CHAPTER9
AUTHENTIC THIRD-PARTY DATA
PUBLICATION

Premkumar Devanbu, Michael Gertz, Charles Martel
Department of Computer Science, University of California, Davis, CA 95616

{devanbu|gertz|martel}@cs.ucdavis.edu

Stuart G. Stubblebine
CertCo, 55 Broad Street, New York, NY 10004

stuart@stubblebine.com

Abstract

1.

Integrity critical databases, such as financial data used in high-value
decisions, are frequently published over the Internet. Publishers of such
data must satisfy the integrity, authenticity, and non-repudiation re-
quirements of clients. Providing this protection over public networks is
costly.

This is partly because building and running secure systems is hard.
In practice, large systems can not be verified to be secure and are fre-
quently penetrated. The consequences of a system intrusion at the data
publisher can be severe. This is further complicated by data and server
replication to satisfy availability and scalability requirements.

We aim to reduce the trust required of the publisher of large, infre-
quently updated databases. To do this, we separate the roles of owner
and publisher. With a few trusted digital signatures from the owner, an
untrusted publisher can use techniques based on Merkle hash trees to
provide authenticity and non-repudiation of the answer to a database
query. We do not require a key to be held in an on-line system, thus
reducing the impact of system penetrations. By allowing untrusted
publishers, we also allow more scalable publication of large databases.

INTRODUCTION

Consider an Internet financial-data warehouse, with historical data
about securities such as stocks and bonds, that is used by businesses
and individuals to make important investment decisions. The owner (or
creator) of such a database might be a rating/analysis service (such as
Standard & Poors), or a government agency. The owner’s data might
be needed at high rates, for example by the user’s investment tools. We
focus our attention on data which changes infrequently and needs to be
delivered promptly, reliably and accurately.

102 DATA AND APPLICATIONS SECURITY

One approach to this problem is for the owner of the information to
digitally sign the answers to clients’ queries, using a private signing key,
sko. This signature is verified using the corresponding public key, pko.
Based on the signature, a client can be sure that the answer comes from
the owner, and that the owner can’t claim otherwise. However, there
are several issues here. First, the owner of the data may be unwilling
or unable to provide a reliable and efficient database service to handle
the needed data rates. Second, the owner needs to maintain a high
level of physical security and system security to defend against attacks.
This has to be done to protect the signingkey, sko, which must be resi-
dent at the server at all times to sign outgoing data. In practice, large
software systems have vulnerabilities, and keeping secret information
on a publicly-accessible system is always risky. Using special hardware
devices to protect the signing key will help, as would emerging crypto-
graphic techniques like “threshold cryptography,” but these methods do
not fully solve the system-vulnerability problem, and can be too expen-
sive in our domain, both computationally and financially.

A more scalable approach uses trusted third-party publishers in con-
junction with a key management mechanism which allows a certified
signing key of a publisher to speak for the owner (see also [3]). The
database (or database updates) is provided securely to the publisher,
who responds to client queries by signing them with it’s own (certified)
signing key, skp. Presumably, the market for useful databases will moti-
vate publishers to provide this service, unburdening database owners of
the need to do so. The owner simply needs to sign the data after each
update and distribute it to the publisher. As demand increases, more
publishers will emerge, or more capable ones, making this approach in-
herently scalable. But the approach still suffers from the problem and
expense of trying to maintain a secure system accessible from the In-
ternet. Furthermore, the client might worry that a publisher engages
in deception. She would have to believe that her publisher was both
competent and careful with site administration and physical access to
the database. She might worry about the private signing-key of the pub-
lisher, which is again vulnerable to attacks. To gain trust, the publisher
must adopt meticulous administrative practices, at far greater cost. The
need for trusted publishers would also increase the reliance on brand-
names, which would limit market competition.

In a summary of fundamental problems for electronic commerce [10],
Tygar asks “How can we protect re-sold or re-distributed information

. 77 We present a solution to this problem in the context of relational
databases.

