
Yadav et al. Carbon Research            (2023) 2:27  
https://doi.org/10.1007/s44246-023-00055-3

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cultivation of aromatic plant 
for nature‑based sustainable solutions 
for the management of degraded/marginal 
lands: techno‑economics and carbon dynamic
Deepika Yadav1, Anisha Yadav1, Mayank Singh1,2 and Puja Khare1,2* 

Abstract 

The cultivation of aromatic grasses on marginal/degraded land attracts attention due to their remediation potential, 
low input cost, and economic gain. During the distillation of these aromatic grasses, a huge amount of solid and liq-
uid waste (hydrosol) is generated, which is not only rich in carbon content but also has a good amount of nutri-
ent. This review summarized the potential of aromatic plants for the restoration and vaporization of distilled waste 
into different value-added products. In this review, estimates of the economic cost and carbon dynamics for cultiva-
tion, distillation, and waste valorisation of aromatic grasses were made using available data. Based on the literature, 
the available degraded land reported for India (38,600 ha) was used for the calculation. The review discussed Scien-
tometrics analysis, the remediation potential of aromatic plants, and various routes of valorization of distilled waste 
generated to achieve sustainable development goals. Scientometrics analysis demonstrated the studies that include 
the phytoremediation potential of aromatic grasses in recent years. Among the aromatic grasses, Chrysopogon ziza-
niodes (L.) Nash., Cymbopogon flexuosus and Cymbopogon martini were majorly used for reclamation purposes for dry 
land, mine-affected areas, and metal and pesticide-contaminated soils. The estimated profitability of the cultivation 
and carbon sequestration potential of these grasses in marginal/degraded land could be 22–629 million USD. Our 
estimations showed that the cost of carbon sequestration by the cultivation of the aromatic plant in degraded land 
could be 16–45 million USD. The conversion of distilled waste generated into compost, vermicompost, and biochar 
could sequester about 0.02 X105-335 X105 t of carbon (cost: 0.2–1913 million USD). The use of hydrosol and smoke 
water released during the process could sequester about 0.014 to 7403 t of carbon ( cost 0.001 to 0.42 million USD). 
Overall the review demonstrated the sustainability and carbon footprinting of the remediation process by aromatic 
grasses. The review allowed the exploration of knowledge-based strategies to unlock the potential of aromatic plants 
for restoration and carbon sequestration, along with the value addition of distilled waste in a sustainable manner. 
However, more databases are needed to support the information, which includes the productivity and selectivity 
of individual aromatic plant for different soil and agro-climatic regions.
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Highlights 

•	 The remediation by aromatic grasses and valorisation of distilled waste decrease  the carbon foot printing.
•	 Estimated profitability of these grasses in marginal/degraded land could be 22-629 million USD.
•	 The cost of carbon sequestration by the cultivation of the aromatic plant in degraded land could be 16-45 million 

USD.
•	 The conversion of distilled waste into organic manure could sequester carbon about 0.02-335 X105t.
•	 The use of hydrosol and smoke water could sequestered the carbon about 0.014 to 7403 t.

Keywords  Aromatic plants, Degraded land, Carbon sequestration, Cost economics
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1  Introduction
In recent years, the conflict between people and cul-
tivated land has been amplified due to rapid popula-
tion growth, urbanization, and industrialization, which 
cause serious threats to food security and health of the 
soil due to the excessive use of chemicals for enhanc-
ing productivity. Unfortunately, 20% of the earth’s total 
land area was degraded between 2000 and 2015, and 
more than 33% of global land degradation has been 
reported to date resulting in a significant loss of ecosys-
tem services offered by land systems (Fuso et al. 2019). 
A total of 12 million hectares of land are degraded each 
year worldwide (Gupta 2019). On the other side, more 
land is required to feed the world’s population. Glob-
ally, one-fifth of land area (more than 2 billion hectares) 
is classified as degraded land (UNCCD 2020). The 
total areas of degraded and marginal land is reported 
is 991 Mha and 430–580 Mha, respectively (Cai et  al. 
2011; Berndes et  al. 2003). In India, 8.12% of the total 
land area degraded between 2000 and 2015, and mar-
ginal land (consisting of culturable wasteland and fal-
low land) had an area of about 38.38 Mha in the year 
2018–2019 (Vaish et al. 2016) with a low under-utiliza-
tion area (Fig. 1A). Rajasthan, Jammu Kashmir, Andhra 
Pradesh, and Maharashtra had a higher proportion of 
degraded land (Fig. 1A).

Land degradation indicates a definite decline in soil 
performance in terms of productivity, health, strength, 
and environmental functions (Mahala 2020; Prince 
et  al. 2009). Both natural and anthropogenic sources 
such as desertification, deforestation, cropland expan-
sion erosion, and urbanization continuously enhance 
the degradation process of land worldwide (Gupta et al. 
2021) and may be varied with the tropical, temperate, 
and arid regions (Prince et  al. 2009). The natural deg-
radation process is further catalyzed by the unsustain-
able use of land resources all over the world (Pacheco 
et  al. 2018; Gerwing et  al. 2022). Edaphic issues and 
socioeconomic conditions such as unprofitability are 
the major factors that restrict the utilization of these 
marginal lands (Jiang et  al. 2019). Generally, degraded 
land (including marginal as well as polluted land) has 
low physical qualities due to variable climatic condi-
tions, challenging soil properties, and low net produc-
tivity (Gupta et  al. 2021). The lower net productivity 
further causes the depletion in the organic carbon con-
tent of these land. Also, the erosion processes further 
transport the terrestrial C pool into inland water, the 
atmosphere, and aquatic segments (Lal 2005). The UN 
has already declared the current decade (2021–2030) 
the ‘Decade on Ecosystem Restoration’, which aims to 
accelerate the restoration of different types of degraded 
lands across the world with effective and sustainable 

processes. The degradation of land is an irreversible 
process (Gibbs and Salmon 2015); hence, judicious 
management is required to convert it to fertile land. In 
addition, the reversal of land degradation at both global 
and local levels can contribute to the target of SDGs 
(UNCCD 2016). The reclamation of this unutilized land 
also contributes toward the SDGs set by the UN, such 
as (1) no poverty, (2) zero hunger, (3) good health and 
well-being, (11) sustainable cities and communities, 
(12) responsible consumption and production, (13) cli-
mate action, (14) life below water, and (15) life on land.

