
Chapter 13

THE GENERALIZED TRAVELING
SALESMAN AND ORIENTEERING
PROBLEMS

Matteo Fischetti
D.E.L, University of Padova
Via Gradenigo 6/A, 35100 Padova, Italy
fisch@dei.unipd.it

Juan-Jose Salazar-Gonzalez
D.E.I.O.C., University of La Laguna
38271 La Laguna, Tenerife, Spain
jjsalaza@ull.es

Paolo Toth
D.E.LS., University of Bologna
Viale Risorgimento 2, 40136 Bologna, Italy
ptoth@deis.unibo.it

1. Introduction
Routing and Scheduling problems often require the determination of

optimal sequences subject to a given set of constraints. The best known
problem of this type is the classical Traveling Salesman Problem (TSP),
calling for a minimum cost Hamiltonian cycle on a given graph.

In several applications the cycle is allowed to visit only a subset of the
nodes of the graph, chosen according to a specified criterion. A basic
version of this problem is the following Simple Cycle Problem (SCP). We
are given a complete undirected graph Kn = {V^ E) on n :— \V\ nodes, a
cost Ce associated with each edge e G JS, and a prize py associated with
each node v ^ V. Recall that a (simple) cycle of Kn is a subset E of
J5, |£^| > 3, inducing a subgraph {V{E)^E) which is connected and in

 The Traveling Salesman Problem and Its Variations
© Springer Science+Business Media, LLC 2007
G. Gutin et al. (eds.),

mailto:fisch@dei.unipd.it
mailto:jjsalaza@ull.es
mailto:ptoth@deis.unibo.it

610 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

which all nodes in V{E) have degree two. The cost of a cycle E is given
by X^e^£;Ce — "^ZveViE) P'^' "^^^ problem is to find a min-cost cycle of

Without loss of generality one can assume Cg > 0 for all e € -E and
Pv > 0 for all V ^ V^ since the addition of any constant to all edge costs
and to all node prizes does not affect the cycle cost.

SCP is a useful model for problems involving simultaneous selection
and sequencing decisions. Indeed, the problem involves two related de
cisions:

1 choosing a convenient node subset S CV^

2 finding a minimum cost Hamiltonian cycle in the subgraph induced
by 5.

Many variants of SCP have been studied in the literature, a non-
exhaustive hst of which is given later in this section. Roughly speaking,
we can classify these variants into two main classes, the first including
all variants subsuming the TSP (i.e., those for which every Hamilto
nian cycle is feasible), and the second including all the variants in which
additional constraints may prevent some Hamiltonian cycles from be
ing feasible. This property has important consequences when analyzing
the structure of the polytope P associated with a certain SCP variant.
Indeed, whenever P contains the TSP polytope, one can apply simple
lifting constructions to extend known TSP facets to P , whereas more
involved constructions are required for the problems in the second class.
We will therefore describe in a rather detailed way a specific variant for
each of the two classes, namely the Generalized TSP (Section 2) and the
Orienteering Problem (Section 3). These two problems have been chosen
as they seem to be the most-widely studied cycle-type problems, along
with the Prize-Collecting TSP considered in Chapter 14. In particular,
for both problems we will concentrate on exact solution methods based
on the branch-and-cut approach, which proved to be the most eff'ective
framework for optimally solving cycle-type problems,

1.1. The Simple Cycle Problem
The Simple Cycle Problem, SCP, has the following natural Integer

Linear Programming formulation. For any S C V^ let S{S) represent
the set of edges with exactly one endnode in 5, and let E{S) be the set
of edges with both endnodes in 5, i.e.,

6{S) := {{iJ)eE:ieS,j^S},

E{S) := {it,j)eE:i,jeS}.

GTSP and OP 611

As it is customary, we write 6{v) instead of 6{{v}) for v e V. Moreover,
for any real function / : Q -^ M on a finite domain Q and for any T C Q,
we write f{T) instead of X^^^^ A-

Our model introduces a binary variable Xg associated with each edge
e e E (where Xg = 1 if and only if e belongs to the optimal cycle), and
a binary variable yy associated with each node v e V (where y^ = 1 if
and only if v is visited by the optimal cycle). The model reads:

v{SCP) = min2
ee

subject to:

xiS{v)) = 2y,

x{5{S)) > 2(2/, + yj - 1)

yiv) > 3
Xe€{0 , l }

y. e { o , i }

CgXg y ^ Pvyv

E vev

veV
ScV,ieS,j€V\s

eeE
v€V.

(1)

(2)

(3)

(4)

(5)

(6)

Constraints (2) impose that the number of edges incident to a node v is
either 2 (if?; is visited) or 0 (otherwise). Inequalities (3) are connectivity
constraints saying that each cut separating two visited nodes (z and j)
must be crossed at least twice. Constraint (4) forces at least three nodes
to be visited by the cycle.

A variant of SCP requires the cycle visits a specified "depot" node,
say node 1. This can be easily obtained by adding a large positive value
to prize pi, or by introducing explicitly the additional constraint:

yi = 1- (7)

In this case, the connectivity constraints (3) can be replaced by

x{S{S)) >2yy ioY S GV,leS,veV\S.

SCP is known to be strongly A/'P-hard, as it contains as a special
case the problem of finding a Hamiltonian cycle of a given undirected
arbitrary graph G = (V, E) (just set c^ — 0 for all e G ^ , Cg = 1 for all
e ^ E\E^ Py — 1 iov diW V £ F , and check whether the min-cost cycle
on Kn has cost equal to —n).

1.2. The Weighted Girth Problem
This problem arises from SCP when Py = 0 for all v E.V^ and negative

edge costs are allowed. Notice that, because of (2), one can always

612 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

convert node prizes into edge costs, by redefining C(̂ j) := C(̂ j) — {pi +
Pj)/2 for all (i, j) € E^ and p^ = 0 for all v e V. As a consequence,
the Weighted Girth Problem (WGP) is equivalent to SCP, hence it is
strongly ATT^-hard.

A relevant polynomially-solvable special case arises when the graph
does not contain negative cycles (negative costs being allowed). In
deed, in this case the problem can be transformed into \V\ non-bipartite
matching problems on G with loops (see, e.g., CouUard and PuUeyblank
[227]), hence it can be solved in 0(1^1^) time. A simpler algorithm can
be obtained along the following lines.

We replace each edge e = (i^j) of G by two arcs (i, j) and (j, z) with
cost Cij := Cji := Cg (we set Cij := oo for all missing arcs, including loops).
Observe that this construction induces a negative circuit of length 2
for each negative-cost edge, but no negative-cost circuit involving more
than 2 arcs. Therefore, WGP can be restated as the problem of finding
a minimum-cost (possibly nonsimple) circuit (closed trail) on the new
digraph, with the constraint that the circuit contains no 2-length circuit.
As such, it can be solved by dynamic programming using the recursions
originally proposed by Christofides, Mingozzi and Toth [192] to derive
the so-called g-path lower bound for the Vehicle Routing Problem, as
outlined next.

Let us consider the case where a certain node r (e.g., r = 1) is assumed
to be visited by the circuit (the most general case can be solved by trying
all possible nodes r), and let j{j) := {i E V : {i^j) G E}. For each
node j G V and for each integer /i = 1 , . . . ,n, let f{h^j) represent the
minimum cost of a directed path (not necessarily simple) with h arcs that
starts from node r, arrives at node j , and contains no 2-length circuit.
Moreover, let 7r(/i, j) denote the node immediately preceding node j in
the path corresponding to f{h^j)^ and let g{h^j) be the minimum cost
of a path having the same properties as the one corresponding to /(/i , j) ,
but with the node immediately preceding j forced to be different from
7r(/i, j) . Initially, for each j e V we set / (I , j) := Crj^ ^(1^ j) '•= ^i and
^(1, j) := oo. Then, for /i = 2 , . . . , n and for each j G V̂ we compute:

i^yU) [gyh — l,z) + Cij otherwise,

(let 7v{h,j) be the node corresponding to the minimum above)

g{h,j):= min ifi^ - 1,^H c,, iMh-l,i)^j
i^i{j)\{'^{hj)} I g{h — 1, z) -h Cij otherwise.

GTSP and OP 613

The optimal solution value of WGP can then be computed as:

v{WGP) : - min{/(/z, r) : /i = 3 , . . . , n}.

The above computation can be clearly performed in 0{\E\n) time, hence
the method requires 0{n^) time in the worst case.

WGP is a basic relaxation of several problems with important prac
tical applications in routing and location, and has been studied mainly
from a theoretical point of view.

The polyhedral structure of the weighted girth problem has been
deeply investigated by Bauer [92], who studied several classes of facet-
defining inequahties, some of which derived from the TSP polytope.
Lifting theorems relating the TSP and the WGP polytopes are given
in Salazar [736]. Balais and Oosten [79] investigated the corresponding
polytope for a directed graph; see Chapter 14 for details.

1.3. The Prize-Collecting TSP
In the Prize-Collecting TSP each node v e V has an associated non-

negative weight Wy^ and a cycle E is considered to be feasible only if
the total weight w{V{E)) of the visited nodes is not less than a given
threshold WQ. Therefore, the problem can be formulated as (l)-(6), plus
the additional constraint:

Y^ WyVy > WQ. (8)
vev

Such an A/'P-hard problem arises, for instance, when a factory located
at node 1 needs a given amount wo of a product, which can be provided
by a set of suppliers located at nodes 2 , . . . , n. Let Wy be the indivisible
amount supplied at node v^ —py be the corresponding cost (i; == 2 , . . . , n),
and let C(̂ j) be the transportation cost from node i to node j {i^j G
y,2 7̂ j). Assuming that only one trip is required, such a problem can
be formulated as an instance of the Prize-Collecting TSP-in the version
requiring the visit of node 1.

The directed counterpart of the problem also arises in several schedul
ing problems. Balas and Martin [77] introduced the Prize-Collecting
TSP as a model for scheduling the daily operations of a steel rolling
mill. A rolling mill produces steel sheets from slabs by hot or cold
rolhng. The cost of arc (z, j) is given by the cost of processing order j
just after order i, and Wy is the weight of the slab associated with order
V. Scheduling the daily operations consists of selecting a subset of orders
whose total weight satisfies a given lower bound WQ, and of sequencing
them so as to minimize the global cost.

614 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The Prize-Collecting TSP has been mainly investigated in its directed
version. Heuristic methods have been proposed by Balas and Martin [77].
Balas [63, 65] analyzed the problem from a polyhedral point of view.
Fischetti and Toth [302] proposed a branch-and-bound exact algorithm
based on additive bounding procedures. Bienstock, Goemans, Simchi-
Levi and Williamson [109] presented an approximation algorithm with
constant bound. The reader is referred to Chapter 14 of this book for a
comprehensive treatment of the subject.

lA. The Capacitated Prize-Collecting TSP
The Capacitated Prize-Collecting TSP is an extension of the Prize-

Collecting TSP where (8) is replaced by

Y^Wyyy <wo. (9)
vev

Here Wy represents the weight of node (customer) v^ and WQ is the ca
pacity of a vehicle originally located at the depot (say node 1). Con
straints (9) specify that the total load carried by the vehicle cannot
exceed the vehicle capacity. This A/'P-hard problem was introduced by
Bixby, Coullard and Simchi-Levi [110] as a column generation subprob-
lem in a set partitioning formulation of the classical Capacitated Vehicle
Routing Problem (CVRP). They also presented a branch-and-cut algo
rithm and solved to optimality instances ranging in size from 50 to 280
nodes.

1.5. The Orienteering Problem
The Orienteering Problem (OP), also called the "Selective TSP", is

in a sense the "dual" of the Prize-Collecting TSP. Here, the cycle cost
only depends on the node prizes, i.e., Ce = 0 for all e E iS, and the
objective is to maximize the global prize of the visited nodes. On the
other hand, each edge e e E has an associated nonnegative duration tg,
and a cycle E is considered to be feasible only if its total duration t{E)
does not exceed a given threshold to- Moreover, the cycle is required to
visit node 1. Model (l)-(7) then needs to be amended by the additional
constraint:

5^teXe <to (10)
eeE

OP is strongly ATP-hard as it contains as a special case the problem
of finding a Hamiltonian cycle of a given undirected arbitrary graph
G = {V, E) (just set py = 1 for all v ^V,te=^Q for all ee E,te = l for

GTSP and OP 615

dX\ e ^ E\E^ and to = 0, and check whether the optimal solution has
value n).

The problem derives its name from the Orienteering sport, where
each participant has to maximize the total prize to be collected, while
returning to the starting point within a given time hmit. OP also arises
in several routing and scheduling applications, see, e.g.. Golden, Levy
and Vohra [387].

Heuristic algorithms for OP and some generalizations have been pro
posed by Tsihgirides [796], Golden, Levy and Vohra [387], Golden, Wang
and Liu [389], Chao, Golden and Wasil [178] and Fink, Schneidereit and
Voss [290]. Exact branch-and-bound methods have been proposed by
Laporte and Martello [536], and by Ramesh, Yoon and Karwan [693].
Leifer and Rosenwein [553] have discussed an LP-based bounding proce
dure. Recently, Fischetti, Salazar and Toth [301] and Gendreau, Laporte
and Semet [355] have proposed branch-and-cut algorithms; see Section
3 for more details.

1,6. The Generalized TSP
In the Generalized TSP (GTSP), also known as the "International

TSP", we are given a proper partition of V into m > 3 clusters

Ci ,C2 , . . . , C, m^

and the cycle is feasible only if it visits each cluster at least once. Typ
ically we also have p^ — 0 for dW v ^V. The corresponding additional
constraints for model (l)-(6) are:

2_. 2/̂ — 1 for /l = 1, . . . , 777, (11)

A different version of the problem, called E-GTSP (where E stands for
Equality), arises when imposing that exactly one node of each cluster
must be visited, i.e., (11) is replaced by:

y^ Vv = ^ for ^ = 1, . . . ,m (12)
veCh

The two versions are clearly equivalent when the costs satisfy the triangle
inequality, i.e., c^ ĵ) < C(̂ /.) + C(^kj) foi" ^H node triples (i^j^k).

Both GTSP and E-GTSP find practical apphcations in the design of
ring networks, sequencing of computer files, routing of welfare customers
through governmental agencies, airport selection and routing for courier
planes, flexible manufacturing scheduling, and postal routing; see, e.g..
Noon [629], Noon and Bean [630], and Laporte, Asef-Vaziri and Sriskan-
darajah [535].

616 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The two problems are clearly A^P-hard, as they reduce to the TSP
when m — n^ i.e., \Ch\ — 1 for all h. They have been studied, among
others, by Laporte and Nobert [538], Salazar [735], Sepehri [749], and
Fischetti, Salazar and Toth [299, 300]. Their asymmetric counterparts
have been investigated in Laporte, Mercure and Nobert [537], and Noon
and Bean [630]. Transformations from the GTSP to the asymmetric
TSP have been proposed by Noon and Bean [631], Lien, Ma and Wah
[561], Dimitrijevic and Saric [255], and Laporte and Semet [541]. See
also Cvetkrovic, Dimitrijevic and Milosavljevic [236]. Semet and Renaud
[748] presented a tabu-search algorithm for the E-GTSP.

A more detailed analysis of both GTSP and E-GTSP will be given in
Section 2.

