
/ Published online: 17 May 2024

Current Food Science and Technology Reports (2024) 2:271–296 

Vol.:(0123456789)

https://doi.org/10.1007/s43555-024-00033-9

REVIEW

From Bin to Benefit: Sustainable Valorization of Grapefruit (Citrus 
paradisi) Byproducts Towards the Circular Economy

Sahil Chaudhary1 · Barinderjit Singh1

Accepted: 2 May 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
Purpose of Review  This study aims to communicate updated information on the recent innovations in grapefruit byproduct 
valorization.
Recent Finding  Grapefruit is an important fruit of the citrus genus which has commercial importance and its processing 
generates waste in bulk, mainly in the form of peels, seeds, and pomace, which only leads to a strenuous waste stream that 
ends up in landfills causing environmental issues if overlooked. However, grapefruit byproducts are rich in high-value 
compounds including dietary fiber, polyphenols, pectin, and essential oil, which therefore could be valorized for different 
applications in the food sector and other realms as well. In line with the United Nations Sustainable Development Goals 
(UN-SDGs) to ensure sustainable consumption and production patterns, the valorization of these byproducts in the most 
efficient and environment-friendly manner is of great importance for the future.
Summary  The valorization of grapefruit byproducts can be addressed through environmentally friendly extraction procedures 
that allow recovery of target high-value compounds and open new vistas for their applications. Overall, this work describes 
an updated tapestry of reports about the characteristics and compositions of grapefruit byproducts. In parallel, it offers an 
updated vision of high-value compounds and the various extraction techniques used for their extraction have been discussed. 
Comprehensively, the current review summarizes the latest advancements in the application of high-value compounds from 
grapefruit waste in the numerous areas of the food, pharma, and cosmetics realm, along with the utilization for development 
of environmentally sustainable materials, fostering a sustainable economy.

Keywords  Grapefruit · Waste management · Bioactive compounds · Extraction technologies · Food applications

Introduction

Grapefruit (Citrus paradisi) is a commercially important 
cultivar of the citrus family that encompasses a myriad 
of bioactive chemicals. Originating in Barbados in the 
eighteenth century, it is reported to be an accidental cross 
between the sweet orange (C. sinensis) and the pomelo (C. 
maxima). It is widely distributed throughout the world’s 
subtropical and tropical regions [1–3]. During the market-
ing year 2022/2023, global grapefruit production amounted 

to about 6.81 million metric tons [4], with China ranking 
top among the producers followed by Mexico, South Africa, 
and the U.S. The grapefruit market is flourishing due to its 
rich nutrients and health-promoting properties [5]. Grape-
fruit varieties include Marsh Seedless, Duncan, Red Blush, 
Flame, Foster, Star Ruby, Thompson, and White Marsh [6]. 
Mainly consumed in the form of juice and segments, grape-
fruit can be transformed into various confectionery items. 
However, growing recognition and increased grapefruit pro-
duction also draw attention to the wastes and byproducts 
generated from its processing. These byproducts mainly 
include peels, seeds, and pomace, and account for more 
than 50% of the total fruit weight like other citrus fruits 
[7]. Improper disposal of this organic waste, therefore, can 
invoke the release of greenhouse gases like methane and 
volatile compounds during decomposition in landfills which 
contributes to climate change [8]. Therefore, eco-friendly 
valorization of grapefruit processing waste is crucial.
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Grapefruit byproduct Valorization Towards 
the Circular Economy

To promote sustainable development, the United Nations 
Assembly adopted the "2030 Agenda" in 2015, outlining 
17 major goals, also known as the Sustainable Develop-
ment Goals, or SDGs [9]. The conversion of food wastes 
and byproducts into valuable products presents a signif-
icant potential and overall opportunity to support sus-
tainable development, adhering to the circular economy 
approach, upon which the futurologists and policymak-
ers stress to implement. Opposite to the conventional 
“cradle-to-grave” or “take-make-waste” approach, the 
circular economy follows a “cradle-to-cradle” approach 
[10, 11]. Deemed as the blueprint for a sustainable future, 
the circular economy is a closed-loop system and is gen-
erally opposite to the linear economy that makes waste. 
Governments and the food industries are implementing 
policies to reduce food waste, with studies highlighting 
the potential of transforming byproducts into value-added 
products to contribute to meeting the ‘zero waste’ target. 
Henceforth, adequate waste management in the most sys-
tematic and eco-friendly manner is of great interest for 
the future. By efficiently utilizing grapefruit byproducts, 
we can adopt a sustainable consumption and production 
pattern that aligns with the Sustainable Development 
Goals (SDGs), in particular SDG 12 (responsible con-
sumption and reproduction) [12, 13]. This article provides 
an updated overview of grapefruit byproducts as natural 
resources of bioactive compounds, and their extraction 
methods, alongside valorization strategies for their com-
prehensive and effective utilization in food, pharma, and 
cosmetic industries to promote sustainability (Fig. 1).

Grapefruit Processing byproducts

Peels

Grapefruit peels are important byproducts accounting for 
around 35.0–41.0% of the total fruit [14]. Proximate analy-
sis for crude protein, fat, ash, crude fiber, and carbohydrate, 
reports around 9.27–10.71%, 6.13–6.64%, 3–3.97%, 7.55, 
and 60.22–71.86, respectively [15, 16]. Grapefruit peels, 
which contain moisture and sugars and are perishable, can 
pose environmental problems and, therefore seek apt utiliza-
tion. They are the source of polyphenols, which are confirmed 
to possess diverse bioactivities, beneficial to human health. 
TPC was reported to be 77.3 mg of gallic acid equivalent/g 
peels [17]. In particular, naringin is the most abundant flavo-
noid present in peels followed by isonaringin, and hesperidin, 
which can be used as functional ingredients in food and ther-
apeutically [18]. Apart from this, peels account for 59.77% 
of the insoluble dietary fiber (IDF) fraction [19, 20], and can 
also be harnessed to yield pectin, EO, and peel extract, mak-
ing them a valuable resource for valorization.

Seeds

Grapefruit seeds are the premier repositories for limonoids 
(triterpenoid dilactones chemically related to limonin), 
from which 77% are neutral while 2% are acidic limonoids 
[21]. The number of seeds present in grapefruits varies with 
varieties, with Duncan having around 50–70, while Marsh 
seedless, has very few to no seeds, as the name illustrates 
[22]. The chemical composition might vary among the seeds 
from different cultivars and geographical niches, though oil 
content lies from 40.2 to 45.5%, similar to that of seeds 
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from the same genus. Grapefruit seed oil consists of both 
saturated and unsaturated or omega fatty acids, with pal-
mitic acid, oleic acid, and linoleic acid as key constituents 
accounting for more than 20% of most grapefruit seed oils 
[23], apart, fat-soluble bioactive compounds such as toco-
pherols, carotenoids, and phytosterols are present in seeds. 
Different fatty acids were quantified in the oil such as lin-
oleic acid (40.78–40.95%), palmitic acid (28.19–28.66%), 
and oleic acid (20.74–20.78%), linolenic (5.45–5.71%), 
stearic (3.77–3.81%), and palmitoleic (0.40–0.75%) acids 
[24]. Seeds are often transformed into extracts for various 
food and pharma applications [21]. The typical proximate for 
grapefruit seed divulges 36.54% oil content, 3.90% protein, 
8.50% fiber, and 5.03% ash content [25].