The net productivity and carbon dynamics are impor-
tant parameters for the sustainability of the process. The 
restoration of these lands benefits the cultivation cultiva-
tion of high-value crops such as aromatic crops (Edrisi 
and Abhilash 2015), which could be a good option for 
marginal/contaminated lands due to their harsh nature, 
low input in maintenance, and economic benefits. Veti-
ver (Chrysopogon zizaniodes (L.) Nash.), lemongrass 
(Cymbopogon flexuosus), and palmarosa (Cymbopogon 
martinii) were reported previously for land reclama-
tion purposes (Jain et  al. 2020, 2022; Yadav and Khare 
2023;  Yadav et  al.  2022; Khan and Verma  2020; and 
Gupta et  al. 2013). For successful stabilization, various 
amendments such as biochar, compost, and their combi-
nation can be used (Ghosh and Maiti 2021; Mukhopad-
hyay et  al. 2020; Ahirwal and Maitiai 2022), which not 
only enhance the soil quality but also increase the soil 
organic pool. Hence, the conversion of distilled waste 
into organic amendments could be a circular and carbon-
negative process. The cultivation of these cash crops not 
only restores soil fertility and improves the soil ecosys-
tem but also provides additional income to the farmers/
land owner (Gupta et  al. 2021). In addition, their culti-
vation in unutilized land can easily meet the demand of 
the aroma industries without competition with the food 
crops. Also, an increase in economically important sec-
ondary metabolites/oil content under stress conditions 
provides a further economic benefit (Mahajan et  al. 
2020). The essential oil extracted from these crops has a 
huge market in food processing, the beauty industry, aro-
matherapy, detergents, insect repellent, and many more 
(Gupta et  al. 2021). The world market size for essential 
oils gravitated USD 7.51 billion in 2018 and is projected 
to reach a value of 15 billion USD by 2026 with a 9% com-
pound annual growth rate between 2019 and 2026 (Ahuja 
and Singh 2019).

Previously, several studies demonstrated carbon 
sequestration by plantation on degraded/marginal/pol-
luted lands. The plantation of forest can sequester 164–
56 t/ha carbon during a single 41 years rotation period. 
However, the net carbon sink decreased from 35.95 
t C/ha to 0.98 t C/ha (Lun et  al. 2018). The rate of soil 
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organic carbon sequestration was reported from 0.1 to 
0.31  Mg  ha−1 Y−1 in the grass and 0.7  Mg  ha−1 Y−1 in 
forest reclamation of the mine system (Shrestha and Lal 
2006). Ngo et  al. (2014) found that compost and ver-
micompost had a positive effect on stable carbon storage. 
Vermicompost with biochar increased 23% soil carbon 
stock beyond external carbon addition. Carbon storage in 
soil by the addition of vermicompost may be due to high 
microbial activity or increased root biomass. Results of 
Li et  al. (2021a) revealed that straw mulching increased 
soil organic carbon stock, soil organic carbon lability, 
and carbon management index in soil surface 0–20 cm. 
Various reviews on land restoration are available  world 
widely (Singh and Tiwari 2022; Ahirwal and Maiti 2022; 
Upadhyay and Edrisi 2021; Kumar et al. 2021; Feng et al. 
2019; Ait Elallem et al. 2021), however, to date, no review 
is available on estimating the carbon foot-printing of cul-
tivation and processing of the aromatic crop in marginal/
contaminated lands.

This review examines the techno-economic feasibil-
ity of cultivating aromatic grasses in degraded/marginal 
lands and the valorisation of generated waste based on 
available data. The review also discusses the carbon 
budget during the cultivation and processing of aromatic 
crops and value addition to generated waste. Different 
sections of the review cover Scientometrics analysis, 

techno-economic and carbon sequestration by plantation 
of aromatic grasses, waste valorisation and distillation, 
and their applications for soil and other purposes.

2 � Scientometrics analysis of degraded land 
and their reclamation

There are various processes, such as physical, chemi-
cal, biological, and integrative methods, with different 
fertilization systems for improving the soil quality of 
degraded/marginal lands (Raj et al. 2022; Li et al. 2021b). 
In this review, Web of Science (WOS) and biblioshiny 
were used for scientometrics analysis. Using the key-
words ’degraded land’, a total of 7771 publications during 
1990-2022 were retrieved in WOS (Fig. 1B). During these 
32 years, one publication was retrieved in 1990. A rapid 
increase in publications was observed after 1990, with 
the maximum number of publications (n=925) in 2021. 
Among these publications, China occupies the leading 
position, followed by USA, Germany, Australia, India, 
Brazil, and England. Among these, USA, Germany, UK, 
and Australia were on the list of major developed coun-
tries (Fig. 1C). The Chinese Academy of Science was the 
most prominent institute working in this field (Fig. 1D).

The scientometrics analysis using the keywords 
‘degraded land’, ‘restoration’, and ‘reclamation’ demon-
strated 226 publications between 1981–2022 (Fig.  2A). 

Fig. 1  A Total area covered by marginal/degraded land in India B Number of studies reported on degraded lands worldwide C Contribution 
of countries to degraded lands studies D Institute involved in degraded lands studies
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China is the leading country in land degradation and 
remediation studies, with the USA attaining 2nd and India 
3rd position (Fig. 2B). The major keywords used in these 
studies included remediation, phytoremediation, biochar, 
soil remediation, bioremediation, revegetation, heavy 
metals, restoration, and biodegradation (Fig.  2C). How-
ever, further analysis using ’degraded land’ and   ’reme-
diation’ as keywords identified 417 publications from 
1994–2022 (Fig. 2D), among which the numbers of pub-
lications among which physical, chemical, and bioreme-
diation methods were 42, 82, and 24. Using the keywords 
’degraded land’  and ’bioremediation’ retrieved a total of 
225 publications from 1991–2022, with the highest num-
ber of publications (n=25) in the year 2019 (Fig. 2E). The 
keywords ’contaminated land’, ’restoration’, and ’phytore-
mediation’ identified 86 publications, with the maximum 
number of publications in the year 2020–2021(Fig. 2F). In 
this category, the keywords were further refined to three 
groups: 1) aromatic grass and degraded land, 2) aromatic 
grass and mine waste, and 3) aromatic grass and metal 
contamination and mine waste. The first group (Fig. 2G) 
demonstrated 13 publications from the year 2009–2022 
from India, the USA, France, Germany, and Spain. Using 

the keywords ‘aromatic grasses and mine waste’ yielded 4 
publications from India and Canada (Fig. 2H), while ‘aro-
matic grasses and metal contamination and mine waste’ 
identified 2 publications from Canada and Egypt (Fig. 2I). 
The Scientometrics analysis indicated that phytoremedi-
ation, bioremediation, and biochar were the major areas 
used for the restoration of degraded land. The restoration 
of degraded land using aromatic grasses is a recent tech-
nology and needs to be further explored more.

