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1. Introduction 
The Maximum Traveling Salesman Problem (MAX TSP), also known 

informally as the "taxicab ripoff problem", is stated as follows: 
Given an n x n real matrix c = (QJ) , called a weight matrix, find a 

Hamiltonian cycle ii K-> 22 i-̂  . . . H-> in •—> n , for which the maximum 
value of Ci^i^ + ci^i^ + . . . + Ci^_iin + Cî n is attained. Here ( i i , . . . , in) is 
a permutation of the set { 1 , . . . , n}. 

Of course, in this general setting, the Maximum Travehng Salesman 
Problem is equivalent to the Minimum Traveling Salesman Problem, 
since the maximum weight Hamiltonian cycle with the weight matrix c 
corresponds to the minimum weight Hamiltonian cycle with the weight 
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matrix — c. What makes the MAX TSP special is that there are some 
interesting and natural special cases of weights QJ, not preserved by the 
sign reversal, where much more can be said about the problem than in 
the general case. Besides, methods developed for the Maximum Trav­
eling Salesman Problem appear useful for other combinatorial and geo­
metric problems. 

In most cases, in particular in problems P1-P3 and P5-P6 below, 
we assume that the weight matrix is non-negative: Cij > 0 for i, j = 
l , . . . , n . This is the main condition that breaks the symmetry, since 
the corresponding condition of non-positive weights for the Minimum 
Traveling Salesman Problem is rarely, if ever, imposed and considered 
unnatural. It also makes the MAX TSP somewhat easier than the MIN 
TSP. We will discuss the following special cases. 

P I . The symmetric problem. We have Cij = Cji for all i, j . 

P2. The semimetric problem. We have Cij + Cjk > cik for all triples 

P3. The metric problem. We have cij — Cji for all pairs (2,jf) and 
Cij + Cjk > Cik for all triples (z, j , k), 

P4. The problem with warehouses. In this case, the matrix c has 
some special structure. We are given r x n matrices u = (uij) and 
V =1 [vij] such that 

Cij = max (uki + Vkj) for all ij =^l,...,n. (1) 
/c=l,...,r 

The number r is assumed to be small (fixed) and n is allowed to 
vary. The smallest r for which representation (1) exists is called 
in [86] the combinatorial rank of c. The problem has the following 
interpretation [88]: suppose that together with n cities, there are r 
warehouses. Before visiting each city, the Traveling Salesman has 
to pick up goods at any of the r warehouses. The cost of going from 
the i-th city to the fc-th warehouse is uj^i and the cost of going from 
the fc-th warehouse to the j - th city is Vkj. If the Traveling Salesman 
wants to maximize the cost of the tour visiting each city only once 
(with no restrictions regarding visiting warehouses imposed), he 
should use the cost matrix c determined by the above equations. 
We do not assume Cij to be non-negative and the analysis of the 
MAX TSP in this case mirrors that of the MIN TSP with "max" 
replaced by "min" throughout. 

P5. The problem in a normed space. Let us fix a norm || • || in Eu-
chdean space R^. More precisely, we require ||x|| to be a non-
negative real number for any a: G M ,̂ that ||Ax|| == A||x|| for all 
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X G M"̂  and all A > 0 and that ||x + y\\ < \\x\\ + \\y\\ for all 
x^y e R^. We do not require that || — x|| = ||x||. It is convenient, 
although not necessary, to assume that ||x|| = 0 implies x = 0. 
Although the symmetry condition may be violated, we call || • || a 
norm anyway, hoping that this will not lead to a confusion. In this 
case, the weight matrix c has the following structure: we are given 
n points p i , . . . ,Pn in K^ such that Cij = \\pj — pi\\ for all i and j . 

P 6 . T h e prob lem in a po lyhedral norm. This is a particular case 
of P5 with the additional assumption that the unit ball B = {x € 
R'̂  : ||x|| < 1} is a polyhedron, that is the intersection of finitely 
many halfspaces. 

Some relations between P1 -P6 are seen instantly: it is immediate that 
P3 is the intersection of P I and P2, that P6 is a particular case of P5 
and that P5 is a particular case of P2. It is also clear that P5 can be 
viewed as a "hmit" of P6. Moreover, for any particular instance of MAX 
T S P with n points in a general norm, there is an equivalent instance in a 
polyhedral norm with the unit ball B having O(n^) facets (the facets of 
B account for the directions pi — pj, where p i , . . . , pn are given points). 
This idea is from [285], where it is at tr ibuted to J. Mitchell. Although 
not very difficult, it may seem a little surprising that P6 is a particular 
case of P4, with the warehouses in P4 corresponding to the facets of B . 

In this chapter, we describe what is known (to us) about special cases 
P1 -P6 . We also describe some results on probabihstic analysis of the 
problem when weights Cij are sampled at random from some distribution. 

Before we proceed, we discuss an interesting application of the MAX 
T S P 

!•!. An application: the shortest superstring 
problem 

Given strings 5 i , . . . , s^ over some alphabet, find the shortest string 
s (superstring) containing each Si as a substring. This problem, known 
as the shortest superstring problem has apphcations to DNA sequencing 
and da ta compression (see [515]). 

In [114], the following reduction to the MAX T S P was suggested. Let 
Cij be the length of the overlap of Si and 5^, that is the length of the 
longest string v such that si — uv and Sj — vw for some strings u and 
w. It turns out tha t an approximate solution to the MAX TSP with 
the weight matrix c gives rise to an approximate solution to the shortest 
superstring problem. More precisely, let us fix a real number p in the 
interval [1/2,1]. Given a Hamiltonian cycle whose weight approximates 
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the mgiximum weight of a Hamiltonian cycle within a factor of p, one 
can produce a superstring s whose length approximates the minimum 
length of a superstring within a factor of (4 — 2p), 

2. Hardness Results 
In [659] it is shown that the MIN TSP is MAX SNP-hard even when 

restricted to matrices with weights Cij G {1,2}. MAX SNP-hardness 
means that unless P=NP, there is a constant e > 0 for which there is 
no polynomial time algorithm approximating the minimum weight of a 
Hamiltonian cycle up to within relative error e. It follows that P1-P3 
are MAX SNP-hard. In P4, as long â  the number r of warehouses is 
allowed to vary, the problem is as hard as the general TSP since any 
nx n matrix Cij can be written as 

max {uki + Vkj), 

where Vij = Cij^ ua = 0 and Uij =• —oo ioi i ^ j . 
However, we see in Section 8 that the problem becomes polynomially 

solvable when r is fixed. We also note that it is an NP-hard problem to 
find the combinatorial rank of a given matrix c although it is possible 
to check in polynomial time whether the combinatorial rank does not 
exceed 2 and find the corresponding representation (1), see [174]. 