Pomace

Following the juice extraction, the solid residue left is 
called pomace. Proximate analysis of grapefruit pomace 
unveiled 7.69 ± 0.02 crude protein, 50.33 ± 2.1 carbohydrate, 
6.13 ± 0.01 crude fat, 2.16 ± 0.01 ash, 24.79 ± 2.4 as nonfi-
brous carbohydrates such as starch and sugars [16]. Like 
other citrus fruits, grapefruit pomace is a sound source of 
dietary fiber, along with health-promoting compounds, and 
hence therefore can be used to improve the nutritional con-
tent of foods. Since pomace is indexed by its high moisture 
and soluble sugar content, it makes it highly susceptible bio-
mass to fermentation and microbial degradation. The con-
ventional management route follows dried pellet production 
at a commercial scale. However, ascribable to the reported 
dietary fiber and polyphenols present, grapefruit pomace can 
be explored for edible packaging [26], nutritional content 
improvement [27], and as a functional agent [16, 28]. Pec-
tin from grapefruit pomace with significant emulsifying and 
gelling properties can be used as a food additive [29].

High‑value Components from Grapefruit 
byproducts

Dietary Fiber

Often referred to as the “seventh nutrient”, dietary fiber 
(DF) is an important component of the human diet [30]. 
The total dietary fiber of grapefruit waste (peel and pomace) 
is reported as 90.34%, with 7.03% as soluble and 83.31% 
as insoluble fraction [31]. DF mainly comprises soluble 
dietary fibers (SDF) and insoluble dietary fibers (IDF) and 
are linked with various health benefits including improving 
digestive health, serum-lipid concentrations, and reduced 
risk of cancers [32, 33]. SDF content in grapefruit peel is 
reported as 3.62 ± 0.13%, however, extraction with modi-
fications in microwave-assisted extraction increased yield 

significantly (7.94 ± 0.20%) [19]. In recent times inves-
tigations have been conducted to improve the IDF/SDF 
ratio from grapefruit byproducts. SDF from grapefruit 
peel IDF (GP-IDF-SDF) obtained with microwave and 
enzymatic methods given 9.2 ± 0.36% yield, with excel-
lent glucose adsorption, water and oil retention capacity 
14.49 ± 0.068 mg/g, 13.43 ± 1.19 g/g, and 22.10 ± 0.85 g/g, 
respectively [34]. Arabinose (100.72 mg/g db) equates to 
the main monosaccharide in grapefruit peel SDF, followed 
by glucose (84.00), fructose (31.40), galactose (17.60), and 
rhamnose (10.85). Compared to orange and lemon peels, 
grapefruit peels contain a higher amount of uronic acid (UA) 
(130.72 GUAE/g db), alluding to higher pectic polysaccha-
ride contents [33], ascribable to which, it could find applica-
tions in the pharmaceutical industry for its beneficial effects 
on gastrointestinal health.

Pectin

Pectin, a soluble fiber, finds extensive use as a thickener, sta-
bilizer, and gelling agent and replacement for fat or sugar in 
low-calorie foods. Pectin is a key ingredient in various phar-
maceutical formulations, particularly in producing dietary 
supplements and oral dosage forms like tablets and capsules. 
Global pectin consumption as an additive has reached more 
than 60,000 tonnes, with industry experts projecting a steady 
5.8% compound annual growth rate by 2024 in the global 
pectin market [35, 36]. Grapefruit peel pectin comprises 
shorter side chains and is richer in rhamnogalacturonan I 
backbones, which also imparts its valuable bioactivities [33, 
35]. Different innovative extraction approaches can be use-
ful tools to increase pectin yield and quality. DES (betaine-
citric acid) based extraction from grapefruit peels provided 
a significant yield of 36.47% pectin with higher RG-I value, 
more arabinan side chains, and bigger Mw and Mn values, 
better emulsifying activity and stability than conventional 
HCl-extracted pectin [36], while microwave-assisted High-
Pressure CO2/H2O system (147 °C, 3 min, and 10 mL g−1) 
of 27.53% [37], and monosonication-assisted with 17.10% 
pectin yield [38].

Phenolic Compounds

Phenolic compounds are natural bioactive molecules that 
are ubiquitous in fruits and are of significant merit due to 
their health-promoting bioactivities. Grapefruit byprod-
ucts have been investigated and affirmed as a good source 
of phenolic antioxidants. Grapefruit byproducts are rich 
in flavonoids. Among these, high levels of bioactive fla-
vanones glycosides, namely, naringin and narirutin, and 
their aglycones, naringenin has been reported in peel and 
seed residues [39]. Apart, eritrocin, poncirin, neoponcirin, 
and neohesperidin are also effective antioxidants attributable 
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to their ability to stabilize and inhibit free radicals [40, 41]. 
The HPLC analysis also pointed out the presence of phe-
nolic acids (resveratrol, gallic acid, ellagic acid, and caf-
feic acid), and tannin (catechin) in grapefruit byproducts 
[42]. Levels of polymethoxylated flavones, sinensetin, nobi-
letin, and tangeretin range from 1.03 to 3.45 mg/g DW in 
fresh grapefruit peels, while dried (oven or freeze-dried) 
peels exhibit lower concentrations [39]. Peels also contain 
ferulic, sinapic, p-coumaric, and caffeic acids (32.3, 31.9, 
13.1, and 5.6 mg/100 g, respectively) [43]. The presence of 
hydroxyl groups on phenolic rings and their ability to attract 
free radicals with available hydrogen atoms is deemed to be 
the reason for the antioxidant activity of these compounds 
[44]. Extraction of different bioactive compounds can be 
done with different approaches such as microwave-assisted 
(MAE) [45], ultrasound-assisted (UAE) [46], and enzyme-
assisted extractions (EAE) [47]. Nishad et al. [47] divulged 
higher TPC yields of 2116.71 and 3170.35 mg GAE/100 g 
with UAE and EAE, respectively, compared with conven-
tional solvent extraction (CSE) of 1528 mg GAE/100 g 
[20]. Garcia-Castello et al. [46] also reported better yields 
for UAE (on average TPC 50% and TAA 66% higher) with 
lower temperatures and extraction times, compared to CSE. 
Among individual phenolic compounds, naringin was the 
most abundant flavonoid in the UAE (24 − 36 mg/ g dw) 
followed by hesperidin (0.72 − 1.14 mg/g dw) and narirutin 
(0.42 − 0.98 mg/g dw). Grapefruit peel waste may poten-
tially turn out to be a good source of flavonoids, especially 
naringin, that could be used for food fortification [48] or as 
therapeutic agents for pharmacological propositions [39].