Authentic Third-party DataPublication 103
2. BASIC APPROACH

We allow an untrusted publisher to provide a verification-object
VO to a client to verify an answer to its database query. The client
can use the VO to gain assurance that the answer is just what the
database owner would have provided. The verification-object is based
on a summary-signature that the owner periodically distributes to
the publisher (Figure 1).

clients

signed summa
signatures

owner

query query result +
verification-object

database

publishers

Figure 1. We partition the role of information provider into owner and publisher.
The owner provides database updates to the publisher. The publisher is untrusted.
The client makes inquiries to the publisher. Its gets responses which can be verified
using a returned verification-object. Superscripts denote keys known to that party.
Only sko is secret. The client must be sure of the binding of pko to the owner.

The summary-signature is a bottom-up hash computed recursively
over B-tree type indexes for the entire set of tuples in each relation of
the owner’s database, signed with sko. Answers to queries are various
combinations of subsets of these relations. Given a query, the publisher
computes the answer. To show that an answer is correct the publisher
constructs a verification-object using the same B-tree that the owner
had used to compute the summary-signature. This verification-object
validates an answer by providing an unforgeable “proof” which links the
answer to the summary-signature. Our approach has several features:

1 Besides its own security, a client needs only trust the key of the
owner. The owner only needs to distribute the summary-signature
during database updates. So, the owner’s private key can be main-
tained in an “off-line” machine, isolated from network-based at-
tacks. The key itself can be ensconced in a hardware token, which
is used only to sign a single hash during updates.

2 Clients need not trust the publishers, nor their keys. In particular,
if a particular publisher were compromised, the result would only
be a loss of service at that publisher.

104 DATA AND APPLICATIONS SECURITY

3 In all our techniques, the verification-object is of size linear in the
size of the answer to a query, and logarithmic in the size of the
database.

4 The verification-object guarantees that the answer is correct, with-
out any extra or missing tuples.

5 In all of our techniques, the overheads for computing the summary-
signature, the Y@, and for checking the VO are reasonable.

6 The approach offers far greater survivability. Publishers can be
replicated without coordination, and the loss of one publisher does
not degrade security and need not degrade availability.

A correct answer and verification-object will always be accepted by
the client. An incorrect answer and verification-object will almost always
be rejected, since our techniques make it computationally infeasible to
forge a correct verification-object for an incorrect answer. Overall, the
approach nicely simplifies the operational security requirements for both
owners and publishers.

3. MERKLE HASH TREES

We describe the computation of a Merkle Hash Tree [6] for a relation r
with m tuples and relation schema R = (Aj,... ,An). A more complete
description can be found in [4]. Assume that A = (A;,...,Ag)is a
list of attributes from schema(R). A Merkle Hash Tree, denoted by

MHT(r,A), is a balanced binary tree whose leaves are associated with
the tuples of r. Each node in the tree has a value computed using a
collision-resistant hash function h:

1 First, compute the tuple hash hy for each tuple ¢ € r, thus
he(t) = h(h(t.A1) || ... || h(t.An))

The tuple hash (by the collision resistance of the hash function) is a
“nearly unique” tuple identifier. We also assume distinct “bound-
ary tuples” 1y, tm+1 with artificial attribute values chosen to be
smaller (larger) than any real tuple. These are associated with the
left (right) most leaves in the tree.

2 Next, compute the Merkle hash tree for relation . We assume
that r is sorted by the values of A so that for two distinct tuples
ti-1,t €r, ti-1. A < t;.A. Any total order over r based on A will
work. We now describe how to compute V(u) the value associated

with a node u of MHT(r, A). Let u; be the leaf associated with
t;.

Authentic Third-party DataPublication 105

Leaf-node u; : V(u) = he(ts)
Internal node u : V(u) = h(V(w) || V(x))

where w, x are the children of u. We also refer to w, x as hash
siblings,

The value of the root is the “root hash” of the Merkle tree. This
construction easily generalizes to a higher branching factor K > 2, such
as in a B*-tree; however, for our presentation here we use binary trees.
If the owner and the publisher build a MHT around index structures
that are used in query evaluation, then constructing a VO is a minor
overhead over the query evaluation process itself.

Note that (by the cryptographic assumption of a collision-resistant
hash function) if the correct value of the parent is known to the client,
it is hard for the publisher to forge the value of its children.

