notice that the above refinement procedure leads to an 0((77i—1)! n^)-
time exact algorithm for E-GTSP, obtained by trying all the (m — 1)! 
possible cluster sequences. Therefore, E-GTSP is polynomially solvable 
for fixed m (independently of n). 

2.6. A branch-and-cut algorithm 
In this subsection we describe the enumerative algorithm for the exact 

solution of the problem proposed by Fischetti, Salazar and Toth in [300]. 
Since all the instances considered in the computational study have trian-
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Figure 13.2. The layered network LN. 

gular costs, we give a rather detailed description of the implementation 
of the algorithm for the E-GTSP. The algorithm can easily be adapted 
to the GTSP. We assume that all costs Cg are integer. 

The algorithm follows a branch-and-bound scheme, in which lower 
bounds are computed by solving an LP relaxation of the problem. The 
relaxation is iteratively tightened by adding valid inequalities to the cur­
rent LP, according to the so-called cutting plane approach. The overall 
method is commonly known as a branch-and-cut algorithm; we refer to 
Padberg and Rinaldi [648] and Jiinger, Reinelt and Rinaldi [474] for 
a thorough description of the technique and to [160] for recent de­
velopments. We next describe some important implementation issues, 
including the best parameter setting resulting from the computational 
experience. 

Lower bound computation At each node of the decision tree, the 
lower bound is computed by solving the LP problem defined by (13), 
(14), (19), the bound constraints on the variables, the constraints derived 
from branching, plus a subset of GSEC's and generahzed comb inequal­
ities. This subset initially coincides with that of the parent node (for 
the root node an 'ad hoc' initialization procedure, based on Lagrangian 
optimization, will be described later). Notice that the y variables are 
not projected away through equations (14), as this would result in a 
much denser LP coefficient matrix. Then, in an iterative way, the LP is 
solved, and the computation starts by retrieving the optimal LP basis 
of the parent node. Some inequalities that are violated by the current 
LP optimal solution are added. To this end, we applied in sequence 
the separation procedure for fan inequalities, GSEC_H2, GSEC_H1, and 
GSEC_SEP. All the violated constraints found (except the fan inequali­
ties) are permanently stored in compact form in a global data structure 
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called the constraint pool Whenever an inequality introduced in the 
current branch-node is slack for 5 (say) consecutive LP solutions, it is 
removed from the LP (but not from the pool). Moreover, whenever the 
LP-solver takes too long to solve the current LP, all the slack inequalities 
introduced in the previous nodes are removed. 

LAGRANGIAN RELAXATION 

At the beginning of the root node computation, Lagrangian optimiza­
tion is applied with the aim of determining a good subset of constraints 
for the initial LP, as well as a near-optimal heuristic solution. The fol­
lowing (simplified) model for the E-GTSP, in which the y variables have 
been projected away through (14), is considered. 

ect to 

E 
eeSiCh)n6{v) 

min N 
eeE 

y Xe — m 
eeE 

J2 x, = 2 
eeS(Ch) 

XQ 2 i y XQ 

ee5{v)\S{CH) 

y ^ Xe<r -1 
eeE{S) 

Xee{o,n 

CQXQ W ^ j 

(36) 

for/i = l , . . . , m (37) 

for/i = l , . . . , m ; veV\Ch{38) 

for 5 = U[^iQ. (39) 
CiCV\S 

2 < r < m - 2 

for eeE. (40) 

Equation (36) is redundant in this formulation. Inequalities (38) and 
(39) are fan and Basic GSEC's, respectively (notice however that not all 
GSEC's are included in the model). 

The fan inequalities (38), plus the degree constraints (37) for /i 7̂  1, 
are dualized in a Lagrangian fashion. The Lagrangian relaxed problem 
calls for m — 2 edges (each connecting two diff'erent clusters) in £" \ 
S{Ci) inducing no intra-cluster cycles, plus two edges incident with Ci. 
Therefore, it can be efficiently solved as follows: 

i) shrink G with respect to the m clusters, i.e., replace each cluster 
Ch with a single super-node /i, and define for each super-node pair 
h^ k a. super-edge (/i, k) with cost 

Chk := mm{c'ij : i eCh, j e C/^}, (41) 
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where c^ij is the Lagrangian cost of edge (z, j ) E E; 

ii) compute the min-cost 1-tree (Held and Karp [445]) on the shrunken 
graph; 

iii) obtain an optimal solution to the Lagrangian relaxed problem by 
replacing each super-edge (/i, k) in the 1-tree found at Step ii), with 
its corresponding edge (i, j ) G E (the one producing the minimum 
in (41)). 

The computation of near-optimal Lagrangian multipliers is done us­
ing classical subgradient optimization. The multipliers are iteratively 
updated through two nested loops. In the external loop the multipliers 
for the fan inequalities (38) are updated. With these multipliers fixed, 
the internal loop adjusts the multipliers for the degree constraints (37) 
so as to hopefully produce a tour in the shrunken graph. This is in the 
spirit of the successful Help-Karp approach to the standard TSP. At the 
end of the internal loop, if the final 1-tree on the shrunken graph is a 
tour, a heuristic E-GTSP solution is determined through the refinement 
procedure RP2 of Section 2.5, where the cluster sequence C/^^,..., Ch^ 
is the one induced by the tour in the shrunken graph. This approach 
computationally proved to be quite effective in determining near optimal 
solutions at the very beginning of the root node computation. At most 
1000 and 50 subgradient iterations in the external and internal loops, 
respectively, are performed. 

R O O T NODE INITIALIZATION 

Let Ajl̂  and /iL- be the best Lagrangian multipliers for constraints 
(37) and (38), respectively. The initial LP at the root node contains con­
straints (2), (36), the bound restrictions on the variables, plus the subset 
of the fan inequalities (34) with ^ r > 0. Moreover, the LP contains the 
Basic GSEC's (39) that were active in the computation of the 1-tree 
on the shrunken graph with respect to (A*,/i*). To be more specific, 
the procedure includes in the LP all the constraints (39) whose subset 
S corresponds to a connected component detected by the Kruskal [523] 
algorithm used for determining the best 1-tree on the shrunken graph. 
With this initialization, the optimal value of the first LP relaxation is 
guaranteed to be at least as good as the one provided by the Lagrangian 
relaxation. 

Upper bound computation At the root node, the farthest insertion, 
nearest insertion and cheapest insertion procedures are applied, each 
followed by the tour improvement procedures, as described in Section 
2.5. Moreover, as explained above, for each tour among clusters found 
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during the Lagrangian relaxation a new feasible solution is obtained 
through procedure RP2. All solutions found are refined through the 
tour improvement procedures of Section 2.5. 

At any branching node, the information associated with the fractional 
point available after each LP solution is exploited, in the attempt of 
improving the current UB. To this end, let (a:*,y*) be the optimal LP 
solution. A heuristic solution is initiahzed by taking all the edges e 
with x* = 1, and then completed through a nearest insertion scheme. 
Again, the resulting solution is refined through the tour improvement 
procedures. 

Branching Two possibilities for branching are considered: branching 
on variables and branching on cuts. Let (a:*,y*) be the fractional LP 
solution at the end of the current node. 

Branching on variables (the standard approach for branch-and-cut) 
consists of selecting a fractional x*, and generating two descendent nodes 
by fixing the value of Xe to either 0 or L As usual, x* is chosen as close as 
possible to 0.5 (ties are broken by choosing the edge e having maximum 
cost Ce). 

Branching on cuts consists of choosing a subset S C V such that 
Y^eeS(S) ^e is not an even integer, and imposing the disjunction 

( ^ Xe<2k) or ( ^ Xe > 2/c + 2) 
eeS{S) eeS{S) 

where k := L^eG(5(5) ^e/^J- Subset S is determined as follows. 
Let ^ ; i , . . . , i;^ be the node sequence corresponding to the current best 

E-GTSP solution, say (x,^), where the subscripts of v are intended to 
be taken as modulo m. Only a few sets S are considered, namely those 
obtained as the union of consecutive clusters in the sequence (i.e., of the 
form 5 := Q(^^) U C^^v^^^) U . . . U C (̂̂ )̂ for some pair (a, fc)), and such 
that 2 + s < YleeS(S) ^l '^ ^ — ^ iov e = 0.2. Among these sets 5, if any, 
the one maximizing 

L{S) := mm{d{vi^Vj) : 2 = a ,aH- l , . . . ,6—1; j = 6 + l , 6 + 2, . . . , a —2} 

is chosen, where d{vi, Vj) := Cy.y.+Cy._^^y._^^ -Cy.y.^^-Cy.y._^^ is the addi­
tional cost corresponding to the new solution obtained from (x, y) by ex­
changing the edge pairs {{vi.Vi^i), {vj.Vj^i)) and {{vi.Vj), (vi^i.Vjj^i)). 
L{S) is an estimate on the increase of the cost of the optimal solution 
(and of the LP lower bound as well) when imposing J2eeS(S) ^e > 4. 
Choosing L{S) as large as possible then hopefully produces a significant 
increase in the lower bound of one of the two children of the current 
node. 
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In the computational study, the "branching on cuts" strategy (that 
turned out to be superior) was used, resorting to the "branching on 
variables" approach when the procedure does not find a suitable set S. 
Since the heuristic solutions computed at the root node are quite good, 
a depth-first tree search scheme was implemented (although, in general, 
this is not the best strategy one can choose). 