Fekete in [285] shows that P5 with ||x|| = J^l + . . . + ^J for x = 
{^IT ' • 1 ^d) being the standard Euclidean norm is NP-hard provided d > 
3 (the idea is to reduce the problem of finding a Hamiltonian cycle in a 
grid graph to the MAX TSP in 3-dimensional Euclidean space by using a 
clever drawing of the graph on the unit sphei^e). As we noted in Section 
1, any instance of the MAX TSP with n points in a normed space can 
be reduced to an instance of the MAX TSP in a polyhedral norm for 
which the unit ball B has 0{n'^) facets. Using this observation, Fekete 
further shows that P6 is an NP-hard problem provided the number of 
facets of the unit ball B is allowed to vary. As we discuss in Section 
8, the problem is polynomially solvable if the number of facets of B is 
fixed. The status of the MAX TSP in R^ with the standard EucHdean 
norm is not known. Note that in the case of Euclidean norm there is a 
standard difficulty of comparing lengths (which are sums of square roots 
of rational numbers), so it is not clear whether the decision version of 
the MAX TSP (given a rational number p, is there a Hamiltonian cycle 
whose length exceeds p) is in NP. 
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3. Preliminaries: Factors and Matchings 
If G is an undirected graph, one can view a Hamiltonian cycle in G 

as a connected subset E' C. E ol edges such that every vertex v E V 
is incident to exactly two edges in E', If we do not insist that E' is 
connected, we come to the notion of a 2-factor. 

We recall that a set E' C. E ol edges of an undirected graph G = (V, E) 
is called a 2-matching if every vertex of G is incident to at most two edges 
from E'. A set E' C. E oi edges of an undirected graph G — iV^E) is 
called a 2-factor if every vertex of G is incident to exactly two edges 
from E' (see Appendix A). More generally, suppose that to every vertex 
V oi G ^ non-negative integer f{y) is assigned. A set E^ C E is called 
an f-factor if every vertex i; of G is incident to exactly f{v) edges from 
E'. If f{v) e {0,1} for every v^ an /-factor is called a matching and if 
f{v) = 1 for all v^ the matching is called perfect (see Appendix A). 

As is known, (see, for example, Chapter 9 of [570] and Appendix A), 
a maximum weight (perfect) matching in a given weighted graph can 
be constructed in 0 ( | y p ) time. Finding a maximum weight /-factor 
in a given weighted graph G can be reduced to finding a maximum 
weight perfect matching in some associated graph C (see Chapter 10 of 
[570]) with \V\ = 0{\E\) and can be solved in polynomial time as well. 
Various methods of finding an approximate solution to the MAX TSP 
(MIN TSP) are based on finding a 2-factor of the maximum (minimum) 
weight and then transforming it to a Hamiltonian cycle. 

Using Edmonds' technique of "blossoms", Hartvigsen in [435] obtained 
an 0{n^) algorithm to construct a maximum weight 2-matching in a 
given weighted graph with n vertices. A maximum weight 2-factor can 
be found in 0{n^) time as well by Hartvigsen's algorithm after some 
initial conditioning of the weights. All weights on the edges of the graph 
should be increased by a large constant so that every maximum weight 
2-matching is necessarily a 2-factor. 

One can observe that a 2-factor is just a union of vertex-disjoint cycles 
iSi, . . . , 5/ such that the union 5i U . . . U 5/ contains every vertex of the 
graph. As we try to approximate an optimal Hamiltonian cycle by an 
optimal 2-factor, it seems natural to try to search for an optimal 2-factor 
satisfying some additional restrictions that would make it somewhat 
closer to a Hamiltonian cycle. 

A 2-factor is called k~restricted if none of the cycles ^ i , . . . , 5/ contains 
k or fewer vertices. Hence a 2-factor is 2-restricted and a Hamiltonian 
cycle is fc-restricted for any fc < |y | . 

The problem of finding a maximum weight 4-restricted 2-factor is NP-
hard [812], whereas the status of the problem for a maximum weight 
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3-restricted 2-factor is not known. However, there is a polynomial time 
algorithm for finding an (unweighted) 3-restricted 2-factor in a given 
graph [435] and a 4-restricted 2-factor in a given bipartite graph, if 
there is any [436]. In some cases, see, for example, [659], knowing how 
to find some fc-restricted 2-factor allows one to get a better solution to 
the weighted problem. The problem of deciding if there is a 5-restricted 
2-factor is NP-complete (this result belongs to Papadimitriou, see [223] 
and [436]) and the status of the problem for 4-restricted 2-factors in 
general (not necessarily bipartite) graphs is not known. 

Now we briefly describe the situation of a directed graph. 
Let G = (y. A) be a directed graph. We recall (see Appendix A) 

that collection of vertex disjoint cycles 5 i , . . . , 5/ is called 1-factor (or, 
sometimes, cycle cover) if every vertex of G belongs to one of the cycles. 

Given a weighted directed graph with n vertices, one can find the 
1-factor of the maximum (minimum) weight in O(n^) time (see, for ex­
ample. Chapter 11 of [656] and Appendix A). 

Recall that a partial tour is a set of edges (arcs) of an undirected 
(directed) graph which can be appended by including some other edges 
(arcs) of the graph to a Hamiltonian cycle in the graph (see Appendix 
A). As we remarked earlier, in almost all cases we assume that the 
weights on the edges are non-negative. A frequently used approach to 
the Maximum TSP is to construct a partial tour of a sufficiently large 
weight and then append it to a Hamiltonian cycle. When the weights 
are non-negative, adding new edges may only increase the total weight. 

4. MAX TSP with General Non-Negative 
Weights 

In this section, we assume that the weight matrix is non-negative but 
otherwise does not have any special properties. In other words, we are 
looking for a maximum weight Hamiltonian cycle in a complete weighted 
directed graph G = (1/, A) with \V\ = n vertices and \A\ = n{n — 1) arcs 
(note, that the arcs (i^j) and {j^i) are different). The following notion 
will be used throughout the paper. 