Definition 1 (Hash Path)

For a leaf node u; in MHT(r, A) the nodes necessary to compute the
hash path up to the root hash is denoted as path(t;). Such a hash path
always has the length d, the depth of node u;, d < [log(m +2)]. Witht,
and the values of siblings of the nodes on the path we can recompute the
value at the root. Hash paths can also be provided for non-leaf nodes.

The d values of the siblings of path (t;) constitute the VO showing
that tuple t; is actually in the relation. Indeed any interior node within
the hash tree can be authenticated by giving a path to the root. Hash
paths show that tuples actually exist in a relation; to show that set
of tuples is complete, we need to show boundaries. Any non-empty
contiguous sequence g = (t;,... ,t;) of leaf nodes in a Merkle Hash Tree
MHT(r,A)uses ti—y and tj41 as its boundary tuples.

Any non-empty contiguous sequence g = (¢, ... ,t;) of leaf nodes in a
Merkle Hash Tree MHT(r, A) has a lowest common ancestor LCA(g).
This situation is illustrated in Figure 2. Given LCA(g), one can show
a hash path path(LCA(q)) to the authenticated root hash value. After
this is done, (shorter) hash paths from its boundary tuples t;—y and t;41
to LCA(q) and the values of t;,... ,t; allow us to compute V(LCA(g)).
We can then compute the root hash using the values of the siblings of
path(LCA(q)). This lets us verify of that #;_y,...,%;41 are associated
with contiguous leaves in our tree.

We finally define desirable properties of the answer set g returned by
publisher, in terms of the correct answer that would have been returned
by owner.

106 DATA AND APPLICATIONS SECURITY

Uiy

\o—_

Figure 2. A Merkle tree, with a contiguous subrange g = {ti,... ,t;), with a least
common ancestor LCA(q), and upper and lower bounds. Note verifiable hash path
“1” from LCA(q) to the root, and the proximity subtrees (thick lines) for the “near
miss” tuples ui~1 and uj+1 which show that q is complete.

Definition 2 The answer given by publisher to a query q is inclusive if
it contains only the tuples that would have been returned by owner, and
is complete if it contains all the tuples that would have been returned by
owner.

4. BASE LEVEL RELATIONAL QUERIES

In this section we outline the computation of VO for answers to basic
relational queries. We illustrate the basic idea behind our approach
for selection and projection queries in Section 4.1 and 4.2, respectively.
Slightly more complex types of queries (join queries) and set operators
are discussed in Sections 4.3 and 4.4.

4.1. SELECTIONS

Assume a selection query o4;0c(r) (¢ = constant) that asks for tuples
with attribute values for A; in a specified range. Assuming that the tree
MHT(r,A;) has been constructed, we can provide compact VOsfor the
answer ¢ to a query. We consider two cases: when g = {}, and otherwise.
If ¢ # {}, assume a set of answer tuples &;,%i+1,...,t; which build a
contiguous sequence of leaf nodes in MHT(r, Ai). We simply include a
couple of boundary tuples and return the set #;-1,...,%¢j41, along with
the hash paths to ¢;-1 and ¢;41. If g is empty, just the boundary tuples
are returned. In either case, the size of the VO is O(] ¢ | +1logy | 7 |).

Authentic Third-party DataPublication 107

In [4] we present a formal proof that our construction VOs forselection
queries is secure:

Lemma 3 [f publisher cannot engineer collisions on the hash function
or forge signatures on the root hash value, then if client computes the
right authenticated root hash value using the VO and the answer provided
for selection queries, then the answer is indeed complete and inclusive.

4.2. PROJECTIONS

For queries of the pattern m4(r), A C schema(R), the projection op-
erator eliminates some attributes of the tuples in the relation r, and then
eliminates duplicates from the set of shortened tuples, yielding the final
answer ¢g. A user can choose many different ways to project from a rela-
tion R; if this choice is dynamic, it may be best to leave the projection to
the client. However, the client then gets a potentially large intermediate
result Z; so the VO will be linear in size | Z |, rather than in the smaller
final result | q | We note that we can, if necessary, mask some of the
attributes from the client; with just the hash of those attributes in each
tuple, the client can compute the tuple hash.