3 � Phytoremediation potential of aromatic grasses
The highly reported technologies for land reclamation 
were bioremediation covers bioaugmentation, biostimu-
lation, bioleaching, biofilters, biosorption, compost-
ing, rhizoremediation, and phytoremediation (Cristaldi 
et  al. 2017). These processes were extensively used due 
to their cost-effective and non-invasive nature in com-
parison with other methods (Tripathi et al. 2017). Among 
all the bioremediation processes, phytoremediation was 
used to improve soil productivity and the extraction of 
contaminants from the soil (Tahir et  al. 2016). Plants 
such as Brassica juncea, Miscanthus, Eucalyptus globu-
lus, Salix viminalis, Populus nigra and aromatic plants 

Fig. 2  Scientometrics analysis A With keywords: degradation land, restoration and remediation. B Three field plot of country, authors and keywords 
on restoration and remediation. C Authors keywords cloud. D Publications with keywords: degraded land and remediation. E Publications 
with keywords: degraded land and bioremediation. F Contaminated land, restoration, and phytoremediation. G Publications with keywords: 
aromatic grasses and degraded land. H Publications with keywords: aromatic grasses and mine waste. I Publications with keywords: aromatic 
grasses, metal contamination and mine waste



Page 6 of 23Yadav et al. Carbon Research            (2023) 2:27 

such as Cymbopogon flexuosus, Cymbopogon marti-
nii  (Roxb. Wats), Chrysopogon zizaniodes  (L.) Nash and 
Pelargonium graveolens (L.) were reported for successful 
management of the degraded/contaminated ecosystem 
(Table 1).

Among aromatic plants, vetiver (Chrysopogon ziza-
niodes) was reported as a tolerant crop to a wide range 
of abiotic stress, including salinity, sodicity, acidity, and 
heavy metal stress (Pandey et  al. 2019). The Cymbopo-
gon martinii was reported as tolerant to multiple stresses 
posed by acidic or mined soil (Jain et al. 2020). The ame-
liorative effect of Cymbopogon flexuosus (lemongrass) and 
Cymbopogon martinii plantation on soil enzyme activi-
ties in different dryland and mine soils were reported 
(Singh et al. 2021; Jain et al. 2020). Cymbopogon citratus 
was used for the accumulation of Pb2+ (Sobh et al. 2014), 
Cr2+, and As3+ (Jha and Kumar 2017) from contaminated 
water. The Cymbopogon martinii was used for phytosta-
bilization of tannery sludge-contaminated soil (Pandey 
et al. 2015). Cymbopogon ambiguous an Australian native 
grass was used for the remediation of aliphatic hydro-
carbons from mine site soil (Gaskin and Bentham 2010). 
Cymbopogon citratus and Chrysopogon zizaniodes grasses 
demonstrated their potential for the phytoremediation of 
Cd2+ heavy metal (Sulastri and Sabrina 2022). Recently, 
Pelargonium graveolens L. was reported for the resilience 
of soil enzymatic activities in chlorpyrifos-contaminated 
soils (Yadav et al. 2022). Different cultivars of Cymbopo-
gon flexuosus, Cymbopogon martinii (Roxb. Wats), Cym-
bopogon flexuosus, and Chrysopogon zizaniodes (L.) Nash 
had the potential to accelerate the dissipation of chlorpy-
rifos and its metabolite (Yadav and Khare, 2023).

4 � Techno‑economic and carbon dynamic 
during cultivation and processing of aromatic 
crops

For the techno-economic calculations, lemongrass, pal-
marosa, vetiver, citronella, and P. graveolens were con-
sidered and the total area for remediation referred to 
available degradable land in India (38600 ha). The follow-
ing equations were used for the total production of aro-
matic crops, total oil production, and oil cost.

The following equations were used for the calculations.

TP = Total production
YB = Biomass yield of each crop (t/ha)
AA = Area available (ha)

(1)TP = YB × AA

(2)TPO = YO × AA

(3)TCpO = TPO × RCpO

TPO = Total oil production
YO = Oil yield (Kg/ha)
TCpO = Total oil cost (t)
RCpO = Rate of oil cost (USD/Kg)
Net profit was calculated as

NP = Net profit
TE = Total expenditure
Biomass yield (t/ha), oil yield (Kg/ha), oil cost (USD/

kg), and expenditure of aromatic plants cultivation and 
harvest (USD/ha) were taken from the Central Institute 
of Medicinal and Aromatic Plants (Aush Gyanya 2021) 
(Table  2). The expenditure cost included the cost of 
planting material, labour, fertilizer, and transportation.

The estimated expenditure for the cultivation of the 
aromatic plant in all available marginal lands in India 
and produced oil costs were 11 to 36 million USD and 
41 to 1729 million USD, respectively, which could pro-
vide a net benefit of 22–629 million USD (Table  2). 
In addition, the cultivation of the aromatic plant in 
degraded land also reduces carbon loss during the 
weathering process. Generally, the erosion process and 
low input of biomass carbon cause a negative carbon 
budget in degraded lands (Lal 2010). Total soil organic 
carbon loss due to land degradation was reported up to 
8–12 Mg C/ha (Swift et al. 1994). However, in the cur-
rent scenario, the annual global emissions of CO2 in the 
first decade of the twenty-first century were reported 
as 3.6–4.4 Pg (petagrams or billion tonnes), represent-
ing 10 to 12% of the current global carbon emissions 
(Prăvălie 2021).

The transportation cost of the biomass for distillation 
was calculated using the capacity of a vehicle 15 t and 
distance traveled 10 to 25 km with transportation cost 
taken as 7.5 (for 10 km) to 18.75 (25 km) USD /Km and 
C emission during the transportation was taken as 125, 
and 133  g/km (Jana and De 2015). The total expenses 
on transportation of planting material for distillation 
after harvest could be 0.05 to 1.93 million USD, while 
carbon emission during transportation could be 9 to 
342 t. During the distillation process, wood was used 
as fuel, and 100–200  kg of wood is required for 100 
tonnes, and the C released rate of wood burning was 
taken as 337.5 g C/Kg and 480 g C/kg (Singh et al. 2019; 
Johnson 2023). CO2 estimation from wood burning was 
calculated as

WR = Wood requirement
BAD = Total biomass available for distillation (t)

(4)NP = TCpO − TE

(5)WR =

BAD

BCD
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BCD = Biomass used for distillation per batch (t)

CW = Carbon released due to wood burning (t)
CD = Carbon released due to wood burning (t)
The total carbon released during the distillation could 

be 35 to 1482 t. The total cost of C emission during dis-
tillation (transportation + wood burning) could be in 
the range of 0.002 to 0.104 million USD (Table 2).

The mean carbon sequestration by the cultivation of 
lemongrass, palmarosa, and vetiver was 5.38, 6.1, and 
15.2 t/ha in biomass and 3.08, 2.79, and 5.75 t/ha in 
soil, respectively (Khan and Verma 2020). The carbon 
cost was taken as $51–57/t (Struhs et  al. 2020). These 
values were used for the calculation of total carbon 
sequestration by the cultivation of these plants. No data 
was available for citronella and P.graveolens; hence low-
est values were taken for the calculation in the present 
study. Carbon sequestration by biomass (BCseq) and by 
soil (SCseq) were calculated as

BCSeq = Carbon sequestration by biomass
SCSeq = Carbon sequestration by soil
CBSeq = Carbon sequestration in biomass (t/ha)
CCSeq = Carbon sequestration in soil (t/ha)
AA = Area available (ha)
Hence, the cultivation of aromatic grasses can seques-

ter carbon from 20.77 to 58.82 × 104 t carbon in biomass 
and 10.77 to 22.18 × 104 tonne C in soil, which could cost 
about 16.1 to 44.9 million USD (Table 2).