2.7, Computational results 
In this subsection, the computational behaviour of the branch-and-cut 

algorithm proposed by Fischetti, Salazar and Toth in [300] and described 
in Section 2.6, is analyzed. The algorithm, implemented in ANSI C, was 
run on a Hewlett Packard 9000 Series 700 Apollo. As to the LP solver, 
the package CPLEX 2.1, implementing both primal and dual Simplex 
algorithms, was used. 

The instances of the testbed were obtained by taking all the TSP test 
problems from the Reinelt TSPLIB library [709] having 137 < n < 442. 
The node clustering has been done so as to simulate geographical re­
gions (using the internal costs as the metric), according to the following 
procedure. For a given instance, the number of clusters is given by 
m := [^/5]. Then m centers are determined by considering m nodes as 
far as possible one from each other. The clusters are finally obtained by 
assigning each node to its nearest center. 

In addition, for the Grotschel and Holland [398] geographical prob­
lems GR137 (America), GR202 (Europe), GR229 (Austraha-Asia), and 
GR431 (Australia-Asia-Europe) the "natural" clustering has been con­
sidered, in which clusters correspond to countries. The resulting in­
stances are 35GR137, 31GR202, 61GR229, and 92GR431, respectively. 

Tables 13.1 and 13.2 give computational results for the above test 
problems. Times are given in HP 9000/720 CPU seconds. For each 
problem. Table 13.1 gives the following information for the root node: 

Name : in the form mXXXXn^ where m is the number of clusters, 
and XXXXn is the name of the problem in TSPLIB (n gives the 
number of nodes); 

Lagr-LB : percentage ratio LS/(optimal solution value), where LB is 
the lower bound value computed through the Lagrangian relax­
ation of Section 2.6; 

Lagr-UB : percentage ratio t/B/(optimal solution value), where UB 
is the upper bound value at the end of the Lagrangian relaxation 
(see Section 2.6); 

Lagr-t : CPU time, in seconds, for the Lagrangian relaxation; 
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Name 
35grl37 
31gr202 
61gr229 
92gr431 

Lagr-LB 
84.82 
85.19 
85.26 
86.36 

Lagr-UB 
100.00 
100.21 
102.39 
103.55 

Lagr-t 
8.0 

13.8 
24.8 
83.8 

basic-LB 
86.81 
85.35 
85.42 
86.49 

r-LB 
99.44 
99.85 
99.81 
99.84 

r-UB 
100.00 
100.05 
100.87 
100.05 

r-time 
31.9 

464.8 
156.8 

2256.5 
28grl37 
29prl44 
30kroal50 
30krobl50 
31prl52 
32ul59 
39ratl95 
40dl98 
40kroa200 
40krob200 
41gr202 
45ts225 
46pr226 
46gr229 
53gil262 
53pr264 
60pr299 
641in318 
80rd400 
84fl417 
87gr431 
88pr439 
89pcb442 

86.53 
99.64 
84.13 
88.15 
94.91 
86.84 
81.50 
93.85 
82.64 
83.29 
92.30 
83.54 
96.70 
89.83 
85.29 
91.90 
84.48 
92.48 
85.28 
93.61 
93.46 
92.26 
82.74 

101.02 
100.00 
100.00 
100.00 
100.00 
100.00 
101.87 
100.48 
100.00 
100.05 
100.05 
100.09 
100.00 
100.37 
103.75 
100.33 
100.00 
100.36 
103.16 
100.13 
101.18 
101.42 
104.22 

4.6 
2.3 
7.6 
9.9 
9.6 

10.9 
8.2 

12.0 
15.3 
19.1 
20.9 
19.4 
14.6 
49.6 
15.8 
24.3 
33.2 
52.5 
59.8 
77.2 

408.3 
146.6 
78.8 

86.64 
99.82 
84.24 
88.35 
95.14 
86.97 
81.71 
93.90 
82.88 
83.47 
92.44 
83.62 
97.21 
89.92 
85.44 
91.98 
84.67 
92.64 
85.52 
93.67 
93.49 
92.39 
83.03 

100.00 
100.00 
100.00 
100.00 
98.45 
99.96 

100.00 
100.00 
99.99 

100.00 
100.00 
99.11 

100.00 
99.58 
99.80 

100.00 
100.00 
99.79 
99.94 

100.00 
99.94 

100.00 
99.49 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.09 
100.00 
100.00 
100.89 
100.00 
100.00 
100.36 
102.97 
100.00 
100.54 
100.00 
100.29 

96.7 
8.0 

100.0 
60.3 
51.4 

139.6 
245.5 
762.5 
183.3 
268.0 

1021.3 
1298.4 

106.2 
995.2 

1443.5 
336.0 
811.4 
847.8 

5031.5 
16714.4 
26774.0 

5418.9 
5353.9 

Table 13.1. Root node statistics. 

basic-LB : percentage ratio LJ5/(optimal solution value), where LB 
is the optimal value of the LP relaxation of the simplified model 
(35)-(40); 

r-LB : percentage ratio LB/(optimal solution value), where LB is the 
final lower bound at the root node; 

r-UB : percentage ratio f/B/(optimal solution value), where UB is the 
final upper bound at the root node; 

r-time : CPU time, in seconds, for the root node (including Lagr-t). 

According to the table, the upper bound computed using Lagrangian 
relaxation is quite tight. On the other hand, the quality of the La­
grangian lower bound is rather poor, with an average gap of n .6%. 
This is mainly due to the fact that it is derived from the simplified 
model (35)-(40). Indeed, notice that the best theoretical lower bound 
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Name 
35grl37 
31gr202 
61gr229 
92gr431 
28grl37 
29prl44 
30kroal50 
30krobl50 
31prl52 
32ul59 
39ratl95 
40dl98 
40kroa200 
40krob200 
41gr202 
45ts225 
46pr226 
46gr229 
53gil262 
53pr264 
60pr299 
641in318 
80rd400 
84fl417 
87gr431 
88pr439 
89pcb442 

optval 
28709 
14416 
65508 
75616 
35957 
45886 
11018 
12196 
51576 
22664 
854 

10557 
13406 
13111 
23239 
68340 
64007 
71641 
1013 

29549 
22615 
20765 
6361 
9651 

101523 
60099 
21657 

t-time 

iTX" 
504.7 
215.6 
3365.2 
96.9 
8.2 

100.3 
60.6 
94.8 
146.4 
245.9 
763.1 
187.4 
268.5 
1022.2 

37875.9 
106.9 
1187.5 
6624.1 
337.0 
812.8 
1671.9 
7021.4 
16719.4 
31544.6 
5422.8 
58770.5 

LP-t 
13.0 

366.7 
109.3 

2342.8 
65.0 
2.5 
63.3 
33.0 
54.0 
98.0 
167.7 
571.8 
108.2 
182.7 
764.1 

34071.0 
45.4 
870.3 
5342.7 
204.6 
583.9 
1038.8 
4721.7 
12232.3 
24873.2 
3636.5 
43753.5 

SEP-t 
6.2 
46.6 
28.5 
278.2 
6.6 
0.1 
8.0 
5.2 
6.9 
11.2 
26.3 
56.9 
27.4 
23.5 
119.3 

2481.6 
5.0 

132.2 
943.4 
34.4 
43.3 
292.6 
1658.3 
2964.2 
4540.0 
896.9 

12712.1 

nodes 
6" 
2 
4 
4 
0 
0 
0 
0 
2 
2 
0 
0 
2 
0 
0 

190 
0 
2 
16 
0 
0 
10 
2 
0 
2 
0 
46 

cuts 
296 
1112 
793 
2219 
549 
209 
594 
511 
574 
599 
1104 
1189 
710 
947 
1597 
8590 
513 
1428 
2676 
1016 
1358 
1680 
3092 
5102 
4354 
2979 
9427 

fan 
1 5 0 " 
325 
355 
713 
237 
175 
254 
243 
246 
260 
395 
334 
339 
358 
335 
499 
314 
393 
516 
479 
536 
585 
762 
962 
672 
778 
949 

GSEC 
25 
709 
333 
1172 
257 
7 

270 
234 
250 
288 
634 
750 
308 
519 
1154 
3089 
139 
873 
1427 
407 
685 
867 
1852 
3806 
2937 
1918 
4591 

Gcomb 

8 
0 
2 
2 
0 
0 
0 
0 
5 
0 
0 
0 
4 
0 
0 

165 
0 
14 
27 
0 
0 
1 
0 
0 
5 
0 
38 

Table 13.2. Branch-and-cut statistics. 

for the Lagrangian relaxation equals the optimal value of the LP re­
laxation of model (35)-(40). The latter value was computed through 
a simplified version of the cutting plane algorithm, and is reported in 
the table (column basic-LB). It can be seen that the improvement with 
respect to the Lagrangian lower bound is negligible. 

Table 13.2 shows the performance of the overall enumerative algo­
rithm. For each problem the table gives: 

Name : the problem name; 

optval : value of the optimal solution; 

t-time : CPU time, in seconds, for the overall execution; 

LP-t : overall CPU time, in seconds, spent by the LP solver; 

SEP-t : overall CPU time, in seconds, spent for separation; 
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nodes : number of nodes of the branch-decision tree (=0 if no branching 
is required); 

cuts : total number of cuts generated, including those found by the 
Lagrangian initiahzation (Section 2.6) and those recovered from 
the pool; 

fan : total number of fan inequalities generated; 

GSEC : total number of GSEC's found by the heuristic procedures 
GSEC_H1 and GSEC_H2 of Section 2.4.1. 

Gcomb : total number of generalized comb inequalities generated. 