Essential oil

Grapefruit essential oil obtained from peels is one of the 
primary grapefruit byproducts, known for its characteristic 
aroma with wide applications. The major components of 
essential oil (EO) are terpene oxides, including alcohols, 
ethers, aldehydes, ketones, and esters, which are attributed to 
the aroma [49]. Grapefruit EO, primarily extracted through 
cold pressing, is now being explored through steam distil-
lation and hydrodistillation. GC–MS analysis identified 25 
compounds, with D-limonene being the main component. 
[50–52]. Other compounds include β-Phellandrene (4.17%), 
β.-Myrcene (2.51%), and o-Cymene (1.18%) [51, 53]. 
Grapefruit EO is promoted to exhibit apoptotic, antioxidant, 
olfactory stimulation, antibacterial, antifungal, insecticidal, 
acaricidal, and repellency properties [49]. Denkova-Kostova 
et al. [52] reported 87.5% DPPH free radical inhibition at a 
concentration of 1 mg/cm3 for grapefruit EO and also high-
lighted antimicrobial activity against saprophytic microor-
ganisms, spore-forming bacteria, yeast, and fungi. Apart, 
EO sensibility to external agents like ultraviolet light, high 
temperatures, and water, may affect their composition, which 

facilitates the loss of some specific properties, especially 
D-limonene is prone to oxidation, which is why encapsula-
tion is feasible for stability, controlled release and enhance-
ment the various characteristics of EO [54–56].

Seed Extract

Grapefruit seed extract (GSE) is a natural product contain-
ing tocopherols, citric and ascorbic acids, and flavonoids, 
with significant antioxidant and antimicrobial properties 
[57]. Phenolic acids, i.e., trans-ferulic acid, rosmarinic 
acid, trans-2-hydroxycinnamic acid, and flavonoids, are 
deemed to be the chief antioxidant active ingredients 
responsible for antioxidant activity [23, 58]. GSE is a nat-
ural food preservative to maintain food quality of various 
types of foods, including meat, fish, poultry, fruits, cheese, 
and vegetables [59]. It can be applied directly and can be 
used to fabricate various composite functional films [60, 
61]. The antimicrobial activity of GSE equates to the bac-
terial membrane disruption and liberation of the bacterial 
cytoplasmic contents within a relatively short time [23, 
59]. GSE also finds applications in the pharma and health 
sector for wound healing applications [62], oral health-
care [63], treating urinary tract infections [64], gastritis and 
gastric ulcers [65], improving kidney activity, purifying 
the blood, and help keep cholesterol levels under control. 
Owing to the reported biological properties, GSE can be 
explored for the line-up of cosmetic products, including 
facial cleansers, creams, and serums. [66].

Minerals and Vitamins

Micronutrients include minerals and vitamins because small 
amounts of these components are needed for the body. Peels 
of the grapefruit grown in Turkey are reported for minerals, 
including potassium (K) (111 – 117), calcium (Ca) (34.8 
– 38.9), phosphorus (P) (19 – 22.5), magnesium (Mg) (9.50 
– 11.1) (mg 100 g−1), respectively [67]. In another study, 
Saleem et al. [68] quantified the micro- and macro-elements 
and reported for Fe (3.53), Mn (0.36), Cu (0.14), Zn (0.14), 
Mg (79.33), K (984.33), and Ca (801) (mg/100 g). Reported 
different values are attributable to the differences in soil 
conditions, climate, and cultivars. The vitamin C content of 
grapefruit peels was found to be 113.3 mg/100 g [17], while 
Vitamin E, which is a fat-soluble vitamin, has been con-
firmed. Further authors have quantified a-, γ-, δ- tocopherol 
as 380.00, 43.41, and 9.08 mg/kg, respectively [25].

Various studies indicate that all these high-value com-
ponents are interesting for the food, pharma, and cos-
metic industries, and their reutilization would promote a 
circular and sustainable economy around the grapefruit 
industry. This strategy is relevant to harmonize with the 
SDGs, specifically to minimize grapefruit waste, in line 
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with the circular economy model which pivots on bring-
ing the waste back into the streamline of production so 
that it goes back into the production loop and can either 
become the resource for the next cycle of production or 
is channeled for an independent new product. However, 
to maximize the environmental benefits of reusing these 
wastes, it is required the application of green extraction 
techniques to obtain optimal production yields ecologi-
cally and economically.

Extraction Technologies for Extraction 
of Various Components

The extraction of bioactive compounds from food processing 
waste is a critical step. Conventional methods have draw-
backs like higher energy expenditure and toxic solvents, 
prompting the search for efficient technologies like ultra-
sound, microwave, enzyme-assisted, and supercritical fluid 
[69–74]. Extraction of functional and bioactive compounds 
from grapefruit byproducts using various techniques has 
been framed in Table 1 and discussed hereunder. 

Ultrasound‑assisted Extraction

Ultrasound follows the acoustic cavitation principle. When 
ultrasound propagates through any medium it generates a 
series of compressions and rarefactions in the molecules 
of the medium, such alternate pressure changes induce the 
formation, growth, and consequently implosion of air bub-
bles in a liquid medium. Such violent collapse produces 
extremely high pressures and temperatures at the surface of 
cell membranes of bio matrices, due to which cell destruc-
tion occurs, causing localized damage to the plant tissues 
termed ‘erosion’. This event creates microchannels, mak-
ing the intercellular content more available to the solvent, 
and increasing the yield of extraction [86, 87]. Ultrasound 
applications are versatile and can be used to treat grape-
fruit byproducts for extraction of polyphenols, pectin, poly-
saccharides, dietary fibers, and oils. For instance, Garcia-
Castello et al. [46] reported a higher TPC range for UAE 
(29.4 to 80.0 mg GAE/g dw) than for the conventional 
approach (25.3 to 55.8 mg GAE/g dw) from grapefruit solid 
wastes. In the latest investigation, Islam et al. [75] reported 
TPC (78.5 mg GAE/g dw), TFC (53.5 mg naringin/g dw), 
naringin (40.8 mg/g dw), and TAA by DPPH (25.5 mM 
Trolox/g dw), and FRAP assay (17.45 Fe [II]/g dw), for 
treated 2 g grapefruit peel powder with ultrasonication. 
Ultrasound is a rapid process, provides higher extraction 
yields, easy to operate, and requires less investment costs, 

and versatility, strengthens its ability to be implemented at 
the industrial level, among others.