Definition 1 Suppose that we have an algorithm for a class of problems 
with non-negative weights. We say that the algorithm has a performance 
ratio p (where p is a positive real number) if it produces a Hamiltonian 
cycle whose weight is at least p times the maximum weight of a Hamil­
tonian cycle. 

For general non-negative weights the following performance ratios can 
be obtained in polynomial time: 1/2 [308], 4/7 [521] and 38/63 [515], 
the best currently known. 
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The rest of this section describes the idea of the algorithm from [515]. 
First, a maximum weight 1-factor F is constructed in O(n^) time. 

Then three different ways to patch the cycles into a Hamiltonian cycle 
are considered. Cycles with 2 vertices, also called 2-cycles^ play a special 
role. 

The first way consists of deleting a minimum weight arc from each of 
the cycles of F and extending the obtained paths into a tour Hi (this is 
the idea of the algorithm in [308]). 

In the second way, a weighted undirected graph G' is produced from 
the given complete digraph G and a Hamiltonian cycle H2 is constructed 
using the maximum weight matching in G^ (cf. also Section 5). 

In the third way, cycles of F with many vertices are broken into pieces 
and an auxiliary directed graph C is constructed by contracting the 
pieces. A Hamiltonian cycle H3 is obtained by using a maximum weight 
matching in C . Let W be the weight of F , let bW be the total weight 
of the heavier arcs in the 2-cycles of F and let cW be the weight of the 
lighter arcs in the 2-cycles of F. 

It turns out that Hi provides a (2/3 + {b — 2c)/3) performance guar­
antee, H2 provides a (7/12 — (t> —2c)/12) performance guarantee and Hs 
provides a (2/3 + 4(6 — 2c)/15) performance guarantee. It follows then 
that the best of Hi^H2 and iJs provides a 38/63 performance guarantee. 

Although the original paper uses all three cycles i^i, H2 and H^^ it ap­
pears that H2 and Hs alone are sufficient to obtain a 38/63 performance 
guarantee. 

In the next three sections, we are going to discuss approximation 
algorithms for problems P1-P3. 

5. The Symmetric MAX TSP 
We consider the MAX TSP with non-negative weights Cij subject to 

the symmetry condition of P I . In other words, we are looking for a 
maximum weight Hamiltonian cycle in a weighted complete undirected 
graph G = (V, J5) with | y | = n vertices and \E\ == (2) edges. 

In [308] a polynomial time algorithm with the performance ratio of 
2 /3 was suggested. The algorithm finds the maximum weight 2-factor 
and modifies it to a Hamiltonian cycle, cf. Section 3. In [520] a bet­
ter performance ratio of 13/18 was achieved and in [438] a polynomial 
time algorithm with the performance ratio 5/7 was constructed. Be­
low we sketch an algorithm due to Serdyukov [751], which achieves the 
performance ratio of 3/4 and has 0{n^) complexity. 
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5.1. Sketch of the Algorithm from [751] 
First, we describe the algorithm when the number n of vertices is 

even. This is also the simplest case to analyze. 
Part I, n is even. Let us construct a maximum weight 2-factor F 

and a maximum weight perfect matching M (cf. Section 3). The 2-
factor F is a union F = ^i U . . . U 5/ of vertex disjoint cycles, each of 
which contains at least 3 edges of the graph. The idea is to construct 
two partial tours Ti and T2, choose the one of the largest weight and 
arbitrarily extend it to a Hamiltonian cycle. We start with Ti—M and 
T2 = 0. Now we process cycles 5 i , . . . , 5/ one by one, so that precisely 
one edge ê  of each cycle Si is assigned to Ti and the remaining edges of 
Si are assigned to T2. Clearly, T^ will always be a partial tour. 

Figure 12.1. Constructing a Hamiltonian cycle when n is even 

Now, we observe that we can choose ê  in such a way that Ti remains 
a partial tour. Indeed, we can choose ei arbitrarily. Let us assume 
that e i , . . . , e^_i, i > 2 are chosen, hence Ti is a union of vertex-disjoint 
paths. Let us pick two adjacent candidate edges e[ and e'l of 5^. The 
common vertex of e[ and e'l is an end-vertex of a path in Ti, hence we 
choose Ci e [e'i.e'l] so that ê  is not incident to the other end-vertex of 
that path. 

When all cycles 5 i , . . . , 5̂  are processed, we choose T to be the one of 
Ti and T2 with the larger weight c{T) (either of the two if c{Ti) = c(T2)). 
Finally, we extend T to a Hamiltonian cycle. 

We observe that after the cycle Si has been processed, the weight 
c{Ti) + c(T2) increases by c{Si) and hence in the end we have c{Ti) + 

c(r2) - c{M) + c{F). Thus c{T) > <^)-^<^) ĝ d̂ the 3/4 per-
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formance grantee follows from the observation that c{F) > c{H) and 
c{M) > c{H)/2 for every Hamiltonian cycle H. 

The case of an odd number n of vertices requires some adjustments 
and its relies on some of the arguments and constructions in Part I. 

Part II, n is odd. This time, there is no perfect matching M but 
one can find a maximum weight almost 1-factor, which covers all but one 
vertex v of the graph and which we also call M. As above, we construct 
a maximum weight 2-factor F = 5i U . . . U 5/. Let us assume that '̂ is a 
vertex of ^i and let e be an edge which is incident to t̂ , is not an edge 
of F and has the maximum weight among all such edges. Depending on 
whether the other end-vertex of e belongs to 5i or to some other cycle 
52, we construct a partial tour T2 by either removing two non-adjacent 
edges of ^i adjacent to e or by removing an edge adjacent to e in Si and 
another edge adjacent to e in ^2 and patching Si and 52 via e. 

Figure 12.2. Constructing a partial tour T2 when n is odd 

The two removed edges are added to M thus forming a partial tour 
Ti. Next, we process the remaining cycles of F (that is, the cycles Si 
for i > 1 in the first case and the cycles Si for i > 2 in the second case) 

as in Part I and produce a partial tour T. The weight of T is compared 
to the weight of a partial tour T in a modified weighted graph G on 
n — 1 vertices constructed as follows. Let ei and 62 be the edges of Si 
that are incident to v. We remove vertex v and all edges incident to it 
from G and preserve the weights on all the remaining edges of G, except 
for a single edge e for which 61,62 and e form a triangle. The weight 
of 6 is modified: c(e) \— c(ei) + c(e2). Since the new graph G has an 
even number of vertices, we construct a partial tour T as in Part L If T 
happens to contain e, we modify it by removing e and inserting ei and 
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62 instead. Hence we obtain a partial tour T in G. From the partial 

tours T and T we choose the one of the largest weight and extend it to 
a Hamiltonian cycle H. 