The table shows that all the considered instances can be solved to 
optimality within an acceptable computing time. Moreover, a significant 
part of the total computing time is spent within the LP solver. In about 
50% of the cases, no branching is needed. The results also show that 
natural clustering produces easier instances than those obtained through 
the clustering procedure. 

As to procedure GSEC_SEP, it never found violated cuts, with the 
only exception of instance 45TS225 for which 9 cuts were detected. This 
proves the effectiveness of the heuristic separations for GSEC's. The 
inequalities which are most frequently recovered from the pool are the 
GSEGs (24). 

In order to evaluate the effect of different clusterizations of the nodes, 
a second clustering procedure has also been considered to simulate geo­
graphical regions. Given a TSP instance, let {xi^yi) be the geographical 
coordinates of the zth node (z = l , . . . , n ) . This information is pro­
vided in TSPLIB for all the instances considered in Table 13.3. Let 
xmin^ xmax^ ymin and ymax be the minimum and maximum x- and y-
coordinates, respectively. The procedure considered the rectangle whose 
vertices have coordinates (xmin^ymin)^ (xmin^ymax)^ (xmax^ymax)^ 
and (xmax^ymin)^ and subdivided it so as to obtain an NG x NG 
grid in which each cell has edges of length {xmax — xmin)/NG and 
(ymax — ymin)/NG. Each cell of the grid containing at least one node 
corresponds to a cluster. As to NG^ it is determined so as to have a 
prefixed average number // (an input parameter) of nodes in each cluster. 
To this end, let CLUSTER(NG) be the number of nonempty clusters 
corresponding to the NG x NG grid, and define NG as the minimum 
integer such that CLUSTER(NG)> n/fi. 

Table 13.3 gives, for each test problem and value of /x = 3, 5,10, the 
overall CPU time (in HP 9000/720 CPU seconds), the number of nodes 
of the branch-decision tree, and the number m of clusters. 

Comparing Table 13.3 (for /i = 5) and Table 13.2 shows that the grid 
clusterization produces harder instances. No correlation exists, instead. 



642 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS 

Name 

i?137 
prl44 
kroalSO 
kroblSO 
prl52 
ul59 
rat195 
dl98 
kroa200 
krob200 
gr202 
ts225 
pr226 
gr229 
gil262 
pr264 
pr299 
lin318 
rd400 
fl417 
pr439 
pcb442 

M 
t-time 

81.7 
28.8 
56.3 
40.5 
68.7 
36.5 
84.4 

539.5 
207.2 

2031.9 
2644.3 
453.4 
130.7 
312.0 

5674.6 
747.1 
761.3 

37117.4 
21764.6 

7687.9 
1905.7 

1 23226.1 

= 3 
nodes 

0 ~ 
0 
2 
0 
4 
0 
2 
0 
2 

54 
34 
14 
0 
0 

104 
16 
2 

220 
118 

0 
6 

86 

m 
46 
48 
57 
56 
54 
58 
81 
67 
72 
76 
73 
75 
78 
80 
96 

101 
102 
108 
135 
142 
163 
155 

1^ 
t-time 

9 4 7 ~ 
25.3 
72.5 

100.0 
455.2 
154.3 

1409.5 
591.2 

1696.3 
119.1 
727.4 

-
65.6 

1895.1 
10763.1 

109.6 
4629.9 

16784.8 
87308.1 
10373.7 
18876.5 
39155.3 

= 5 
nodes 

0~ 
0 
0 
2 

42 
0 

18 
0 

30 
0 
2 
-
0 
8 

42 
0 

12 
40 

198 
0 

14 
24 

m 

~W 
30 
36 
36 
33 
38 
49 
40 
47 
48 
43 
45 
50 
46 
63 
55 
69 
64 
81 
93 
96 
96 

fi = 

t-time 
972.0 

21.8 
111.2 
79.2 
35.5 

107.4 
423.5 

2849.9 
339.5 
422.2 
450.1 

10601.5 
105.7 

9391.9 
1141.0 
376.8 

2730.6 
71010.7 
21156.8 

919.2 
35652.6 
15266.6 

10 
nodes 

0~ 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 

26 
2 
0 
8 
0 

m 

"H 
16 
16 
16 
16 
23 
25 
25 
25 
25 
21 
25 
24 
23 
36 
27 
35 
36 
49 
43 
48 
48 

Problem ts225 with /x = 5 required more than 100,000 CPU seconds. 

Table 13.3. Some computational results with different clusterizations. 

between the difficulty of the problem and the average number of nodes 
in each cluster. 

On the whole, the computational performances of the branch-and-cut 
algorithm are quite satisfactory for our families of instances. All the 
test problems in the test bed were solved to optimality within accept­
able computing time, with the only exception of problem TS225 with 
grid clusterization (case /i r= 5 of Table 13.3). Moreover, the heuristic 
algorithms proposed allow one to compute very good solutions within 
short computing time. As shown in Table 13.1, after the Lagrangian 
phase the average percentage error with respect to the optimum is 0.9% 
(see column Lagr-UB)^ and 0.2% at the end of the root node (see column 
r-UB). 

3. The Orienteering Problem 
As stated in the introduction, we are given a set of n nodes, each 

having an associated nonnegative prize py^ and a distinguished "depot" 
node, say node 1. Let t(^j) be the time spent for routing nodes i and j in 
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sequence. The Orienteering Problem (OP) is to find a cycle C through 
node 1 whose total duration t{C) does not exceed a given bound to, 
and visiting a node subset with a maximum total prize. Without loss of 
generality, we can assume that cycle C contains at least three nodes. 

The problem can be formulated as 

v{OP) = max ^ pyyy (42) 
vev 

subject to 

^ t e X e < t o , (43) 
eeE 

x{6{v)) = 2yy foYveV, (44) 

x{6{S)) >2yy ior ScV,leS,veV\S, (45) 

yi = 1, (46) 
XeG{0,l} foreG^; , (47) 

yye {0,1} foTveV\{l}, 

Because of the degree constraints (44), inequahties (45) can equiva-
lently be written as 

x{E{S)) < y{S) -yy for S C V,l e S,v e V \ S (49) 

and 
x{E{S)) < y{S) -yy for S C V,l e V \ S,v e S. (50) 

Notice that the inequalities (16), although valid, are dominated by (45) 
as 2̂ — 1 < 0 for all i e. V. 

This section is mainly based on the results given by Fischetti, Salazar 
and Toth in [301]. Section 3.1 discusses a number of additional con­
straints, which improve the quality of the LP relaxation of the basic 
model. We also analyze a family of conditional cuts^ i.e., cuts which cut 
off the current optimal solution. Separation procedures are described in 
Section 3.2, whereas Section 3.3 presents heuristic algorithms for find­
ing approximate OP solutions. An overall branch-and-cut algorithm is 
described in Section 3.4. In that section, an effective way of integrating 
conditional cuts within the overall framework is also presented. Exten­
sive computational results on several classes of test problems involving 
up to 500 nodes are presented in Section 3.5. 

3.1. Additional inequalities 
In this section we describe five classes of additional inequalities for 

OP. These inequalities are capable of strengthening the LP-relaxation 
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of model (42)-(48). The first two classes do not rely on the total time 
restriction (43), and are derived from the cycle relaxation of OP [79, 92]. 
The remaining classes, instead, do exploit the total time restriction. 

A polyhedral analysis of the OP appears very difficult, and to our 
knowledge it has not been addressed in the literature. From the prac­
tical point of view, however, these cuts proved to be of fundamental 
importance for the solution of most instances. 

Logical constraints Clearly, Xe = I for some e G 6{j) imphes yj = 1. 
Hence the logical constraints 

Xe<yjioiSi\\ee6{j)JeV\{l} (51) 

are valid for OP. Whenever e — {v,j) ^ (5(1), inequality (51) is a partic­
ular case of (50) arising for 5 = {v^j}- On the other hand, for e G 5{1) 
these inequalities do improve the LP relaxation of model (42)-(48). To 
see this, consider the fractional point (x*, y*) with XI2 == ^13 = 1? 2/1 == 1̂  
y2~y3~ V^ (ŝ ll other components being 0). Assuming ti2 + tia < /;o, 
this point satisfies all the constraints of the relaxation, but not the con­
straints (51) associated with e = (1,2) and j = 2, and with e = (1,3) 
and j — 3. 

We observe that the addition of (51) to model (42)-(48) makes the 
integrality requirement on the y-variables redundant. Indeed, let (x*, y*) 
be any point satisfying (43)-(47) and 0 < ?/̂  < 1 for all v ^V ^ and define 
T* := {e G £; : X* = 1}. Then from (44) we have y^ = \T*n6{v)\/2 for all 
V eV, i.e., yy G {0,1/2,1}. But yy = 1/2 would imply T* n 5{v) = {e} 
for some e G S{v)^ which is impossible since in this case the corresponding 
logical constraint (51) would be violated. 

2-matching inequalities The well-known 2-matching constraints for 
the TSP have the following counterpart in the cycle relaxation of OP: 

x{E{H)) + x{T) < y{H) + & : i , (52) 

where H <zV is called the handle, and T C 5{H) is a set with | r | > 3, 
\T\ odd, pairwise disjoint teeth. This inequahty is obtained by adding 
up the degree constraints for dX\v ^ H and the bound constraints Xe < 1 
for all e ET, dividing by 2, and then rounding down all the coefficients 
to the nearest integer. 