1.7. The Covering Tour Problem
The Covering Tour Problem is a variant of the Generalized TSP aris

ing when the clusters C^ are not necessarily disjoint. This problem was
introduced by Gendreau, Laporte and Semet [354] as a model for the
location of post boxes and for the planning of routes for medical teams
in developing countries, where each cluster Ck corresponds to the subset
of nodes located within a given distance of a certain customer k. They
analyzed the polyhedral structure of the problem, presented a branch-
and-cut algorithm, and tested its performance on random instances with
up to 100 nodes. Current and Schilling [233] studied a multi-objective
version of the same problem, that they called the Covering Salesman
Problem.

1.8. The Median Cycle Problem
The Median Cycle Problem looks for a min-cost cycle E such that the

sum of the distances between each node not in E and its closest node in
E does not exceed a given value d^. In other words, the Median Cycle
Problem looks for a min-cost cycle E such that

y^ min dij < do^

where dij represents the distance between nodes i and j .
This problem was introduced by Labbe, Laporte, Rodriguez and Sa

lazar [527] as a location model for circular-shaped transportation infras
tructures. These authors provided a polyhedral analysis and a branch-
and-cut algorithm tested on random instances with up to 150 nodes.
Current and Schilling [234] proposed heuristics for a variant of this prob
lem which consists of finding a cycle E visiting no more than p nodes,

GTSP and OP 617

while minimizing the weighted sum of the cycle cost and of the largest
distance of the nodes in E from the unrouted nodes (the latter being
computed as max^^y.^x min.^y/^N dij). They also studied the problem
of minimizing the cycle cost while imposing

max min dij < C/Q-
i^V{E)jeV{E)

1.9. The Traveling Purchaser Problem
In the Traveling Purchaser Problem node 1 corresponds to the pur

chaser's domicile, and the other nodes to markets. There are m products
to be purchased, the kth product being available in a given cluster of
markets Ck- The problem looks for a cycle starting at the domicile and
purchasing each product while minimizing the sum of the cycle cost plus
the purchasing costs. To be more specific, let fik be the cost of pur
chasing product k at node i e Ck- As in the Covering Tour problem, a
cycle E is considered feasible if and only if 1 G V{E) and V{E)r)Ck 7̂ 0
for all k — 1 , . . . ,m. The Traveling Purchaser Problem then calls for a
min-cost feasible cycle, the cost of a feasible cycle E being computed as

m

^ Ce + ^ min{/,fc :ieCkn V[E)]
eeE ^=1

In the Capacitated Traveling Purchaser Problem^ for each product k
we also have a required amount d^ to be purchased, while the quantity
of product k available at each node i e Cj^ is qik- In this version, fik
represents the cost of purchasing one unit of product k at node i e C^j
and the objective is to find a route collecting the required amount d^
for each product fc, while minimizing the sum of the routing and the
purchasing costs.

The uncapacitated version of the problem was originally introduced by
Burstall [152] and Ramesh [694]. Heuristic methods have been proposed
by, e.g., Voss [814], Golden, Levy and Dahl [386], Ong [632], Pearn and
Chien [662], and Doctor, Laporte and Renaud [119],

Branch-and-bound exact algorithms have been studied by, e.g., Singh
and van Oudheusden [762], reporting the solution of 25-node instances.
Laporte, Riera and Salazar [540] proposed a branch-and-cut algorithm
for the exact solution of the capacitated version, which is capable of
solving random instances involving up to 200 nodes.

2. The Generalized Traveling Salesman Problem
As already stated, in the GTSP we are given a proper partition of V

into 771 > 3 node subsets C i , . . . , Cm^ called clusters. A cycle is consid-

618 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

ered feasible if it goes through each cluster at least once. The GTSP
then consists of finding a feasible cycle E C E whose global cost J2eeE ^^
is a minimum, and can be formulated as

v{GTSP) = min ^ Ce Xe (13)
eeE

subject to

^ Xe = 2yy for ^ e V (14)
eeS(v)

y ^ Vv ̂ ^ for /i = 1 , . . . , m (15)
veCh

J2 ^e>2{y^ + yj - 1) for 5 C F, 2 < | 5 | < n - 2, (16)
ee6{s) ies, j ev\s

:CeG{0,l} for e e E (17)

y^G{0, l} fo r i ;Ey . (18)

As to the E-GTSP, arising when imposing that each cluster must be
visited exactly once, a mathematical model is obtained from (13)-(18)
by replacing (15) with

y yy — \ for h = 1 , . . . , ?Ti. (19)

Model (13)-(18) heavily rehes on the integrality of the y variables.
If this requirement is relaxed, solutions like those of Figure 2 become
feasible. Therefore, the LP relaxation of this model can be very poor.
Additional valid inequalities will be described in the sequel, whose in
troduction in the model leads to a considerable strengthening of its LP
relaxation.

As shown in [300], the E-GTSP is polynomially solvable when the se
quence of the clusters is known, which implies the polynomial solvability
for fixed m (see Subsection 2.5 for more details).

The remaining part of the present section is mainly based on the re
sults given by Fischetti, Salazar and Toth in [299] and [300]. We first
analyze the facial structure of the GTSP and the E-GTSP polytopes;
in particular, in Section 2.2 we introduce a general theorem that allows
one to lift any facet of the TSP polytope into a facet of the GTSP poly-
tope. This result is used to derive classes of facet-inducing inequalities
related to the subtour elimination and comb constraints. In Section 2.3
we analyze the E-GTSP polytope and discuss the cases in which the

GTSP and OP 619

Figure 13.1. Infeasible GTSP solution satisfying (14)-(17). The drawn edges have
Xe = \^ the blank nodes yv = 0, and the black nodes yv — 1/2.

inequalities of Section 2.2 are facet-inducing. The analysis is based on
a general result which allows one to inductively reduce the polyhedral
analysis of the E-GTSP polytope to that of the TSP polytope.

These theoretical results are used in Section 2.6 to design a branch-
and-cut algorithm for the exact solution of large-scale E-GTSP instances.
The algorithm is based on exact/heuristic separation procedures for the
main classes of inequalities previously analyzed. We finally report re
sults on test instances involving up to 442 nodes, showing that these
inequalities lead to a substantial improvement of the LP relaxation of
the original model.

2.1. Basic nota t ions
Let P, P=, and Q denote, respectively, the GTSP, E-GTSP, and TSP

polytopes, defined as

P : - conv{(x,y) e M^^^ : (14)-(18) hold},

p= :=Pn {(x, y) e R^""^ : (19) holds},

and
Q'= Pn {(x, y) e M^^^ : Vv^l for all v e V}.

Clearly, P"^ and Q are faces of P . These faces are disjoint when m < n,
whereas for m = n the three polytopes P , P"", and Q coincide.

We assume the reader is familiar with the foundations of polyhedral
theory. For the sake of simplicity, in the following we will not distinguish
between a GTSP (or E-GTSP) solution and its characteristic vector, and
assume m > 5. Moreover, we will make use of the following notation:

/^{S) := \{h : Ch CS}\ for 5 C F,

Tj{S) := \{h '.ChDS^ 0}| for SCV,

620 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

and denote by C^y^ the cluster containing a given node v. We also
define

W:^{veV : | Q (,) | - 1 } .

2.2. Facet-defining inequalities for the GTSP
polytope

In this section we study the GTSP polytope, P. The facial structure
of P is clearly related to that of the TSP polytope, Q, arising when
imposing the additional equations yv = ^ for dl\ v E V. In order to link
these two polytopes, let us define the intermediate polytopes

P{F) :=Pn {(x, y) G R^^^ : yv = I for all v e F } ,

where 0 C F C y . By definition, P{V) = Q and P(0) = P.
Our first order of business is to determine the dimension of P{F) for

any given F. This amounts to studying the equation system for P{F).
This system includes the \V\ linearly independent equations (14), plus
the variable fixing equations

yy = 1 for all i; E F U W, (20)

where W has been defined previously. Actually, no other linearly inde
pendent equations satisfied by all the points of P(F) exist, as implied
by the following result.

Theorem 1 For all F CV, dim{P{F)) = \E\ -\FuW\,

Proof: Clearly dim(P(F)) < |£;| -\FuW\ since P{F) C R^^^ and
the | y | + |F U W\ valid equations (14) and (20) are linearly independent.
We claim the existence of|jB| — | F U W | + 1 afhnely independent points
in P{F). This will prove dim(P(F)) > |£;| - \FuWl and hence the
theorem. The proof of the claim is by induction on the cardinality of F.

When |F | = n the claim is true, since P{F) corresponds to the TSP
polytope (see, e.g., Grotschel and Padberg [405] or Chapter 2).

Assume now the claim holds for |F | = a, and consider any node
set F ' with \F'\ = a — 1. Let v be any node not in F\ and define
F := F' U {v}. Because of the induction hypothesis, there exist \E\ —
\FuW\ + 1 affinely independent points belonging to P{F) hence to
P{F'). IfveW then |F U I^| = | F U W\, and we are done. Otherwise,
|P U Ŵ l = \F^ U VF| H- 1, i.e., we need an additional point. Such a point
always exists, and corresponds to any Hamiltonian cycle in the subgraph
induced by F \ {t'}. •

file:///FuWl

GTSP and OP 621

Corollary 2 dim{P) = \E\ - \W\.

According to Theorem 1, given any nonempty F CV and any v e F
one has the following: ii v e W then dim(P(F \ {v})) = dim(P(F)),
else d im(P(F \ {f})) = dim(P(F)) + 1. In other words, the removal of a
node from F increases the dimension of P(P) by, at most, one unit. As
a consequence, any facet-defining inequality for P{F) can be lifted in a
simple way so as to be facet-inducing for P{F \ {v}) as well.

Theorem 3 Let F CV and u ^ F. In addition, let

eeE vev

be any facet-inducing inequality for P{F). Then the lifted inequality

^ a e Xe + Yl (^vi^~ Vv) + ^n (1 - Vu) > 7
eeE vQy\{u}

is valid and facet-defining for P{F\ {u}), where /3u is an arbitrary value
if u ^ W, whereas

[eeE veV\{u}

holds when u ^ W.

Proof: The claim follows from the well-known sequential lifting theorem
(Padberg [641]), as described, e.g., in Grotschel and Padberg [405]. •

Theorem 3 leads to a lifting procedure to be used to derive facet-
inducing inequahties for the GTSP polytope from those of the TSP poly-
tope. To this end one has to choose any lifting sequence for the nodes,
say {vi^... ,Vn}^ and iteratively derive a facet of P{{vt-}-i^... ^Vn}) from
a facet of P{{vt^ • • •, Vn}) for t = 1 , . . . , n. Different hfting sequences can
produce different facets.

By using the above lifting procedure one can easily prove the following
results.

622 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Theorem 4 The following inequalities define facets of P:

3̂e > 0 for every e G £", (21)

Xe < 1 whenever e G E{W), (22)

yv < 1 whenever v ^ W^ (23)

V X > 2 forScV' 2 < |5 | < n - 2,

eeS{S)
2 < | 5 | < n - 2 ,

X ^ x e > 2 y , / o r 5 c V : M 5) - 0 , / / (y \ 5) ^ 0 , (25)
eeS{S) I G 5,

2 < |5 | < n - 2 ,
Y, Xe>2(y , + % - l) / o r S c V : ^(5) = M ^ \ 5) - 0, (26)

ee5{s) ie sj ev\s.
By possibly interchanging tlie role of S and V \ S^ one can always

assume that inequalities (24) and (26) are written for 5 C V̂ such that
\S\ < L^/2J. The same holds for inequalities (25) by choosing i e V\S
when ti{S) ^ 0 and fi{V \ 5) = 0.

Notice that (25) are also valid (but not facet-inducing) when /x(S') 7̂ 0.
Analogously, inequahties (26) hold for any S cV and coincide with (16).

By exploiting equations (14), inequalities (24), (25) and (26) above
can be rewritten, for any S C V with 2 < l^l < n — 2, as the following
Generalized Subtour Elimination Constraints (GSEC's):

Y,Xe<Y,yv-^ f o r / x (5) ^ 0 , / x (y \ 5) 7 ^ 0 , (27)
eeE{S) ves

Y, xe< Y. y- f̂^ M^)-0, / i (y\5)7^0, (28)
eeE{S) veS\{i] i G 5 ,

Y ^e< Y yv-yj + ^ for f^{s) = ^i{v\s) = o, (29)
eeE{S) ves\{i} i e SJ ^ S.

This form of the constraints has the advantage of having fewer nonzero
coefficients (assuming l^l < [n/2J), hence it is more suitable for a cut
ting plane approach.

Particular cases of GSEC's arise when l^l = 2, leading to

Xe <yv for ^ G y, e G S{v). (30)

Note that inequality J^veC^ ^^ — -'• ^^^^ ^^^ define a facet of P for
any h — 1 , . . . ,m. Indeed, because of (14), constraint (15) is equivalent
t o E eeS{Ch) ^e + ^^J^eeEiCh) ^^ - ^̂ ^eucc it is dominated by the valid

GTSP and OP 623

inequality YjeeSiCn) ^e > 2 when E{Ch) ^ 0, whereas for E{Ch) = 0
(i.e., when IC/̂ I == 1) it defines the improper face of P.

We finally consider the TSP comb inequalities. A comb is a family C =
(i7, T i , . . . , Ts) of s -f 1 node subsets, where s > 3 is an odd integer. H
is called the handle of C, whereas T i , . . . , T̂ are called teeth. Moreover,
the following conditions must be satisfied: (i) T i , . . . ,Ts are pairwise
disjoint; (ii) Tj D H ^ (/) and T̂ - \ i / 7̂ 0 for j = 1 , . . . , 5. The size of C
is defined as a{C) := \H\ + Ej^id^^l - 1) - (̂ + l) /2.

The comb inequality associated with C is
s

E ^̂ + E E ^e<a(C), (31)
eeEiH) j=leeE{Tj)

and is valid and facet-defining for the TSP (see Grotschel and Padberg
[405], or Chapter 2). It is well known that interchanging the role of H
and V \ H produces an equivalent formulation of (31).

Starting with (31), one can obtain related facet-defining inequalities
for the GTSP by using the hfting Theorem 3 (trivially modified so as to
deal with "<" inequalities).

Theorem 5 Let C = (i/, T i , . . . , Ts) be a comb. For j = 1 , . . . , ŝ let
aj be any node in Tj D H if ii{Tj Pi H) — 0, aj = 0 (a dummy value)
otherwise; and let bj be any node in Tj \ H if f^iTj \ H) — ̂ , bj = 0
otherwise. Then the following generalized comb inequality is valid and
facet-defining for P:

s

E -̂ + E E ê + ;^^.(l-j/.)<a(C), (32)
e^E{H) 3 = 1 eeE(Tj) veV

where ^y =^ 0 for all v e V \ {H U Ti U ... U Ts), Py = 1 for all v e
/ / \ (Ti U . . . U r ,) , and /or j - 1 , . . . , s: ^y = 2 for v e Tj OH, v i^ ay,
^a, = 1 tfaj 7̂ 0; py = lforve T, \H, Vy^ by h, = 0 if b^ ̂ 0.

2.3. Facet-defining inequalities for the E-GTSP
polytope

We now address the polyhedral structure of the E-GTSP polytope,
P ^ . This polytope is clearly a face of P , hence all facet-defining in-
equahties for P studied in Section 2.2 are also valid (but not necessarily
facet-defining) for P^.

Since in the E-GTSP exactly one node of each cluster must be visited,
we can drop intra-cluster edges, and re-define the edge-set as

E:={{i,j):zeV,JEV\Chi^)}.