3 
It turns out that c{H) > -c{H*)^ where i7* is a maximum weight 

Hamiltonian cycle in G. Suppose that H* contains both ei and 62. 
Replacing ei and 62 by e, we obtain a Hamiltonian cycle in G and hence 

— 3 
by Part 1 we have c{H) > c(T) > -c{H*). Suppose that H* contains at 

most one edge from the set {6i, 62} and let 6* be an edge of the minimum 
weight in iJ*. Since H* contains at least one edge incident to v and not 
in the cycle ^ i , we must have c{e) > c{e*). Then the required estimate 
follows from the inequalities 

c{F)>c{H') and c{M) > ^(-^*)~^(^*) 

2 
The latter inequality is obtained as in Part I. 

Hassin and Rubinstein in [439] combined the ideas of their earlier 
paper [438] with those of Serdyukov to obtain a randomized algorithm, 
which, for any fixed p < 25/33, achieves an expected performance ratio 
of at least p in 0{n^) time. 

5.2. The Idea of the Algorithm from [439] 
The algorithm constructs three "candidate" Hamiltonian cycles ^ 1 , 

H2 and H3 and chooses the one with the largest weight. As in Section 
5.1, a maximum weight 2-factor F = SiU .. .U Si is constructed. Given 
a p < 25/33, a number 6 > 0 is computed (e approaches 0 when p 
approaches 25/33) and the cycles Si,...^Si are assigned to be "long" 
or "short", depending on whether the number of vertices in the cycle 
is greater or less than e~^. Then, for each short cycle, a maximum 
weight Hamiltonian path on its vertices is constructed (using dynamic 
programming, one can do it in 0{n?2^^^) time). From each long cycle a 
minimum weight edge is excluded. All paths obtained (from both short 
and long cycles) are extended into a Hamiltonian cycle H^. 

The cycles Hi and H2 are obtained by extending partial tours Ti and 
r2, which are constructed in a somewhat similar way as in Section 5.1. 
As in Section 5.1, a maximum weight perfect matching M is constructed. 
Furthermore, a maximum weight perfect matching M' is constructed on 
the edges with the endpoints in different cycles ^ i , . . . , 5/. Then, from 
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each cycle Si roughly half of the edges are assigned to Ti (randomization 
is involved in choosing which half) and the rest is assigned to T2. After 
that, edges of M^ are used to patch T2 (randomization is used here as 
well). 

The gain in the performance ratio compared to the "pure" algorithm 
from Section 5.1 comes from the observation that if the optimal Hamil-
tonian cycle follows cycles of F closely, then H3 alone provides a good 
approximation. If, however, the optimal cycle does not follow F closely, 
it has to use sufficiently many edges from M^ The algorithm is random­
ized and it is proved that the expected weight of the produced cycle is 
at least p times the maximum weight of a Hamiltonian cycle. 

One can show that for any prescribed probabihty p < 1 of success, af­
ter running the algorithm independently 0(n/(l—p)) times, one obtains 
the desired cycle with the probability at least p. 

We note also that the complexity bound includes an 0(n^2^/^) term 
which is dominated by 0{n^) for any fixed €  > 0 but quickly takes over 
if e is allowed to approach 0, that is, if we want the performance ratio 
to approach 25/33. 

6, The Semimetric MAX TSP 
In this section, we discuss Problem P2. Note, that we do not assume 

the symmetry condition of PI . Again, it is convenient to restate the 
problem of as the problem of finding a maximum weight Hamiltonian 
cycle in a (this time directed) weighted complete graph G = (V, A) with 
|y | = n vertices and \A\ = n{n — 1) arcs. 

The following result is crucial. 

Theorem 2 Let G = (V^A) be a directed graph with \V\ = n vertices 
and non-negative weights c{a) on its arcs. Let F = SiL).. .U Si be a 1-
factor of G. Let mi be the number of vertices in Si, so mi +,. .-\~mi = n. 
Let m = minJTTî  : 1 < i < I}. Then there exist Hamiltonian cycles Hi 
and H2 in G whose weights satisfy the inequalities 

n 

and 

(ffi)>(l-i)'~V) (2) 

Moreover J given a 1-factor F of G, Hamiltonian cycles Hi and H2 can 
be constructed in 0{mn) time. 

Inequality (2) was obtained in [754] and inequahty (3) was obtained in 
[517]. 
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Sketch of Proof. To construct i / i , we repeatedly patch two cycles of 
the factor into one, thus reducing the number of cycles by 1 until we 
reach a Hamiltonian cycle. In doing so, we arrange current cycles Si 
in a non-decreasing order of the weight per vertex ratios c{Si)/mi and 
always patch the first two cycles, say Si and 52. 

Let us fix an arc of S2, say (1,2). We delete arc (1,2) of ^2 and a 
certain arc (x, y) of ^i and then add arcs (1, y) and (x, 2), thus obtaining 
a new cycle Si * 52. 

Figure 12.3. Patching cycles 

Using the triangle inequality c(l, 2) < c(l, z) -f- c(^, 2) for every vertex 
z of 5i, one can deduce that the average weight c(5i*S'2) over all possible 
choices of arcs (x, y) of ^i is at least as big as c{Si) + 0(^2) — c{Si)/mi. 
Hence if we choose (x, y) so as to maximize the weight of c{Si * ̂ 2), we 
get 

c{Si * 52) > c(5i) + c{S2) - c(5i)/mi, 

from which it follows that the weight of the 1-factor multiplies by at 
least (1 — 1/n) after each patch (we recall that Si has the lowest weight 
per vertex ratio, so c{Si)/mi < c{F)/n). 

To construct H2^ we find two families P i , . . . , Pm and Q i , . . . , Qm of 
Hamiltonian cycles such that 

m m I 

J^ c{P,) + Y^ c{Qi) > (2m -1)J2 <Si). (4) 
Z = l 2 = 1 i=l 

Then H2 is a maximum weight cycle from the collections P i , . . . , Pm and 
Q15 • • • ? Qm- Each cycle Pi or Qj uses all but one arc from every cycle Si 
and some additional arcs bundling the cycles together. Let us choose a 
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cyclical order ^ i , . . . , 5/, 5i on the cycles Si and a cyclical order on the 
vertices of each cycle Si compatible with the direction of the cycles. To 
construct Pj, from each cycle Si we remove the arc coming into the j - th 
vertex and connect the {j — l)-st vertex of the next cycle with the j-th. 
vertex of Si. 