Consider, however, an often-used projection ma4(r) which projects
onto attributes where duplicate elimination will remove numerous tu-
ples. Given the pre-projection tuple set, the client would have to do
all this work. Now, suppose we have a Merkle tree MHT(r, A), i.e.,
we assume that the sets of retained attribute values can be mapped to
single values with an applicable total order. In this case, we can provide
a YO for the projection step that is linear in the size of the projected
result g.

Each tuple ¢ in the result set ¢ may arise from a set S(f) € r with
tuples having identical values for the projected attribute(s) .A. Wemust
show that the set ¢ is inclusive and complete:

1 To prove t € g, we show the hash path from any witness tuple
y € S(t) € r to the Merkle Root. However, “boundary” tuples
make better witnesses, as we describe next.

2 To show that there are no tuples missing, say between ¢ and
t', (t,t' € q), we just show that S(7), S(t'),C r are contiguous in
the sorted order. Hash paths from two “boundary” tuples y € S(¢)
and x € S(t') that occur next to each other in the Merkle tree can
do this.

We observe that both the above bits of evidence are provided by

displaying at most 2 | g | hash paths, each of length [loga r]. This meets
our constraint that the size of the verification object be bounded by

O(l ¢ | logg | |).

108 DATA AND APPLICATIONS SECURITY

Constructing Merkle trees to provide compact YOs for duplicate elim-
ination with every possible projection might be undesirable. We might
construct trees for only highly selective, common projection attributes,
and leave the other duplicate eliminations to the client.

4.3. JOINS

Joins between two or more relations, specially equi-joins where re-
lations are combined based on primary key — forelgn key dependen-
cies, are very common. We focus on pairwise joins of the pattern
r Mg s where C is a condition on join attributes of the pattern Ap©Asg,
Ap € schema(R),Ag € schema(S), © € {=,<,>}. For © being the
equality predicate, we obtain the so-called equi-join. We show 3 differ-
ent approaches, for different situations.

Given a query of the pattern r M¢ s, one structure that supports
computation of very compact VOs for the query result is based on
the materialization (i.e., the physical storage) of the Cartesian Prod-
uct r x s. This structure supports the three types of joins, which can
all be formulated in terms of basic relational algebra operators, i.e.,
r™Mapeas S = 0Ag0As (r X 5). Assume m =| r |,n =| s | The verifica-
tion structure for » Mg s queries is constructed by sorting the Cartesian
Product according to the difference between the values for Ag and As,
assuming such an operation can be defined, at least in terms of “posi-
tive”, “none” or “negative”. This yields three “groups” of leaf nodes in
the Merkle Tree: (1) nodesfor t.Ag — u.Ag for two tuplesr € ,u € s is
0, thus supporting equi-joins, (2) nodes where the difference is positive,
for the predicate >, and (3) nodes where the difference is negative, for
the predicate <. If only simple © joins, with © ==, > or < are desired,
there is no need to construct binary Merkle trees over the entire cross
product—we can just group the tuples in R x § into the three groups,
hash each group in its entirely, and append the three hashes to get the
root hash. In this case, the VOs for the three basic © queries would
consist only of 2 hash values!

For equi-join queries, an optimized structure, presented briefly below,
can be used. Rather than the full Cartesian Product r x s, we ma-
terialize the Full Outer Join r 2P s which pads tuples for which no
matching tuples in the other relation exist with null values (see, e.g.,
[2, 8]). The result tuples obtained by the full outer-join operator again
can be grouped into three classes: (1) those tuples tu, t € r, u € s, for
which the join condition holds, (2) tuples from r for which no matching
tuples in s exist, and (3) tuples from s for which no matching tuples

Authentic Third-party DataPublication 109

in r exist. Constructing a VO for the result of query of the pattern
r™M 4044 5 then can be done in the same fashion as outlined above.

Suppose R and S have B-tree indices over the join attributes, and
these trees have been Merkle-hashed; also suppose, without loss of gen-
erality, that of the two relations, r has the smaller number of distinct
values, say 9, and that the size of the answer is q. We can now pr0V1de
larger VOs of size O(rdlogn + rélogm+ | ¢ |) in the worst case'. This
is done by doing a “verified” merge of the leaves of the two index trees.
Whenever the join attributes have the right @ relation, witness hash
paths in the trees for R and S are provided to show inclusiveness of the
resulting answer tuples; when tuples in r or s are skipped during the
merge, we provide a pair of proximity subtrees in R or S respectively to
justify the length of the skip. This conventional approach to joins gives
rise to larger VOs than the approach described above, but at reduced
costs for publisher and owner.

