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Abstract
Purpose of Review  E-tongue, also known as electronic tongue, is an emerging analytical tool that can mimic the human 
taste sensation using various chemical sensors. This technology can effectively evaluate the taste properties like sourness, 
sweetness, bitterness, and saltiness, as well as umami, of food products. This tool provides a comprehensive taste profile of 
food items, leading to improved quality control and product development. This review intends to provide a detail about the 
E-tongue interventions in diverse food processing applications. One such application is the assessment of food authenticity 
and quality.
Recent Findings  Recent finding suggested that by analyzing the taste characteristics of food samples, E-tongue can detect 
potential adulteration, contamination, or spoilage, ensuring consumer safety. Additionally, E-tongue interventions can aid in 
the development of innovative food products by evaluating the taste profile and optimizing formulations. This tool has proven 
valuable in monitoring fermentation processes, such as wine production, where taste plays a critical role. By continuously 
measuring taste changes during fermentation, E-tongue can provide specific insights into the maturation and quality of the 
final product. This technology has also been applied in the assessment of sensory changes in processed foods, enabling the 
identification of flavor degradation and the optimization of processing parameters.
Summary  This technology offers a non-destructive and objective method for evaluating taste properties, enabling quality 
control, product development, and assessment of food authenticity. The use of E-tongue in food sector can enhance consumer 
satisfaction, improve product consistency, and ensure food safety.

Keywords  Taste profile · Food processing · Authenticity · Quality control · Product development · Fermentation · Sensory 
changes
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Introduction

The distribution and safety of food are extremely real 
issues in contemporary life. While overconsumption con-
tinues to rise in developed countries, where it is particu-
larly severe in the food industry sector, starvation is still a 
dreadful reality in other parts of the world even today. To 
guarantee food availability, quality, and uniform distribu-
tion and safety, the food sector must be secure. The latter 
can be determined by physical characteristics, chemical 
makeup of the product, degree of toxic and microbiologi-
cal contamination, and storage conditions, which is gov-
erned by the Hazard Analysis and Critical Control Points 
(HACCP). Consumers today are becoming increasingly 
picky and demanding when it comes to their food. The 
consumer’s major means of expressing their preferences 
is through the food’s taste and quality. New methods of 
food authentication have been created as a result of the 
rising customer demands for food safety and quality issues. 
However, most of these methods take a long time and call 
for expensive equipment and knowledgeable workers [1]. 
Alternative analytical techniques (like e-nose, high-pres-
sure processing, Radio frequency Identification) should be 
made available as a result of these restrictions. An excel-
lent illustration of a different method for evaluating food is 
the use of E-tongue multisensory systems, which replicate 
the functions of the human gustatory system. The e-tongue 
can distinguish (identify, categorize, and discriminate) 
various culinary tastes in addition to calculating the quan-
titative composition of food. Furthermore, it is simple to 
correlate the artificial sensory evaluation of the examined 
food products with human perception. Modern E-tongues 
make it possible to quickly and nondestructively assess the 
quality of food in both laboratory settings and online stud-
ies conducted within the commercial food processing pro-
cess [2]. The use of e-tongues is especially advantageous 
for analyzing the taste of compounds that are hazardous 
to humans and therefore cannot be tasted by them. When 
used effectively, e-tongue technology may provide online 
taste monitoring, enabling improved product process 
maintenance. As a result, e-tongue could aid in lowering 
waste from careless operations and boosting output for the 
food processor. E-tongue easily lends itself to automation 
and computerization; therefore, it is possible to integrate 
taste quality monitoring into the production process. Its 
adaptability is an additional benefit. With the advancement 
of e-tongue, one may now carry sophisticated equipment 
for continuous, online monitoring of taste quality instead 
of small, low-cost, handheld devices like those for peri-
odic taste analysis or household products. The ability to 
study multiple types of unique samples simultaneously is 
an additional benefit of using e-tongue. Furthermore, the 

device does not require highly competent operators after 
a protocol has been developed. Furthermore, as e-tongue 
monitoring is a label-free detection method, uncertainties 
related to label effects on molecular conformation, active 
site blockage, stearic hindrance, and the unavailability of 
available labels for certain compounds are eliminated [3]. 
One excellent example of an alternative approach to meal 
assessment is the employment of E-tongue multimodal 
systems, which mimic the function of the human gusta-
tory system [2, 4, 5].