5 � Valorization of waste generated after distillation 
of aromatic grass

Though the cultivation of aromatic plants in unuti-
lized lands provides many benefits, such as remedia-
tion of lands, carbon sequestration, and soil quality 
improvement, but the generation of vast waste mate-
rial in the form of solid biomass or liquid spent after 
the extraction of essential oil needs to be addressed 
for the sustainability of the process (Yarin et al. 2022). 
Only 0.5–10% of total fresh biomass may be used dur-
ing distillation, and the rest of the waste is dumped 
or burnt. All over the world, approximately 20 million 
tonnes of dry biomass are produced every year after 
distillation, while India contributes 3 million tonnes 
of solid biomass every year (Basak et al. 2021; Sayed-
Ahmad et  al. 2017a, b). Distillation residue can be 
classified into three categories- wastewater, hydro-
sol, and solid residue. In India, generated wastewater 

(6)Cw = WR× CD

(7)BCseq = AA× CBSeq

(8)SCeq = AA× CSSeq

is directly recycled for distillation and then used for 
agricultural purposes, and no study has been reported 
on the usage of waste water. However, the conversion 
of hydrosol and solid-distilled biomasses (DW) into 
value-added products has been reported by several 
authors.

5.1 � Hydrosol
The spent water, known as hydrosol, is produced due 
to the condensation of water vapours in the collect-
ing chamber during the distillation process (Yarin 
et  al. 2022), which could be used for various purposes 
(Fig. 3A). It consists of some fractions of essential oil and 
aromatic compounds along with components like alco-
hol, ketone, phenol, ether, and esters (Inouye 2008). The 
presence of constituents in rose oil, i.e., 2-phenyl etha-
nol, was reported in hydrosol as well (Zhu et  al. 2012). 
Sage hydrosol obtained from the fresh herb of sage dur-
ing steam distillation is rich in camphor (43.38%), a major 
constituent of sage oil (Baydar et al. 2013). The Ocimum 
basilicum hydrosol is a rich source of a compound such 
as linalool (66.5%), eugenol (18.9%), and eucalyptol 
(7.1%) (Traka et  al. 2018). Likewise, hydrosol obtained 
from citronella and rose contains an abundant amount of 
terpenoids known for the reduction in enzymatic activ-
ity of phenylalanine ammonia-lyase, peroxidase, and 
polyphenol oxidase and reported as an anti-browning 
agent for fresh-cut fruits (Xiao et al. 2020). The hydrosol 
of basil enhances the seed germination rate and affects 
shoot and root length in basil and quinoa (Camlica et al. 
2017). Origanum sp. hydrosol may act as a natural pre-
servative and act as a good alternative for the storage 
and preservation of fresh-cut vegetables under optimal 
storage conditions. Aqueous extracts are more effec-
tive than essential oil in inhibiting polyphenol oxidase 
activity (Tanhaş et  al. 2020). The use of these hydrosols 
as a source of antibacterial activity (Hussien et al. 2011; 
Verma et  al. 2016; Acheampong et  al. 2015), antifungal 
activity (Verma et al. 2016; Franzener et al. 2007; Belab-
bes et al. 2017) and pesticidal activity (Zhu et al. 2012) is 
reported in the literature. Hydrosol of lemongrass is used 
as the local source for the production of different types of 
paints (mat, screeding, emulsion, and gloss) and is also a 
supplement for broiler chicken (Rabadan 2022). The uti-
lization of hydrosol for these purposes not only improves 
the product quality but also sequesters the carbon which 
otherwise wastes. The reduction in carbon footprinting 
due to the application of hydrosol was calculated.

TCSH = Total C save in hydrosol
BCD = Biomass used for distillation per batch (t)
RPH = Hydrosol production rate (L/t)

(9)TCSH = BCD × RPH × CH
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CH = Carbon content of hydrosol (mg/L)
The reported hydrosol production rate in the literature 

is 4.7 L/Kg (Francezon and Stevanovic 2018). The carbon 
content of hydrosol is reported as 200 to 1000 mg/L. The 
use of hydrosol for agricultural purposes can save car-
bon (100 to 7403 t carbon). This will save a cost of 0.01 to 
0.42 million USD on using hydrosol (Supplementary 4). 
However, carbon and energy savings due to the replace-
ment of similar technologies with hydrosols need to be 
addressed in the future.

5.2 � Solid distilled baggage
As reported earlier that due to low oil content (< 5% 
oil yield) in aromatic plants, a huge amount of biomass 
is left after distillation (Boruah et  al. 2019; Wany et  al. 
2014; Saha et  al. 2018). For example, the total produc-
tion of citronella oil is 5000 tons on an annual basis 
(Kumoro et al. 2021), and the plant contains only 1% of 
essential oil. Likewise, the leaves of Cymbopogon nadrus 
consist of 1–2% essential oils (Katiyar et  al. 2011). Pal-
marosa oil production in India is 15 metric tons from 
both cultivated and natural resources with 0.1–0.4% 
essential oil yield (Saha et al. 2018). China and Indonesia 
are the chief producers of lemongrass oil, accounting for 
40% of the world’s production, which is estimated to be 
between 800 and 1300 tons of oil per year. In India, the 
total aromatic spent residue produced is 6 million tons 
on an annual basis (Singh 2013; Rout et  al. 2015) from 
the distillation of Mentha, lemongrass, palmarosa, and 
citronella.

The composition of solid distilled wastes (DW) var-
ied with plant types (Fig.  3B) and is  also according to 
climate and area of cultivation. However, irrespective of 
theses, DW consists of large amounts of organic mate-
rials like cellulose, carbohydrates, and minerals. DW 
is also rich in carbon (36–40%) and mineral contents 
(Ahsan et  al. 2022). DW of Cymbopogon flexuosus con-
tained 37% carbon, 5% hydrogen, 2% nitrogen, and 53% 
ash content (Deshmukh et  al. 2015). The presence of 
72.13 ± 0.5% holo-cellulose, 44.16 ± 0.32% α-cellulose, 
and 17.39 ± 0.34% lignin in DW of lemongrass was 
reported by Kaur and Dutt (2013), while the presence of 
35 ± 1.4% cellulose, 32 ± 1.5% hemicellulose, and 13 ± 1.3% 
lignin in DW of lemongrass was reported by Mishra et al. 
(2018a). However, the DW of Ocimum and Mentha con-
tained 31% and 33% cellulose, 19% and 22% hemicellu-
loses, and 42% and 31% lignin, respectively. Due to the 
high carbon content and presence of minerals, the con-
version of DW in mulch, vermicompost, and biochar for 
soil amendments was preferred in some studies (Supple-
mentary 5). However, the isolation of high-value materi-
als (nanocellulose, adsorbent, etc.) and their application 
in medical and environmental fields were reported in 
some studies (Supplementary 5).