Cover inequalities The total time constraint (43), along with the 
requirements Xg G {0,1} for e G £", defines an instance of the 0-1 Knap­
sack Problem (KP), in which items correspond to edges. Therefore, every 
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valid KP inequality can be used to hopefully improve the LP relajcation 
of the OP model. Among the several classes of known KP inequalities, 
let us consider the cover inequality (see, e.g., Nemhauser and Wolsey 
[625]): 

x{T) < \T\ - 1, (53) 

where T C £̂  is an inclusion-minimal edge subset with J2eeT^^ ^ ô-
This constraint stipulates that not all the edges of T can be selected in 
a feasible OP solution. 

A cover inequality can in some cases be strengthened. In particular, 
one can easily obtain the valid extended inequality 

x(Tug)< |r | - i , (54) 

where Q := {e e E \T : te > max/^T if}-
A different improvement is next proposed, which exploits the fact that 

the selected edges have to define a cycle. The improvement can only be 
applied in case T defines an infeasible cycle passing through node 1, and 
leads to the cycle cover inequality: 

x{T) < viViT)) - 1. (55) 

Validity of (55) follows from the easy observation that x{T) > y{V{T)) 
would imply Xe = 1 for all e e T. Figure 3.1 shows a fractional point 
violating a cycle cover inequality but not other previous inequalities. 
More generally, (55) is a valid inequality whenever T does not contain 
any feasible cycle. This generahzation will be studied in the forthcoming 
subsection on conditional cuts. 

o ?̂ ; = « 

# Vj = 1 -

(§) ?/; = 1 

n 

X* = o-

xl = \~a 

= = = K = ] 

Figure 13.3. Fractional point violating a cycle cover inequality for the OP instance 
with to=6 and t^=\ for all e G £: (0 < a < 1/2). Here T = {(1,ii), (ii,22), • • •, (^6,1)}, 
x{T) = 2 + 5a, and y{V{T)) = 3 + 4a. 
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Path inequalities The previous classes of additional inequalities (ex­
cept the cycle cover inequalities) are based either on the cycle or on the 
knapsack relaxation of the problem. We next introduce a new family of 
constraints that exploit both relaxations. 

Let P = {(^1,̂ 2)5 (̂ 2̂ 3̂)7 ••• 5 (̂ /c-i?^A:)} be any simple path through 
V{P) = {zi , . . . ^ik} Qy \ {1}, and define the nodeset: 

W{P) := {v e V\V{P) : Pu{{ik,v)} can be part of a feasible OP sol.}. 

We allow P to be infeasible, in which case W{P) — 0. Then the following 
path inequality 

(56) 

is valid for OP. Indeed, suppose there exists a feasible OP solution 
(x*,7/*) violating (56). Then 

veW{P) 

where x*.-.^^ - y*. < 0 for all j == 2 , . . . , /c - 1. It then follows that 

*̂iz2 ^ 1 (he^^^ yz2 = 1)̂  *̂223 -yi2=^ (hence x*̂ .3 - 1 and y^ = 1), 
• • -̂  <._iz. -y:,., = 0 (hence <^_^,^ - 1), and a:*̂ , - 0 for all v G W{P). 
But then solution (a:*,y*) cannot be feasible, since it contains all the 
edges of P, plus an edge (i/c,ti;) with w ^ W{P). 

Figure 13.3 shows a typical fractional point that is cut off by a path 
inequality. This point can be viewed as the convex combination of two 
cycles, one of which is infeasible because of the total time requirement. 

k-l k-l 

3=1 j=2 
/ ^ ^ikV — ^ 

veW{P) 

0 ?̂ ; = ^ 

• ? y ; = 1 - ^ 

(•) y; = ^ 

— 

— 

= = 

xl = a 

x: = i -

x: = ] 

- a 

Sr w{p) = {\} 

Figure 13.4. A fractional point violating a path inequality for the OP instance with 
to=6 and te^l for all e G ^ (0 < a < 1/2). 
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Recall that , for any given F C E, t{F) stands for YleeF'^^- ^ h e 
definition of W{P) amounts to checking for each v eV \ V{P) whether 
there exists a cycle of the form C = Pi U {P U {ik,v}) U P2, where Pi 
and P2 are node-disjoint paths from 1 to zi and v^ respectively, such 
that t (P i ) + t{P) + tij^y + t(P2) < ^0- A simpler condition (producing 
a possibly larger set W{P), and hence a weakened inequahty (56)) is 
obtained by removing the requirement tha t Pi and P2 share no node 
(except node 1). This leads to the alternative definition of W{P) as 

W{P) :^{veV\ V{P) : d ( l , h) + t{P) + U,y + d ( l , v) < to}, (57) 

where for each j e V \ {1}, c/(l, j ) gives the total time associated with 
the shortest path from node 1 to node j . 

Condi t iona l cu t s We next address inequalities that are not guar­
anteed to be valid for our problem, but can nevertheless be used in a 
cutting plane context. 

Suppose that a heuristic OP solution of value (say) LB is available. In 
the process of finding an optimal OP solution we are clearly interested 
in finding, if any, a feasible solution of value strictly better than LB. 
Therefore, any inequality can be exploited as a cutting plane, provided 
that it is satisfied by every feasible OP solution of value greater than 
LB. These inequalities are called conditional cuts. 

Let us consider a general family of inequalities of the type 

x{T) < y{V{T)) - 1, (58) 

where T C E is chosen in an appropriate way. It can be seen easily tha t 
x{T) < y{V{T)) holds for every feasible solution, no matter how T is 
chosen. Moreover, x{T) = y{V{T)) implies that the OP solution consists 
of a cycle entirely contained in T. It then follows that (58) can be used as 
a conditional cut, provided that no feasible O P solution of value strictly 
greater than LB is contained in T. This occurs, in particular, when 

T = E{S) for some S cV such that 1 G 5 and ^^Pv < LB. (59) 
ves 

A different approach for defining conditional cuts, based on enumeration, 
will be described in the following section. 

3.2. Separation algorithms 
In this section we outline exact and/or heuristic algorithms, proposed 

by Fischetti, Salazar and Toth [301], for the following separation problem: 
Let JT be one of the families of OP inequalities described in Section 
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3.1; given a point (x*,y*) G [0,1]^^^ which satisfies (43)-(44), find a 
member ax + /?y < 7 of JT which is (mostly) violated by (x*, y*), if any. 

We denote by G* = {V*^E*) the support graph associated with the 
given (x*,y*), where V* := {v e V : y^ > 0} and E"" := {e e E : x^ > 
0}. 

Cut inequalities (45) Let x* be viewed as a capacity value associated 
with each edge e e E*. For any fixed node v G y * \ { l } , a most violated 
inequality (45) (among those for the given v) is determined by finding 
a minimum-capacity (l,t;)-cut, say (5^ ,^* \ Sy), on G*. This requires 
0 ( | y*p) time, in the worst case, through a max-flow algorithm. Trying 
all possible v G y* \{ l} then leads to an overall 0(|y*|^)-time separation 
algorithm. 

The nodes v are considered in decreasing order of the associated y*. 
Whenever a violated inequality (45) is found for (say) the pair Sy and 
v^ the capacity x^^ is increased by the quantity 2 — x*{S{Sy)). This 
prevents the cut {Sy^ V* \Sy) from being generated again in the subse­
quent iterations. Moreover, in order to increase the number of violated 
inequalities detected by a single max-flow computation, two minimum-
capacity (l,?;)-cuts are considered for each v, namely (5(,, V* \ S[j) and 
(y* \ Sy^Sy)^ where Sy (respectively, S[j) contains the nodes connected 
to node v (respectively, node 1) in the incremental graph corresponding 
to the maximum flow vector. Nodeset Sy gives an hopefully violated 
inequality (45), whereas Sy is used, as explained later, for producing a 
conditional cut. 

Logical constraints (51) This family can be dealt with by complete 
enumeration, with an overall 0(|£^*|) time complexity. 

2-niatching constraints (52) These inequahties can be separated in 
polynomial time through a simple modification of the Padberg and Rao 
[644] odd-cut separation scheme. In order to reduce the computational 
effort spent in the separation, however, the following simple heuristic 
can be implemented. Values x* are interpreted as weights associated 
with the edges. The greedy algorithm of Kruskal is applied to find 
a minimum-weight spanning tree on G*. At each iteration in which 
this algorithm selects a new edge e, the connected component which 
contains e, say iJ, is determined (in the subgraph of G* induced by all 
the edges selected so far). The nodeset H is then considered as the 
handle of an hopefully violated 2-matching constraint. In this way, the 
procedure generates efficiently all the connected components H of the 
subgraph GQ — {V, EQ) induced hy Ep :— {e ^ E \ Q < x^ < 9} for every 



GTSP and OP 649 

possible threshold 9. These sets H have high probability of being the 
handle of a violated 2-matching constraint, if one exists. For any H^ 
tooth edges are determined, in an optimal way, through the following 
greedy procedure. Let S{H) = { e i , . . . , e^} with :r*̂  > x*^ > . . . > x* . 
The requirement that the teeth have to be pairwise disjoint is initially 
relaxed. For any given | r | > 3 and odd, the best choice for T consists of 
the edges e i , . . . , 617-1. Therefore, a most violated inequality corresponds 
to the choice of the odd integer \T\ > 3 which maximizes x*^ + {x^^ + 
a:*3 — 1) + . . . + {^l + X* — 1). If no violated cut can be produced 
in this way, then clearly no violated 2-matching constraint exists for the 
given handle. Otherwise a violated 2-matching constraint exists in which 
two tooth edges, say e and / , may overlap in a node, say v. In this case, 
the inequality is simplified by defining a new handle-tooth pair {H\ T') 
with r :=T\ {e, / } , and H' :^ H \ {v} (if v e H) or H' := H U {v} 
(if V ^ H). It is then easy to see that the inequality (52) associated 
with this new pair {H\T') is at least as violated as tha t associated 
with the original pair (H^T). Indeed, replacing {H^T) with {H\T') 
increases the violation by, at least, l-\- yy — x{5{v)) > 2yy — x{6{v)) = 0 
{if V e H)^ or 1 — yy > 0 {if v ^ H). By iterating this simphfication 
step one can then always detect a violated 2-matching constraint with 
non overalapping teeth. In some cases this procedure could even lead 
to a 2-matching constraint with | r | = 1; if this occurs, the inequality is 
rejected in favour of an inequality (45) associated with the handle. 