Microwave‑assisted Extraction

Microwave-assisted extraction functions the application 
of non-ionizing electromagnetic waves with frequencies 
ranging from 300 MHz to 300 GHz to a sample matrix that 
induces changes in the cell structures. Responsible mecha-
nisms for energy transfer in MAE involve ionic conduction 
and dipole rotation [69, 70]. Ionic conduction in particular 
pertains to the movement of ions through a solution, eliciting 
a homogeneous heat in the media ascribable to the resist-
ance of the solvent to the ionic migration upon application 
of electromagnetic waves. Dipole rotation is enacted by the 
interaction of dipoles with polar components and elicits the 
dipoles to realign with the applied field, instigating coerced 
molecular movements that produce heat [88]. The moisture 
content in the sample significantly influences MAE, as water 
evaporation increases intracellular pressure, breaking cell 
walls, and leaching high-value compounds [89]. Taşan & 
Akpınar [79] reported a 20.93% pectin yield from grapefruit 
peels using MAE (pH 1, 30 ml/g solvent/solid ratio, 90 s) 
with significantly lower extraction times than conventional 
extraction without compromising on yield and quality of 
pectin. In a different study, a 17.19 ± 0.35% increased yield 
of soluble DF was obtained with MAE treatment of grape-
fruit peels [19]. Merits for the technology include opera-
tional ease and low running costs. Apart, higher outputs can 
be generated with a punctilious selection of operating condi-
tions such as temperature, solid-to-liquid ratio, extraction 
duration, microwave power, and stirring [90].

Supercritical fluid Extraction

The supercritical fluid extraction (SFE) approach follows 
the solvation of compounds of interest in a solvent main-
tained typically above its critical pressure and temperature. 
CO2 is commonly used for SFE applications and behaves as 
supercritical fluid above the critical temperature and pres-
sure and shows improved productivity for solubilizing non-
polar compounds. Elevating the temperature and pressure 
of supercritical fluid beyond 4000 psi significantly improves 
solubility for highly efficient extractions in shorter periods 
[91]. Supercritical fluid carries target compounds past the 
pressure release valve into the separator, where lower pres-
sure separates CO2 from the extracted compounds and routed 
back into the CO2 tank to be used again. Priyadarsani et al. 
[92] reported for 93% extraction efficiency of lycopene from 
grapefruit endocarp at 305 bar pressure, 35 g/min CO2 flow 
rate, 135 min of extraction time, and 70 °C temperature. 
Latestly, Yaldiz et al. [93] reported TPC values of 79.60 mg 
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GAE/g from grapefruit peel waste when treated at 150 bar, 
70 °C, and a cosolvent ratio of 20% (v/v) ethanol. Short 
extraction time, a low amount of solvent requirement, and 
rapid solvent recovery, account for the advantages of the 
technology [94], while the major setbacks are the high cost 
of the equipment and operation and optimization complexity.

Enzyme‑assisted Extraction

This approach involves exclusive enzymes (such as cellu-
lases, amylases, pectinases) to break down bound chemi-
cals, and resultantly enhance the extraction through cell wall 
breakdown and polysaccharide hydrolysis. Phenolic com-
pounds are entangled within the cell wall polysaccharides 
like cellulose, hemicellulose, and pectin and are linked by 
hydrophobic interactions and hydrogen bonds. In particu-
lar grapefruit peel flavonoids, are covalently linked by a 
glycosidic bond with sugar moieties through an OH group 
(O-glycosides) or carbon–carbon bonds (C-glycosides) [20, 
95]. Enzymes pounce upon the internal spots of the amor-
phous region of the polysaccharide chains which prompts 
small oligosaccharides generation of uneven length that 
facilitates easy release of entrapped molecules [96]. Pec-
tinase and cellulase (5, 6, 7 U g−1 enzyme concentration) 
used to extract phenolic compounds at different temperatures 
(40–60 °C) and time (6–24 h) combinations from grapefruit 
peels enhanced the extraction yields (p < 0.05) [97].

Natural Deep eutectic Solvents

Natural deep eutectic solvents (NADES) are sustainable 
solvents fabricated by blending a hydrogen bond accep-
tor (e.g. choline-chloride) with a hydrogen bond donor 
(such as sugars, alcohols, and amines), and up to 50% (v/v) 
water; at a precise ration to develop a liquid solvent mix-
ture. DESs are liquid at low temperatures, miscible with 
water, non-flammable, and highly viscous [18]. NADES 
are widespread in nature and are more based on biological 
than chemical concepts since ionic liquids or deep eutectic 
solvents might exist in nature with specific physiological 
functions [98]. In the latest investigation, Lin et al. [36] 
extracted pectin from grapefruit peels with betaine-citric 
acid (BC-P) at an L/S ratio of 25 mL/g, 2.0 pH, and 85 °C 
for 120 min with a higher yield (36.47%), compared to 
HCl-extracted pectin (HCl-P, 8.76%) under a pH of 2.0. 
BC-P exhibited a higher RG-I (Rhamnogalacturonan I) 
value, Mw, and more arabinan side chains, than HCl-
P. The authors also stated higher viscosity, emulsifying 
activity, and stability compared to HCl-P and commercial 
pectin. NADES is a versatile method for extracting bioac-
tive compounds from grapefruit byproducts, offering high Ta
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solubilization strength and easy extraction. Drawbacks 
such as high viscosity and very low vapor pressure are 
there, but anti-solvents can be used to confront the issue, 
moreover, liquid–liquid or solid–liquid extraction can be 
performed [99].

Pooling Technologies

Numerous studies have reported the integration of novel 
extraction technologies with beneficial and efficient results 
[100]. The food industry is heavily focused on lowering 
manufacturing costs, either by increasing process speed 
or increasing yield. This refers to either using one thriving 
technique or combining two or more techniques to achieve 
its goal. For grapefruit peel, Peng et al. [20] combined 
microwave (600 W, 85 °C, and 37 min) and enzymatic treat-
ment (8% cellulose, 60 °C, 2 h) (ME-BP) to free insoluble 
bound phenolic compounds. The obtained results showed 
higher values for the combined treatment (12.46 ± 0.028 
GAE mg/100 g) compared to enzymatic (7.17 ± 0.044 GAE 
mg/100 g) and microwave (9.95 ± 0.049 GAE mg/100 g) 
alone.

Purification and Detection of Bioactive 
Compounds

Impurities are introduced during the extraction pro-
cess and must be isolated immediately to validate the 
safety and purity of the compound of interest. Different 
methodologies for purification and characterization are 
employed as post-extraction treatments. In particular, cit-
rus waste comprises different polysaccharides and other 
phytochemicals in tandem with bioactive compounds. 
These compounds are also extracted during the solid–liq-
uid extraction process. To separate a particular bioactive 
compound, it should be availing in concentrated form in 
the solution, which can be done by the polarity and pH 
of the solvent engaged. Non-polar solvents are commonly 
utilized for lipid fractions, whereas, polar ones are pref-
erable to isolate the ionic compounds [101, 102]. Solid-
phase extraction is carried out for the removal of car-
bohydrates. Sugars, polar nonphenolic compounds, and 
organic acids could interfere with the total polyphenol 
content analysis, therefore crude polyphenolic extracts 
from grapefruit solid wastes are quite commonly purified 
by using C18 chromatography cartridges [46]. Fraction-
alization of polyphenols is brought about with methanol 
and/or acetone from the polyphenol concentrate [101]. 
In particular, for flavonoid, i.e., naringenin, Chen et al. 
[103] reported improved performance of CMIPs when 
employed to enrich naringenin in grapefruit peel extract 

compared with the common adsorbent materials includ-
ing AB-8, D101, cationic exchange resin, and active car-
bon. Flavonoids can also be adsorbed with Indion PA 800 
and later desorbed using ethanol. The purification phase 
culminates in different scaled filtrations, while the iden-
tification and characterization of bioactive phytochemi-
cals from grapefruit byproducts is done using different 
chromatographic and spectrophotometric techniques, 
such as HPLC–DAD [39], HPLC–MS [103, 104], thin 
layer chromatography (TLC) [105, 106], ultrahigh per-
formance liquid chromatography (UPLC) [107], gas chro-
matography-mass spectrometry (GC‒MS) [53], nuclear 
magnetic resonance (NMR) and UV-spectrophotometry 
[75]. The schematic representation of extraction to the 
identification of bioactive compounds utilizing innova-
tive approaches is illustrated in Fig. 2.