624 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

In view of this reduction, constraints (19) are equivalent to

y ^ Xe = 2 for all /i = 1 , . . . , m,

eeS{C, h)

and a simplified model for the E-GTSP can be obtained by replacing
constraints (16) and (18) by the two families of constraints:

^ Xe < r - 1 for 5 - Ul^iQ. and 3 < r < m - 3, (33)

eeE{S)

V j ^e ^Vw for / = 1 , . . . , m and w ^V \Ci^ (34)
eE5(COn(5(ti;)

respectively.
Inequalities (33) will be called Basic Generalized Suhtour Elimination

Constraints (Basic GSEC's), and (34) will be called fan inequalities.
Both are particular cases of the GSEC's (27) because of (19). Indeed,
(33) are equivalent to the GSEC's (27) written for S = uy^^C/., where
E ^ E 5 yv = r since E T ; G Q . y^ = 1 for Z = 1 , . . . , r . Analogously, (34) arise
from (27) when S = CiU{w}, since E{S) = 6{Ci)nS{w) and Y^y^sVv =
YlveCi Vv + yw = ^ + yw' Notice that constraints (34) dominate (30).

As in the previous subsection, we aim at relating the facial s tructure
of P^ to that of the TSP polytope, Q, even thought Q is not a relaxation
of P^. To this end, let us introduce some basic definitions.

Definit ion 6 Given a valid inequality ax+f3y < 7 for P^, let 7i^ ^ :=

P^ n {{x^y) G R^*^^ : a x == /3y -h 7} denote the face of P"^ induced
by ax + f3y < 7. Let v E V \W be an arbitrary but fixed node, and
let P^ denote the E-GTSP polytope associated with the subgraph of G
induced by V \ {v}. The ?;-restriction of ax + /Sy < ^ is the inequality
obtained from ax + (3y < ^y by dropping the variables yy and x^ for all
e € 5{v). The t'-compatibility graph of ax + l3y < j is the graph G% —
{V\Ch(^y),E*) with {u,w) e E* if and only if there exists (x,y) G 'Wa,/3,7
with X(̂ ^)̂ = X(^^^) = 1.

The rank of a graph is defined as the rank of its edge-node incidence
matrix^ i.e., the number of its nodes minus the number of its bipartite
connected components. The graph is said to be of full rank when its
edge-node incidence matrix is of full rank, i.e., when it has an odd cycle
for each connected component.

L e m m a 7 For every valid inequality ax+f3y < 7 forP^ and every node
V E V \W the dimension ofH^g is greater or equal to the dimension

GTSP and OP 625

of the face of P^ induced by its v-restriction^ plus the rank of its v-
compatibility graph.

Proof: Let X be the matrix in which every row is an extreme point of
H^R^' Since H^ n is contained in a hyperplane not passing through
the origin (e.g., that induced by (19) for /i = 1), a subset of rows of X is
afRnely independent if and only if it is hnearly independent. Hence the
dimension of H^ g coincides with the rank of X minus 1. Now, X can
be partitioned into

X
Xn 0 0
X21 X22 1

where the last column corresponds to variable yy^ and the columns of X22
correspond to variables Xe for e G S{v). Then the rank of X is, at least,
the sum of the rank of Xn plus the rank of [X22 !]• By construction,
the rank of Xu is the dimension of the face of P^ induced by the v-
restriction of ax + /3y < 7, plus 1. As to X22, we observe that each
of its rows contains exactly two I's and (barring repeated rows) can be
viewed as the edge-node incidence matrix of the t'-compatibility graph
G* associated with ax + /3y < 7. Moreover, the last column of [X22 1] is
a linear combination (with coefficients 1/2) of the other columns. This
proves the claim. •

Lemma 7 allows us to extend some known results from the TSP poly-
tope to the E-GTSP case by using induction on p = ^^=i{\Ch\ — 1) ==
n — 771.

As shown in Lemma 7, the rank of the t^-compatibility graph G*
associated with a given inequality ax + /?y < 7 plays a central role when
analyzing the polyhedral structure of P^. Unfortunately, determining
whether an edge is present in G* requires the construction of a suitable
E-GTSP solution (x, y) with ax = f3y -{- 7, hence it is an A/'P-hard
problem in general. In practice, one is interested in finding sufficient
conditions for the existence of an edge in G*. We next describe one
such condition, related to the work of Naddef and Rinaldi [618] for the
graphical TSP, and of Balas and Fischetti [72, 73] for the asymmetric
TSP.

Definition 8 An inequality ax + /3y < j is said to be Tight-Triangular
(TT, for short) when for all v £ V one has

(3y ^ ma.x{aiy + ajy - aij : {iJ)eE\5{Ch(^y))}.

For V ^ V, we denote by

A(t;) := {{ij) eE\ S{Ch{y)) : f3y = aiy + ajy - aij}

626 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

the set of the tight edges for v.

Recall that a face H of P^ is called trivial when H C {(x,y) e R^^^ :
Xg = 0} for some e ^ E] nontrivial otherwise.

L e m m a 9 Let v EV\ W, and let ax + l3y < ^y be a valid TT inequality
for P"^ whose v-restriction defines a nontrivial face of P^. Then G*
contains all the edges in ^iv).

A more sophisticated lifting procedure for the E-GTSP, which allows
one to extend any given facet of the TSP polytope to a facet of P^^ is
given in [299].

We are now ready to study the facial structure of P"^.

T h e o r e m 10 dim{P=) = \E\ - m.

Proof: Clearly, d im(P^) < \E\ — m as equations (14) and (19) are
linearly independent. Hence, it remains to be proved tha t the dimension
of the (improper and nontrivial) face 7Y(0,0,0) induced by Ox < Oy + 0
is not less than \E\ — m. We use induction on p = n — m.

When p == 0 we have the standard TSP case, and the claim is true.
Assume now the claim holds for p — p^ and consider any E-GTSP

instance with p == p + 1 . Then there exists a node v '^V\W. Because of
Lemma 7, we have dim(?Y(0,0,0)) > <ii + c?2, where d\ is the dimension
of the face of P^ induced by the t'-restriction of Ox < Oy 4- 0, and d^ is
the rank of the t'-compatibility graph G* associated with Ox < Oy -f 0.
By the induction hypothesis, d\'>_\E\ ^{y)\ — m, thus it remains to be
shown tha t d^ — |^(^) | — | ^ \ ^'/^(i;)^ i-̂ -? that G* is of full rank. But
this follows easily from Lemma 9, since A(t') contains all the edges in
£* \ (^(C/i(^)) and, therefore, G* is connected and contains an odd cycle
(recall that m > 5 is assumed). •

Using similar arguments, one can prove the following results.

T h e o r e m 11 The following inequalities define facets of P^:

(1) Xe > 0 for all ee E.

(2) Xe < 1 for all ee E{W).

(3) the GSEC (27) whenever one of the following conditions holds:

(i) s e w and \S\ = 2,

(a) S =:CiU {w} for some w eV\{CiU W),

(iii) r]{S) > 3 and rj{V \ 5) > 3,

GTSP and OP 627

where r]{') has been defined in Subsection 2.1.

(4) The fan inequality (34) for all w ^ W.

(5) The GSEC inequality (27) whenever both S and V \S overlap, at
least, 3 clusters each, i.e., when r]{S) > 3 and r]{V \ 5) > 3.

Note that, because of (34), yv ^ 0 does not define a facet for any
V e V. Analogously, the GSEC's (28) and (29) do not define facets of
P=. Indeed, a GSEC (29) can be written as ^eeE{S) ^e ~ X/'u65\{i} ̂ '̂ "̂
yj — I < 0. If C^(i) == C'̂ (j)5 then yi + yj < 1, hence the inequahty (29)
is a weakening of J2eeE{S) ̂ e - Jlves Vv ^ ^ which is, in turn, strictly
dominated by the equation ^^y^siYjeeS{v)^e - 2?/̂) = 0. Otherwise
(29) is dominated by the GSEC (28) written for S' := S\ C/,(^), i.e., by

Similarly, one can show that a GSEC (28) is dominated by the GSEC
(27) written for S' := S U C^^

The bound constraint X(̂ -̂̂ < 1 does not define a facet whenever
i ^W OY j ^W, since in this case it is dominated by the fan inequality
^eG^(C,(,))n<5(0 ^e < Vi (if i ^ W), or EeG^(C,(,))n50-) ^e < Vj (if J i Ŵ)_.
In addition, the bound constraints yv ^ ^ never define a facet of P^
because of equations (19).

Finally, the GSEC's (27) not covered by Theorems 11 do not define
facets in that E{S^ induces a bipartite graph, hence they can be obtained
as the sum of certain fan inequalities, as shown in [299].

2.4, Separation algorithms
In this subsection we address the following separation (or identifica

tion) problem: Given a (fractional) point (x*,?/*) G [0,1]^^^, find a
member ax + /3y > 7 of a given family T of vahd inequalities for GTSP
(or E-GTSP), such that ax* + jSy"" < 7. An effective exact/heuristic so
lution of this problem is of fundamental importance in order to use the
inequalities of T within a cutting plane algorithm for the exact/heuristic
solution of the problem. In the following we describe the separation al
gorithms proposed by Fischetti, Salazar and Toth [300].

2.4.1 An exact separation algorithm for GSEC's. We
consider the family J^ of the generalized subtour ehmination constraints,
in their cut form (24)-(26). We will assume that node subset S C V
satisfies 2<\S\<n-2.

628 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

We start with constraints (26):

J] xe>2{yi + yj-l) ii^i{S) = ii{V\S) = 0,ieSJeV\S.
eeS{S)

Suppose nodes i and j have been fixed. Then, finding a most violated
inequahty (26) calls for the minimum-capacity cut (5, V\S) with i E S
and j £ V \ S in the capacitated undirected graph G* obtained from
G by imposing a capacity x* for each e e E. This can be done in
0(71^) time, as it amounts to finding the maximum flow from i to j
(see, e.g., Ahuja, Magnanti, Orlin [6]). If the maximum flow value is
not less than 2{y* + y^ — 1), then all the inequalities (26) for the given
pair (z, j) are satisfied; otherwise the capacity of the minimum cut sep
arating i and j is strictly less than 2(y* + y^ — 1) and a most violated
inequality (26) has been detected among those for the given pair (i, j) .
Trying all possible pairs (i, j) then produces an 0{n^) overall separa
tion algorithm. Actually, a better algorithm having overall 0{n'^) time
complexity can be obtained, in analogy with the TSP case (see Padberg
and Grotschel [642] or Chapter 2) by using the Gomory-Hu [390] scheme
for the multiterminal fiow problem. A simpler algorithm with the same
time complexity is based on the simple observation that, for any 5, the
most violated inequality (26) arises when the chosen i and j are such
that y* = max{7/* : v e S} and ?/* = max{y* : v e V \S}, Therefore,
any node s with y* = max{y* : v e V} can always be fixed to play the
role of, say, node i. In this way, one as to solve (at most) n— 1 max-flow
problems in the attempt to send 2(y* + y* — 1) units of flow from s to
any j e V \ {s}. Clearly, nodes j with y* + y* — 1 < 0 need not be
considered.

We now address inequahties (25):

5 ^ xe>2y^ i f / i (5) - 0 , / i (y \ 5) ^ 0 , z G 5 .
ee6{S)

As before, we assume that cluster Ch and node i ^ Ch are fixed. In this
case a most violated constraint (25) corresponds to a minimum-capacity
cut (iS, V \ S) with i e S and Ch C V̂ \ 5 in the capacitated graph
G*. Hence it can be detected by finding the maximum flow from i to t,
where t is an additional node connected with each j G C^ through an
edge having very large capacity (this corresponds to shrinking cluster
Ch into a single node). Trying all (i, Ch) pairs leads to an 0{mn^) time
algorithm. Clearly, nodes i with y* = 0 need not to be considered.

We now address constraints (24)

J2 ^e>2 iifi{S)^0,^iiV\S)^0.
e&5{S)

GTSP and OP 629

For all pairs (C/^, Ck) of distinct clusters, a most violated inequality (24)
is detected by finding the maximum flow from s to /;, where s (resp. t) is
an additional node connected with each j E Ch (resp. j 6 Ck) by means
of an edge having very large capacity. The overall t ime complexity of
this phase is 0{m?n^).

Notice that a violated inequality (25) or (26) found by the above
described separation algorithm, is not necessarily facet-defining. For
(26) this occurs when there exists a cluster C^ contained in 5 or F \ 5 ;
for (25), this happens when there exists a cluster contained in the shore
of the cut including node i. In these cases one should obviously reject
the inequality in favor of its facet-inducing strengthening (24) or (25).

According to the above scheme, the separation algorithm for the over
all family T containing inequahties (24)-(26) requires 0{mn^) t ime in
the worst case. In practice, the computing time required is typically
much smaller as the capacitated graph G* is very sparse, and has many
isolated nodes. Moreover, as previously explained, several max-flow com
putations can be avoided because some entries of y* have a small value.
In addition, parametric considerations on the structure of the cuts can
further reduce the number of max-flows computations.

We now consider the important case in which y* := max{y* : v e
V} = 1, that arises very frequently during the cutting-plane algorithm.
In this case one can find a most violated generalized subtour elimination
constraint by computing no more than n-f-m —2 max-flows, with overall
0{n'^) time complexity. Indeed, the degree of violation of any inequality
(24) with, say, Ch ^ S and Ck C V\S is the same as tha t associated with
inequality (25) written for the same S and for i = s. Hence inequalities
(24) need not to be considered. Now consider any inequality (25) with
i 7̂ 5. To fix the ideas, let z G 5 and C^ QV\S. li s e S, then the
degree of violation of the inequality does not decrease by replacing i with
5. Otherwise, the degree of violation is the same as tha t of inequality
(26) written for j = s. It follows that inequalities (25) with i y^ s need
not be considered. As a result, one has to consider explicitly only the
inequalities (25) with i = s^ and the inequalities (26) (for which i = s
can again be assumed).

The reader is referred to [300] for an efficient (parametric) imple
mentation of the above separation procedures, called GSEC_SEP in the
sequel.

A heuris t ic separat ion a lgor i thm for G S E C ' s The exact separa
tion algorithm given in the previous subsection can be excessively time
consuming. We now outline two faster heuristic procedures.

630 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The first procedure, GSEC_H1, considers the following subset of the
inequaUties (24):

Y, ^ e > 2 i f / . (5) ^ 0 , / . (y \ 5) 7 ^ 0 ,
eeS{S)

with S containing a cluster Ci of smallest size. For each /i G { 1 , . . . , m} \
{/}, the procedure computes a most violated inequahty (24) with Q C S
and Ch Q V \ S by finding the maximum flow from Q to Ch- This
procedure has 0{mn^) time complexity, and typically runs much faster
than GSECSER

Both the exact separation procedure and GSEC_H1 produce a list
of violated inequalities chosen on the basis of their individual degree
of violation, rather than on their combined effect. In order to speed
up the convergence of the cutting plane phase, instead, for each round
of separation it is advisable to produce a family of violated inequali
ties "spanning" the overall graph. To support this point, consider the
simplest problem involving subtour-elimination constraints, namely the
Shortest Spanning Tree (SST) problem. It is known from matroid theory
that the node subsets whose associated subtour elimination constraints
are active at the optimum, define a nested family covering all the nodes
of the graph. Therefore, a cutting plane SST algorithm that adds vio
lated cuts chosen only on the basis of their individual degree of violation,
is likely to require a high number of iterations before producing the opti
mal family of cuts. In this view, the shrinking technique used in Padberg
and Rinaldi [645, 647] for the TSP, besides reducing the computational
effort spent in each separation, has the advantage of quickly producing
a nested family of constraints spanning the graph.