To construct Qj, we delete the arc coming into the j - th vertex of Si 
and then for each next cycle we remove the arc coming into the vertex 
whose index drops by 1 each time we pass to a new cycle. New arcs 
connecting each cycle with the next one are added to make a Hamiltonian 
cycle. 

• 

^̂ fc &^ 

Figure 12.4. Constructing Pi and Qj 

Inequality (4) is obtained by the repeated application of the triangle 
inequality. 

Since we can construct a maximum weight 1-factor with m > 2 in 
0{n'^) time, by (3) we get a polynomial time algorithm with the perfor­
mance ratio 3/4 [517]. The construction of Hi and inequahty (2) will 
be later used in Section 9. 

7. The Metric MAX TSP 
When both the triangle inequality of P2 and the symmetry condi­

tion of PI are satisfied, the performance ratio can be improved further. 
Indeed, constructing a maximum weight 2-factor in 0{n?) time, (see 
Appendix A), we have m > 3 in inequality (3) of Theorem 2. Hence 
we get a polynomial time algorithm with the performance ratio of 5/6 
[517]. The same performance ratio is obtained in [521]. As in (3), the 
performance ratio of the Kovalev and Kotov algorithm is expressed in 
terms of the minimum number m of vertices in a cycle of the underlying 
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maximum weight 2-factor. It turns out to be equal to (m + 2)/(m + 3), 
which agrees with (3) for m = 3 but is somewhat weaker for m > 3. 

As this survey was nearing completion, we learned that recently Has-
sin and Rubinstein in [440] designed a randomized algorithm for the 
metric MAX TSP with 0{n^) complexity and a 7/8 expected perfor­
mance ratio. 

8- TSP with Warehouses 
In this section, we discuss Problem P4. Hence we assume that we are 

given r xn matrices u and v with the weight matrix c represented in the 
form (1). As we already mentioned in Section 1, by switching "max" 
to "min" we get corresponding results for the MIN TSP and we do not 
need to assume that c is non-negative. 

Our main result is a polynomial time algorithm from [90] for the case 
when r is fixed. Note that in [90], the matrix c is assumed to be symmet­
ric, and the corresponding problem is referred to as the Tunneling TSP, 
as warehouses are replaced by tunnels connecting cities (we also note 
that if the Traveling Salesman travels by air, the role of the warehouses 
is naturally played by airline hubs). The symmetry condition is not cru­
cial (the earlier version of the paper treats the general case) although it 
leads to some improvement of the complexity estimates. Here we discuss 
the general, not necessarily symmetric case. 

8.1. Sketch of the Algorithm from [90] 
Let us consider a graph G = (V, E) with n + r nodes. The set V of 

nodes is the union V = CuW ofn= \C\ nodes, called cities and r = \W\ 
nodes called warehouses. Each city is connected to each warehouse by 
two arcs, one, from the city to the warehouse, colored red and the other, 
from the warehouse to the city, colored blue. The weight of the red 
arc connecting the i-th city and the fc-th warehouse is u^i whereas the 
weight of the blue arc is Vki- We are looking for a closed walk in G of 
the maximum total weight, which visits every city exactly once. The 
problem reduces to finding a maximum weight subset E' C E which 
satisfies the following three conditions: 

(8.1.1) every city is incident to exactly two arcs in £", one red and one 
blue; 

(8.1.2) for every warehouse, the number of incident red edges in E' is 
equal to the number of incident blue edges in E^] 

(8.1.3) the subgraph of G induced by E' is connected. 
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Then an Euler tour through E' will produce the desired solution. 
Since the set E' must be connected, all visited warehouses must be con­
nected in E'. The idea is to enumerate all possible minimal ways to 
connect warehouses, that is, we enumerate all minimal connected sub­
graphs of G containing a subset of W. Since such a connected subgraph 
is a tree and contains at most 2r — 2 edges, the direct enumeration of 
all possible minimal connected subgraphs F C E takes 0{n?'^~'^) time, 
which is polynomial in n if r is fixed. Hence we enumerate all possi­
ble connected subgraphs F and for each such an F , we find a subset 
Ep C E oi the maximum weight which contains E(F) and satisfies 
(8.1.1)-(8.1.2). The problem of finding E'p reduces to solving of 0{n'') 
maximum weight /-factor problems, since the only conditions we have 
to satisfy on the edges of Ep \ E{F) are the degree constraints on the 
cities and warehouses enforced by (8.1.1)-(8.1.2), cf. Section 3. Finally, 
we choose E^ of the maximum weight among all Ep. 

The resulting complexity of the algorithm is 0{n^^~^^), some ways to 
improve it are discussed in [90] and [87]. 

The following simple observation turns out to be quite useful (we use 
it in Section 9 comparing two different approaches to the MAX TSP in 
a space with a polyhedral norm). 

Lemma 3 Suppose that the combinatorial rank of the weight matrix c 
is r. Then there exists a maximum weight 1-factor F of the complete 
directed graph on the vertex set containing not more than r cycles. More­
over, if c is given in the form (1) the 1-factor F can he constructed in 
0{n^) time. 

Sketch of Proof. We have 

Cij = max {uki -\-Vkj ) 

for some r x n matrices u and v. For each pair (i, j ) of cities let us 
identify a warehouse k — k{i^j) such that cij = u^i + vj^j. 

Suppose that a maximum weight 1-factor contains more than r cy­
cles. Then there will be two arcs (5, t) and (p, q) of different cycles that 
correspond to the same warehouse k. Let us patch the cycles by deleting 
{s,t) and {p,q) and inserting {s,q) and (p, t). The weight of the factor 
can only increase since 

^sq + Cpt > Uks + Vkq + y^kp + Vkt = Cst + Cpq. (5) 

file://-/-Vkj
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Some other special classes of matrices c for which the MAX TSP is 
polynomially solvable (in particular, via the "pyramidal tour" approach) 
are surveyed in Chapter 11 and [142]. In [112] it is shown that if c is an 
n X n non-negative matrix and Cij = 0 for all i, j with |i — i | ^ 1, then 
a maximum weight tour can be found in 0{n) time. 