Grapefruit byproduct Utilization

Food sector

Bioactive ingredients work well as an integrant to produce 
nutritious goods and nutraceuticals with improved techno-
logical and biofunctional qualities. The following section 
catalogs and discusses the uses of various grapefruit byprod-
ucts for different food applications (Table 2).

Food Packaging

The rejection of synthetic materials and the shift toward 
renewable and eco-friendly materials for packaging has 
fueled research for green alternatives [123, 124]. Moreover, 
the global market for edible coatings and films has been pro-
jected to grow at a rate of 7.70% (CAGR) during the next 
five years to reach a value of 4.54 billion US$ in 2028 [125]. 
Grapefruit waste yields pectin, essential oils, and seed extracts 
that can be used in bio-based coatings and films. Moreover, 
active ingredients may enhance the flavors, colors, antimicro-
bial, and antioxidant properties of films, ultimately improving 
food quality [126]. In a study, Zanganeh et al. [127] fabricated 
a Lallemantia iberica seed mucilage (LISM) coating incorpo-
rated with grapefruit EO (0–2% v/v), which reduced microbial 
growth and lipid oxidation. The authors also reported that 
lamb with 2% v/v EO concentration had better quality main-
tenance and extended shelf life (> 9 days). Chiabrando & Gia-
calone [128] tested the potential of alginate-based grapefruit 
EO coating for fresh-cut kiwifruit quality preservation. The 
results showed a lowered respiration rate, increased firmness, 
and vitamin C content, and curbed yeast and mold flourish-
ing. Roy & Rahim [60] tested the antioxidant potential of 
grapefruit seed extract (GSE) after addition to a poly(vinyl 
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alcohol)-based film. The obtained results showed escalated 
DPPH scavenging activity of 50.3% with GSE in comparison 
to the control film (0.7%), while ABTS activity reached 90.2% 
with GSE incorporation.

Baek et al. [129] investigated the potential of sodium 
alginate nanoparticle-based grapefruit seed extract 
(GSE) coating for safety and quality maintenance of 
shrimp stored at 4  °C for 8  days. Upon coating on 
shrimp, nanoparticles (1% alginate + 1% GSE) pre-
vented the microbiological limit from exceeding dur-
ing 8 days of storage, while uncoated shrimp exceeded 
the limit on the 4th day. Additionally, nanoparticles 
markedly attenuated the TVB-N values and showed the 
lowest weight loss when compared to other samples. 
Chitosan coating with GSE (1.0% w/w) inactivated 
Salmonella by 2.0 ± 0.3 log CFU without affecting 
the lycopene content, color, or sensorial properties of 
fruits, as reported by Won et al. [130]. Bionanocompos-
ites based on halloysite-encapsulating grapefruit seed 
oil (GO) (2.5 wt%) showed marked mold prevention 
and better preservation of the fruit texture and appear-
ance for strawberries [131]. Citrus peels are among 
the major industrial sources for pectin extraction, and 
grapefruit peel pectin is another component that needs 
to be studied further for use as a packaging film/coat-
ing biomaterial.

Antimicrobial Agent

The use of natural antimicrobials as food preserva-
tives prevents the extremities of physical and chemical 
processing [132]. In a study, grapefruit EO was tested 
against food-borne pathogens. The results revealed bac-
teriostatic properties against most of the tested bacterial 
strains. Essential oil at concentrations up to 25 mg/mL 
effectively suppressed Salmonella parathypi A, Vibrio 
vulnificus, and Seratia liquefaciens growth. Grapefruit 
EO, when used in a nanoemulsion system, ameliorated 
bacteriostatic potency [51].

Grapefruit seed extract (GSE) in particular has a broad 
antimicrobial spectrum against a variety of microbial 
strains. Choi et  al. [133] reported MIC values of GSE 
against the food-borne pathogens B. subtilis, C. albicans, 
E. coli O157:H7, P. aeruginosa, S. enteritidis, and S. aureus 
in the range 0.0061 to 0.7813 μL/mL, and promoted GSE 
as an efficacious natural additive that prolonged the shelf-
life of fresh Makgeolli with no significant loss in quality. 
Antibacterial mechanism of GSE accounts for the bacterial 
membrane disruption and liberation of cytoplasmic con-
tents [59], while antifungal action is attributed to causing 
loss of spore contents and damage to the thick cell wall 
and cell membrane of the spore [58]. Although the con-
ventional use of GSE in foods is its sole application, it is 
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also used to fabricate edible coatings with antimicrobial 
properties. Carboxymethyl cellulose (CMC)-based films 
incorporated with chitin nanocrystals (ChNCs) and GSE 
displayed strong antimicrobial efficacy against both gram-
negative bacteria (E. coli) and gram-positive bacteria (L. 
monocytogenes) Oun and Rahim [57], due to the release of 
polyphenol compounds (e.g., naringin, limonin), that breach 
the cell membrane and bind to cellular proteins, thereby 
impairing function [60].

Food Additives

Food additives are used for shelf-life extension, nutritional 
quality improvement, and appearance. Grapefruit byprod-
ucts and derivatives can be used as a natural substitute for 
chemical additives in various roles. Soluble dietary fiber 
from grapefruit peels added to blueberry jam formulation 
enhanced the stability of jam while maintaining the color, 
texture, and spreadability of jam [34]. Soluble dietary fib-
ers (SDF) obtained by microwave-ultrasonic treatment 
from grapefruit peels were used for bread formation and 
improved the structural, functional, and in vitro diges-
tion properties of the prepared bread. The authors also 
highlighted its low glucose release rate and potential as a 
functional food ingredient [19]. In another investigation, 
Ukom et al. [134] utilized grapefruit peel powder (3.7–5 g) 
in cake preparation that improved the DPPH, ABTS, and 
FRAP percentages up to 2–threefold over the control sam-
ples. Grapefruit peel nanofibrillated cellulose (GNFC) has 
been used as a fat substitute in the preparation of ice cream 
with lower gross energy and calorie content. Furthermore, 
GNFC incorporation demonstrated digestion impediments 
of 21.70% and 59.53% for protein and fat, respectively 
[116]. Kaanin-Boudraa et al. [107] used grapefruit EO as 
an alternative to vitamin E in margarine and found that 
it was more resistant to oxidation than control samples. 
Functional foods can be considered to be those fortified, 
enriched, or enhanced foods that are destined to provide 
additional health benefits. Ajtonty et al. [48] prepared 
functional chocolate fortified with grapefruit peel extract 
and confirmed it as a satisfactory carrier for naringin. Qin 
et al. [118] improved SDF quality from grapefruit peel by 
using superfine grinding combined with L. paracasei fer-
mentation and used SDF to prepare functional yogurt, 
which exhibited lower syneresis, higher gel strength and 
hardness, and stronger odor characteristics compared to 
control yogurt. Moreover, functional drinks enriched with 
grapefruit peel and pomace showed improved phytochemi-
cal profile, which therefore could be promoted as a nutra-
ceutical product with multiple benefits to the consumers 
[16].
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Prebiotics