We next describe a heuristic separation algorithm for GSEC's, based
on the previous considerations. In order to illustrate the basic idea
underlying the algorithm, let us restrict our attention to the standard
TSP. Given the fractional point x*, we look for a family of violated
subtour elimination constraints. To this end, let us consider the polytope

Q^EC _ 1^ > Q . Y^ Xe<\S\- 1, for S CV, \S\ > 2},
eeE{S)

whose vertices are the incidence vectors of the forests spanning the graph.
A node of Q^^^ "close" to x*, say i , is found, and the violation of (some
of) the subtour elimination constraints defining facets of Q^^^ passing
through X is checked. To be more specific, x is determined by solving
the problem max{x*x : x € Q^^^}^ i.e., by finding a maximum weight
spanning tree of G with edge weights x* > 0, e 6 £ .̂ The classical

GTSP and OP 631

greedy algorithm of Kruskal [523] is used, and a check is performed on
the violation of the n — 1 SEC's associated with the subsets Si C V^
z = l , . . . , n — 1, corresponding to the connected components iteratively
found. From matroid theory (see, e.g., Nemhauser and Wolsey [625,
page 669]), the SEC's associated with these subsets Si are the only
ones needed to prove the optimahty of x (since all other SEC's can
be relaxed without affecting the optimality of x), hence they are likely
to be violated by x*. Notice that (some of) the 5^ sets found by the
above sketched procedure could equivalently be found by detecting the
connected components of the subgraphs induced by E{'d) \— {e ^ E :
xl > -d] for all possible threshold values ^ G { x * > 0 : e G £ ^ } . In
this view, the above heuristic is an improved version of the one used in
Grotschel and Holland [398], that checks the connected components of
the subgraph G' = (F, E{d)) for d = min{x* >0:eeE}.

The above scheme can easily be adapted to deal with generalized
SEC's, leading to the heuristic separation procedure called GSEC_H2 in
[300].

Heuristic separation algorithms for generalized comb inequal
ities Two simple heuristic separation procedures for generalized comb
inequalities are next described.

We first consider the generalized 2-matching constraints . Using a
construction similar to that proposed by Padberg and Rao [644] for
the fc-matching problem, one can transform the separation problem for
generalized 2-matching inequalities into a minimum capacity odd cut
problem; hence this separation problem is exactly solvable in polynomial
time. This task is however rather time consuming, hence the branch-
and-cut code makes use of the following simple heuristic, derived from
similar TSP procedures [642]. Given the fractional point (x*,y*), the
subgraph G = (V", E) induced by E \= {e e E : 0 < xl < 1} is defined.
Then, each connected component H oi G is considered, in turn, as the
handle of a possibly violated generalized 2-matching inequality, whose 2-
node teeth correspond to the edges e G S{H) with x* == 1 (if the number
of these edges is even, the inequality is clearly rejected). The procedure
takes 0{n + l̂ "!) time, if properly implemented.

The second separation procedure consists of applying the above de
scribed heuristic for generalized 2-matching inequahties after having
shrunk each cluster into a single supernode, in a vein similar to that
described in Padberg and Rinaldi [647].

632 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

2.5, Heuristic algorithms
A number of known tour construction and tour improvement heuristic

algorithms for the TSP (see, e.g., Golden and Stewart [388] or Chapter
8) can be adapted to both GTSP and E-GTSP. We next concentrate on
the heuristics producing feasible E-GTSP (and hence GTSP) solutions
proposed by Fischetti, Salazar and Toth [300].

As to tour construction procedures, we describe a possible adaptation
of the well-known farthest insertion TSP procedure; nearest insertion
and cheapest insertion procedures can be adapted in a similar way. For
each pair of clusters Ch and C/t, let the corresponding distance dhk be
defined as d^k '-— min{cij : i G C'/i,j G C^}. The procedure starts
by choosing the two clusters, say C^ and C5, that are farthest from
each other (with respect to distances dhk)-, and defines a partial tour T
between the two closest nodes i E Ca and j £ Cb. At each iteration,
T is enlarged by first determining the uncovered cluster C^ farthest
from the clusters currently visited by T, and then by inserting a node
V of Ch between two consecutive nodes i and j of T so as to minimize
Civ + Cyj — Cij. The procedure stops when T covers all the clusters. As in
the TSP case, the procedure is hkely to produce better solutions when
the costs satisfy the triangle inequality.

We next describe two tour improvement procedures.
The first procedure, RPl, is based on 2-opt and 3-opt exchanges.

Let T be the current E-GTSP solution, visiting exactly one node for
each cluster, and let 5 C y be the set of the visited nodes. Clearly,
any near-optimal TSP solution on the subgraph induced by 5 (found
heuristically through, e.g., 2- or 3-opt exchanges) can lead to an im
proved GTSP solution. This approach has however the drawback of
leaving the set of visited nodes unchanged. In order to remove this
restriction, the following generalized 2-opt scheme has been proposed.
Let (. . . , Co,, C^ , . . . , C^, Q , . . .) be the cluster sequence corresponding
to the current tour T. All the edges of T not incident with the nodes in
CaU CpUC^U Cs are fixed. The scheme tries to exchange the current
cluster sequence into (. . . , C^, C^, . . . , C^, Q , . . .) . To this end, two node
pairs {u*^w*) and {v*^z*) are determined such that

Ciu* + Cu*w* + Cyj*h = mm{cia + Cab + Cbh ' CI ^ Ca, b G C^},

Cjv* + Cy*z* + Cz*k = minjcja + Cab + Cbk ' d ^ Cp, b G Cs},

where nodes i, j , h and k are the nodes visited by T belonging to the
clusters preceding C^, following C^, and preceding Cj and following Cs,
respectively.

GTSP and OP 633

This computation requires |Ca| |C^| + |C/3| [C l̂ comparisons. On the
whole, trying all the possible pairs (Ca^Cp) and (C^^Cs) leads to an
0(71^) time complexity, since each edge of G needs to be considered only
twice.

Moreover, RPl considers a 3-opt exchange trying to modify the clus
ter sequence (. . . , Ca, C^, C^, . . . , Cs^ Cs^...) into (. . . , C^, Cj^..., C^,

We next describe a second refinement procedure, RP2, that proved
to be quite effective in our computational study. Let T be the current
E-GTSP solution, and let (Ch^,... ,Ch^) be the sequence in which T
goes through the clusters. The refinement consists of finding the best
featsible tour, T*, visiting the clusters according to the given sequence.
This can be done, in polynomial time, by solving |C/iJ shortest path
problems, as described below.

We construct a layered acyclic network, LN^ having m + 1 layers cor
responding to clusters C/^^,..., Ch^,Ch^\ see Figure 2.5, where all edges
are directed from left to right. LN contains all the nodes of G, plus an
extra node j ' for each j G C^i- There is an arc (i, j) for each i 6 C^t
and j G C^^^^ (t = 1 , . . . ,m - 1), having cost Cij, Moreover, there is
an arc (i , /) for each i G C^^ and j G C/^i, having cost Cij (these arcs
connect the last two layers of the network). For a given w G C/̂ ,̂ any
path in LN from w to w' visits exactly one node for each layer (cluster),
hence it gives a feasible E-GTSP tour. Conversely, every E-GTSP tour
visiting the clusters according to sequence (C/^^,... jCh^) corresponds
to a path in LN from a certain w G Ch^ to w\ It then follows that the
best E-GTSP tour T* visiting the clusters in the same sequence, can be
found by determining the shortest path from each w G C^^ to the corre
sponding w\ The overall time complexity is then \Ch-^ \ 0{n?)^ i.e., 0{n^)
in the worst case. In practice, the time typically spent is significantly
reduced by choosing Ch^ as the cluster with minimum cardinality, and
using a shortest-path algorithm specialized for acyclic digraphs (e.g..
Bang-Jensen and Gutin [84] and Gormen, Leiserson and Rivest [218]).

Notice that the above refinement procedure leads to an 0((77i—1)! n^)-
time exact algorithm for E-GTSP, obtained by trying all the (m — 1)!
possible cluster sequences. Therefore, E-GTSP is polynomially solvable
for fixed m (independently of n).

2.6. A branch-and-cut algorithm
In this subsection we describe the enumerative algorithm for the exact

solution of the problem proposed by Fischetti, Salazar and Toth in [300].
Since all the instances considered in the computational study have trian-

634 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Figure 13.2. The layered network LN.

gular costs, we give a rather detailed description of the implementation
of the algorithm for the E-GTSP. The algorithm can easily be adapted
to the GTSP. We assume that all costs Cg are integer.

The algorithm follows a branch-and-bound scheme, in which lower
bounds are computed by solving an LP relaxation of the problem. The
relaxation is iteratively tightened by adding valid inequalities to the cur
rent LP, according to the so-called cutting plane approach. The overall
method is commonly known as a branch-and-cut algorithm; we refer to
Padberg and Rinaldi [648] and Jiinger, Reinelt and Rinaldi [474] for
a thorough description of the technique and to [160] for recent de
velopments. We next describe some important implementation issues,
including the best parameter setting resulting from the computational
experience.

Lower bound computation At each node of the decision tree, the
lower bound is computed by solving the LP problem defined by (13),
(14), (19), the bound constraints on the variables, the constraints derived
from branching, plus a subset of GSEC's and generahzed comb inequal
ities. This subset initially coincides with that of the parent node (for
the root node an 'ad hoc' initialization procedure, based on Lagrangian
optimization, will be described later). Notice that the y variables are
not projected away through equations (14), as this would result in a
much denser LP coefficient matrix. Then, in an iterative way, the LP is
solved, and the computation starts by retrieving the optimal LP basis
of the parent node. Some inequalities that are violated by the current
LP optimal solution are added. To this end, we applied in sequence
the separation procedure for fan inequalities, GSEC_H2, GSEC_H1, and
GSEC_SEP. All the violated constraints found (except the fan inequali
ties) are permanently stored in compact form in a global data structure

GTSP and OP 635

called the constraint pool Whenever an inequality introduced in the
current branch-node is slack for 5 (say) consecutive LP solutions, it is
removed from the LP (but not from the pool). Moreover, whenever the
LP-solver takes too long to solve the current LP, all the slack inequalities
introduced in the previous nodes are removed.

LAGRANGIAN RELAXATION

At the beginning of the root node computation, Lagrangian optimiza
tion is applied with the aim of determining a good subset of constraints
for the initial LP, as well as a near-optimal heuristic solution. The fol
lowing (simplified) model for the E-GTSP, in which the y variables have
been projected away through (14), is considered.

ect to

E
eeSiCh)n6{v)

min N
eeE

y Xe — m
eeE

J2 x, = 2
eeS(Ch)

XQ 2 i y XQ

ee5{v)\S{CH)

y ^ Xe<r -1
eeE{S)

Xee{o,n

CQXQ W ^ j

(36)

for/i = l , . . . , m (37)

for/i = l , . . . , m ; veV\Ch{38)

for 5 = U[^iQ. (39)
CiCV\S

2 < r < m - 2

for eeE. (40)

Equation (36) is redundant in this formulation. Inequalities (38) and
(39) are fan and Basic GSEC's, respectively (notice however that not all
GSEC's are included in the model).

The fan inequalities (38), plus the degree constraints (37) for /i 7̂ 1,
are dualized in a Lagrangian fashion. The Lagrangian relaxed problem
calls for m — 2 edges (each connecting two diff'erent clusters) in £" \
S{Ci) inducing no intra-cluster cycles, plus two edges incident with Ci.
Therefore, it can be efficiently solved as follows:

i) shrink G with respect to the m clusters, i.e., replace each cluster
Ch with a single super-node /i, and define for each super-node pair
h^ k a. super-edge (/i, k) with cost

Chk := mm{c'ij : i eCh, j e C/^}, (41)

636 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

where c^ij is the Lagrangian cost of edge (z, j) E E;

ii) compute the min-cost 1-tree (Held and Karp [445]) on the shrunken
graph;

iii) obtain an optimal solution to the Lagrangian relaxed problem by
replacing each super-edge (/i, k) in the 1-tree found at Step ii), with
its corresponding edge (i, j) G E (the one producing the minimum
in (41)).

The computation of near-optimal Lagrangian multipliers is done us
ing classical subgradient optimization. The multipliers are iteratively
updated through two nested loops. In the external loop the multipliers
for the fan inequalities (38) are updated. With these multipliers fixed,
the internal loop adjusts the multipliers for the degree constraints (37)
so as to hopefully produce a tour in the shrunken graph. This is in the
spirit of the successful Help-Karp approach to the standard TSP. At the
end of the internal loop, if the final 1-tree on the shrunken graph is a
tour, a heuristic E-GTSP solution is determined through the refinement
procedure RP2 of Section 2.5, where the cluster sequence C/^^,..., Ch^
is the one induced by the tour in the shrunken graph. This approach
computationally proved to be quite effective in determining near optimal
solutions at the very beginning of the root node computation. At most
1000 and 50 subgradient iterations in the external and internal loops,
respectively, are performed.

R O O T NODE INITIALIZATION

Let Ajl̂ and /iL- be the best Lagrangian multipliers for constraints
(37) and (38), respectively. The initial LP at the root node contains con
straints (2), (36), the bound restrictions on the variables, plus the subset
of the fan inequalities (34) with ^ r > 0. Moreover, the LP contains the
Basic GSEC's (39) that were active in the computation of the 1-tree
on the shrunken graph with respect to (A*,/i*). To be more specific,
the procedure includes in the LP all the constraints (39) whose subset
S corresponds to a connected component detected by the Kruskal [523]
algorithm used for determining the best 1-tree on the shrunken graph.
With this initialization, the optimal value of the first LP relaxation is
guaranteed to be at least as good as the one provided by the Lagrangian
relaxation.

Upper bound computation At the root node, the farthest insertion,
nearest insertion and cheapest insertion procedures are applied, each
followed by the tour improvement procedures, as described in Section
2.5. Moreover, as explained above, for each tour among clusters found

GTSP and OP 637

during the Lagrangian relaxation a new feasible solution is obtained
through procedure RP2. All solutions found are refined through the
tour improvement procedures of Section 2.5.

At any branching node, the information associated with the fractional
point available after each LP solution is exploited, in the attempt of
improving the current UB. To this end, let (a:*,y*) be the optimal LP
solution. A heuristic solution is initiahzed by taking all the edges e
with x* = 1, and then completed through a nearest insertion scheme.
Again, the resulting solution is refined through the tour improvement
procedures.

Branching Two possibilities for branching are considered: branching
on variables and branching on cuts. Let (a:*,y*) be the fractional LP
solution at the end of the current node.

Branching on variables (the standard approach for branch-and-cut)
consists of selecting a fractional x*, and generating two descendent nodes
by fixing the value of Xe to either 0 or L As usual, x* is chosen as close as
possible to 0.5 (ties are broken by choosing the edge e having maximum
cost Ce).