P a t h inequal i t ies (56) Let us assume tha t the fractional point (x*, y*) 
satisfies all logical constraints (51), and observe tha t the path inequality 
associated with a given path P cannot be violated by (x*, y*) if x* ^ = 
0 for some (2/^,2/^+1) 6 P. This follows from the fact that (56) can be 
rewritten as 

h-l k-l 

2_^\^ijij + l ~ Vij + l) + ^ihih+l + 2^ V^bb + 1 ~ ^b^' " 2-^ ^'^'^^ — 
j=l j=h+l veW{P) 

where all terms involved in the first two summations are nonpositive by 
assumption. Hence every violated path inequality must be associated 
with a path P contained in the support graph G*. Since this graph is 
usually very sparse, a simple enumeration scheme can be implemented 
to detect the path P producing a most violated path inequality. The 
procedure starts with an empty node sequence P. Then, iteratively, 
the current P is extended in any possible way, and the associated path 
inequality is checked for violation. Whenever for the current pa th P = 
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{ ( 2 1 , 2 2 ) , . . . , ( i A : - l , ^ / c ) } 

/ c - 1 / c -1 

holds, a backtracking step is performed, since no extension of P can lead 
to a violated cut. 

Cover inequalities (54)-(55) We first address the separation prob­
lem for cover inequahties, in their weakest form (53), which calls for an 
edgeset T with YleeT ^e > to which maximizes x*(T) — | r | + 1. It is well 
known that this problem can be formulated as 

a* : = m i n ^ ( l - x * ) z e (60) 
eeE 

subject to 

J]^e^e>to + l, (61) 
eeE 

ze e {0,1} for eeE. (62) 

Although A/'P-hard, the knapsack problem (60)-(62) can typically be 
solved within short computing time by means of speciahzed codes (see 
Martello and Toth [586]). Moreover, all variables Ze with x* = 0 can be 
fixed to 0, because Ze = I would imply a* > 1. Analogously, one can set 
Ze = I whenever x* = 1, since in this case its weight in (60) vanishes. 

If (J* > 1 then no violated cover inequality (53) exists. Otherwise, 
T := {e e E : Ze = 1} gives a most violated such cut. In both cases, 
it is worth checking the extended cover inequalities (54) associated with 
T for violation. Notice that, because of the fact that some weights in 
(60) can be zero, the edgeset T which gives the optimum in (60) is not 
guaranteed to be minimal with respect to property (61). Therefore, in 
order to have a stronger inequality one can make T minimal (in a greedy 
way) before checking the extended inequality (54) for violation. 

A heuristic separation algorithm for the cycle cover inequalities (55), 
associated with an infeasible cycle T, is now outhned. The heuristic is 
intended to produce several candidate cycles T with large value of x*(T). 
To this end, the values x* are interpreted as weights associated with the 
edges, and a maximum-weight spanning tree on G is computed. The 
edges eeE* not in the tree are then consider, in turn: if the addition 
of e to the tree induces a cycle T passing through node 1 and such that 
YleeT^e > to, then a valid inequality (55) is obtained, that is checked 
for violation. 
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Conditional cuts (58) Two heuristic separation procedures for con­
ditional cuts have been implemented. Let LB be the value of the current 
best solution available. 

The first procedure is based on condition (59), and is embedded within 
the max-flow separation algorithm for inequalities (45) described earlier. 
For each set 5^ therein detected which satisfies ^y^s' Vv ^ LB and 
1 G S'y, the procedure sets T = E{S'y) and checks (58) for violation. 

The second procedure is based on the observation that (58) can always 
be used as a conditional cut, provided that the lower bound value LB 
is updated by taking into account all the feasible OP solutions entirely 
contained in T. This amounts to computing 

LB :=max{LB,i;(OPT)}, 

where V{OVT) is the optimal OP value when Xg = 0 is imposed for all 
e e E\ T. Although the computation of V{OVT) requires exponential 
time in the worst case, for a sufficiently sparse edge set T it is likely that 
even a simple complete enumeration scheme can succeed in determining 
V{OVT) within short computing time. The procedure defines T := E*^ 
hence ensuring that the corresponding conditional cut (58) is violated 
since x*(r) = x\E) and y\V(T)) = y*(y), where x%E) = y*(y) 
because of the degree equations (44). A simple algorithm for solving 
OP, based on complete enumeration, is then applied on the support 
graph C*. If the enumeration ends within a fixed time-limit TL then, 
after the updating of LB, (58) is guaranteed to be a valid conditional 
cut to be added to the current LP. 

3.3. Heuristic algorithms 
The performance of the enumerative exact algorithms improves if one 

is capable of early detecting "good" feasible OP solutions. To this end, 
Fischetti, Salazar and Toth [301] proposed the following heuristic pro­
cedure, working in two stages. In the first stage, a feasible cycle C is 
detected, which is likely to contain a large number of edges belonging to 
an optimal solution. In the second stage, refining procedures are applied 
to derive from C a better feasible circuit. The method is along the same 
fines as the heuristic proposed by Ramesh and Brown [692], but uses LP 
information to guide the search. A brief outline follows. 

On input of the first stage, the heuristic receives, for each edge e e E^ 
an estimate We^ 0 < We < 1^ of the probabihty of having edge e in an 
optimal solution. The computation of values We is described in Section 
3.4. The edges are sorted in decreasing order of w^^ with ties broken 
so as to rank edges with smaller time te first. Then an edge subset T 
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containing a family of node-disjoint paths with large probability of being 
part of an optimal solution, is heuristically detected in a greedy way. To 
be specific, the procedure initializes T := 0 and then considers, in turn, 
each edge e according to the given order: If T U {e} contains a node 
with degree larger than 2, the edge is rejected; otherwise T is updated 
as T := T U {e} if T U {e} is cycle-free, else the algorithm is stopped. 

Starting with T, the required feasible cycle C is obtained by means of 
the following steps. First, all the nodes in ^ \ {1} that are not covered 
by T are removed from the graph. Then, the paths of T are linked into a 
cycle, C, passing through node 1. To this end, a simple nearest-neighbor 
scheme is apphed which starts from node 1, and iteratively moves to the 
nearest uncovered extreme node of a path in T. At the end of this phase, 
a check on Xleec ê ^ ô is performed. If the condition is not satisfied, 
the following procedure is applied to make C feasible. For any given 
node V covered by C, let iy and jy denote the two neighbors of v in C. 
The procedure iteratively removes a node v from C, i.e., replaces (iy^v) 
and (jv^v) with the short-cut (ivdv)- At each iteration v is chosen (if 
possible) as a minimum-prize node whose removal makes C feasible, or 
else as a node that minimizes the score Pv/iUyv + ^jvv — Uyjv)-

In the second stage of the heuristic, the procedure receives as input 
the feasible cycle C computed in the first stage, and iteratively tries 
to improve it. At each iteration, 2-optimality edge exchanges inside C 
are first performed, so as to hopefully reduce its total time. Then an 
attempt is performed to add to C a maximum-prize node belonging to 
the set Q{C) containing the nodes v not covered by C, and such that 
^^^{i,j)ec{Uv + tjv-Uj} < to-^eec^e- If Q(C') 7̂  0, the node insertion 
is performed and the step is repeated. Otherwise, the whole procedure 
is re-applied on the cycle obtained from C by removing, in turn, one of 
its nodes. 

3.4. A branch-and-cut algorithm 
We next outline the main ingredients of the branch-and-cut algorithm 

proposed by Fischetti, Salazar and Toth [301] for the optimal solution 
of OP. 

The initialization phase At the root node of the branch-decision 
tree, a lower bound on the optimal OP value is computed through the 
heuristic algorithm of Section 3.3, with edge weights We =" 0 for all 
e e E. In addition, the first Linear Program (LP) to be solved is set-up 
by taking: 

1 all variables Vv^ v ^V] 
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2 the variables Xg associated with edges belonging to the initial 
heuristic solution; 

3 for all V ^V ^ the variables Xg associated with the 5 smallest-time 
edges e G S{v)\ 

4 the total time constraint (43); 

5 the n degree equations (44); 

6 the lower and upper bounds on the variables. 

Finally, the constraint pool (i.e., the data structure used to save the 
OP constraints that are not included in the current LP) is initialized as 
empty. 