Prebiotics can help to nourish gut bacteria and eventually 
promote health-promoting bacteria that colonize the gas-
trointestinal tract, healthy digestive and therefore, immune 
systems [135]. Grapefruit albedo and flavedo peel flour 
evaluated with two lactic acid bacteria strains (P. pentosa-
ceus UAM21 and A. viridans UAM22) showed the viabil-
ity of the employed strains during the fermentation period 
employing the alternative carbon sources. Short-chain 
fatty acid production confirmed the prebiotic potential of 
grapefruit peel flours authenticating their potential as a 
functional ingredient in foods [120]. GSLSDF-1 obtained 
from the grapefruit peel sponge layer soluble dietary fiber 
(GSLSDF) possessed a low molecular weight and crys-
tallinity, a loose and porous microstructure, and a high 
glucose content. GSLSDF-1 showed a better prebiotic 
activity, increasing the relative abundances of Lactobacil-
lus, Bacteroides, Bifidobacterium, and Faecalibacterium. 
Furthermore, GSLSDF-1 promoted the production of 
short-chain fatty acids (SCFAs) by modulating the SCFAs 
synthesis pathway of intestinal microorganisms, while 
the NH3-N synthesis of intestinal microorganisms was 
inhibited by GSLSDF-1 [5]. Qin et al. [30] reported that 
ultrafine ground SDF from grapefruit peel more effectively 
promoted bacteria proliferation and stimulated probiotic 
strains to produce more short-chain fatty acids, compared 
to untreated SDF when tested for in vitro prebiotic activ-
ity. These investigations confirm grapefruit peel is an apt 
and sustainable contender for developing products with 
prebiotic properties.

Encapsulating Agents

Encapsulation is an apt tailored option to improve the sta-
bility, bioavailability, quality, safety, and applicability of 
the bioactive compounds [136]. Encapsulation finds wide 
applications in the food and pharma sector, conferring micro 
(1–1000 μm) and nano (1- several hundred nm) levels of 
fabrications. Calvo and Santagapita [122] encapsulated 
grapefruit lycopene in alginate-based beads to improve its 
stability and shelf life. Alginate beads comprising treha-
lose with β-cyclodextrin retained a higher lycopene content 
(> 80%) after freezing and drying. In a separate study, Ko 
et al. [137] extracted flavanones (naringin, narirutin, nar-
ingenin, hesperidin, and hesperetin) from grapefruit peels, 
treated the extracts with 60% β-cyclodextrin and analyzed 
the extracts using field emission-scanning electron micros-
copy (FE-SEM). The results showed that encapsulation 
in β-cyclodextrin improved the solubilization. Nishad et al. 
[77] encapsulated grapefruit peel phenolics (GPP) into the 
nano-emulsion-based delivery system and reported extended 
oxidative stability of mustard oil.

Cosmetic Industry

The cosmetic industry is shifting towards safer, natural 
compounds due to health concerns over harmful chemical 
constituents. Consumers are demanding natural, organic, 
and certified organic ingredients, therefore high-value com-
pounds from grapefruit waste can be explored in cosmetics 
and toiletries [138, 139] (Table 3).

Flavonoids present in grapefruit peels could preferably be 
used in cosmetics due to reported anti-inflammatory activ-
ity, as they prevent the release of arachidonic acid caused 
by oxidative processes of membrane lipids [146]. Naringin, 
hesperidin, and isonaringin are important flavonoids present 
in grapefruit peels and seed residues [39] that possess anti-
carcinogenic, anti-oxidative, anti-aging, antimicrobial, anti-
inflammatory, and free radical scavenging activity [147]. It 
has been reported that naringin scavenges free radicals in 
vitro [142] and, therefore could be used to develop skin 
creams and topical lotions. Phenolic acid i.e., such as resver-
atrol present in grapefruit byproducts is known to safeguard 
against photo-oxidative damage to the skin [42], while gallic 
acid, which is a major phenolic acid in grapefruit different 
parts, followed by chlorogenic acid, caffeic acid, and ferulic 
acid are often associated with preservation of hair color, 
strength, and growth. Limonene is a predominant component 
(93.33%) of monoterpenes present in light-phase grapefruit 
EO [49], therefore can be explored against acne due to its 
antibacterial properties. Cosmetic composition developed 
with natural extracts from rosemary and grapefruit seeds 
and pulp showed no bacterial colonies neither after one day 
nor after three months of storage period, divulging good 
antibacterial properties, being quite a satisfactory substitute 
for the parabens [148]. Grapefruit peel ethanolic extract 
with a concentration of 2% has the best anti-aging activ-
ity attributable to significant antioxidant activity [149]. Ha 
et al. [150] tested the antimicrobial effects of (GSE) against 
human skin pathogens: Malassezia furfur, M. restricta, Pro-
pionibacterium acnes, Trichophyton mentagrophytes, and T. 
rubrum and reported MIC values of 3.91, 3.91, 0.004, 0.024, 
and 0.012 µl/ml, respectively. The study indicated GSE as 
a promising source of antibacterial agents that could be uti-
lized in skin and hair care products and alternative medicine 
for certain skin ailments. Grapefruit EO contains limonene, 
myrcene, and α-pinene that could be looked into as fragrance 
ingredients in cosmetics [49].