The pattern recognition (PARC) viewpoint is used by 
taste recognition systems depending on E-tongues to recog-
nize, classify, and analyze numerous components in liquids 
both qualitatively and quantitatively. PARC compares the 
mixture’s profiles with a predefined pattern. Samples in the 
state of fluid can be directly analyzed, but samples in the 
solid phase must first be dissolved [6]. Because they pro-
duce information from a variety of distinct compounds in 
a liquid combination, these sensors have low selectivity. A 
data matrix is created from the chemical sensors’ signal. At 
the multivariate data analysis step, identification and clas-
sification are conducted utilizing statistical techniques and 
machine learning algorithms [4]. The brain may process 
signals from tongue and olfactory receptors in the human 
sensory system and combine the two sets of information to 
create classifications and/or conclusions. Since each instru-
ment has its own software package, the e-nose and e-tongue 
are not integrated; however, the data from both instruments 
might be imported into another application and merged. The 
human sensory system’s drawback is that no two brains are 
alike, which is obviously a good thing from another perspec-
tive. Additionally, the same brain may react differently every 
day based on an individual’s health, mood, or environment, 
making the data subjective and requiring a costly and time-
consuming process. Through taste, it is able to guarantee 
the consistency of a product’s flavor throughout the pro-
duction process, i.e., to ascertain whether the product has 
been altered, is in excellent working order, or is the same as 
before. For example, depending on how the product tastes, 
one may judge if it is a good harvest or not, distinguish 
between different varieties, and find any faults in the product 
[7]. A group of highly skilled individuals who utilize their 
taste senses to verify the quality procedures are developing 
this method [8].

Chemometrics, a branch of chemistry that employs sta-
tistics, mathematics, and formal logic to analyze chemical 
data and produce useful information, can be used to perform 
data analysis in an electronic language [9]. In terms of analy-
sis performed by PARC, the methodology is focused on the 
usage of data and identification of a pattern for comparison 
and subsequently gather pertinent information regarding 
monitored process. Data from E-tongues are being analyzed 
using this method as well as chemometric approaches. These 
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methods are shown in Fig. 1. As per Oliveri et al. [10], the 
three probable outcomes achieved by evaluating a data col-
lection include (1) identifying the existence of structures 
between the variables and/or objects under study (unsuper-
vised and exploratory analysis); (2) creating mathematical 
models for the supervised classification and analysis of the 
class models to predict qualitative responses; and (3) cre-
ating mathematical models for the supervised regression 
analysis to predict quantitative responses [11].

Zhang et al. [12] provides a methodology for analyzing 
E-tongue data that consists of the following steps: First, it 
selects and filters features using a sliding window-based 
smooth filter. After that, it examines various classifier algo-
rithms, including support vector machines (SVMs), and 
kernelized extreme learning machines (KELM), extreme 
learning machines (ELMs), and extracts features using the 
local discriminant preservation projection (LDPP) algo-
rithm. The fivefold cross-validation method can be used to 
validate the process, and the KELM algorithm achieves an 
overall average accuracy of 98.22%. Finally, computational 
time tests between the ELM, KELM, and SVM classifica-
tion algorithms are performed, with the results indicating 
KELM approaches.