The cutting plane phase At each node of the branch-decision tree, 
the procedure determines the optimal primal and dual solutions of the 
current LP, say (x*, y*) and u*, respectively —in case the current LP re­
veals infeasible, it introduces artificial variables with very large negative 
prize. Notice that the value of the primal solution, namely YlivevP'^yy'^ 
is not guaranteed to give an upper bound on the optimal OP value, as 
the current LP contains only a subset of the x-variables. Then the so-
called pricing phase is entered, in which the dual solution u" is used to 
compute the reduced cost Cg of the variables Xg that are not part of the 
current LP, which are by default set to 0. The variables Xg which price-
out with the wrong sign (i.e., Cg > 0), are added to the LP, which is then 
re-optimized with the primal simplex algorithm. In order to keep the 
size of the LP as small as possible, the procedure never adds more than 
100 variables at each round of pricing (chosen among those with largest 
reduced costs). The pricing loop is iterated until all variables price-out 
correctly, i.e., until the current LP value, say UB, is guaranteed to be 
an upper bound on the optimal OP value. In this case, if the current 
node is not fathomed the following purging phase is entered. Let LB 
denote the value of the best OP solution known so far. The variables 
Xg with [UB -h 4ceJ < LB, along with the constraints that have been 
slack in the last 5 iterations, or whose slack exceeds 0.01, are removed 
from the current LP. Moreover, at the root branch-decision node, all the 
variables Xg with [UB + CgJ < LB are fixed to 0, and all the variables 
with [UB — CgJ < LB are fixed to 1 (this latter condition may only apply 
to LP variables at their upper bound). 

The separation phase is next entered, in which constraints violated 
by (x*,y*) are identified and added to the current LP. The separation 
algorithms described in Section 3.2 are applied. The constraint pool is 
first searched. Then the procedure checks, in sequence, the logical con­
straints (51), the inequalities (45), the 2-matching constraints (52), the 
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cover inequalities (54)-(55), the path inequahties (56), and the condi­
tional cuts (58). The time hmit TL used for the enumeration required in 
the conditional cut separation, is set to 5-TS, where TS is the computing 
time so far spent in the last round of separation. Whenever a separation 
procedure succeeds in finding violated cuts, the separation sequence is 
stopped, and all the cuts found are added to the LP. 

In order to reduce tailing off phenomena, a branching is performed 
whenever the upper bound did not improve by at least 0.001 in the last 
10 cutting-plane iterations of the current branching node. 

At every fifth application of the separation algorithm, an attempt is 
performed to improve the current best OP solution through the heuristic 
algorithm described in Section 3.3. The values We required by the algo­
rithm are set to x* for sll e e E. This choice computationally proved 
very effective and typically produces very tight approximate solutions. 
An additional heuristic is embedded within the second separation pro­
cedure for conditional cuts (58), as described in Section 3.2. Indeed, the 
enumeration of the OP solutions contained in the support graph of x*, 
therein required, can in some cases improve the current LB. 

The branching s tep Whenever a branch-decision node cannot be 
fathomed, a branching step is performed, in a traditional way, by fixing 
Xf = Oovxf = l for a variable Xf chosen as follows. The 15 fractional 
variables Xe with x* closest to 0.5 are selected. For each such candidate 
branching variable Xg, two values, say UBg and UBg, are computed by 
solving the current LP amended by the additional constraint Xe = 0 and 
Xe = 1, respectively. Then, the actual branching variable Xf is chosen 
as the one that maximizes the score 0.75 • UB^ + 0.25 • UB^. 

The overall a lgori thm At the root node of the branch-decision tree, 
the initialization phase and the cutting-plane phase are executed. When 
all separation algorithms fail and the current node is not fathomed, 
a branching step is performed. However, for the root node only, the 
following alternative scheme is executed. 

According to computational experience, the conditional cut associated 
with the support graph G* = {V{E*),E*) of the current LP solution 
(x*,?/*), namely 

x{En < y{y{E^)) - 1, (63) 

is quite effective in closing the integrality gap. Unfortunately, for rather 
dense G* the simple enumeration scheme described in Section 3.2 is 
unlikely to complete the enumeration of all possible OP solutions con­
tained in G*, within the short time limit allowed. Nevertheless, cut (63) 
is added to the LP even when this enumeration fails (in this case the 
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cut is called a branch cover cut). This choice may however cut off the 
optimal OP solution as well, if this solution is contained in G*. This 
possibility can be taken into account by storing the graph G*, with the 
aim of dealing with it at a later time. With the branch cover cut added 
to the LP, the cutting plane phase is then re-entered until again all sepa­
rations fail. Then, if needed, the whole scheme is iterated: the procedure 
adds a new branch cover cut, stores the current support graph G*, and 
re-enters the cutting plane phase. 

In this way, a sequence of support graphs, say G* = (y{E*)^ E*) for 
i = 1 , . . . , fc, are produced and stored until the root node is fathomed. At 
this point, the computation is not over, as it is necessary to consider the 
best OP solution within each graph G]^,.. . , G^ or, alternatively, within 
the "union" of these graphs, defined as G = {V{E),E \= uf^i^*). 
To this end, all the branch cover cuts are removed from the constraint 
pool, and the branch-and-cut algorithm is re-applied on the OP instance 
associated with G. In order to guarantee the convergence of the overall 
algorithm, the generation of branch cover cuts is inhibited in this second 
branch-and-cut round. 

As explained, the branch-and-cut scheme works in two stages. In 
the first stage branching is avoided by adding branch cover cuts. In 
the second stage, a sparse graph G (resulting from the branch cover cuts 
produced in the first stage) is considered, and a classical branching strat­
egy is used to close the integrality gap. The computational experience 
shows that the overall scheme typically performs better than (although 
does not dominate) the classical one. Indeed, the second stage takes 
advantage from a large number of relevant cuts (produced in the first 
stage and stored in the constraint pool), as well as from a very tight ap­
proximate OP solution. On the other hand, for some instances the first 
stage exhibits a slow convergence in the last iterations, due to taihng-off 
phenomena. To contrast this behavior, branching is allowed even in the 
first stage. Namely, at each node a branching step is performed after 
the addition of 5 branch cover cuts. 

3.5. Computational results 
The branch-and-cut algorithm proposed by Fischetti, Salazar and 

Toth [301], and described in the previous section (called EST in the 
sequel) was implemented in ANSI C language, and run on an Hewlett 
Packard Apollo 9000/720 computer. CPLEX 3.0 was used as LP solver. 
Four different classes of test problems are considered. The reader is 
referred to [301] for more computational results. 
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The first problem class (Class I) includes 15 instances from the OP and 
Vehicle Routing Problem (VRP) literature. Problems 0P21, OP32, and 
OP33 are OP instances introduced by Tsiligirides [796], with travel times 
multiplied by 100 and then rounded to the nearest integer. Problems 
ATT48, EIL30, EIL31, EIL33, EIL51, EIL76, EILlOl, and GIL262 are 
VRP instances taken from Ubrary TSPLIB 2.1 of Reinelt [709]. Problems 
CMTlOl, CMT121, CMT151, and CMT200 are VRP instances from 
Christofides, Mingozzi and Toth [191]. For all the VRP instances, the 
customer demands are interpreted as node prizes. 

The second problem class (Class II) includes all the TSP instances 
contained in TSPLIB 2.1 involving from 137 to 400 nodes (problems 
GR137 to RD400). For these instances, the node prizes pj, for j € 
V \ {1}, have been generated in three different ways: 

Generation 1: pj 

Generation 2: pj 

Generation 3: pj 

= 1; 

- 1 + (7141 • (j - 1) + 73) mod (99); 

= 1 + [99 • tij/6]^ where 6 := maxi^y^^iy tu. 

(The above is an errata corrige of the prize definition for Generation 2 
given in [301] which was pointed out to be incorrect by Fink, Schneidereit 
and Voss [290].) 

Generation 1 produces OP instances in which the goal is to cover as 
many nodes as possible, as occurs in some applications. Generation 2 
is intended to produce pseudo-random prizes in range [1,100], whereas 
Generation 3 leads to more difficult instances, in which large prizes are 
assigned to the nodes far away from the depot. 

For the third problem class (Class III), random instances have been 
obtained by using the original Laporte and Martello [536] code. In this 
class, both prizes and travel times are generated as uniformly random in­
tegers in range [1,100], with travel times triangularized through shortest 
path computation. 

For all problem classes, the maximum total travel time to is defined as 
\a ' ^'(TSP)], where t>(TSP) is the length of the corresponding shortest 
Hamiltonian tour, and a is a given parameter. For all instances taken 
from TSPLIB, the value i;(TSP) is provided within the hbrary. For prob­
lems 0P21, OP32, OP33, CMTlOl, CMT121, CMT151, and CMT200, 
respectively, the following values for ?;(TSP) have been used: 4598, 8254, 
9755, 505, 545, 699, and 764. As to the random problems of Class III, the 
approximate value computed by the original Laporte-Martello code has 
been used, namely v{TSP) := [0.95-t/5(T5P) + 0.5j, where UB{TSP) 
is the length of the tour obtained by the heuristic algorithm proposed 
by Rosenkrantz, Stearns and Lewis [730]. 
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Name 
op21 
op32 
op33 
att48 
eilSO 
eil31 
eil33 
eil51 
eil76 
eillOl 
cmtlOl 
cmtl21 
cmtlSl 
cmt200 
gil262 

to 
2299 
4127 
4878 
5314 

191 
103 
221 
213 
269 
315 
253 
273 
350 
382 

1189 

r-time 

oT" 
1.3 
1.8 
0.8 
5.2 
0.5 
8.5 
2.4 
3.1 
5.6 

36.9 
411.1 
131.8 
147.4 
365.8 

%-LB 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
0.0 
0.1 
0.0 
0.2 

%-UB 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.8 
0.1 
0.0 
0.2 

nodes 

2 
39 

5 
17 
35 

cuts 
58~ 
91 

109 
55 

170 
32 

215 
150 
118 
159 
514 

1350 
451 
859 

2370 

optval 
205~ 
160 
500 

30 
7600 

747 
16220 

508 
907 

1049 
1030 
715 

1537 
2198 
8456 

%-vis 
61.9 
56.2 
63.6 
64.6 
26.7 
58.1 
48.5 
54.9 
59.2 
57.4 
56.4 
52.9 
55.6 
62.0 
54.8 

t-time 
0 7 
1.3 
1.8 
0.8 
5.2 
0.5 
8.5 
2.4 
3.1 
5.6 

55.2 
1525.6 

167.3 
596.3 

3252.7 

Table 13.4. Results for problems of Class I (OP and VRP instances) with a = 0.50. 