6 � Recycling of distilled waste for soil application
Most of the studies reported that the conversion of dis-
tillation waste into organic mulch, compost, and bio-
char not only sequesters carbon and mineral but also 
improves the soil quality and plant yield (Jain et al. 2017; 

Fig. 3  A Hydrosol and its application B Composition of distilled waste C Biochar and its applications D Smoke water and its application
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Yadav et al. 2019a; Nigam et al. 2019a). Their application 
in soil reduces the load of synthetic and could be an effi-
cient nutrient management strategy.

6.1 � Organic mulching and compost
Organic mulch and compost are rich in carbon content as 
well as nutrient content. The palmarosa mulch consisted 
of 26.3% C, 1.33% N, 4.93% available K, and 0.93% total K 
(Basak 2018). DW-derived mulch had 32% water holding 
capacity, 0.62 g/m3 bulk density, 26.8% C, and 2112 mg/
kg P (Yadav et  al. 2019b). The application of mulch/ 
compost in soil enhances its quality, nutrient availabil-
ity, microbial activities, and herbage (Singh et  al. 2001; 
Singh 2013). The mulch of DW of citronella and Japanese 
mint conserved the soil moisture content (2–4%) and 
improved the nitrogen fertilizer use efficiency of the plant 
(Ahmad et  al. 2007). Similarly, compost of DW of pal-
marosa was reported as promising K-enriched compost, 
which can reduce dependency on chemical fertilizers in 
an economical manner (Basak 2018). Mulch derived from 
Mentha and lemongrass enhanced the plant growth and 
reduction in metal uptake (Yadav et  al. 2019b; Nigam 
et al. 2019b, 2021). A study reported that the application 
of FYM in cucumber provided a net profit of $ 5394/ha 
as compared to the unamended soil ($2669/ha) (Apori 
et al. 2021). The carbon sequestration potential of mulch 
in soil was reported as 4.73–7.88 t/ha (Yadav et al. 2019a) 
at an application rate of 2.5 to 5 t/ha (Wang et al. 2021).

For the calculation of the techno-economic and carbon 
sequestration potential of mulch in soil, DW generated 
was taken as 10% lower than the total biomass used for 
distillation, assuming loss in biomass during the distilla-
tion process. The following equations were used.

AC = Area cover (ha)
TWS = Total waste generated (t)
RAM = Application rate of mulch (t/ha)

TCSeq = Total carbon sequestration (t)
AC = Area cover (ha)
MCSeq = Carbon sequestration potential of mulch (t/ha)
A total of 14.78 to 262.9 × 104 tonnes C is sequestered 

in this process, which costs about 9 to 134 million USD 
(Supplementary 6). However, mulching is a general prac-
tice, but data on the characteristics of distilled waste-
derived mulching and its impact on soil and plant is 
limited.

(10)AC =

TWS

RAM

(11)TCSeq=AC ×MCSeq

6.2 � Vermicompost
Vermicompost (VM) is a technique of non-thermo-
philic decomposition of any organic matter with the 
help of mutual interaction between earthworms and 
microbes (Mainoo 2009). VM is also rich in carbon 
and nutrient contents. VM prepared by utilization 
of distilled waste of Mentha and citronella acts as a 
nutrient supplement to plants for better growth and 
to reduce root-knot infection in plants (Pandey et  al. 
2010). The presence of 22.6% carbon, 1.8% nitrogen, 
0.22% phosphorus, and 0.73% potassium was reported 
in vermicompost from DW (Singh et  al. 2013). Ver-
micomposting of DW of citronella plant (Cymbopogon 
winterianus Jowitt.) consisted of 827  g/kg ash, 109  g/
kg TOC, 571 mg/kg available phosphorus, and 974 mg/
kg potassium (Deka et al. 2011). Distilled waste-derived 
VM had a bulk density of 0.60  g/m3, a water holding 
capacity of 28%, carbon content of 24.1%, and total 
phosphorus of 1149 mg/kg (Yadav et al. 2019b).

The VM from citronella bagasse and paper mill 
sludge enhanced the nutrient profile and increased the 
beneficial bacterial community in the soil (Boruah et al. 
2019). Distilled waste-derived vermicompost increased 
the yield of geranium biomass (1.73–2%) and nitrogen 
use efficiency (1.4–3.8%) (Yadav et al. 2019c). The dis-
tilled waste-derived VM improved the herbage yield of 
Withania sominifera by 48% in metal-contaminated soil 
(320 ppm Pb + 15 ppm Cd) at the application rate of 1 
tonne/hectare with a reduction in metal uptake (Nigam 
et  al. 2019c). Vermicompost from distillation waste of 
geranium and Ocimum doubled the productivity of 
Patchouli (Pogostemon cablin (Blanco) Benth) (Singh 
et al. 2015). However, the addition of VM in soil alone 
was profitable in terms of productivity and reduction in 
nitrogen and phosphorus losses, but it could be unprof-
itable when added with NPK due to more nutrient loss 
as compared to productivity (Yadav et  al. 2019a). VM 
yield and production cost were reported as 40–50% 
and 100–750 mg in 16 kg of biomass (Ramnarain et al. 
2019). The cost of production of VM was reported as 
18.75 USD/t (Devkota et al. 2014). However, VM appli-
cation sequestered C in the soil at the rate of 0.585 t 
ha−1 (Naikwade 2019).

Using these values, the total production cost of VM 
and Cseq potential were calculated as follows:

AC = Area cover (ha)
TWS = Total waste generated (t)
RAV = Application rate of vermicompost (t/ha)

(12)AC =

TWS

RAV
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TCSeq = Total carbon sequestration (t)
AC = Area cover (ha)
VCSeq = Carbon sequestration potential of vermicom-

post (t/ha)
Estimation demonstrated that the total produc-

tion cost of VM could be 1 to 13 million USD for the 
waste generated from the aromatic grasses’ cultivation 
in degraded land. The total Cseq was 0.4 to 4.06 × 104 t, 
which cost about 0.2 to 3.3 million USD (Supplementary 
6). The cost of Cseq was less than that of the VM pro-
duction because the cost of improvement in soil proper-
ties and plant yield was not included (Supplementary 6).