4.4. SET OPERATIONS

Consider set operations over relations # and v, which may be inter-
mediate query results, u and v may be subsets of some relations r and
s respectively, which are each sorted (possibly on different attributes)
and have its own Merkle tree MHT(r, A) and MHT(s, A'), the root of
which is signed as usual. We consider unions and intersections.

Union. In this case, the answer set is ¢ = u Uv. The client is given
VOs for u and v, along with VOs for both; client verifies both VOs, and
computes uUv. This can be done in O(u +v) using a hash merge. Since
lg| is O (Ju| + |v|), the overall VO, and the time required to compute
and verify the answer, are linear in the size of the answer.

Intersection. The approach for union, however, does not produce
compact VOs for set intersection. Suppose ¢ = uNv where u and v are
as before: note that often | ¢ | could be much smaller than | u | + | v |
Thus, sending the YOs for u and v and letting the client compute the
final result could be a lot of extra work. We would like a VO of size
O(| q |). If Merkle trees exist for u and v, we can do inclusiveness
in O(| q |): publisher can build a VO for g with O(| ¢ |) verification
paths, showing elements of g belong to both u and v. Completeness is
harder. One can pick the smaller set (say u#) and for each element in
u — g, construct a YO show that it is not in v. In general, if # and v
are intermediate results not occurring contiguously in the same Merkle

"While we can construct pathological cases that require VOs of this size, practical cases may
often be better, being closer to O(qlogn + g log m). Further empirical study is needed.

110 DATA AND APPLICATIONS SECURITY

tree, such a VO is linear in the size of the smaller set (say u). A similar
problem occurs with set differences u — v.

We have not solved the general problem of constructing VO's linear
in the size of the result for intersections and set differences. Indeed, the
question remains as to whether (in general) linear-size VOs can even be
constructed for these objects. However, we have developed an approach
to constructing linear-size VOs for a common type of intersection, range
query, for example, a selection query where the age and salary fall in
specified ranges. For these, we use a data structure drawn from com-
putational geometry called a multi-dimensional range tree. This also
supports set differences over range queries on several attributes.

In d-dimensional computational geometry, when one is dealing with
sets of points in d-space, one could ask a d-space range query. Consider
a spatial interval (< z},z} > ... < 24,28 >); this represents an axis-
aligned rectilinear solid in d-space. A query could ask for the points
that occur within this solid. Such problems are solved efficiently in
computational geometry using so-called Range Trees (See [5], Chapter
5). We draw an analogy between this problem and a query of the form

Ocl<Ar<e} N...N Och<Ag<c} (r)

where {Ai,...Ag} C schema(R). We use the multi-dimensional range
tree (mdrt) data structure to solve such queries and provide compact
verification objects. For brevity, we omit the full details of our approach.
However, in [4], we show how to construct VOs for “d”-way range queries
such as the ones shown above. We also argue that the size of these VOs,
for a relation with size n, is O(| g | + log*n). The mdrt itself uses
O(nlog®'n) space and can also be constructed in time O(n log?~? n).
While the data structure arises out of computational geometry, it can be
used with any domain that has enough structure to admit a total order.
Full details are discussed in [4]

S. CONCLUSIONS AND FUTURE RESEARCH

We have explored the problem of authentic third party data publi-
cation. In particular, we have developed several techniques that allow
untrusted third parties to provide evidence of inclusive and complete
query evaluation to clients without using public-key signatures. In ad-
dition, the evidence provided is linear in the size of the query answers,
and can be checked in linear time. Our techniques can involve the con-
struction of complex data structures, but the cost of this construction
is amortized over more efficient query evaluation, as well as the produc-
tion of compact verification objects. Such pre-computation of views and
indexing structures are not uncommon in data warehousing applications.

Authentic Third-party DataPublication 111

We now examine some pragmatic considerations in using our ap-
proach, as well as related work and future research.