Branching on cuts consists of choosing a subset S C V such that
Y^eeS(S) ^e is not an even integer, and imposing the disjunction

(^ Xe<2k) or (^ Xe > 2/c + 2)
eeS{S) eeS{S)

where k := L^eG(5(5) ^e/^J- Subset S is determined as follows.
Let ^ ; i , . . . , i;^ be the node sequence corresponding to the current best

E-GTSP solution, say (x,^), where the subscripts of v are intended to
be taken as modulo m. Only a few sets S are considered, namely those
obtained as the union of consecutive clusters in the sequence (i.e., of the
form 5 := Q(^^) U C^^v^^^) U . . . U C (̂̂)̂ for some pair (a, fc)), and such
that 2 + s < YleeS(S) ^l '^ ^ — ^ iov e = 0.2. Among these sets 5, if any,
the one maximizing

L{S) := mm{d{vi^Vj) : 2 = a ,aH- l , . . . ,6—1; j = 6 + l , 6 + 2, . . . , a —2}

is chosen, where d{vi, Vj) := Cy.y.+Cy._^^y._^^ -Cy.y.^^-Cy.y._^^ is the addi
tional cost corresponding to the new solution obtained from (x, y) by ex
changing the edge pairs {{vi.Vi^i), {vj.Vj^i)) and {{vi.Vj), (vi^i.Vjj^i)).
L{S) is an estimate on the increase of the cost of the optimal solution
(and of the LP lower bound as well) when imposing J2eeS(S) ^e > 4.
Choosing L{S) as large as possible then hopefully produces a significant
increase in the lower bound of one of the two children of the current
node.

638 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

In the computational study, the "branching on cuts" strategy (that
turned out to be superior) was used, resorting to the "branching on
variables" approach when the procedure does not find a suitable set S.
Since the heuristic solutions computed at the root node are quite good,
a depth-first tree search scheme was implemented (although, in general,
this is not the best strategy one can choose).

2.7, Computational results
In this subsection, the computational behaviour of the branch-and-cut

algorithm proposed by Fischetti, Salazar and Toth in [300] and described
in Section 2.6, is analyzed. The algorithm, implemented in ANSI C, was
run on a Hewlett Packard 9000 Series 700 Apollo. As to the LP solver,
the package CPLEX 2.1, implementing both primal and dual Simplex
algorithms, was used.

The instances of the testbed were obtained by taking all the TSP test
problems from the Reinelt TSPLIB library [709] having 137 < n < 442.
The node clustering has been done so as to simulate geographical re
gions (using the internal costs as the metric), according to the following
procedure. For a given instance, the number of clusters is given by
m := [^/5]. Then m centers are determined by considering m nodes as
far as possible one from each other. The clusters are finally obtained by
assigning each node to its nearest center.

In addition, for the Grotschel and Holland [398] geographical prob
lems GR137 (America), GR202 (Europe), GR229 (Austraha-Asia), and
GR431 (Australia-Asia-Europe) the "natural" clustering has been con
sidered, in which clusters correspond to countries. The resulting in
stances are 35GR137, 31GR202, 61GR229, and 92GR431, respectively.

Tables 13.1 and 13.2 give computational results for the above test
problems. Times are given in HP 9000/720 CPU seconds. For each
problem. Table 13.1 gives the following information for the root node:

Name : in the form mXXXXn^ where m is the number of clusters,
and XXXXn is the name of the problem in TSPLIB (n gives the
number of nodes);

Lagr-LB : percentage ratio LS/(optimal solution value), where LB is
the lower bound value computed through the Lagrangian relax
ation of Section 2.6;

Lagr-UB : percentage ratio t/B/(optimal solution value), where UB
is the upper bound value at the end of the Lagrangian relaxation
(see Section 2.6);

Lagr-t : CPU time, in seconds, for the Lagrangian relaxation;

GTSP and OP 639

Name
35grl37
31gr202
61gr229
92gr431

Lagr-LB
84.82
85.19
85.26
86.36

Lagr-UB
100.00
100.21
102.39
103.55

Lagr-t
8.0

13.8
24.8
83.8

basic-LB
86.81
85.35
85.42
86.49

r-LB
99.44
99.85
99.81
99.84

r-UB
100.00
100.05
100.87
100.05

r-time
31.9

464.8
156.8

2256.5
28grl37
29prl44
30kroal50
30krobl50
31prl52
32ul59
39ratl95
40dl98
40kroa200
40krob200
41gr202
45ts225
46pr226
46gr229
53gil262
53pr264
60pr299
641in318
80rd400
84fl417
87gr431
88pr439
89pcb442

86.53
99.64
84.13
88.15
94.91
86.84
81.50
93.85
82.64
83.29
92.30
83.54
96.70
89.83
85.29
91.90
84.48
92.48
85.28
93.61
93.46
92.26
82.74

101.02
100.00
100.00
100.00
100.00
100.00
101.87
100.48
100.00
100.05
100.05
100.09
100.00
100.37
103.75
100.33
100.00
100.36
103.16
100.13
101.18
101.42
104.22

4.6
2.3
7.6
9.9
9.6

10.9
8.2

12.0
15.3
19.1
20.9
19.4
14.6
49.6
15.8
24.3
33.2
52.5
59.8
77.2

408.3
146.6
78.8

86.64
99.82
84.24
88.35
95.14
86.97
81.71
93.90
82.88
83.47
92.44
83.62
97.21
89.92
85.44
91.98
84.67
92.64
85.52
93.67
93.49
92.39
83.03

100.00
100.00
100.00
100.00
98.45
99.96

100.00
100.00
99.99

100.00
100.00
99.11

100.00
99.58
99.80

100.00
100.00
99.79
99.94

100.00
99.94

100.00
99.49

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.09
100.00
100.00
100.89
100.00
100.00
100.36
102.97
100.00
100.54
100.00
100.29

96.7
8.0

100.0
60.3
51.4

139.6
245.5
762.5
183.3
268.0

1021.3
1298.4

106.2
995.2

1443.5
336.0
811.4
847.8

5031.5
16714.4
26774.0

5418.9
5353.9

Table 13.1. Root node statistics.

basic-LB : percentage ratio LJ5/(optimal solution value), where LB
is the optimal value of the LP relaxation of the simplified model
(35)-(40);

r-LB : percentage ratio LB/(optimal solution value), where LB is the
final lower bound at the root node;

r-UB : percentage ratio f/B/(optimal solution value), where UB is the
final upper bound at the root node;

r-time : CPU time, in seconds, for the root node (including Lagr-t).

According to the table, the upper bound computed using Lagrangian
relaxation is quite tight. On the other hand, the quality of the La
grangian lower bound is rather poor, with an average gap of n .6%.
This is mainly due to the fact that it is derived from the simplified
model (35)-(40). Indeed, notice that the best theoretical lower bound

640 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Name
35grl37
31gr202
61gr229
92gr431
28grl37
29prl44
30kroal50
30krobl50
31prl52
32ul59
39ratl95
40dl98
40kroa200
40krob200
41gr202
45ts225
46pr226
46gr229
53gil262
53pr264
60pr299
641in318
80rd400
84fl417
87gr431
88pr439
89pcb442

optval
28709
14416
65508
75616
35957
45886
11018
12196
51576
22664
854

10557
13406
13111
23239
68340
64007
71641
1013

29549
22615
20765
6361
9651

101523
60099
21657

t-time

iTX"
504.7
215.6
3365.2
96.9
8.2

100.3
60.6
94.8
146.4
245.9
763.1
187.4
268.5
1022.2

37875.9
106.9
1187.5
6624.1
337.0
812.8
1671.9
7021.4
16719.4
31544.6
5422.8
58770.5

LP-t
13.0

366.7
109.3

2342.8
65.0
2.5
63.3
33.0
54.0
98.0
167.7
571.8
108.2
182.7
764.1

34071.0
45.4
870.3
5342.7
204.6
583.9
1038.8
4721.7
12232.3
24873.2
3636.5
43753.5

SEP-t
6.2
46.6
28.5
278.2
6.6
0.1
8.0
5.2
6.9
11.2
26.3
56.9
27.4
23.5
119.3

2481.6
5.0

132.2
943.4
34.4
43.3
292.6
1658.3
2964.2
4540.0
896.9

12712.1

nodes
6"
2
4
4
0
0
0
0
2
2
0
0
2
0
0

190
0
2
16
0
0
10
2
0
2
0
46

cuts
296
1112
793
2219
549
209
594
511
574
599
1104
1189
710
947
1597
8590
513
1428
2676
1016
1358
1680
3092
5102
4354
2979
9427

fan
1 5 0 "
325
355
713
237
175
254
243
246
260
395
334
339
358
335
499
314
393
516
479
536
585
762
962
672
778
949

GSEC
25
709
333
1172
257
7

270
234
250
288
634
750
308
519
1154
3089
139
873
1427
407
685
867
1852
3806
2937
1918
4591

Gcomb

8
0
2
2
0
0
0
0
5
0
0
0
4
0
0

165
0
14
27
0
0
1
0
0
5
0
38

Table 13.2. Branch-and-cut statistics.

for the Lagrangian relaxation equals the optimal value of the LP re
laxation of model (35)-(40). The latter value was computed through
a simplified version of the cutting plane algorithm, and is reported in
the table (column basic-LB). It can be seen that the improvement with
respect to the Lagrangian lower bound is negligible.

Table 13.2 shows the performance of the overall enumerative algo
rithm. For each problem the table gives:

Name : the problem name;

optval : value of the optimal solution;

t-time : CPU time, in seconds, for the overall execution;

LP-t : overall CPU time, in seconds, spent by the LP solver;

SEP-t : overall CPU time, in seconds, spent for separation;

GTSP and OP 641

nodes : number of nodes of the branch-decision tree (=0 if no branching
is required);

cuts : total number of cuts generated, including those found by the
Lagrangian initiahzation (Section 2.6) and those recovered from
the pool;

fan : total number of fan inequalities generated;

GSEC : total number of GSEC's found by the heuristic procedures
GSEC_H1 and GSEC_H2 of Section 2.4.1.

Gcomb : total number of generalized comb inequalities generated.

The table shows that all the considered instances can be solved to
optimality within an acceptable computing time. Moreover, a significant
part of the total computing time is spent within the LP solver. In about
50% of the cases, no branching is needed. The results also show that
natural clustering produces easier instances than those obtained through
the clustering procedure.

As to procedure GSEC_SEP, it never found violated cuts, with the
only exception of instance 45TS225 for which 9 cuts were detected. This
proves the effectiveness of the heuristic separations for GSEC's. The
inequalities which are most frequently recovered from the pool are the
GSEGs (24).

In order to evaluate the effect of different clusterizations of the nodes,
a second clustering procedure has also been considered to simulate geo
graphical regions. Given a TSP instance, let {xi^yi) be the geographical
coordinates of the zth node (z = l , . . . , n) . This information is pro
vided in TSPLIB for all the instances considered in Table 13.3. Let
xmin^ xmax^ ymin and ymax be the minimum and maximum x- and y-
coordinates, respectively. The procedure considered the rectangle whose
vertices have coordinates (xmin^ymin)^ (xmin^ymax)^ (xmax^ymax)^
and (xmax^ymin)^ and subdivided it so as to obtain an NG x NG
grid in which each cell has edges of length {xmax — xmin)/NG and
(ymax — ymin)/NG. Each cell of the grid containing at least one node
corresponds to a cluster. As to NG^ it is determined so as to have a
prefixed average number // (an input parameter) of nodes in each cluster.
To this end, let CLUSTER(NG) be the number of nonempty clusters
corresponding to the NG x NG grid, and define NG as the minimum
integer such that CLUSTER(NG)> n/fi.

Table 13.3 gives, for each test problem and value of /x = 3, 5,10, the
overall CPU time (in HP 9000/720 CPU seconds), the number of nodes
of the branch-decision tree, and the number m of clusters.

Comparing Table 13.3 (for /i = 5) and Table 13.2 shows that the grid
clusterization produces harder instances. No correlation exists, instead.

642 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Name

i?137
prl44
kroalSO
kroblSO
prl52
ul59
rat195
dl98
kroa200
krob200
gr202
ts225
pr226
gr229
gil262
pr264
pr299
lin318
rd400
fl417
pr439
pcb442

M
t-time

81.7
28.8
56.3
40.5
68.7
36.5
84.4

539.5
207.2

2031.9
2644.3
453.4
130.7
312.0

5674.6
747.1
761.3

37117.4
21764.6

7687.9
1905.7

1 23226.1

= 3
nodes

0 ~
0
2
0
4
0
2
0
2

54
34
14
0
0

104
16
2

220
118

0
6

86

m
46
48
57
56
54
58
81
67
72
76
73
75
78
80
96

101
102
108
135
142
163
155

1^
t-time

9 4 7 ~
25.3
72.5

100.0
455.2
154.3

1409.5
591.2

1696.3
119.1
727.4

-
65.6

1895.1
10763.1

109.6
4629.9

16784.8
87308.1
10373.7
18876.5
39155.3

= 5
nodes

0~
0
0
2

42
0

18
0

30
0
2
-
0
8

42
0

12
40

198
0

14
24

m

~W
30
36
36
33
38
49
40
47
48
43
45
50
46
63
55
69
64
81
93
96
96

fi =

t-time
972.0

21.8
111.2
79.2
35.5

107.4
423.5

2849.9
339.5
422.2
450.1

10601.5
105.7

9391.9
1141.0
376.8

2730.6
71010.7
21156.8

919.2
35652.6
15266.6

10
nodes

0~
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0

26
2
0
8
0

m

"H
16
16
16
16
23
25
25
25
25
21
25
24
23
36
27
35
36
49
43
48
48

Problem ts225 with /x = 5 required more than 100,000 CPU seconds.

Table 13.3. Some computational results with different clusterizations.

between the difficulty of the problem and the average number of nodes
in each cluster.

On the whole, the computational performances of the branch-and-cut
algorithm are quite satisfactory for our families of instances. All the
test problems in the test bed were solved to optimality within accept
able computing time, with the only exception of problem TS225 with
grid clusterization (case /i r= 5 of Table 13.3). Moreover, the heuristic
algorithms proposed allow one to compute very good solutions within
short computing time. As shown in Table 13.1, after the Lagrangian
phase the average percentage error with respect to the optimum is 0.9%
(see column Lagr-UB)^ and 0.2% at the end of the root node (see column
r-UB).

3. The Orienteering Problem
As stated in the introduction, we are given a set of n nodes, each

having an associated nonnegative prize py^ and a distinguished "depot"
node, say node 1. Let t(^j) be the time spent for routing nodes i and j in

GTSP and OP 643

sequence. The Orienteering Problem (OP) is to find a cycle C through
node 1 whose total duration t{C) does not exceed a given bound to,
and visiting a node subset with a maximum total prize. Without loss of
generality, we can assume that cycle C contains at least three nodes.

The problem can be formulated as

v{OP) = max ^ pyyy (42)
vev

subject to

^ t e X e < t o , (43)
eeE

x{6{v)) = 2yy foYveV, (44)

x{6{S)) >2yy ior ScV,leS,veV\S, (45)

yi = 1, (46)
XeG{0,l} foreG^; , (47)

yye {0,1} foTveV\{l},

Because of the degree constraints (44), inequahties (45) can equiva-
lently be written as

x{E{S)) < y{S) -yy for S C V,l e S,v e V \ S (49)

and
x{E{S)) < y{S) -yy for S C V,l e V \ S,v e S. (50)

Notice that the inequalities (16), although valid, are dominated by (45)
as 2̂ — 1 < 0 for all i e. V.

This section is mainly based on the results given by Fischetti, Salazar
and Toth in [301]. Section 3.1 discusses a number of additional con
straints, which improve the quality of the LP relaxation of the basic
model. We also analyze a family of conditional cuts^ i.e., cuts which cut
off the current optimal solution. Separation procedures are described in
Section 3.2, whereas Section 3.3 presents heuristic algorithms for find
ing approximate OP solutions. An overall branch-and-cut algorithm is
described in Section 3.4. In that section, an effective way of integrating
conditional cuts within the overall framework is also presented. Exten
sive computational results on several classes of test problems involving
up to 500 nodes are presented in Section 3.5.