6.3 � Biochar and smoke water
The yield of the biochar from distilled waste varied with 
the temperature and feedstock used. The yield of distilled 
waste-derived biochar varied from 35–50% (Singh et  al. 
2015). The cost of biochar production also depends upon 
the technique used. For example, Meyer et  al. (2011), 
reported the 560 USD/t production cost of biochar 
using fast pyrolysis methods. At the same time, Spokas 
et al. (2012)  reported 246 USD/t as the production cost 
of biochar by the slow pyrolysis method. The production 
costs of biochar using a kiln and farm-available distil-
lation units were reported as 77 and 83 USD/t, respec-
tively (Ahsan et al. 2022; Shamim et al. 2015). According 
to these values, conversion of all waste into biochar will 
cost from 7 million USD to 778 USD depending upon 
the method used and plant used for cultivation (Table 5). 
The selling cost of biochar in the market was reported 
as $2650–8850 (Ahmed et  al. 2016). The total selling 
price of biochar prepared will be 87 to 6149 million USD 
(Table 5). Hence, the production of biochar could also be 
profitable. However, biochar is considered to  be able to 
sequester C in soil for the long term, reduce GHG emis-
sions and also reduce the C footprint by replacing ferti-
lizers. The metal-data analysis demonstrated (Budai et al. 
2013) that biochar with H/C > 4 sequestered 50% of its 
carbon, and biochar having H/C < 4 sequestered 70% of 
its carbon for 100 years. Hence, the carbon sequestration 
potential (CSP) of biochar will range from 50 to 70% of 
its carbon content. Hence, Cseq by biochar produced can 
be calculated as indicated by Ahsan et al. (2022).

BrCSeq = Carbon sequestration by biochar
CB = Carbon content of biochar (%)
PBrCSeq = Carbon sequestration potential of biochar
TBr = Total biochar (t)

(13)TCSeq=AC × VCSeq

(14)BrCSeq = CB ×

PBrCSeq

100
× TBr

The estimated yearly carbon sequestration by biochar 
used for soil application could be 93.56 × 104 to 336 × 105 
tones from the distilled waste generated. This will cost 
about 48 to 1913 million USD (Supplementary 10). The 
reduction in GHG emission from biochar amendment 
was reported as 0.51–1.52 t CO2/ha (Ji et  al. 2018). 
Hence, total GHG reduction by biochar application in 
soil could be 3349 to105610 t CO2/ha, which costs 0.2 to 
6 million USD at 5 and 10 t/ha application rate of biochar 
(Supplementary 10).

The cost of fertilizer replacement (CpFR) by biochar was 
calculated using the following Eq.

Where FR (fertilizer replacement by biochar) and CpS 
(saving cost) were taken as 3.9–6.1 kg t−1 and $ 0.53 -1.48 
per t, respectively (Field et al. 2013). The cost of fertiliza-
tion replacement by biochar amendment in soil could be 
0.08 to 6.27 million USD (Supplementary 10).

Pyrolysis of biomass for biochar production generated 
several gases and smoke, which had deleterious effects 
on human health and contributed to anthropogenic-
driven climatic change. These gases and smoke can be 
repurposed for biofuel production (Vamvuka 2011) and 
alternatively applied in agricultural practices for the 
improvement of crop yield in the form of smoke water 
(Kulkarni et al. 2011) (Fig. 3D). The different production 
temperatures and compositions of smoke water were 
reported in the literature. Smoke water was prepared by 
bubbling smoke in distilled water to dissolve active bio-
logical compounds (De Lange and Boucher 1990). As the 
smoke solution prepared by the combustion of lignin, 
cellulose, hemicellulose, and other carbon compounds 
in plant materials, it contained more than 4000 chemi-
cal compounds, including phenolic compounds (guaiacol 
and syringol), alcohol, aldehydes, ketones, and organic 
acids such as furfural, formaldehyde, carboxylic and ace-
tic acid that act as antioxidants, antiseptics, and anti-
bacteria (Dogrusoz 2022). The yield of liquid smoke from 
dried biomass water hyacinth was obtained at 0.2  mL 
per 100  g, 12.3  mL per 100  g, and 16.3  mL per 100  g 
at a temperature of 117  °C, 400  °C and 683  °C, respec-
tively (Ratnani et al. 2021). The smoke water production 
from different biomass, application rate, and utilization 
reported in various studies is given in (Table  3). Sparg 
et  al. (2006)  evaluated the effect of both smoke aerosol 
and smoke solution on commercially cultivated maize 
seeds (Z. mays cv. PAN6479). Cymbopogon jwarancusa 
smoke extracts (1:100 and 1:400 v/v) improved germi-
nation in saline conditions via regulating redox home-
ostasis as well as modulating stress regulatory gene 
expression, which were reported previously (Hayat et al. 

(15)CpFR = FR− TBr × CpS
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2021; Waheed et al. 2016). Similarly, the combined effect 
of plant growth-promoting bacteria Bacillus safensis and 
plant-derived smoke Cymbopogon jwarancusa under 
salinity has a priming effect (Khan et al. 2017). The smoke 
solution prepared from Cymbopogon jwarancusa has 
been used successfully to reduce plant uptake of toxic 
heavy metals from soils, such as Pb (Akhtar et al. 2017). 
Similarly, smoke water reduced boron toxicity (Çatav 
et  al. 2021; Pirzada et  al. 2014; Küçükakyüz and Çatav 
2021). Smoke water consists of organic acids, phenolic 
compounds, sugar, and acids of sugar that can form a 
complex with boric acid to restrict the uptake of boron 
(Hu and Brown 1997). It also revealed that the activity 
of antioxidant enzymes increases a significant 2.65-fold 
increase was  in peroxidase activity. Generally, all plant 
materials can be used as a source to produce smoke water 
extract (Miwa and Fujiwara 2010; Jäger et al. 1996). Fle-
matti et  al. (2004)  have reported and identified a com-
pound in smoke produced from cellulose-containing 
compounds or any plant material which is similar to the 
compound present in plant-derived smoke water, which 
is responsible for seed germination. Smoke water could 
be made from a wide range of sources such as trees- Cra-
taegus pinnatifida and Magnolia denudate, Lemon euca-
lyptus, Acacia nilotica (Zhou et  al. 2018; Elsadek and 
Yousef 2019; Sajjad et al. 2014), herbs- white willow, sage, 
rosemary (Elsadek and Yousef 2019), perennial grasses- 
Cymbopogon jwarancusa, the litter of alfalfa (Bonanomi 
et al. 2021) and dry litter of lawn grass mixture of Festuca 
rubra and Lolium perenne (Mojzes and Kalapos 2014), 
crop residue- rice straw (Elsadek and Yousef 2019), cel-
lulose, wood sawdust, and olive mill residue (Bonanomi 
et  al. 2021). There is no literature available with details 
on the use of distilled waste for the production of smoke 
water.