9- MAX TSP in a Space with a Polyhedral 
Norm 

Let M^ be Euclidean space endowed with the standard scalar product 
(•,•). Let us fix some non-zero vectors a i , . . . , â - G M^ and let 

B = IXGR"^ : {a^,x) < 1 : i= l , . . . , r j . (6) 

Hence B is a full-dimensional polyhedron, which contains the origin in 
its interior. We do not assume that B is symmetric about the origin but 
it is convenient, although not necessary, to assume that B is bounded. 
Given B, let us define the Minkowski functional || • || by 

||x|| = m i n { A > 0 : a : G XB}. 

Hence || • || defines a distance function d{x^y) = \\y — x\\. 
Given n points p i , . . . ,Pn G M ,̂ let us consider their distance matrix 

c = (QJ) , Cij = \\pj — Pill. One can observe that the combinatorial rank 
of c (see Section 1) is bounded above by the number r of inequalities 
defining B in (6). Moreover, one can represent c in the form (1) provided 
the vectors a i , . . , , â^ in (6) are given. Indeed, 

^ij = WPJ ~Pi\\ — ™^{ A > 0 : pj - Pi G ABI 

= minJA > 0 : (a/c,Pj - p i ) < A : /c = 1,. . . , r | 

= max | {ak.Pj - pi) : fc = 1 , . . . , r I == max {uki + Vkj), 
K ) A:=:l,...,r 

where Uki = -(afc,Pi) and Vkj = (dk^Pj)-

Geometrically, the combinatorial rank of the matrix of pairwise dis­
tances between points in a polyhedral norm does not exceed the number 
of facets of the unit ball. This observation is from [86] and, as mentioned 
there, is joint with S. Onn and A. Gerards. In the context of Section 8, 
facets of the unit ball B correspond to warehouses. 

Note that, if B is unbounded, we have to write 

= maxjO, (a/e,Pj - Pz) : /c = 1 , . . . , r j 
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and the combinatorial rank of c may increase by 1. 
Using results of Section 8, we get a polynomial time algorithm for 

solving the MAX TSP problem in polyhedral norm, provided the num­
ber of facets r of the unit ball is fixed [90]. When the unit ball B 
is symmetric about the origin and hence || • || is a genuine norm, the 
complexity 0(n^~^lnn) can be achieved, see [90] and [87]. Particularly 
interesting cases are those of the L^ norm in the plane M̂  (the so called 
"Manhattan norm" alluding to the other name of the MAX TSP, the 
"taxicab ripoff" problem) and the L^ norm in the plane, for both of 
which Fekete in [285] obtained an algorithm of hnear complexity 0{n). 

A different approach was suggested by Serdyukov in [755]. The algo­
rithm in [755] is based on the following observation. 

Lemma 4 Let B C M*̂  6e a hounded polyhedron, given by (6) and let 
II • II he the corresponding Minkowski functional. For points Pi^Pj G M ;̂ 
let Cij = \\pj — Pi II. Then 

Cl2 + C23 > Ci3 (7) 

for any three points pi, p2 and pa. 
Suppose that for k — 1 , . . . , r̂  the set G/. = {x G B : (a/̂ , x) — 1^ is a 

facet of B and let Tk be the cone with the vertex at the origin spanned 
by G/e. Suppose further, that pi,P2 <̂ ĉf P3,P4 are points such that for 
some k, one has P2 — Pi G F/. and P4 — ps G F/c- Then 

C12 + C34 < C14 + C32. (8) 

Indeed, (7) is standard and follows from the convexity of B. Inequality 
(8) is, essentially, inequality (5) of Section 8, since if pj — Pi ET^ then 
WVj ~ ViW — {^kiVj ~ Pi) ^^^ the arc (pi^Pj) corresponds to the k-th 
warehouse. 

9.1. Sketch of the Algor i thm from [755] 

Given points p i , . . . ,Pn G M^ and the weight matrix Cij — \\pj — Pi||, 
we construct a maximum weight 1-factor F = 5i U . . . U 5/. The idea is 
to show that the number / of cycles can be reduced to at most \r/2\, 
where r is the number of facets of B. 

Indeed, suppose that / > [r /2j . Then there are two arcs (a:i,X2) and 
(yi, 1/2) which belong to different cycles of F and such that X2 — Xi^y2 — 
yi G F/c for some cone Fk spanned by a facet of B (note that the cones 
Fk cover the whole space R^ and that each cycle has arcs from at least 
two cones Ffc). Now we patch the cycles by deleting (xi, X2) and (yi, 2/2) 
and inserting {xi^y2) and (yi,X2). Lemma 4 implies that the weight of 
the 1-factor can not become smaller. 
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Repeating this procedure, we obtain a maximum weight 1-factor with 
at most [r/2j cycles. Up to this point, the construction goes as in 
Lemma 3 of Section 8, only cutting the required number of cycles by 
half because of a special geometric feature of the problem. 

Now we construct a Hamiltonian cycles Hi as in Theorem 2, Section 
6 (note that by inequality (7), the weight function satisfies the triangle 
inequality). 

Clearly, the complexity of the algorithm is 0{n^)^ dominated by the 
complexity of constructing a maximum weight 1-factor. As follows by 
(2), Section 6, the weight of the constructed Hamiltonian cycle is at least 

(1 — l/ny •' times the maximum weight of a Hamiltonian cycle. 

It is interesting to compare algorithms of [90] and [755]. While algo­
rithm from [755] does not solve the problem exactly except in the case of 
the norm in the plane M̂  whose unit ball is a triangle, its relative error 
is asymptotically 0 for n —> +oc as long as r = o{n) and its complexity 
is linear in the number r of facets of the unit ball B. On the other hand, 
the algorithm from [90] gives an exact solution, but its complexity is 
exponential in the number of facets of B. 

10. MAX TSP in a Normed Space 
Given a norm in R^, we can always approximate it by a polyhedral 

norm within an arbitrarily small relative error. Hence each of the two 
approaches described in the previous section leads to a fully polynomial 
approximation scheme for the MAX TSP in a finite-dimensional vector 
space with a fixed norm, see [86]. 