3.1. Additional inequalities
In this section we describe five classes of additional inequalities for

OP. These inequalities are capable of strengthening the LP-relaxation

644 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

of model (42)-(48). The first two classes do not rely on the total time
restriction (43), and are derived from the cycle relaxation of OP [79, 92].
The remaining classes, instead, do exploit the total time restriction.

A polyhedral analysis of the OP appears very difficult, and to our
knowledge it has not been addressed in the literature. From the prac
tical point of view, however, these cuts proved to be of fundamental
importance for the solution of most instances.

Logical constraints Clearly, Xe = I for some e G 6{j) imphes yj = 1.
Hence the logical constraints

Xe<yjioiSi\\ee6{j)JeV\{l} (51)

are valid for OP. Whenever e — {v,j) ^ (5(1), inequality (51) is a partic
ular case of (50) arising for 5 = {v^j}- On the other hand, for e G 5{1)
these inequalities do improve the LP relaxation of model (42)-(48). To
see this, consider the fractional point (x*, y*) with XI2 == ^13 = 1? 2/1 == 1̂
y2~y3~ V^ (ŝ ll other components being 0). Assuming ti2 + tia < /;o,
this point satisfies all the constraints of the relaxation, but not the con
straints (51) associated with e = (1,2) and j = 2, and with e = (1,3)
and j — 3.

We observe that the addition of (51) to model (42)-(48) makes the
integrality requirement on the y-variables redundant. Indeed, let (x*, y*)
be any point satisfying (43)-(47) and 0 < ?/̂ < 1 for all v ^V ^ and define
T* := {e G £; : X* = 1}. Then from (44) we have y^ = \T*n6{v)\/2 for all
V eV, i.e., yy G {0,1/2,1}. But yy = 1/2 would imply T* n 5{v) = {e}
for some e G S{v)^ which is impossible since in this case the corresponding
logical constraint (51) would be violated.

2-matching inequalities The well-known 2-matching constraints for
the TSP have the following counterpart in the cycle relaxation of OP:

x{E{H)) + x{T) < y{H) + & : i , (52)

where H <zV is called the handle, and T C 5{H) is a set with | r | > 3,
\T\ odd, pairwise disjoint teeth. This inequahty is obtained by adding
up the degree constraints for dX\v ^ H and the bound constraints Xe < 1
for all e ET, dividing by 2, and then rounding down all the coefficients
to the nearest integer.

Cover inequalities The total time constraint (43), along with the
requirements Xg G {0,1} for e G £", defines an instance of the 0-1 Knap
sack Problem (KP), in which items correspond to edges. Therefore, every

GTSP and OP 645

valid KP inequality can be used to hopefully improve the LP relajcation
of the OP model. Among the several classes of known KP inequalities,
let us consider the cover inequality (see, e.g., Nemhauser and Wolsey
[625]):

x{T) < \T\ - 1, (53)

where T C £̂ is an inclusion-minimal edge subset with J2eeT^^ ^ ô-
This constraint stipulates that not all the edges of T can be selected in
a feasible OP solution.

A cover inequality can in some cases be strengthened. In particular,
one can easily obtain the valid extended inequality

x(Tug)< |r | - i , (54)

where Q := {e e E \T : te > max/^T if}-
A different improvement is next proposed, which exploits the fact that

the selected edges have to define a cycle. The improvement can only be
applied in case T defines an infeasible cycle passing through node 1, and
leads to the cycle cover inequality:

x{T) < viViT)) - 1. (55)

Validity of (55) follows from the easy observation that x{T) > y{V{T))
would imply Xe = 1 for all e e T. Figure 3.1 shows a fractional point
violating a cycle cover inequality but not other previous inequalities.
More generally, (55) is a valid inequality whenever T does not contain
any feasible cycle. This generahzation will be studied in the forthcoming
subsection on conditional cuts.

o ?̂ ; = «

Vj = 1 -

(§) ?/; = 1

n

X* = o-

xl = \~a

= = = K =]

Figure 13.3. Fractional point violating a cycle cover inequality for the OP instance
with to=6 and t^=\ for all e G £: (0 < a < 1/2). Here T = {(1,ii), (ii,22), • • •, (^6,1)},
x{T) = 2 + 5a, and y{V{T)) = 3 + 4a.

646 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Path inequalities The previous classes of additional inequalities (ex
cept the cycle cover inequalities) are based either on the cycle or on the
knapsack relaxation of the problem. We next introduce a new family of
constraints that exploit both relaxations.

Let P = {(^1,̂ 2)5 (̂ 2̂ 3̂)7 ••• 5 (̂ /c-i?^A:)} be any simple path through
V{P) = {zi , . . . ^ik} Qy \ {1}, and define the nodeset:

W{P) := {v e V\V{P) : Pu{{ik,v)} can be part of a feasible OP sol.}.

We allow P to be infeasible, in which case W{P) — 0. Then the following
path inequality

(56)

is valid for OP. Indeed, suppose there exists a feasible OP solution
(x*,7/*) violating (56). Then

veW{P)

where x*.-.^^ - y*. < 0 for all j == 2 , . . . , /c - 1. It then follows that

*̂iz2 ^ 1 (he^^^ yz2 = 1)̂ *̂223 -yi2=^ (hence x*̂ .3 - 1 and y^ = 1),
• • -̂ <._iz. -y:,., = 0 (hence <^_^,^ - 1), and a:*̂ , - 0 for all v G W{P).
But then solution (a:*,y*) cannot be feasible, since it contains all the
edges of P, plus an edge (i/c,ti;) with w ^ W{P).

Figure 13.3 shows a typical fractional point that is cut off by a path
inequality. This point can be viewed as the convex combination of two
cycles, one of which is infeasible because of the total time requirement.

k-l k-l

3=1 j=2
/ ^ ^ikV — ^

veW{P)

0 ?̂ ; = ^

• ? y ; = 1 - ^

(•) y; = ^

—

—

= =

xl = a

x: = i -

x: =]

- a

Sr w{p) = {\}

Figure 13.4. A fractional point violating a path inequality for the OP instance with
to=6 and te^l for all e G ^ (0 < a < 1/2).

GTSP and OP 647

Recall that , for any given F C E, t{F) stands for YleeF'^^- ^ h e
definition of W{P) amounts to checking for each v eV \ V{P) whether
there exists a cycle of the form C = Pi U {P U {ik,v}) U P2, where Pi
and P2 are node-disjoint paths from 1 to zi and v^ respectively, such
that t (P i) + t{P) + tij^y + t(P2) < ^0- A simpler condition (producing
a possibly larger set W{P), and hence a weakened inequahty (56)) is
obtained by removing the requirement tha t Pi and P2 share no node
(except node 1). This leads to the alternative definition of W{P) as

W{P) :^{veV\ V{P) : d (l , h) + t{P) + U,y + d (l , v) < to}, (57)

where for each j e V \ {1}, c/(l, j) gives the total time associated with
the shortest path from node 1 to node j .

Condi t iona l cu t s We next address inequalities that are not guar
anteed to be valid for our problem, but can nevertheless be used in a
cutting plane context.

Suppose that a heuristic OP solution of value (say) LB is available. In
the process of finding an optimal OP solution we are clearly interested
in finding, if any, a feasible solution of value strictly better than LB.
Therefore, any inequality can be exploited as a cutting plane, provided
that it is satisfied by every feasible OP solution of value greater than
LB. These inequalities are called conditional cuts.

Let us consider a general family of inequalities of the type

x{T) < y{V{T)) - 1, (58)

where T C E is chosen in an appropriate way. It can be seen easily tha t
x{T) < y{V{T)) holds for every feasible solution, no matter how T is
chosen. Moreover, x{T) = y{V{T)) implies that the OP solution consists
of a cycle entirely contained in T. It then follows that (58) can be used as
a conditional cut, provided that no feasible O P solution of value strictly
greater than LB is contained in T. This occurs, in particular, when

T = E{S) for some S cV such that 1 G 5 and ^^Pv < LB. (59)
ves

A different approach for defining conditional cuts, based on enumeration,
will be described in the following section.

3.2. Separation algorithms
In this section we outline exact and/or heuristic algorithms, proposed

by Fischetti, Salazar and Toth [301], for the following separation problem:
Let JT be one of the families of OP inequalities described in Section

648 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

3.1; given a point (x*,y*) G [0,1]^^^ which satisfies (43)-(44), find a
member ax + /?y < 7 of JT which is (mostly) violated by (x*, y*), if any.

We denote by G* = {V*^E*) the support graph associated with the
given (x*,y*), where V* := {v e V : y^ > 0} and E"" := {e e E : x^ >
0}.

Cut inequalities (45) Let x* be viewed as a capacity value associated
with each edge e e E*. For any fixed node v G y * \ { l } , a most violated
inequality (45) (among those for the given v) is determined by finding
a minimum-capacity (l,t;)-cut, say (5^ ,^* \ Sy), on G*. This requires
0 (| y*p) time, in the worst case, through a max-flow algorithm. Trying
all possible v G y* \{ l} then leads to an overall 0(|y*|^)-time separation
algorithm.

The nodes v are considered in decreasing order of the associated y*.
Whenever a violated inequality (45) is found for (say) the pair Sy and
v^ the capacity x^^ is increased by the quantity 2 — x*{S{Sy)). This
prevents the cut {Sy^ V* \Sy) from being generated again in the subse
quent iterations. Moreover, in order to increase the number of violated
inequalities detected by a single max-flow computation, two minimum-
capacity (l,?;)-cuts are considered for each v, namely (5(,, V* \ S[j) and
(y* \ Sy^Sy)^ where Sy (respectively, S[j) contains the nodes connected
to node v (respectively, node 1) in the incremental graph corresponding
to the maximum flow vector. Nodeset Sy gives an hopefully violated
inequality (45), whereas Sy is used, as explained later, for producing a
conditional cut.

Logical constraints (51) This family can be dealt with by complete
enumeration, with an overall 0(|£^*|) time complexity.

2-niatching constraints (52) These inequahties can be separated in
polynomial time through a simple modification of the Padberg and Rao
[644] odd-cut separation scheme. In order to reduce the computational
effort spent in the separation, however, the following simple heuristic
can be implemented. Values x* are interpreted as weights associated
with the edges. The greedy algorithm of Kruskal is applied to find
a minimum-weight spanning tree on G*. At each iteration in which
this algorithm selects a new edge e, the connected component which
contains e, say iJ, is determined (in the subgraph of G* induced by all
the edges selected so far). The nodeset H is then considered as the
handle of an hopefully violated 2-matching constraint. In this way, the
procedure generates efficiently all the connected components H of the
subgraph GQ — {V, EQ) induced hy Ep :— {e ^ E \ Q < x^ < 9} for every

GTSP and OP 649

possible threshold 9. These sets H have high probability of being the
handle of a violated 2-matching constraint, if one exists. For any H^
tooth edges are determined, in an optimal way, through the following
greedy procedure. Let S{H) = { e i , . . . , e^} with :r*̂ > x*^ > . . . > x* .
The requirement that the teeth have to be pairwise disjoint is initially
relaxed. For any given | r | > 3 and odd, the best choice for T consists of
the edges e i , . . . , 617-1. Therefore, a most violated inequality corresponds
to the choice of the odd integer \T\ > 3 which maximizes x*^ + {x^^ +
a:*3 — 1) + . . . + {^l + X* — 1). If no violated cut can be produced
in this way, then clearly no violated 2-matching constraint exists for the
given handle. Otherwise a violated 2-matching constraint exists in which
two tooth edges, say e and / , may overlap in a node, say v. In this case,
the inequality is simplified by defining a new handle-tooth pair {H\ T')
with r :=T\ {e, / } , and H' :^ H \ {v} (if v e H) or H' := H U {v}
(if V ^ H). It is then easy to see that the inequality (52) associated
with this new pair {H\T') is at least as violated as tha t associated
with the original pair (H^T). Indeed, replacing {H^T) with {H\T')
increases the violation by, at least, l-\- yy — x{5{v)) > 2yy — x{6{v)) = 0
{if V e H)^ or 1 — yy > 0 {if v ^ H). By iterating this simphfication
step one can then always detect a violated 2-matching constraint with
non overalapping teeth. In some cases this procedure could even lead
to a 2-matching constraint with | r | = 1; if this occurs, the inequality is
rejected in favour of an inequality (45) associated with the handle.

P a t h inequal i t ies (56) Let us assume tha t the fractional point (x*, y*)
satisfies all logical constraints (51), and observe tha t the path inequality
associated with a given path P cannot be violated by (x*, y*) if x* ^ =
0 for some (2/^,2/^+1) 6 P. This follows from the fact that (56) can be
rewritten as

h-l k-l

2_^\^ijij + l ~ Vij + l) + ^ihih+l + 2^ V^bb + 1 ~ ^b^' " 2-^ ^'^'^^ —
j=l j=h+l veW{P)

where all terms involved in the first two summations are nonpositive by
assumption. Hence every violated path inequality must be associated
with a path P contained in the support graph G*. Since this graph is
usually very sparse, a simple enumeration scheme can be implemented
to detect the path P producing a most violated path inequality. The
procedure starts with an empty node sequence P. Then, iteratively,
the current P is extended in any possible way, and the associated path
inequality is checked for violation. Whenever for the current pa th P =

650 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

{ (2 1 , 2 2) , . . . , (i A : - l , ^ / c) }

/ c - 1 / c -1

holds, a backtracking step is performed, since no extension of P can lead
to a violated cut.

Cover inequalities (54)-(55) We first address the separation prob
lem for cover inequahties, in their weakest form (53), which calls for an
edgeset T with YleeT ^e > to which maximizes x*(T) — | r | + 1. It is well
known that this problem can be formulated as

a* : = m i n ^ (l - x *) z e (60)
eeE

subject to

J]^e^e>to + l, (61)
eeE

ze e {0,1} for eeE. (62)

Although A/'P-hard, the knapsack problem (60)-(62) can typically be
solved within short computing time by means of speciahzed codes (see
Martello and Toth [586]). Moreover, all variables Ze with x* = 0 can be
fixed to 0, because Ze = I would imply a* > 1. Analogously, one can set
Ze = I whenever x* = 1, since in this case its weight in (60) vanishes.

If (J* > 1 then no violated cover inequality (53) exists. Otherwise,
T := {e e E : Ze = 1} gives a most violated such cut. In both cases,
it is worth checking the extended cover inequalities (54) associated with
T for violation. Notice that, because of the fact that some weights in
(60) can be zero, the edgeset T which gives the optimum in (60) is not
guaranteed to be minimal with respect to property (61). Therefore, in
order to have a stronger inequality one can make T minimal (in a greedy
way) before checking the extended inequality (54) for violation.

A heuristic separation algorithm for the cycle cover inequalities (55),
associated with an infeasible cycle T, is now outhned. The heuristic is
intended to produce several candidate cycles T with large value of x*(T).
To this end, the values x* are interpreted as weights associated with the
edges, and a maximum-weight spanning tree on G is computed. The
edges eeE* not in the tree are then consider, in turn: if the addition
of e to the tree induces a cycle T passing through node 1 and such that
YleeT^e > to, then a valid inequality (55) is obtained, that is checked
for violation.

GTSP and OP 651

Conditional cuts (58) Two heuristic separation procedures for con
ditional cuts have been implemented. Let LB be the value of the current
best solution available.

The first procedure is based on condition (59), and is embedded within
the max-flow separation algorithm for inequalities (45) described earlier.
For each set 5^ therein detected which satisfies ^y^s' Vv ^ LB and
1 G S'y, the procedure sets T = E{S'y) and checks (58) for violation.