Pharma and Health Sector

Grapefruit byproducts, rich in phytochemicals and value-
added compounds, are being explored for nutraceutical, 
pharmacological effects, and drug development. They 
offer a lucrative, sustainable, and cost-effective source of 
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biologically active compounds [6, 22, 42]. Pectin from 
grapefruit peels can be utilized as a natural prophylactic 
for the active elimination of toxic metals from the diges-
tive and respiratory systems, in tablet formulations as a 
carrier material in colon-specific drug delivery systems. 
Pectin from grapefruit peels is also reported for inhibitory 
activity against pancreatic cholesterol esterase, pancreatic 
lipase, and α-glucosidase [73]. Grapefruit IntegroPectin, a 
potent antioxidant, has potential as a therapeutic and pre-
ventive agent for treating oxidative stress-related brain dis-
orders and may also aid in cancer research. [151]. Dietary 
fibers are often associated with preventive action against 
constipation, elevating smooth bowel movements, helping 
with diabetes, and lowering cholesterol. Grapefruit pomace 
with an SDF/total DF ratio (w/w) of 0.76, followed by peels 
(0.15) [22] can be used as a reliable source of dietary fibers. 
Recently, Qin et al. [30] reported that ultrafine ground SDF 
from grapefruit peels effectively promoted bacteria prolifera-
tion and stimulated probiotic strains to produce more short-
chain fatty acids. Apart from this, vitamin C is present in 
grapefruit peels, while vitamin E or tocopherol, a fat-soluble 
vitamin possibly found in seed oil can be harnessed for topi-
cal applications [44]. These byproducts can be exploited for 
the potential possibilities in the pharma and health sector 
(Table 4).

Hydroxycinnamic acids are present in grapefruit peels, 
which as dietary supplements are known to reduce inflam-
mation, improve digestion, and promote cardiovascular 
health [43]. Naringin, abundantly present in grapefruit peels 
encompasses antioxidant, anticancer, and anti-osteoporosis, 
and serves as a facilitator for the absorption of other drugs 
[158]. It is also used for lipid-lowering functions and to 
treat obesity and diabetes [18]. Grapefruit peel flavonoids, 
naringin, and hesperidin have shown potential as neuropro-
tective agents in animal models of Parkinson's disease and 
neurodegenerative diseases, though clinical use is still a long 
way off [39].

Arsène et al. [159] highlighted the antibacterial proper-
ties of grapefruit peel that can be effectively used against 
antibiotic resistance and for developing new drugs for 
treating bacterial diseases.  Bokhary et  al. [160] pre-
pared Al2O3 nanoparticles using grapefruit extract, which 
showed antioxidant, anti-inflammatory, and immunomodu-
latory potentials. Fabricated Al2O3 nanoparticles displayed 
a potential to curtail the production of pro-inflammatory 
cytokines interleukin-6 (IL-6) and tumor necrosis factor-α 
(TNF-α), as well as the signaling pathway of the transcrip-
tion factor NF-B, in addition to lowering NO and O2 gen-
eration. Han et al. [161] reported for antibacterial activ-
ity of GSE against methicillin-sensitive Staphylococcus 
aureus (MSSA), methicillin-resistant S. aureus (MRSA), 
and vancomycin-resistant S. aureus (VRSA) in the disk 
and microdilution MIC tests highlighting its potential as a 

natural substitute to traditional antibiotics to fight multid-
rug-resistant pathogens. Antimicrobial properties of GSE 
are ascribable to involve bacterial membrane disruption 
and release of cytoplasmic contents in a relatively short 
time. Quercetin and naringenin, significant GSE flavo-
noids, show potent anti-inflammatory and antiviral effects 
via NFκB, TLR, and IL-6 signaling [59]. The presence of 
flavonoids in GSE is also equated with anticancer activity 
against various human breast cancers and is associated 
with the ability to inhibit platelet aggregation, thereby 
lowering the risk of coronary thrombosis and myocardial 
infarction [21]. GSE has significant gastroprotective prop-
erties against gastric lesions by preserving antioxidizing 
enzyme activity, reducing lipid peroxidation, enhancing 
gastric blood flow, and influencing plasma gastrin levels 
[21].

Development of Environmentally 
Sustainable Materials

Biosorbents

SDG’s 6th goal is associated with clean water and sanitation. 
Researchers have been focusing on a new process for the 
remediation of heavy metals, dyes, pesticides, and organic 
and inorganic pollutants from water [162, 163]. Numer-
ous water-soluble and insoluble monomers and polymers 
are found in grapefruit peels. Glucose, fructose, sucrose, 
and some xylose are present in the water-soluble fraction, 
whereas between 50 and 70 percent of the insoluble fraction 
is made up of lignin, pectin, cellulose, and hemicellulose. 
The carboxyl and hydroxyl functional groups are abundant 
in these polymers [164]. Grapefruit peels can be used as 
biosorbents in their natural state [165] or can be amended 
with physical (drying, grinding, heat treatment) and/or 
chemical modifications (graft co-polymerization, deamina-
tion, saponification, disulfide treatment, pyrolysis, protona-
tion), to ameliorate the potential and adsorption capacity 
[166]. The maximum uptakes of Cd(II) and Ni(II) by grape-
fruit peel are found to be 42.09 and 46.13 mg/g, respectively. 
The kinetics of the biosorption process are found to follow 
the pseudo-second-order kinetic model [164]. Grapefruit 
peels pretreated with H2O2 (1 M) showed high levels of 
uptake, qmax of 37.4270 mg/g and 39.0628 mg/g for dye 
mixture and Cr (VI), respectively [167]. Apart, the adsorp-
tion of ciprofloxacin pollutants (CIP) using modified waste 
grapefruit peel was investigated by Fu et al. [168]. Obtained 
results showed a maximum uptake of 1.71 mmol·g−1 under 
optimal experimental conditions, with the adsorption pro-
cess following pseudo-second-order kinetics, and fitting the 
Langmuir isotherm model. The latest investigations covering 
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the utilizing grapefruit byproducts for fabricating biosorb-
ents have been tabulated in Table 5.

Biofertilizer

Although citrus biofertilizers have been reported to 
improve the quantities of native nutrients such as nitro-
gen (N), carbon (C), and potassium (K) in the soil which 
enhances the growth and development of plants [174, 175], 
in particular, reports on the utilization of the grapefruit 
peels for the same are scarce. Grapefruit peel utilization 
for the co-composting of poultry manure is conferred to 
increase the C/N ratio, and thus minimize N losses caused 
by increased pH [44]. Biochar materials made from 

grapefruit peels have the potential to be used as a soil 
amendment. They can help immobilize lead and copper 
in the surrounding soil and enhance the establishment of 
vegetation in the treated soil. [176].