Query processing flexibility. = What queries can be handled? A
typical SQL “select ... from ... where ...” can be thought of one or
more joins, followed by a (combined) selection, followed by a projection.
A multi-dimensional range tree can be used for both efficient evaluation
and construction of compact YOs for such queries. Specifically, consider
a query that involves the join of two relations R and S, followed by a
series of selections and a final projection. Let’s assume a Theta-join
over attribute Ay (occurring in both relations), followed by selections

on attributes A2 and As, and a final projection on several attributes,
jointly represented by A4. Full details are deferred to [4]. However,
to summarize briefly: such a query can be evaluated by constructing

a mdrt, beginning with the join attributes, followed by trees for each
selection attribute, and perhaps finishing with a tree for some selective

projection attributes.

Conventions. It is important to note that all interested parties:
owner, publisher and client, share a consistent schema for the databases
being published. In addition there needs to be secure binding between
the schema, the queries and the query evaluation process over the con-
structed Merkle trees. A convention to include this information within
the hash trees needs to be established. All parties also need to agree
on the data structures used for the VO. It is also important that the
publisher and the client agree upon the format in which the VO together
with the query result is encoded and transmitted. Tagged data streams
such as XML provide an attractive option.

Recent Query Evaluations. Verifiers must verify that query evalu-
ation is due to an “‘adequately recent” snapshot of the database and not
an old version. We assume the technique of recent-secure authentica-
tion [9] for solving this problem. Risk takers (e.g., organizations relying
on the accuracy of the data) specify freshness policies on how fresh the
database must be. The digital signatures over the database include a
timestamp of the last update as well as other versioning information.
Clients interpret the timestamps and verify the database is adequately
recent with respect to their freshness policies.

Query flexibility. For efficient verification of query answering, we
make use of different trees over sorted tuple sets. Without such trees, our
approach cannot provide small verification objects. This points to a lim-

112 DATA AND APPLICATIONS SECURITY

itation of our approach—only queries for which Merkle trees have been
pre-computed can be evaluated with compact verification objects. Our
approach cannot support arbitrary interactive querying with compact
verification objects. Arbitrary interactive querying, however, is quite
rare in the presence of fixed applications at client sites. In practice,
however, data-intensive applications make use of a fixed set of queries.
These queries can still make use of parameters entered by a user and
which are typically used in selection conditions. Our approach is com-
patible with such applications. Essentially, client applications commit a
priori the queries they wish to execute; the owner and the publisher then
pre-compute the required Merkle hash trees to produce short verification
objects. While our approach cannot provide compact verification objects
in the context of arbitrary interactive database querying, it is quite com-
patible with the widely-used practice of embedding pre-determined (and
parameterizable) queries within data-intensive applications.

References

[1] M. Bellare. Practice-oriented Provable Security. In G. Davida E. Okamoto and
M. Mambo (eds.), Proceedings of First International Workshop on Information
Security (ISW 97), LNCS 1396, Springer Verlag, 1997.

[2] C.J. Date. An Introduction to Database Systems, Addison-Wesley, 1999.

[3] P. Devanbu and S.G. Stubblebine. Software Engineering for Security: a roadmap.

In The Future of Software Engineering, Special volume published in conjunction
with ICSE 2000, ACM Press, 2000.

[4] P. Devanbu, M. Gertz, C. Martel, and S.G; Stubblebine.
Authentic Third-party Data Publication. Technical Report,

www.db.cs.ucdavis.edu/publications/DGM00.ps, 2000.

[5] M. D. Berg , M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational
Geometry. Springer-Verlag, New York, 2000.

[6] R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology (Crypto
’89), LNCS Vol. 435, Springer Verlag, 218-238, 1989.

[71 M. Naor, K. Nissim. Certificate Revocation and Certificate Update. Proceedings
of the 7th USENIX Security Symposium, 1998.

[8] A. Silberschatz, H. Korth, S. Sudarshan. Database System Concepts, (3rd edi-
tion), McGraw-Hill, 1997.

[9] S. G. Stubblebine. Recent-secure authentication: Enforcing Revocations in dis-
tributed systems. IEEE Computer Society Symp. on Security and Privacy, 1995.

[10] J. D. Tygar Open Problems in Electronic Commerce. In Proc. SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, ACM, 101, 1999.