The second procedure is based on the observation that (58) can always
be used as a conditional cut, provided that the lower bound value LB
is updated by taking into account all the feasible OP solutions entirely
contained in T. This amounts to computing

LB :=max{LB,i;(OPT)},

where V{OVT) is the optimal OP value when Xg = 0 is imposed for all
e e E\ T. Although the computation of V{OVT) requires exponential
time in the worst case, for a sufficiently sparse edge set T it is likely that
even a simple complete enumeration scheme can succeed in determining
V{OVT) within short computing time. The procedure defines T := E*^
hence ensuring that the corresponding conditional cut (58) is violated
since x*(r) = x\E) and y\V(T)) = y*(y), where x%E) = y*(y)
because of the degree equations (44). A simple algorithm for solving
OP, based on complete enumeration, is then applied on the support
graph C*. If the enumeration ends within a fixed time-limit TL then,
after the updating of LB, (58) is guaranteed to be a valid conditional
cut to be added to the current LP.

3.3. Heuristic algorithms
The performance of the enumerative exact algorithms improves if one

is capable of early detecting "good" feasible OP solutions. To this end,
Fischetti, Salazar and Toth [301] proposed the following heuristic pro
cedure, working in two stages. In the first stage, a feasible cycle C is
detected, which is likely to contain a large number of edges belonging to
an optimal solution. In the second stage, refining procedures are applied
to derive from C a better feasible circuit. The method is along the same
fines as the heuristic proposed by Ramesh and Brown [692], but uses LP
information to guide the search. A brief outline follows.

On input of the first stage, the heuristic receives, for each edge e e E^
an estimate We^ 0 < We < 1^ of the probabihty of having edge e in an
optimal solution. The computation of values We is described in Section
3.4. The edges are sorted in decreasing order of w^^ with ties broken
so as to rank edges with smaller time te first. Then an edge subset T

652 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

containing a family of node-disjoint paths with large probability of being
part of an optimal solution, is heuristically detected in a greedy way. To
be specific, the procedure initializes T := 0 and then considers, in turn,
each edge e according to the given order: If T U {e} contains a node
with degree larger than 2, the edge is rejected; otherwise T is updated
as T := T U {e} if T U {e} is cycle-free, else the algorithm is stopped.

Starting with T, the required feasible cycle C is obtained by means of
the following steps. First, all the nodes in ^ \ {1} that are not covered
by T are removed from the graph. Then, the paths of T are linked into a
cycle, C, passing through node 1. To this end, a simple nearest-neighbor
scheme is apphed which starts from node 1, and iteratively moves to the
nearest uncovered extreme node of a path in T. At the end of this phase,
a check on Xleec ê ^ ô is performed. If the condition is not satisfied,
the following procedure is applied to make C feasible. For any given
node V covered by C, let iy and jy denote the two neighbors of v in C.
The procedure iteratively removes a node v from C, i.e., replaces (iy^v)
and (jv^v) with the short-cut (ivdv)- At each iteration v is chosen (if
possible) as a minimum-prize node whose removal makes C feasible, or
else as a node that minimizes the score Pv/iUyv + ^jvv — Uyjv)-

In the second stage of the heuristic, the procedure receives as input
the feasible cycle C computed in the first stage, and iteratively tries
to improve it. At each iteration, 2-optimality edge exchanges inside C
are first performed, so as to hopefully reduce its total time. Then an
attempt is performed to add to C a maximum-prize node belonging to
the set Q{C) containing the nodes v not covered by C, and such that
^^^{i,j)ec{Uv + tjv-Uj} < to-^eec^e- If Q(C') 7̂ 0, the node insertion
is performed and the step is repeated. Otherwise, the whole procedure
is re-applied on the cycle obtained from C by removing, in turn, one of
its nodes.

3.4. A branch-and-cut algorithm
We next outline the main ingredients of the branch-and-cut algorithm

proposed by Fischetti, Salazar and Toth [301] for the optimal solution
of OP.

The initialization phase At the root node of the branch-decision
tree, a lower bound on the optimal OP value is computed through the
heuristic algorithm of Section 3.3, with edge weights We =" 0 for all
e e E. In addition, the first Linear Program (LP) to be solved is set-up
by taking:

1 all variables Vv^ v ^V]

GTSP and OP 653

2 the variables Xg associated with edges belonging to the initial
heuristic solution;

3 for all V ^V ^ the variables Xg associated with the 5 smallest-time
edges e G S{v)\

4 the total time constraint (43);

5 the n degree equations (44);

6 the lower and upper bounds on the variables.

Finally, the constraint pool (i.e., the data structure used to save the
OP constraints that are not included in the current LP) is initialized as
empty.

The cutting plane phase At each node of the branch-decision tree,
the procedure determines the optimal primal and dual solutions of the
current LP, say (x*, y*) and u*, respectively —in case the current LP re
veals infeasible, it introduces artificial variables with very large negative
prize. Notice that the value of the primal solution, namely YlivevP'^yy'^
is not guaranteed to give an upper bound on the optimal OP value, as
the current LP contains only a subset of the x-variables. Then the so-
called pricing phase is entered, in which the dual solution u" is used to
compute the reduced cost Cg of the variables Xg that are not part of the
current LP, which are by default set to 0. The variables Xg which price-
out with the wrong sign (i.e., Cg > 0), are added to the LP, which is then
re-optimized with the primal simplex algorithm. In order to keep the
size of the LP as small as possible, the procedure never adds more than
100 variables at each round of pricing (chosen among those with largest
reduced costs). The pricing loop is iterated until all variables price-out
correctly, i.e., until the current LP value, say UB, is guaranteed to be
an upper bound on the optimal OP value. In this case, if the current
node is not fathomed the following purging phase is entered. Let LB
denote the value of the best OP solution known so far. The variables
Xg with [UB -h 4ceJ < LB, along with the constraints that have been
slack in the last 5 iterations, or whose slack exceeds 0.01, are removed
from the current LP. Moreover, at the root branch-decision node, all the
variables Xg with [UB + CgJ < LB are fixed to 0, and all the variables
with [UB — CgJ < LB are fixed to 1 (this latter condition may only apply
to LP variables at their upper bound).

The separation phase is next entered, in which constraints violated
by (x*,y*) are identified and added to the current LP. The separation
algorithms described in Section 3.2 are applied. The constraint pool is
first searched. Then the procedure checks, in sequence, the logical con
straints (51), the inequalities (45), the 2-matching constraints (52), the

654 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

cover inequalities (54)-(55), the path inequahties (56), and the condi
tional cuts (58). The time hmit TL used for the enumeration required in
the conditional cut separation, is set to 5-TS, where TS is the computing
time so far spent in the last round of separation. Whenever a separation
procedure succeeds in finding violated cuts, the separation sequence is
stopped, and all the cuts found are added to the LP.

In order to reduce tailing off phenomena, a branching is performed
whenever the upper bound did not improve by at least 0.001 in the last
10 cutting-plane iterations of the current branching node.

At every fifth application of the separation algorithm, an attempt is
performed to improve the current best OP solution through the heuristic
algorithm described in Section 3.3. The values We required by the algo
rithm are set to x* for sll e e E. This choice computationally proved
very effective and typically produces very tight approximate solutions.
An additional heuristic is embedded within the second separation pro
cedure for conditional cuts (58), as described in Section 3.2. Indeed, the
enumeration of the OP solutions contained in the support graph of x*,
therein required, can in some cases improve the current LB.

The branching s tep Whenever a branch-decision node cannot be
fathomed, a branching step is performed, in a traditional way, by fixing
Xf = Oovxf = l for a variable Xf chosen as follows. The 15 fractional
variables Xe with x* closest to 0.5 are selected. For each such candidate
branching variable Xg, two values, say UBg and UBg, are computed by
solving the current LP amended by the additional constraint Xe = 0 and
Xe = 1, respectively. Then, the actual branching variable Xf is chosen
as the one that maximizes the score 0.75 • UB^ + 0.25 • UB^.

The overall a lgori thm At the root node of the branch-decision tree,
the initialization phase and the cutting-plane phase are executed. When
all separation algorithms fail and the current node is not fathomed,
a branching step is performed. However, for the root node only, the
following alternative scheme is executed.

According to computational experience, the conditional cut associated
with the support graph G* = {V{E*),E*) of the current LP solution
(x*,?/*), namely

x{En < y{y{E^)) - 1, (63)

is quite effective in closing the integrality gap. Unfortunately, for rather
dense G* the simple enumeration scheme described in Section 3.2 is
unlikely to complete the enumeration of all possible OP solutions con
tained in G*, within the short time limit allowed. Nevertheless, cut (63)
is added to the LP even when this enumeration fails (in this case the

GTSP and OP 655

cut is called a branch cover cut). This choice may however cut off the
optimal OP solution as well, if this solution is contained in G*. This
possibility can be taken into account by storing the graph G*, with the
aim of dealing with it at a later time. With the branch cover cut added
to the LP, the cutting plane phase is then re-entered until again all sepa
rations fail. Then, if needed, the whole scheme is iterated: the procedure
adds a new branch cover cut, stores the current support graph G*, and
re-enters the cutting plane phase.

In this way, a sequence of support graphs, say G* = (y{E*)^ E*) for
i = 1 , . . . , fc, are produced and stored until the root node is fathomed. At
this point, the computation is not over, as it is necessary to consider the
best OP solution within each graph G]^,.. . , G^ or, alternatively, within
the "union" of these graphs, defined as G = {V{E),E \= uf^i^*).
To this end, all the branch cover cuts are removed from the constraint
pool, and the branch-and-cut algorithm is re-applied on the OP instance
associated with G. In order to guarantee the convergence of the overall
algorithm, the generation of branch cover cuts is inhibited in this second
branch-and-cut round.

As explained, the branch-and-cut scheme works in two stages. In
the first stage branching is avoided by adding branch cover cuts. In
the second stage, a sparse graph G (resulting from the branch cover cuts
produced in the first stage) is considered, and a classical branching strat
egy is used to close the integrality gap. The computational experience
shows that the overall scheme typically performs better than (although
does not dominate) the classical one. Indeed, the second stage takes
advantage from a large number of relevant cuts (produced in the first
stage and stored in the constraint pool), as well as from a very tight ap
proximate OP solution. On the other hand, for some instances the first
stage exhibits a slow convergence in the last iterations, due to taihng-off
phenomena. To contrast this behavior, branching is allowed even in the
first stage. Namely, at each node a branching step is performed after
the addition of 5 branch cover cuts.

3.5. Computational results
The branch-and-cut algorithm proposed by Fischetti, Salazar and

Toth [301], and described in the previous section (called EST in the
sequel) was implemented in ANSI C language, and run on an Hewlett
Packard Apollo 9000/720 computer. CPLEX 3.0 was used as LP solver.
Four different classes of test problems are considered. The reader is
referred to [301] for more computational results.

656 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

The first problem class (Class I) includes 15 instances from the OP and
Vehicle Routing Problem (VRP) literature. Problems 0P21, OP32, and
OP33 are OP instances introduced by Tsiligirides [796], with travel times
multiplied by 100 and then rounded to the nearest integer. Problems
ATT48, EIL30, EIL31, EIL33, EIL51, EIL76, EILlOl, and GIL262 are
VRP instances taken from Ubrary TSPLIB 2.1 of Reinelt [709]. Problems
CMTlOl, CMT121, CMT151, and CMT200 are VRP instances from
Christofides, Mingozzi and Toth [191]. For all the VRP instances, the
customer demands are interpreted as node prizes.

The second problem class (Class II) includes all the TSP instances
contained in TSPLIB 2.1 involving from 137 to 400 nodes (problems
GR137 to RD400). For these instances, the node prizes pj, for j €
V \ {1}, have been generated in three different ways:

Generation 1: pj

Generation 2: pj

Generation 3: pj

= 1;

- 1 + (7141 • (j - 1) + 73) mod (99);

= 1 + [99 • tij/6]^ where 6 := maxi^y^^iy tu.

(The above is an errata corrige of the prize definition for Generation 2
given in [301] which was pointed out to be incorrect by Fink, Schneidereit
and Voss [290].)

Generation 1 produces OP instances in which the goal is to cover as
many nodes as possible, as occurs in some applications. Generation 2
is intended to produce pseudo-random prizes in range [1,100], whereas
Generation 3 leads to more difficult instances, in which large prizes are
assigned to the nodes far away from the depot.

For the third problem class (Class III), random instances have been
obtained by using the original Laporte and Martello [536] code. In this
class, both prizes and travel times are generated as uniformly random in
tegers in range [1,100], with travel times triangularized through shortest
path computation.

For all problem classes, the maximum total travel time to is defined as
\a ' ^'(TSP)], where t>(TSP) is the length of the corresponding shortest
Hamiltonian tour, and a is a given parameter. For all instances taken
from TSPLIB, the value i;(TSP) is provided within the hbrary. For prob
lems 0P21, OP32, OP33, CMTlOl, CMT121, CMT151, and CMT200,
respectively, the following values for ?;(TSP) have been used: 4598, 8254,
9755, 505, 545, 699, and 764. As to the random problems of Class III, the
approximate value computed by the original Laporte-Martello code has
been used, namely v{TSP) := [0.95-t/5(T5P) + 0.5j, where UB{TSP)
is the length of the tour obtained by the heuristic algorithm proposed
by Rosenkrantz, Stearns and Lewis [730].

GTSP and OP 657

Name
op21
op32
op33
att48
eilSO
eil31
eil33
eil51
eil76
eillOl
cmtlOl
cmtl21
cmtlSl
cmt200
gil262

to
2299
4127
4878
5314

191
103
221
213
269
315
253
273
350
382

1189

r-time

oT"
1.3
1.8
0.8
5.2
0.5
8.5
2.4
3.1
5.6

36.9
411.1
131.8
147.4
365.8

%-LB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.1
0.0
0.2

%-UB
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.8
0.1
0.0
0.2

nodes

2
39

5
17
35

cuts
58~
91

109
55

170
32

215
150
118
159
514

1350
451
859

2370

optval
205~
160
500

30
7600

747
16220

508
907

1049
1030
715

1537
2198
8456

%-vis
61.9
56.2
63.6
64.6
26.7
58.1
48.5
54.9
59.2
57.4
56.4
52.9
55.6
62.0
54.8

t-time
0 7
1.3
1.8
0.8
5.2
0.5
8.5
2.4
3.1
5.6

55.2
1525.6

167.3
596.3

3252.7

Table 13.4. Results for problems of Class I (OP and VRP instances) with a = 0.50.

Tables 13.4 to 13.9 report on the computational behavior of the branch-
and-cut code FST. Each table (except Table 13.5) gives:

Name : the problem name;

to : the maximum total time (only for Classes I and II);

r-time : the total time spent at the root node;

%-LB : the percentage ratio (optimum - LB)/optimum, where LB is
the value of the best heuristic solution computed at the root node;

%-UB : the percentage ratio (UB - optimum)/optimum, where UB is
the upper bound computed at the root node;

nodes : the total number of nodes generated (1 means that the problem
required no branching);

cuts : the total number of cuts generated (including the total time
restriction (43));

optval : the optimal solution value (only for classes I and II);

%-vis : the percentage number of nodes visited by the optimal solution;

t-time : the total computing time spent by the branch-and-cut code.