Tables 13.4 to 13.9 report on the computational behavior of the branch-
and-cut code FST. Each table (except Table 13.5) gives: 

Name : the problem name; 

to : the maximum total time (only for Classes I and II); 

r-time : the total time spent at the root node; 

%-LB : the percentage ratio (optimum - LB)/optimum, where LB is 
the value of the best heuristic solution computed at the root node; 

%-UB : the percentage ratio (UB - optimum)/optimum, where UB is 
the upper bound computed at the root node; 

nodes : the total number of nodes generated (1 means that the problem 
required no branching); 

cuts : the total number of cuts generated (including the total time 
restriction (43)); 

optval : the optimal solution value (only for classes I and II); 

%-vis : the percentage number of nodes visited by the optimal solution; 

t-time : the total computing time spent by the branch-and-cut code. 

The computing times reported are expressed in seconds, and refer to 
CPU times on an HP Apollo 9000/720 computer running at 80 MHz 
(59 SPEC'S, 58 MIPS, 18 MFlops). A time limit of 18,000 seconds 
(5 hours) has been imposed for each run. For the instances exceeding 
the time hmit, we report 't.l.' in the t-time column, and compute the 
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Name 
op21 
op32 
op33 
att48 
eilSO 
eilSl 
eilSS 
eil51 
eil76 
eillOl 
cmtlOl 
cmtl21 
cmtl51 
cmt200 
gil262 

t-LP 
0.4 
0.9 
1.0 
0.4 
3.6 
0.2 
5.4 
1.6 
1.4 
2.7 

23.9 
503.5 

27.8 
84.8 

740.0 

t-sep 

oT 
0.2 
0.5 
0.2 
0.8 
0.2 
2.0 
0.4 
1.1 
1.5 

16.0 
652.9 
121.0 
422.6 

1873.6 

cuts 
58~ 
91 

109 
55 

170 
32 

215 
150 
118 
159 
514 

1350 
451 
859 

2370 

log 
27 
31 
31 
23 
43 
15 
42 
48 
50 
61 

114 
189 
127 
177 
262 

gsec 
14~ 
46 
47 
17 
84 

5 
86 
54 
49 
59 

362 
719 
210 
449 

1131 

2-mat 
0~ 
2 
2 

11 
0 
1 
2 
5 
7 

19 
14 
86 
61 
82 

154 

cover 
0~ 
1 
0 
0 
4 
1 

14 
0 
0 
1 
8 

82 
7 

38 
83 

path 
0~ 
0 
0 
0 
0 
0 

20 
0 
0 
0 
6 

63 
0 
0 

49 

cond 

l6~ 
10 
28 

3 
38 

9 
50 
42 
11 
18 
8 

172 
39 
94 

644 

b-cov 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

38 
6 

18 
46 

Table 13.5. Additional results for Class I (a = 0.50) problems 

corresponding results by considering the best available as the optimal 
solution value. Hence, for the time-limit instances the column %-UB 
gives an upper bound on the percentage approximation error. 

Table 13.4 refers to the instances of Class I with a = 0.5. We also 
report, in Table 13.5, additional information on the overall time spent 
within the LP solver (t-LP) and the separation procedures (t-sep), and 
on the number of logical (log), inequalities (45) (gsec), 2-matching {2-
mat), cover (cover), path (path), conditional (cond), and branch cover 
(b-cov) constraints generated. 

Tables 13.6 to 13.8 refer to the instances of Class II, with prizes com­
puted according to Generation 1,2, and 3, respectively. The parameter 
a has been set to 0.50. Cases a = 0.25 and a = 0.75 present comparable 
results. 

Table 13.9 reports average results over 10 random instances belonging 
to Class III, with a = 0.2, 0.4, 0.6, and 0.8, and n = 25, 50, 100, 300, 
and 500. Larger instances could be solved as well, since for this class the 
computing time tends to increase very slowly with n for n > 200. As a 
comparison, the branch-and-bound algorithm of Laporte and Martello 
[536] ran into difficulties when solving instances with n — 25 and a > 0.6, 
and with n = 50 and a > 0.4. For example, running (on the HP Apollo 
9000/720 computer) the Laporte and Martello code on the instances 
with n = 25 required on average 0.1 seconds for a = 0.2, 77.2 seconds 
for a = 0.4, more than 2 hours for a ~ 0.6; whereas for a — 0.8 no 
instance was solved within the 5 hour time-limit. 
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Name 

grl37 

prl44 

kroal50 

krobl50 

prl52 

ul59 

ratl95 

dl98 

kroa200 

krob200 

gr202 

ts225 

pr226 

gr229 

gil262 

pr264 

pr299 

lin318 

rd400 

^0 

34927 

29269 

13262 

13065 

36841 

21040 

1162 

7890 

14684 

14719 

20080 

63322 

40185 

1765 

1189 

24568 

24096 

21045 

7641 

r-time 

178.6 

240.3 

582.2 

145.6 

204.6 

497.6 

331.9 

716.3 

395.0 

683.6 

150.6 

9.7 

1955.3 

75.0 

120.6 

2860.2 

5726.3 

2558.0 

874.0 

%-LB 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

1.2 

0.0 

1.7 

%-UB 

0.0 

0.0 

1.2 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.8 

5.2 

0.0 

0.0 

0.0 

1.2 

0.5 

0.4 

nodes 

85 

107 

25 

8 

5 

29 

cuts 

553 

1170 

2594 

729 

917 

1912 

1323 

1431 

1254 

1635 

603 

6040 

1019 

431 

789 

1694 

4524 

2653 

1821 

optval 

81 

77 

86 

87 

77 

93 

102 

123 

117 

119 

147 

125 

134 

176 

158 

132 

162 

205 

239 

%-vis 

59.1 

53.5 

57.3 

58.0 

50.7 

58.5 

52.3 

62.1 

58.5 

59.5 

72.8 

55.5 

59.3 

76.9 

60.3 

50.0 

54.2 

64.5 

59.8 

t-time 

178.6 

240.3 

4669.0 

145.6 

204.6 

497.6 

331.9 

716.3 

395.0 

683.6 

150.6 

t.l. 

t.l. 

75.0 

120.6 

2860.2 

14244.0 

3169.9 

4272.5 

Table 13.6. Results for Class II (TSPLIB instances) and Generation 1 (a = 0.50) 

Name 

grl37 

prl44 

kroal50 

krobl50 

prl52 

ul59 

rat195 

dl98 

kroa200 

krob200 

gr202 

ts225 

pr226 

gr229 

gil262 

pr264 

pr299 

lin318 

rd400 

to 

34927 

29269 

13262 

13065 

36841 

21040 

1162 

7890 

14684 

14719 

20080 

63322 

40185 

1765 

1189 

24568 

24096 

21045 

7641 

r-time 

797.9 

668.0 

460.1 

735.7 

188.6 

518.0 

1750.1 

1337.8 

515.2 

1240.7 

441.7 

763.3 

3973.9 

329.5 

2783.0 

4253.3 

10803.8 

1370.0 

837.6 

%-LB 

0.0 

0.0 

0.6 

0.0 

0.0 

0.4 

0.0 

0.1 

0.0 

0.1 

0.8 

0.0 

0.1 

0.5 

0.1 

0.0 

0.0 

0.0 

0.1 

%-UB 

0.3 

0.7 

0.9 

0.1 

0.0 

0.2 

0.2 

0.1 

0.1 

0.1 

0.0 

0.1 

0.3 

0.1 

0.2 

0.0 

0.0 

0.0 

0.2 

nodes 

81 

11 

47 

5 

1 

21 

13 

27 

15 

17 

31 

5 

27 

47 

23 

1 

5 

41 

76 

cuts 

1929 

1579 

2876 

1795 

836 

1853 

2691 

1999 

1147 

2563 

1945 

1627 

1842 

1415 

2080 

2211 

1900 

1392 

3721 

optval 

4294 

4003 

4918 

4869 

4279 

4960 

5791 

6670 

6547 

6419 

7848 

6834 

6615 

9187 

8321 

6654 

9161 

10900 

13648 

%-vis 

57.7 

51.4 

54.0 

52.7 

48.0 

54.1 

48.2 

56.1 

54.5 

50.5 

65.8 

54.2 

46.6 

72.1 

50.8 

50.0 

49.8 

60.7 

54.5 

t-time 

3193.0 

1409.0 

3950.6 

1018.1 

188.6 

1772.4 

2498.6 

2517.1 

805.1 

3522.8 

3847.6 

1195.5 

t.l. 

4261.4 

5574.6 

4253.3 

t.l. 

t.l. 

t.l. 