The primary compound responsible for the germina-
tion process was identified as 3-methyl-2H-furo[2,3-c] 
pyran-2-one (1, karrikinolide) (Van Staden et  al. 2004; 
Flematti et  al. 2004), which has introduced a class of 
plant bioactive compounds that are called karrikins (Nel-
son et al. 2009) and are considered to be a new and vital 
family of naturally occurring phytohormones (Light et al. 
2009; Chiwocha et  al. 2009). Hence, it could cause an 
increase in plant growth. The smoke water application 
(0.1 to 0.2%) enhanced germination in papaya (22–24%) 
and fruit (20–35%) and biomass (9–25%) in tomatoes, 
with a net gain of $329 (Govindaraj et  al. 2016). Smoke 
water could act as a biostimulant for achieving viable and 
nutritionally superior yields (Ngoroyemoto et  al. 2019). 
The carbon content of smoke water prepared during bio-
char production of nutshell and date seeds was 50–61 g/L 
with a yield of 333 L/t and also had a sufficient amount of 
nutrients such as Ca, Mg, Fe, N, P, Zn, NH4 and NO3. It 

enhanced the lettuce germination up to 28–29% (Abdel-
hafez et al. 2021). Results of Harti et al. (2020) also indi-
cated that liquid smoke produced from the combustion 
of cocoa pod husk improved the growth potential and 
seed germination of red chili seeds. Probably, smok-
ing gases regulate reactive oxygen species (Aslam et  al. 
2019). Hence, the addition of smoke water could not only 
reduce the carbon footprint of the process during pyroly-
sis but also improve plant productivity. The carbon-sav-
ing cost from smoke water was calculated as

TPSW = Total smoke water production (L)
WSPy = Waste used for pyrolysis (t)
RPSW = Rate of smoke water production (L/t)

TCSSW = Total carbon saving (Kg)
TPSW = Total smoke water production (L)
CSW = Carbon content in smoke water (g/L)

CSCp = Carbon saving cost (Million USD)
TCS = Total carbon saving
CCp = Carbon cost (USD)
It was observed from the above calculation that bio-

mass waste could produce 281–4172 L of smoke water, 
which saved 14.1–255  kg of C, costing 0.001–0.016 
million USD (Table  4). These values are added to the 
improvement of seed quality.

7 � Other applications of distilled waste
Besides the use of waste biomass for soil amendments, 
the use of distilled waste for other applications and in 
the production and isolation of high-valued chemical 
waste such as fuels, biosorbents, animal feed, cellulose, 
nano cellulose, and glucose was also reported in various 
studies.

Bio-coal prepared from Cymbopogon flexuosus and Vet-
iveria zizanioides after oil extraction demonstrated good 
calorific values, and blending of these with high sulphur 
sub-bituminous coal can reduce SO2  emission (Yadav 
et  al. 2013). However, no other data is available on the 
fuel properties of distilled waste, and this needs to 
be explored.

Zuo et al. (2012) reported that lemongrass immersed 
in NaOH solution was an effective bio-sorbent for sin-
gle as well as multi-metal sorption (maximum sorption 
of 13.93 mg/g Cu, 15.87 mg/g Zn and 39.53 mg/g Cd). 
Activated carbon derived from distillation waste of cit-
ronella demonstrated their scavenging potential of toxic 
anionic dye congo red from water (Saha et al. 2020). The 

(16)TPSw = WSPy × RPSW

(17)TCSSW = TPSW × CSW

(18)CSCp = TCS × CCp
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leaf residues from the extraction of essential oils have 
been reported as good bio-sorbents for metal removal 
(Feisther et  al. 2019). Biochar prepared from the dis-
tilled waste of lemongrass demonstrated the removal 
of 68–78% remazol brilliant blue R from the aqueous 

system (Singh et al. 2022). Biochar from aromatic grass 
spent showed maximum removal of Pb, Cd, and Cr 
60 mg/g from the acidic mine waste (Khare et al. 2017). 
The use of biochar as an adsorbent could also provide 
economic gain. The removal of dye from the water costs 
0.011 to 0.056 USD for 1 g of dye (Praveen et al. 2021). 
However, wastewater treatment costs by wood biochar 
were reported as 0.038 USD/m3 (Fawzy et al. 2019). The 
presence of bioactive and nutrition-rich components 
such as polyphenolics, carotenoids as well as dietary 
fibres was reported in distilled waste (Ventura-Canseco 
et al. 2012). This waste also contained fibres like cellu-
lose, hemicellulose, pectin, and silica, as well as crude 
protein (Yarin et al. 2022). Hence, distilled waste can be 
a suitable material for the preparation of animal feed. 
Many studies are available on the use of aromatic plants 
such as rosemary and  lemongrass  herbs for feed utili-
zation and milk production in Pekin ducks and cows 
(Kholif et  al. 2017; Suksombat et  al. 2017; Linh et  al. 
2020). However, few studies are available on the utili-
zation of residues of aromatic grasses. The lemongrass 
waste could be a substitute for elephant grass with 
high-forage feed (25%) without decreasing potential gas 
production, digestibility, and partial total VFA (Fidri-
yanto et al. 2021). Manurung et al. (2015) demonstrated 
that Cymbopogon residue could be a replacement for 
the conventional feed source (rice straw only) in rumi-
nant diets. It was reported that ammonia and fermenta-
tion treatment on C. nardus waste could be used as an 
alternative to P. purpureum, which was used as forage 
for livestock (Elihasridas et al. 2021). This is an exciting 
area and needs to be explored more.

The biomass of different aromatic plants has a good 
amount of phenol and antioxidants (Parejo et  al. 2002; 
Torras-Claveria et  al. 2007). After the extraction of 
essential oil from plants, the phenolic content with 
diverse biological active components can be isolated, and 
the remaining biomass further utilized. However, distil-
lation waste has comparatively lower antioxidant activity 

Table 4  Estimation of smoke water production and carbon price

Yield of smoke water Abdelhafez et al. 2021

Crop Waste (t) Smoke water 
production rate (L/t)

Smoke water (L) Carbon content in 
smoke water (g/L)

C (kg) Carbon price 
(Million USD)

Min Max Min Max Min Max

Lemongrass 1,042,200 333 3129 50 61 156 191 0.008 0.011

Palmarosa 1,389,600 333 4172 209 255 0.01 0.016

Vetiver 93,798 333 281 14.1 17 0.001 0.001

Citronella 746,910 333 2242 112 137 0.006 0.008

P.graveolens 1,031,778 333 3098 155 189 0.008 0.012

Table 5  Overall economics and carbon dynamics in aromatic 
plant cultivation and waste valorization

Minimum Maximum

Production
  Net profit (Million USD) 22 629

  Total C emission (t) 44 1824

  Carbon emission price (Million USD) 0.002 0.104

  BCseq in t 207,668 588,264

  SCseq in t 107,694 221,950

  Total Cseq cost (Million USD) 16.1 44.9

Hydrosol
  Total Cseq (t) 100 7403

  C (Million USD) 0.01 0.42

Mulching
  Total Cseq (t) 147,826 2,629,123

  Total Cseq cost (Million USD) 8 134

VM
  Production cost (Million USD) 1 13

  Total Cseq (t) 2744 65,033

  Total Cseq cost (Million USD) 0.2 3.3

Biochar
  Production cost (Million USD) 7 778

  Selling cost (Million USD) 87 6149

  Total Cseq (t) 935,635 33,558,840

  C (Million USD) 48 1913

  Fertilizer saving cost 0.08 6.27

  Reduction in GHG emission (t CO2/ha) 3349 105,610

  Total Cseq cost (Million USD) 0.2 6

Smoke water
  Total Cseq (kg) 14.1 255

  Total Cseq cost (Million USD) 0.001 0.016
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than the original plant material (Saha et al. 2021). Hence, 
the recovery of these antioxidants, economics, and car-
bon foot-printing needs to be explored further.