The computing times reported are expressed in seconds, and refer to
CPU times on an HP Apollo 9000/720 computer running at 80 MHz
(59 SPEC'S, 58 MIPS, 18 MFlops). A time limit of 18,000 seconds
(5 hours) has been imposed for each run. For the instances exceeding
the time hmit, we report 't.l.' in the t-time column, and compute the

658 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Name
op21
op32
op33
att48
eilSO
eilSl
eilSS
eil51
eil76
eillOl
cmtlOl
cmtl21
cmtl51
cmt200
gil262

t-LP
0.4
0.9
1.0
0.4
3.6
0.2
5.4
1.6
1.4
2.7

23.9
503.5

27.8
84.8

740.0

t-sep

oT
0.2
0.5
0.2
0.8
0.2
2.0
0.4
1.1
1.5

16.0
652.9
121.0
422.6

1873.6

cuts
58~
91

109
55

170
32

215
150
118
159
514

1350
451
859

2370

log
27
31
31
23
43
15
42
48
50
61

114
189
127
177
262

gsec
14~
46
47
17
84

5
86
54
49
59

362
719
210
449

1131

2-mat
0~
2
2

11
0
1
2
5
7

19
14
86
61
82

154

cover
0~
1
0
0
4
1

14
0
0
1
8

82
7

38
83

path
0~
0
0
0
0
0

20
0
0
0
6

63
0
0

49

cond

l6~
10
28

3
38

9
50
42
11
18
8

172
39
94

644

b-cov
0
0
0
0
0
0
0
0
0
0
1

38
6

18
46

Table 13.5. Additional results for Class I (a = 0.50) problems

corresponding results by considering the best available as the optimal
solution value. Hence, for the time-limit instances the column %-UB
gives an upper bound on the percentage approximation error.

Table 13.4 refers to the instances of Class I with a = 0.5. We also
report, in Table 13.5, additional information on the overall time spent
within the LP solver (t-LP) and the separation procedures (t-sep), and
on the number of logical (log), inequalities (45) (gsec), 2-matching {2-
mat), cover (cover), path (path), conditional (cond), and branch cover
(b-cov) constraints generated.

Tables 13.6 to 13.8 refer to the instances of Class II, with prizes com
puted according to Generation 1,2, and 3, respectively. The parameter
a has been set to 0.50. Cases a = 0.25 and a = 0.75 present comparable
results.

Table 13.9 reports average results over 10 random instances belonging
to Class III, with a = 0.2, 0.4, 0.6, and 0.8, and n = 25, 50, 100, 300,
and 500. Larger instances could be solved as well, since for this class the
computing time tends to increase very slowly with n for n > 200. As a
comparison, the branch-and-bound algorithm of Laporte and Martello
[536] ran into difficulties when solving instances with n — 25 and a > 0.6,
and with n = 50 and a > 0.4. For example, running (on the HP Apollo
9000/720 computer) the Laporte and Martello code on the instances
with n = 25 required on average 0.1 seconds for a = 0.2, 77.2 seconds
for a = 0.4, more than 2 hours for a ~ 0.6; whereas for a — 0.8 no
instance was solved within the 5 hour time-limit.

GTSP and OP 659

Name

grl37

prl44

kroal50

krobl50

prl52

ul59

ratl95

dl98

kroa200

krob200

gr202

ts225

pr226

gr229

gil262

pr264

pr299

lin318

rd400

^0

34927

29269

13262

13065

36841

21040

1162

7890

14684

14719

20080

63322

40185

1765

1189

24568

24096

21045

7641

r-time

178.6

240.3

582.2

145.6

204.6

497.6

331.9

716.3

395.0

683.6

150.6

9.7

1955.3

75.0

120.6

2860.2

5726.3

2558.0

874.0

%-LB

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.2

0.0

1.7

%-UB

0.0

0.0

1.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.8

5.2

0.0

0.0

0.0

1.2

0.5

0.4

nodes

85

107

25

8

5

29

cuts

553

1170

2594

729

917

1912

1323

1431

1254

1635

603

6040

1019

431

789

1694

4524

2653

1821

optval

81

77

86

87

77

93

102

123

117

119

147

125

134

176

158

132

162

205

239

%-vis

59.1

53.5

57.3

58.0

50.7

58.5

52.3

62.1

58.5

59.5

72.8

55.5

59.3

76.9

60.3

50.0

54.2

64.5

59.8

t-time

178.6

240.3

4669.0

145.6

204.6

497.6

331.9

716.3

395.0

683.6

150.6

t.l.

t.l.

75.0

120.6

2860.2

14244.0

3169.9

4272.5

Table 13.6. Results for Class II (TSPLIB instances) and Generation 1 (a = 0.50)

Name

grl37

prl44

kroal50

krobl50

prl52

ul59

rat195

dl98

kroa200

krob200

gr202

ts225

pr226

gr229

gil262

pr264

pr299

lin318

rd400

to

34927

29269

13262

13065

36841

21040

1162

7890

14684

14719

20080

63322

40185

1765

1189

24568

24096

21045

7641

r-time

797.9

668.0

460.1

735.7

188.6

518.0

1750.1

1337.8

515.2

1240.7

441.7

763.3

3973.9

329.5

2783.0

4253.3

10803.8

1370.0

837.6

%-LB

0.0

0.0

0.6

0.0

0.0

0.4

0.0

0.1

0.0

0.1

0.8

0.0

0.1

0.5

0.1

0.0

0.0

0.0

0.1

%-UB

0.3

0.7

0.9

0.1

0.0

0.2

0.2

0.1

0.1

0.1

0.0

0.1

0.3

0.1

0.2

0.0

0.0

0.0

0.2

nodes

81

11

47

5

1

21

13

27

15

17

31

5

27

47

23

1

5

41

76

cuts

1929

1579

2876

1795

836

1853

2691

1999

1147

2563

1945

1627

1842

1415

2080

2211

1900

1392

3721

optval

4294

4003

4918

4869

4279

4960

5791

6670

6547

6419

7848

6834

6615

9187

8321

6654

9161

10900

13648

%-vis

57.7

51.4

54.0

52.7

48.0

54.1

48.2

56.1

54.5

50.5

65.8

54.2

46.6

72.1

50.8

50.0

49.8

60.7

54.5

t-time

3193.0

1409.0

3950.6

1018.1

188.6

1772.4

2498.6

2517.1

805.1

3522.8

3847.6

1195.5

t.l.

4261.4

5574.6

4253.3

t.l.

t.l.

t.l.

Table 13.7. Results for Class II (TSPLIB instances) and Generation 2 {a = 0.50)

660 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Name
i?T37
prl44
kroalSO
kroblSO
prl52
ul59
rat195
dl98
kroa200
krob200
gr202
ts225
pr226
gr229
gil262
pr264
pr299
lin318
rd400

to
34927
29269
13262
13065
36841
21040
1162
7890
14684
14719
20080
63322
40185
1765
1189

24568
24096
21045
7641

r-time
2401.9
1573.8
269.7
1112.5
1099.0
1308.4
3672.2
1810.0
3116.5
642.6
654.2
3437.6
3379.5
1667.1
6177.4
4011.3
14699.4
8597.5
14257.1

%-LB
45.5
0.0
0.1
0.0
0.7
0.0
0.1
0.0
0.0
0.0
0.5
0.0
16.0
0.0
0.2
0.0
0.0
0.0
0.0

%-UB

0.1
0.1
0.6
0.1
1.3
0.2
0.1
0.2
0.2
0.1
0.3
0.4
0.1
0.0
0.0
0.0
0.0
0.0
0.0

nodes

5~
65
181
13
391
5
9

197
41
9

298
27
51
11
27
1
2
12
3

cuts
5386
2632
1646
1472
3159
2171
1528
2361
2161
905
1947
1598
5310
1613
2386
2625
1787
1308
1418

optval
3979
3809
5039
5314
3905
5272
6195
6320
6123
6266
8632
7575
6993
6347
9246
8137
10358
10382
13229

%-vis
51.8
43.1
52.7
56.7
48.7
52.8
47.7
61.6
51.5
51.0
71.3
55.1
52.2
67.7
56.5
39.8
49.8
60.7
55.8

t-time
4958.7

t.l.
3828.9
1363.9
13736.7
1447.2
3975.4
8635.7
6548.9
783.7

11113.5
5821.8
7923.2
1891.5
9574.0
4011.3

t.l.
t.l.
t.l.

Table 13.8. Results for Class II (TSPLIB instances) and Generation 3 (a = 0.50)

On the whole, the performance of the branch-and-cut code is quite sat
isfactory for our families of instances. In most cases, the upper and lower
bounds computed at the root node are very tight, and a few branchings
are needed. The code wa^ able to solve to proven optimality almost
all the random instances of Class III (except 1 instance for n = 500),
and most of the "real-world" instances of Classes I and II. For the in
stances exceeding the time limit, the computed solution is very close to
the optimal one (see column %-UB).

According to Table 13.5, most of the generated constraints are inequal
ities (45), 2-matching, logical and conditional cuts. For some "difficult"
instances, a relevant number of cover and path inequalities is generated.

Additional computational experience has been performed on the class
of random instances considered in the work by Gendreau, Laporte and
Semet [355], called Class IV in the sequel. These instances were gen
erated by using the original Gendreau-Laporte-Semet code. The in
stances are similar to those of Class II and Generation 2, but the nodes
are generated as random points in the [0,100]^ square according to a
uniform distribution. The corresponding values of v{TSP) were com
puted by means of the algorithm of Padberg and Rinaldi [648]. Table
13.10 reports average results over 5 random instances belonging to Class
IV, with a - 0 . 1 , 0.3, 0.5, 0.7, 0.9, and n=101, 121, 161, 261, and 301.

GTSP and OP 661

n
25
25
25
25
50
50
50
50

100
100
100
100
300
300
300
300
500
500
500
500

a
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8

r-time
1.1

38.8
46.6
42.1
41.5
32.1
30.8
10.5
61.3
35.9
33.7
41.9

102.7
139.1
203.9
237.2
189.6
317.4
408.4
650.2

%-LB
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.2
0.0
0.2
0.4
0.3
0.1
0.2
0.2
1.5
0.0
0.3
1.1
1.4

%-UB
0.0
0.9
0.3
0.4
0.4
0.5
0.3
0.1
0.3
0.2
0.1
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0

nodes
1.1
3.8 .
2.6
4.0
1.6

10.0
21.8
10.4
8.2

28.4
34.6
35.4
15.0
43.6
26.2
4.3
5.4
9.9
9.7
2.4

cuts
63.4

138.2
101.0
91.5

169.6
220.2
263.1
128.1
359.6
403.5
421.4
273.9
484.8
652.4
355.3
186.6
300.5
322.9
284.2
116.2

%-vis
28.8
56.8
74.0
86.0
32.8
59.8
76.4
90.2
35.3
60.9
80.8
93.2
30.1
57.5
80.4
99.8
27.0
53.6
78.8

100.0

t-time
1.2

42.7
63.4
51.5
53.8
99.6

147.0
58.9

149.6
340.3
445.2
403.8
363.5

1816.5
1949.5
2038.5

325.4
1418.0
5327.9
2454.0

Table 13.9. Average results over 10 random instances of Class III

n
101
101
101
101
101
161
161
161
161
161
201
201
201
201
201
301
301
301
301
301

OL

0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.9

iVi
5
5
5
5
5
5
5
5
4
5
5
5
5
4
4
5
2
3
1
0

N2
5
5
5
5
5
5
5
5
3
4
5
4
5
1
1
4
0
1
1
0

Nz
5
5
5
5
1
5
2
0
0
-
5
-
-
-
-
1
-
-
-
-

r-time
60.5

186.7
175.3
70.9
55.2

233.8
539.6
249.4
185.2
136.0
397.9
555.7
412.1
952.7
305.9

1358.1
914.5
530.2
616.6

%-LB
0.0
0.0
0.0
0.3
1.1
0.0
0.4
0.2
0.7
3.8
0.0
0.2
0.0
1.4
2.4
0.3
1.5
0.9
0.3

%-UB
0.8
0.3
0.3
0.2
0.3
0.2
0.5
0.2
0.2
0.1
0.6
0.6
0.1
0.1
0.1
1.1
0.6
0.2
0.0

nodes
3.4
3.0

11.8
37.8

222.6
1.4

11.0
20.2

101.5
90.0

5.8
37.4

9.8
88.5

121.8
17.0
98.0
59.0
14.0

cuts
559.8
849.6
806.4
747.6
872.6
900.6

1638.2
956.2

1419.5
697.2

1345.4
2188.2
1062.6
2136.2
1224.5
2982.8
3779.0
3151.0
1303.0

%-vis
11.7
33.5
55.6
75.6
90.7
12.2
34.9
55.0
72.8
90.3
11.4
34.3
54.5
71.8
90.4
11.7
35.9
54.7
72.1

t-time
193.3
228.7
350.2
584.5

2467.5
275.9

1254.6
737.2

3563.2
2981.2
673.2

2793.0
724.1

6118.0
9917.1
3729.6

12145.3
8787.9
5064.7

t.l.

Table 13.10. Average results over 5 random instances of Class IV

662 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Column Ns gives the number of instances successfully solved by the
Gendreau-Laporte-Semet code within a time limit of 10,000 SUN Sparc
station 1000 CPU seconds. According to Dongarra [258], the HP Apollo
9000/720 computer is about 1.8 times faster than that used by Gen-
dreau, Laporte and Semet, hence their time limit corresponds to about
5,555 HP 9000/720 CPU seconds. Columns Â i and N2 give the num
ber of instances successfully solved by code FST within a time limit
of 18,000 and 5,555 HP 9000/720 CPU seconds, respectively The re
maining columns are as in previous tables, and refer to the execution of
code FST with the 18,000 second time limit. As in [355], averages are
computed with respect to the instances solved to proven optimality.

A comparison of columns Â2 and Â 3 shows that code FST is capable
of solving a number of instances substantially larger than the Gendreau-
Laporte-Semet code, within approximately the same time limit. More
over, the values of both the lower and upper bounds computed by FST
are tighter than those reported in [355]. For the cases in which the
Gendreau-Laporte-Semet code successfully solved all the five instances,
the average LB and UB ratios of CFT (0.02% and 0.28%, respectively)
compare very favorably with the corresponding values reported in [355]
(3.59% and 1.74%, respectively). On the whole, the instances of Class
IV appear more difficult than those in the previous classes.

Acknowledgement

The work of the first and third authors has been supported by C.N.R.
and by M.I.U.R., Italy. The work of the second author has been sup
ported by the research projects TIC-2000-1750-CO6-02 and PI2000/116,
Spain.

	Chapter 13 THE GENERALIZED TRAVELING SALESMAN AND ORIENTEERING PROBLEMS
	1. Introduction
	1.1. The Simple Cycle Problem
	1.2. The Weighted Girth Problem
	1.3. The Prize-Collecting TSP
	1.4. The Capacitated Prize-Collecting TSP
	1.5. The Orienteering Problem
	1.6. The Generalized TSP
	1.7. The Covering Tour Problem
	1.8. The Median Cycle Problem
	1.9. The Traveling Purchaser Problem

	2. The Generalized Traveling Salesman Problem
	2.1. Basic notations
	2.2. Facet-defining inequalities for the GTSPpolytope
	2.3. Facet-defining inequalities for the E-GTSPpolytope
	2.4, Separation algorithms
	2.5. Heuristic algorithms
	2.6. A branch-and-cut algorithm
	2.7. Computational results

	3. The Orienteering Problem
	3.1. Additional inequalities
	3.2. Separation algorithms
	3.3. Heuristic algorithms
	3.4. A branch-and-cut algorithm
	3.5. Computational results

	Acknowledgement