Table 13.7. Results for Class II (TSPLIB instances) and Generation 2 {a = 0.50) 
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Name 
i?T37 
prl44 
kroalSO 
kroblSO 
prl52 
ul59 
rat195 
dl98 
kroa200 
krob200 
gr202 
ts225 
pr226 
gr229 
gil262 
pr264 
pr299 
lin318 
rd400 

to 
34927 
29269 
13262 
13065 
36841 
21040 
1162 
7890 
14684 
14719 
20080 
63322 
40185 
1765 
1189 

24568 
24096 
21045 
7641 

r-time 
2401.9 
1573.8 
269.7 
1112.5 
1099.0 
1308.4 
3672.2 
1810.0 
3116.5 
642.6 
654.2 
3437.6 
3379.5 
1667.1 
6177.4 
4011.3 
14699.4 
8597.5 
14257.1 

%-LB 
45.5 
0.0 
0.1 
0.0 
0.7 
0.0 
0.1 
0.0 
0.0 
0.0 
0.5 
0.0 
16.0 
0.0 
0.2 
0.0 
0.0 
0.0 
0.0 

%-UB 

0.1 
0.1 
0.6 
0.1 
1.3 
0.2 
0.1 
0.2 
0.2 
0.1 
0.3 
0.4 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

nodes 

5~ 
65 
181 
13 
391 
5 
9 

197 
41 
9 

298 
27 
51 
11 
27 
1 
2 
12 
3 

cuts 
5386 
2632 
1646 
1472 
3159 
2171 
1528 
2361 
2161 
905 
1947 
1598 
5310 
1613 
2386 
2625 
1787 
1308 
1418 

optval 
3979 
3809 
5039 
5314 
3905 
5272 
6195 
6320 
6123 
6266 
8632 
7575 
6993 
6347 
9246 
8137 
10358 
10382 
13229 

%-vis 
51.8 
43.1 
52.7 
56.7 
48.7 
52.8 
47.7 
61.6 
51.5 
51.0 
71.3 
55.1 
52.2 
67.7 
56.5 
39.8 
49.8 
60.7 
55.8 

t-time 
4958.7 

t.l. 
3828.9 
1363.9 
13736.7 
1447.2 
3975.4 
8635.7 
6548.9 
783.7 

11113.5 
5821.8 
7923.2 
1891.5 
9574.0 
4011.3 

t.l. 
t.l. 
t.l. 

Table 13.8. Results for Class II (TSPLIB instances) and Generation 3 (a = 0.50) 

On the whole, the performance of the branch-and-cut code is quite sat­
isfactory for our families of instances. In most cases, the upper and lower 
bounds computed at the root node are very tight, and a few branchings 
are needed. The code wa^ able to solve to proven optimality almost 
all the random instances of Class III (except 1 instance for n = 500), 
and most of the "real-world" instances of Classes I and II. For the in­
stances exceeding the time limit, the computed solution is very close to 
the optimal one (see column %-UB). 

According to Table 13.5, most of the generated constraints are inequal­
ities (45), 2-matching, logical and conditional cuts. For some "difficult" 
instances, a relevant number of cover and path inequalities is generated. 

Additional computational experience has been performed on the class 
of random instances considered in the work by Gendreau, Laporte and 
Semet [355], called Class IV in the sequel. These instances were gen­
erated by using the original Gendreau-Laporte-Semet code. The in­
stances are similar to those of Class II and Generation 2, but the nodes 
are generated as random points in the [0,100]^ square according to a 
uniform distribution. The corresponding values of v{TSP) were com­
puted by means of the algorithm of Padberg and Rinaldi [648]. Table 
13.10 reports average results over 5 random instances belonging to Class 
IV, with a - 0 . 1 , 0.3, 0.5, 0.7, 0.9, and n=101, 121, 161, 261, and 301. 
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n 
25 
25 
25 
25 
50 
50 
50 
50 

100 
100 
100 
100 
300 
300 
300 
300 
500 
500 
500 
500 

a 
0.2 
0.4 
0.6 
0.8 
0.2 
0.4 
0.6 
0.8 
0.2 
0.4 
0.6 
0.8 
0.2 
0.4 
0.6 
0.8 
0.2 
0.4 
0.6 
0.8 

r-time 
1.1 

38.8 
46.6 
42.1 
41.5 
32.1 
30.8 
10.5 
61.3 
35.9 
33.7 
41.9 

102.7 
139.1 
203.9 
237.2 
189.6 
317.4 
408.4 
650.2 

%-LB 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.3 
0.2 
0.0 
0.2 
0.4 
0.3 
0.1 
0.2 
0.2 
1.5 
0.0 
0.3 
1.1 
1.4 

%-UB 
0.0 
0.9 
0.3 
0.4 
0.4 
0.5 
0.3 
0.1 
0.3 
0.2 
0.1 
0.0 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

nodes 
1.1 
3.8 . 
2.6 
4.0 
1.6 

10.0 
21.8 
10.4 
8.2 

28.4 
34.6 
35.4 
15.0 
43.6 
26.2 
4.3 
5.4 
9.9 
9.7 
2.4 

cuts 
63.4 

138.2 
101.0 
91.5 

169.6 
220.2 
263.1 
128.1 
359.6 
403.5 
421.4 
273.9 
484.8 
652.4 
355.3 
186.6 
300.5 
322.9 
284.2 
116.2 

%-vis 
28.8 
56.8 
74.0 
86.0 
32.8 
59.8 
76.4 
90.2 
35.3 
60.9 
80.8 
93.2 
30.1 
57.5 
80.4 
99.8 
27.0 
53.6 
78.8 

100.0 

t-time 
1.2 

42.7 
63.4 
51.5 
53.8 
99.6 

147.0 
58.9 

149.6 
340.3 
445.2 
403.8 
363.5 

1816.5 
1949.5 
2038.5 

325.4 
1418.0 
5327.9 
2454.0 

Table 13.9. Average results over 10 random instances of Class III 

n 
101 
101 
101 
101 
101 
161 
161 
161 
161 
161 
201 
201 
201 
201 
201 
301 
301 
301 
301 
301 

OL 

0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 

iVi 
5 
5 
5 
5 
5 
5 
5 
5 
4 
5 
5 
5 
5 
4 
4 
5 
2 
3 
1 
0 

N2 
5 
5 
5 
5 
5 
5 
5 
5 
3 
4 
5 
4 
5 
1 
1 
4 
0 
1 
1 
0 

Nz 
5 
5 
5 
5 
1 
5 
2 
0 
0 
-
5 
-
-
-
-
1 
-
-
-
-

r-time 
60.5 

186.7 
175.3 
70.9 
55.2 

233.8 
539.6 
249.4 
185.2 
136.0 
397.9 
555.7 
412.1 
952.7 
305.9 

1358.1 
914.5 
530.2 
616.6 

%-LB 
0.0 
0.0 
0.0 
0.3 
1.1 
0.0 
0.4 
0.2 
0.7 
3.8 
0.0 
0.2 
0.0 
1.4 
2.4 
0.3 
1.5 
0.9 
0.3 

%-UB 
0.8 
0.3 
0.3 
0.2 
0.3 
0.2 
0.5 
0.2 
0.2 
0.1 
0.6 
0.6 
0.1 
0.1 
0.1 
1.1 
0.6 
0.2 
0.0 

nodes 
3.4 
3.0 

11.8 
37.8 

222.6 
1.4 

11.0 
20.2 

101.5 
90.0 

5.8 
37.4 

9.8 
88.5 

121.8 
17.0 
98.0 
59.0 
14.0 

cuts 
559.8 
849.6 
806.4 
747.6 
872.6 
900.6 

1638.2 
956.2 

1419.5 
697.2 

1345.4 
2188.2 
1062.6 
2136.2 
1224.5 
2982.8 
3779.0 
3151.0 
1303.0 

%-vis 
11.7 
33.5 
55.6 
75.6 
90.7 
12.2 
34.9 
55.0 
72.8 
90.3 
11.4 
34.3 
54.5 
71.8 
90.4 
11.7 
35.9 
54.7 
72.1 

t-time 
193.3 
228.7 
350.2 
584.5 

2467.5 
275.9 

1254.6 
737.2 

3563.2 
2981.2 
673.2 

2793.0 
724.1 

6118.0 
9917.1 
3729.6 

12145.3 
8787.9 
5064.7 

t.l. 

Table 13.10. Average results over 5 random instances of Class IV 
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Column Ns gives the number of instances successfully solved by the 
Gendreau-Laporte-Semet code within a time limit of 10,000 SUN Sparc 
station 1000 CPU seconds. According to Dongarra [258], the HP Apollo 
9000/720 computer is about 1.8 times faster than that used by Gen-
dreau, Laporte and Semet, hence their time limit corresponds to about 
5,555 HP 9000/720 CPU seconds. Columns Â i and N2 give the num­
ber of instances successfully solved by code FST within a time limit 
of 18,000 and 5,555 HP 9000/720 CPU seconds, respectively The re­
maining columns are as in previous tables, and refer to the execution of 
code FST with the 18,000 second time limit. As in [355], averages are 
computed with respect to the instances solved to proven optimality. 

A comparison of columns Â2 and Â 3 shows that code FST is capable 
of solving a number of instances substantially larger than the Gendreau-
Laporte-Semet code, within approximately the same time limit. More­
over, the values of both the lower and upper bounds computed by FST 
are tighter than those reported in [355]. For the cases in which the 
Gendreau-Laporte-Semet code successfully solved all the five instances, 
the average LB and UB ratios of CFT (0.02% and 0.28%, respectively) 
compare very favorably with the corresponding values reported in [355] 
(3.59% and 1.74%, respectively). On the whole, the instances of Class 
IV appear more difficult than those in the previous classes. 
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