Bioethanol

SDG’s 7th Goal contemplates affordable and clean energy. 
Bioethanol is a clean potential biofuel [177], and grapefruit 
peel represents a lucrative biomass for bioethanol produc-
tion as it comprises cellulose, pectin, and hemicellulose 
that can be hydrolyzed by enzymes to monomer sugars, 
for bioethanol production [178]. In one study, glucose, 

Table 3   Latest studies on the application of grapefruit processing byproducts in the cosmetic sector

Grapefruit 
byproduct

Compound/extract Role in cosmetics Potential outcomes Reference

Peel Essential oil Anti-aging potential 1. Exhibited the highest enzyme inhibitory 
activity, with IC50 values of 12.82, 27.58, 
and 18.16 µg/mL for tyrosinase, elastase, 
and collagenase, respectively

2. In silico studies showed that the volatiles 
can inhibit the tested anti-aging enzymes

[140]

Peel Ethanolic extract (GPE) 
and ethyl acetate extract 
(GPEA)

Anti-Wrinkle and Tyrosinase Inhibitory 
Activities

1. GPE and GPEA showed tyrosi-
nase inhibitory activity, IC50 values 
were respectively 3312.5 ± 222.74; 
2985.17 ± 122.80 µg/ml

2. In addition, GPE and GPEA inhibited 
elastase and collagenase enzymes

[141]

Peel Naringin Photostabilizer in sunscreen products 1. Naringin incorporated polystyrene films 
upon exposure to ultraviolet light, sub-
stantially reducing the photodegradation 
of the material

[142]

Peel Essential oil Repair and alleviate skin inflammation 
caused by S. aureus

1. Grapefruit EO promoted HaCaT cell 
proliferation, reduced reactive oxygen 
species (ROS) production induced 
by S. aureus metabolites, and inhibited 
the upregulated expression of IL-1 and 
COX-2

[143]

Peel Extract Prevention against UVB-induced skin 
photo-aging

1. Combination of grapefruit and rosemary 
extract prevented UVB-induced skin 
photo-aging due to collagen/elastin degra-
dation via activation of MAPKs, MMPs, 
and the NF-κB signaling pathway in vitro 
and in vivo

[144]

Peel Extract Skin lightening cosmetic 1. Mixed extract from grapefruit and bitter 
orange showed upon testing for cel-
lular human tyrosinase inhibition assay 
resulted in stronger tyrosinase inhibition, 
there the estimated IC50 was 0.24 mg/ml 
of flavonoid mixture

2. No cytotoxicity has been observed in 
concentrations that were applied

[145]
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Table 4   Utilization of grapefruit byproducts in the pharmaceutical and health sector

Grapefruit 
byproduct

Compound/extract Bioactivity Experimental model Potential outcomes References

Peel Essential oil and 
extract

Anti-cytotoxic in Vitro model 1. Treatment with essential oil and extract 
(25:75%) formulation for 8 h exhibited slight 
cytotoxicity toward HeLa cells, no toxic-
ity toward HaCaT and HUVECs, whereas 
inhibition of C. albicans

[93]

Peel Extract Erectogenic potential Rat 1. Peel extract reversed PDE-5, ADA, and 
antioxidant activities to normal levels, and 
raised the concentration of nitric oxide

2. These results suggest the erectogenic effects 
and protective potentials of peel extract 
against paroxetine-induced erectile dysfunc-
tion

[152]

Peel Essential oil Anti-inflammatory Wistar rats 1. An anti-inflammatory bioassay divulged 
that oil caused a significant (p < 0.05–0.01) 
reduction in oedema size when compared to 
the negative control group throughout the 
5 h post-induction assessment period

2. The presence of Vitamin C, A, and lyco-
pene in grapefruit peel has been reported to 
help fight inflammation caused by free-
radical damage in the body

[153]

Peel Hydroethanolic 
extracts

Anti-arthritic Wistar rats 1. Oral administration of grapefruit fruit peel 
hydroethanolic extracts for 9 and 18 days, 
significantly reduced the complete Freund’s 
Adjuvant (CFA)-induced paw swelling 
and edema in arthritic rats as manifested 
by a significant decrease in right hind paw 
circumference, volume, and thickness

[154]

Peel Hydroethanolic 
extracts

Anti-arthritic Wistar rats 1. Grapefruit peel hydroethanolic extracts have 
anti-arthritic effects which may be mediated 
via modulation of Th1/Th2/Th17 cytokine 
production and enhancement of the antioxi-
dant defense system

[155]

Peel Extract Testicular toxicity 
inhibition

Male albino rats 1. Grapefruit peel extracts overcame the 
toxicity of sulfasalazine on the testis and 
protected testicular tissue from the detrimen-
tal effects of sulfasalazine, attributable to 
flavonoid phytoconstituents

[156]

Peel Aqueous extract Anti-histamine release 
and anti-inflamma-
tory activities

Male Sprague–Dawley 
rats

1. Inhibited the release of histamine from rat 
peritoneal exudate cells, and also suppressed 
the effusion of Chicago sky blue through 
capillary vessels caused by the intraperito-
neal injection of acetic acid in mice

2. Heating of the extracts increased both the 
inhibitory activity and the suppression

3. Extracts have beneficial activities such as 
antioxidative, anti-hydrogen peroxide, and 
anti-allergic effects and may serve as sources 
of new supplements

[157]
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fructose, galactose, arabinose, xylose, and galacturonic 
acid (GA) were produced using the enzymes pectinase, cel-
lulase, and beta-glucosidase, with a pH range of 3.8–4.8 
found to be optimal for sugar yields from peel hydrolysis 
[179]. However, D-limonene in grapefruit peels could act 
as a native inhibitor, which before bioethanol production, 
must be removed due to its antibacterial action against yeast 
or bacteria used in fermentation to produce ethanol [180]. 
Teke et al. [181] employed an ultrasound-assisted pretreat-
ment (14.6 °C, 25.81 W/cm2) to extract D-Limonene with 
a validation yield of 134 ± 4.24 mg/100 g dry CPW, and 
reported bioethanol yield with a 66% increase. Follow-
ing grapefruit peel fermentation in an immobilized cell 
reactor (ICR), Choi et al. [182] observed reduced ethanol 
concentrations and created a D-limonene removal column 
(LRC) that effectively eliminated this inhibitor from the 
fruit waste. Yeast fermentation using an LRC in conjunc-
tion with an ICR produced yields of 90.7% and ethanol 
concentrations of 21.6 g/L, which were twelve times higher 
than those obtained from ICR fermentation alone.

Conclusion and Future Directions

Grapefruit processing generates important volumes of 
disposals such as peels, pomace, and seeds that could be 
attractive raw materials for the recovery of compounds such 
as dietary fiber, polyphenols, flavonoids, essential oil, and 
pectin. These could be natural alternatives to cope with the 
high demand for natural compounds for the development of 
healthy matrices for different industries, favoring a circular 
economy model. This manuscript also spotlights advanced 
and innovative extraction techniques for processing grape-
fruit byproducts, allowing an efficient, easier, quick, cost-
effective, and appreciable recovery of bioactive compounds 
that could be used in food, cosmetic, or pharma sectors 
for various applications. The recovery of byproducts from 
grapefruit can not only benefit the environment, but could 
commence businesses, and will keep valuable resources 
and materials in the economy. Future works should focus 
on optimizing the extraction parameters and researchers 
should prioritize the gap between in-vitro trials and com-
mercial-scale applications for the sustainable valorization 
of grapefruit byproducts. However, a multidisciplinary 
approach with the collaboration of academics, engineers, 
economists, and policymakers, is critical to understand and 
pave the valorization route to a level of innovation where 
it is possible to achieve a broader landscape of zero waste 
and a sustainable society. Moreover, consonance of capital 
investments, policy amendments, and commercial, social, 
and consumer acceptance is vital for unraveling the true 
potential of grapefruit waste.
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