Let us consider the case of the Euclidean norm ||x|| = J^f + • • • + Cj 
for X = (^1 , . . . ,̂ rf) in some more detail. Assuming that d is fixed, to 
approximate the norm || • || by a polyhedral norm within relative error e, 
we need to approximate the unit ball B in M^ by a polyhedron P such 
that 

P C B C ( 1 + 6)P. 

Such a polyhedron P will have 0{e~^) facets, so the complexity of the 
algorithm from [90] will be n^^^ \ However, since the complexity of 
algorithm of Section 9.1 depends linearly on the number of facets of P , 
by Serdyukov's approach, we get an algorithm of 0{n^ + e~^) complexity 
and relative error e + 0{e~^/n). Thus for any fixed e > 0 the algorithm 
of [755] achieves asymptotically the relative error e with the complexity 
0{n^) as the number n of points grows to infinity. 
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Using a different approach, in the case of Euchdean norm, Serdyukov 
in [753] proposed a method for which the relative error is asymptotically 
0, as n grows. The approach is based on the following geometric result. 

L e m m a 5 Let { / i , . . . , / / } be a set of I straight line intervals in R^. 
Then the smallest angle between a pair of intervals from { / i , . . . , / ; } is 
bounded from above by a constant a{d^ I) such that limi ,_|_oo ĉ (<̂ 5 0 ~ 0-
Moreover, 

cosa{d, I) > 1 --f{d)ld^ 

for some constant j{d) independent on the number of intervals. 

Intuitively, if we have many intervals in a space of low dimension, some 
of them will be nearly parallel. We denote by a(7j, Ij) the angle between 
li and Ij. 

The proof of Lemma 5 can be obtained as follows. Without loss of 
generahty, we may assume that the intervals J i , . . . , / ; are diameters of 
the unit sphere S^~^ C R^ (that is, each interval is symmetric about the 
origin and has length 2). Representing a diameter by its endpoints on 
the sphere, we observe that for every interval / , the set of all diameters 
J of S^~^ such tha t a ( / , J) < /3 is represented by a set C{I^l3)^ which 
is a pair of antipodal spherical caps centered at the endpoints of / and 
of radius /3 in the intrinsic (geodesic) metric of the sphere. Using well-
known formulas for spherical volumes, we estimate the smallest (3 for 
which some two sets C{Ii^l3) and C{Ij^(3) are bound to intersect. Then 

10.1. Sketch of the Algor i thm from [753] 

S t e p 1. Given n points p i , . . . , P n in M^ with the weight matrix 
^ij — WVj ~ Pi\\^ we construct a maximum weight matching. Hence we 
get a set M of m == L^/2J straight hue intervals in R^. 

S t e p 2. Let us choose a number / < m/2 (to be specified later). Let 
us choose some / intervals in M of the smallest weight and call them light. 
All other intervals in M we call heavy. Let / i , . . . , /^^ be an ordering of 
the intervals from M. We call a subsequence R — ( / i , / i + i , . . . ,/i+/c), 
A: > 0, a run if jR is a maximal subsequence with the properties that 
all intervals in R are heavy and the angle between each pair / j , Ijj^i of 
consecutive intervals in R does not exceed a((i , / ) , cf. Lemma 5. In par­
ticular, a subsequence consisting of a single heavy interval may constitute 
a run. Our goal is to construct an ordering / i , . . . , / ^ with not more / — 1 
runs. To achieve that , we start with an arbitrary ordering / i , . . . , /^^ and 
identify all runs. We observe that if the number of runs exceeds / — 1, by 
Lemma 5, we can find a run R\ with the rightmost interval !{ and a run 
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R2 with the rightmost interval Ij such that a{Ii^Ij) < a{dj). Then, by 
a proper reordering of the intervals, we merge Ri and R2 into a larger 
run R. After repeating this procedure not more than, say, m times, we 
get an ordering with not more than / — 1 runs. 

R 

h ^ L ' i l l 

small angle 

s 

Figure 12.5. Patching runs into Hamiltonian cycles 

Step 3. For every pair of consecutive intervals U and /i^-i, we find 
a pair of edges patching them into a maximum weight 4-cycle 5. Let 
E be the set of all newly constructed edges. Using edges from E we 
consecutively patch the intervals 11,... .,1m into a Hamiltonian cycle H. 
The idea is to choose H to be the best of the two main types of patching 
Hi and H2^ see Figure 4. More precisely, in [753], Serdyukov constructs 
four cycles, two having the Hi type and two having the H2 type, to take 
care of "boundary effects", and chooses the best of the four. 

The algorithm achieves 0{n^) complexity, again dominated by the 
complexity of constructing a maximum weight matching. It turns out 

d - i - 2 

that iil is chosen to be [n^+i J, then the algorithm achieves 1 —/3(d)n^+i 
performance ratio, where (3{d) is a constant depending on the dimension 
alone. We observe that as long as d is fixed, the performance ratio 
approaches 1 as the number n of points increases. 

The analysis is based on the following observations. The total weight 
of heavy intervals is at least c(M)(l —//m), that is, asymptotically equal 
to the weight c{M) of the matching M. Hence it suffices to analyze 
how does weight c{H) relate to the total weight of heavy intervals in 
M. If the intervals U and /f+i had been parallel, we would have had 
c(5) > 2c(/i) + 2c(/2) for the optimal patching S of / i and I2 into a 
4-cycle. If li and Ii-^i are nearly parallel, c{S) is guaranteed to be almost 
twice the weight c(/i) + c(/2) and an exact bound can be obtained in 
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terms of the angle a{Ii,Ij). Let us consider the ordering 
obtained after Step 2 is performed. Let R = (/i, /i-|_i,..., //c) be a run 
and let Pi be the path obtained from i? in i/^, i = 1, 2. It follows that the 

average ^ ^-^ is guaranteed to be almost twice the total weight 

of the intervals in R. Since the number of runs is small, "boundary 
effects" are asymptotically negligible and we conclude that the average 
weight of the Hi and H2 patchings is almost as large as 2c(M). Since 
for any Hamiltonian cycle H* we have 2c(M) > c{H*) (for n even) and 
2c(M) > c{H*){l - l/n) (for n odd), we conclude that H should be 
asymptotically optimal. 

Exploiting geometric duahty between minimum stars and maximum 
matchings in [286] and [287] Fekete et al. obtained a practical near-
linear heuristic in the case of Euclidean norm in M̂  that has a worst-
case guarantee of 2/\/3 ?̂  1.15. It is interesting to note [784] that 
the standard linear programming relaxation of a maximum matching 
problem for an even number of points has always integral optima in 
the case of a norm in M̂  and hence can be solved by a network flow 
algorithm, whereas the general maximum matching algorithm of 0{n^) 
complexity becomes impractical for large n. 