The Indian pulp industry is facing a problem of cel-
lulosic fibre scarcity; hence the cellulose-rich aromatic 
grass spent can be used for the pulp industry. The pulp 
and paper-making potential of waste of Citronella win-
terianus demonstrated that distillation waste (kappa 
18.72, yield 43.68%, viscosity 32.6 cp, and brightness 
21.36%) exhibits nearly equal paper-making potential as 
original material (kappa number 20, 44–67% yield and 
24% brightness) (Sharma et  al. 2018, 2020). Likewise, 
C. martini produces a pulp yield of 43.7%, kappa num-
ber 20 at an active alkali dose of 14% Na2O, and lemon 
grass produces a screened pulp yield of 41.4% of kappa 
number 12.5 (Kaur et al. 2011). The selling cost of cellu-
lose pulp was reported as 1893–2440 USD/t (Alam and 
Christopher 2017).

Cellulose nano-fibers (CNF) obtained from native cel-
lulose have become an essential area of research due to 
their unique properties, such as nontoxic, biocompat-
ibility, and biodegradability. Cellulose nanofiber’s unique 
properties make it suitable for numerous applications 
in the nanocomposite, food packaging, water purifica-
tion, textile, pharmaceutical, and biomedical industries 
(Mishra et  al. 2018a; Tibolla et  al. 2019; Ma et  al. 2011; 
Azeredo et  al. 2017; Chauve and Bras 2014; Lee et  al. 
2014). Isolation of microcrystalline (yield 86%) and nano-
crystalline cellulose (yield 77%) from the distilled waste 
of C. winterianus was prepared by acid hydrolysis and 
ultrasound-assisted TEMPO oxidation methods (Mishra 
et  al. 2018a). The nano-crystalline cellulose obtained 
from distilled waste was used for the sustained release 
of synthetic drugs, bioactive molecules, and aroma com-
pounds (Mishra et al. 2018b, 2021a, b, 2020, 2016; Mishra 
et  al. 2021a, b; Kumari et  al. 2019). Lemongrass-loaded 
NCC composite systems were shown to be inexpensive at 
less than $0.23/g (Mishra et al. 2018b).

8 � Future prospects
For the sustainable restoration of degraded lands, 
technology should follow the concept of a circular 
economy which could be based on the reduction, recy-
cling, and reusing of the available resources. The pro-
cess should follow a regenerative model which aims for 
the maximum utilization of resources and to minimize 
the production of waste (Klemeš et al. 2020; Chiocchio 
et  al. 2021). Among the available technologies, phy-
toremediation is an inexpensive and green technique 
for land restoration. The estimated costs for various 
methods used for soil treatments was 75–425 $/ton 
vitrification, 100–500$/ton landfilling, 100–500$/ton 
chemical treatment, 20–200$/ton electronic kinetics, 

and 5–40 $/ton phytoremediation (Glass 1999; Lasat 
1999). Also, among these, electronic kinetics and phy-
toremediation processes require only short-term mon-
itoring, while others require long-term monitoring, 
transportation, excavation, or recycling of contami-
nants. The cultivation of aromatic grasses on degraded 
land reduces the remediation cost by providing a net 
benefit of 22–629 million USD with sequestration 
of carbon (0.32–0.81 million tonnes and cost about 
16–45 million USD) (Table  5). To make the process 
circular, the waste generated could be further used for 
the restoration of this land in the form of compost, 
vermicompost, and biochar. This further enhances the 
net productivity of the land and sequesters the carbon 
in the soil (Fig. 4). However, carbon locking in soil by 
different organic amendments prepared from DW i.e. 
biochar, vermicompost, and FYM could be depended 
upon the soil type and microbial availability. Among 
these, biochar can potentially store carbon for the cen-
tennial scale and has a positive effect on soil organic 
carbon sequestration (Ahsan et al. 2022; Rahman et al. 
2020). However, vermicompost prepared from Trian-
thema will sequester soil carbon up to 35,590 kg  ha−1 
(128,836 kg  ha−1 CO2-e) over 100 years when applied 
as a soil conditioner (Naikwade 2019). Currently, 
the government of India is running a project called 
AROMA Mission for the cultivation of aromatic plants 
on degraded/marginal lands of India with a three-year 
target to cover the area (lemongrass 450 ha, palmarosa 
400 ha, vetiver 200 ha, and citronella 50 ha).

9 � Conclusions and environmental implications
This review indicates that the cultivation of aromatic 
plants on degraded land, along with the valorisation, 
can open new avenues for sustainability. The cultiva-
tion of the aromatic crop in degraded land not only 
increases the net productivity but also repairs the soil 
without any chemical intervention. Most of the stud-
ies showed the suitability of aromatic grasses in saline, 
acidic mine soils, dryland, and contaminated land; 
however, among these, few were large-scale field trials. 
Our estimation demonstrated that the cultivation of 
crops on degraded land could contribute to minimizing 
climate change. The high rate of biomass production in 
aromatic plants can sequester a huge amount of carbon 
by utilizing degraded lands. The valorisation of distilled 
waste for soil application (compost and biochar) and 
as plant growth promoters (smoke water) could fur-
ther improve soil fertility and enhance productivity. In 
addition, the valorisation of generated distilled waste 
further sequesteres the carbon and participates in the 
reduction of GHG emissions from soils. Therefore, the 
process becomes circular and carbon negative with 
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zero waste. However, a comprehensive agro-climatic 
mapping of degraded land needs to be done to figure 
out the suitability of each aromatic plant for a particu-
lar climate and degraded land. The total carbon input 
and sequestration during the cultivation and processing 
of aromatic grasses need to be addressed before reach-
ing any conclusions. No direct data was available on the 
carbon foot-printing of these aromatic plants during 
cultivation in degraded land. Further, the implemen-
tation of the cultivation of aromatic crops on a larger 
scale requires proper strategies along with life cycle 
assessment and carbon foot-printing of the process.
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