11. Probabilistic Analysis of Heuristics 
In this section, we assume that instances of the MAX TSP are sam­

pled at random from some probability space. We discuss how some ob­
vious heuristics, "farthest neighbor" (FN) and "subtour patching" (SP), 
typically behave. Such heuristics produce a Hamiltonian cycle, whose 
weight often approximates the maximum weight of a Hamiltonian cycle 
reasonably well. 

11.1. Asymptotic Optimality 
Let Kn be a probability space of MAX TSP instances with n cities. 

We say that an algorithm (heuristic) ha,s an (e^,5„) performance guar­
antee on problems from /C^ if the probability that the weight of the 
produced Hamiltonian cycle approximates the maximum weight within 
relative error 6̂  is at least 1 — 5^ If /C^, n = 1, 2 , . . . , is a series of 
probability spaces of MAX TSP instances of increasing sizes, we say 
that the algorithm is asymptotically optimal if one can choose perfor­
mance guarantees (6^,(^^) is such a way that e^ —> 0 and 5n —> 0 as 
n —> +CX). 
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11.2, The Farthest Neighbor Heuristic 
Given a weight matrix c = (cij)^ we start with any vertex, go to the 

farthest, then to the farthest remaining and so on. The following result 
is obtained in [362] and [364]. 

Theorem 6 Suppose that the weights Cij are sampled independently at 
random from some distribution in the interval [a^, bn] with fe^ > a^ > 0. 
Let P{x) = P{^ < x} be the distribution function of a random variable 
^ = {cij -an)/{bn -an). 
Let 

Suppose that at least one of the following holds: 
1) We have ip{n) —> +oc and ip{n)/n —> 0 as n —> +oo; 
2) We have P{x) > x for all x and il){n) — o{n); 
3) We have P{x) < x for all x. 

Then FN is asymptotically optimal. 

It follows that FN is asymptotically optimal for any convex distribution 
and for the uniform distribution without any additional assumptions. 
This is in contrast to the "Nearest Neighbor" heuristic for the MIN 
TSP, see [365] and [366] and Chapter 6. 

The proof of Theorem 6 goes along the following lines: we estimate 
the expected weight of the constructed Hamiltonian cycle, use Cheby-
shev's inequality to show that a typical weight is sufficiently close to the 
expectation and use a trivial upper bound nbn on the largest weight of 
a Hamiltonian cycle (it turns out that the expected weight is sufficiently 
close to nbn). 

In the case of the uniform distribution P{x) — x, Vohra in [811] 
proved that for any 5^ > 0 one can choose Cn — 0{^/n~^ ln{l/6n)) so 
that {em Sn) is a performance guarantee for the heuristic. One can get a 
better bound e^ == 0{n~^ \n{l/6n)) by using large deviation inequalities. 
Letting 5n = n"'^/'^, where A is any positive constant, we have 

n 
which implies asymptotically optimality of the farthest city heuristic. 
Moreover, this result is valid for a wider class of distributions where 
P{x) < X. 

11.3. The Subtour Patching Heuristic 
Given a complete directed graph on n vertices, suppose that the arc 

weights Cij are chosen independently at random from some distribution. 
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The subtour patching heuristics starts with constructing a maximum 
weight 1-factor and then patches the subtours into a tour. The procedure 
turns out to be quite efficient under some mild assumption about the 
distribution. EssentiaUy, we do not even need the weights Cij to be 
independent, the foUowing two conditions wih be sufficient: 

(11.3.1) The resulting distribution on the optimal 1-factors is uniform; 

(11.3.2) Individual weights Cij are not very large compared to sums of 
several weights. 

It is well known known (see, for example. Sections 7-9 of [510]), a 
random permutation of n elements with probability very close to 1 will 
have O(lnn) cycles. Therefore, (11.3.1) implies that the resulting maxi­
mum weight subtour cover with the overwhelming probability will have 
O(lnn) subtours. The condition (11.3.2) implies that the patching pro­
cedure does not "skew" the weight of the tour too much. 

For example, in [363] it was shown that if (in the directed case) the 
columns of the distance matrix form a sequence of symmetrically de­
pendent random variables (we recall that random variables X i , . . . , Xm 
are called symmetricahy dependent if the distribution of the vector 
(X^(i) , . . . , Xcr(^)) does not depend on the permutation a of the set 
{ 1 , . . . , m}), then the MAX TSP can be solved in 0{n^) time with the 
performance estimates 

en — 2c* In n /F^p , 5n = (e/n ,0.38 

where c* is the maximum entry of the distance matrix and F^p is the 
optimal value of the objective function in the maximum assignment prob­
lem. Hence for 0 < a^ < ĉ j < bn with bn/an = o{n/lnn) the subtour 
patching algorithm is asymptotically optimal. 

Results similar to the ones described in Sections 11.2 and 11.3 can 
be obtained for discrete distributions, e.g. for FN see [364]. We note 
also that Dyer, Frieze and McDiarmid [263] presented an asymptotically 
optimal linear-time partitioning heuristic when the points are chosen 
uniformly in the unit square. They also computed the expected value 
of the longest Hamiltonian cycle through n random points which turned 
out to be approximately equal to 0.7652n. 


	Chapter 12
THE MAXIMUM TSP
	1. Introduction
	1.1. An application: the shortest superstring problem

	2. Hardness Results
	3. Preliminaries: Factors and Matchings
	4. MAX TSP with General Non-Negative
Weights
	5. The Symmetric MAX TSP
	5.1. Sketch of the Algorithm from [751]
	5.2. The Idea of the Algorithm from [439]

	6. The Semimetric MAX TSP
	7. The Metric MAX TSP
	8. TSP with Warehouses
	8.1. Sketch of the Algorithm from [90]

	9- MAX TSP in a Space with a Polyhedral
Norm
	9.1. Sketch of the Algorithm from [755]

	10. MAX TSP in a Normed Space
	10.1. Sketch of t h e Algorithm from [753]

	11. Probabilistic Analysis of Heuristics
	11.1. Asymptotic Optimality
	11.2. The Farthest Neighbor Heuristic
	11.3. The Subtour Patching Heuristic