Working Principle

International Union of Pure and Applied Chemistry 
(IUPAC) defines an E- tongue as “a multisensory system, 
which consists of a number of low selective sensors and 
uses advanced mathematical procedures for signal process-
ing based on Pattern Recognition and/or Multivariate data 
analysis” [13]. In contemporary E-tongue systems, sensor 
types that are employed include electrochemical ones such 

as voltammetric [14], potentiometric [15], impedimetric or 
capacitors [16], photographic [17], biological sensors pow-
ered by enzymes [14], and mixed or hyphenated devices 
[18]. In addition to the utilization of innovative extraction 
methods [16, 19] and advancement of the concept of the 
e-tongue, nonspecific chemical sensors have also been 
reported in literature [20]. The worldwide data from the 
E-tongue is still used to establish a digital fingerprint of an 
item’s gustatory qualities, but with the right sensor selec-
tion and chemometric procedures, particular variables and 
the existence of specific compounds can also be revealed. 
Many sensing components are used in e-tongue technique 
such as metallic sensors [18], carbon-paste [21], polymeric 
films [22], molecularly engraved molecules [23], and multi-
transduction coverings [17]. E-tongue technology uses a few 
of these sensing materials.

Previously, electronic tongue (e-tongue) devices primar-
ily focused on assessing liquids. However, recent studies 
have shifted their attention to the evaluation of solid, fatty, 
fibrous, or non-aqueous items. This shift addresses various 
challenges related to sample status and specific pretreatment 
requirements. To ensure accurate assessment and delicate 
material interaction, solid foods must undergo appropriate 
phase changes. For example, solid meals may need to be 
minced or crushed [24–26], cold samples may require heat-
ing to the sensor’s operating temperature, and hot samples 
may need to be cooled and homogenized unevenly through 
techniques such as sonication or stirring [16].

Furthermore, since many sensors in novel e-tongue sys-
tems primarily operate in the liquid phase, often in aqueous 
media, it becomes necessary to wet, dilute, and/or extract the 
sample using solvents that are deemed “sensor-friendly” [15, 
16, 19, 27]. Processes such as mastication, which reduces 
food particles’ size, in-salivation, utilizing saliva enzymes to 

Fig. 1   Essential steps involved 
in pattern recognition process
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initiate the initial food transformation and prepare it for the 
gastrointestinal tract, and tasting on specific tongue regions 
susceptible to each of the five fundamental flavors are exam-
ples of these procedures. These mechanisms parallel the pre-
processing of food in the human tongue during meal time.

One of the commonly used uses of e-tongue technique 
has been and continues to be flavor assessment as well as the 
determination of taste-determining components, dating back 
to the early 1990s and beyond [28]. Basic taste chemicals 
are often utilized for calibrating artificial sensory systems for 
subjective mono-gustatory characterization tasks [2].

Taste Sensors/Detection of Tastes

According to Jiang et al. [7], optical mass sensors, electri-
cally charged sensors, are some of the chemical sensors that 
are mostly used for e-tongue. The chemical sensors used 
by e-tongue interact with analytes to cause bidirectional 
changes in electrical characteristics, much as the gas detec-
tors of the e-nose. Then, we use electrical impulses that 
can be measured to recognize patterns and categorize data. 
Table 1 depicts the different classifiers used in E-tongue.

Potentiometric Chemical Sensors

The most popular e-tongue sensors at the moment are chemi-
cal potentiometric ones. The voltage differential between 
the working and reference electrodes is observed using PTC 
sensors. Even when the reference electrode is immersed in 
an electrolyte solution, the reference sensor keeps its voltage 
constant. However, the concentration of the analyte in the 
solution phase controls the working electrode’s voltage [29]. 

The electricity-producing potential of the electrode (E) can 
be expressed using the Nernst equation as a concentration 
indication of the proportion of the analyte’s oxidized state 
(Co) to reduced type (Cr):

where T (°C) is the temperature and Eo (V) is the electrode’s 
potential under standard conditions. Figure 2a provides an 
illustration of two-electrode potentiometric chemical sensor. 
An ion-selective membrane on the electrode allows only a 
single ion to be absorbed. Many potentiometric chemical 
sensors include three electrodes, and membranes were not 
always used. For potentiometric chemical sensors, mem-
branes made of glass, crystalline/solid-state, liquid, and pol-
ymers (such polyvinyl chloride) are frequently utilized [30]. 
Silicate glass is used to make glass membrane electrodes and 
is commonly used to measure pH, Na + , and H + . AgCl, 
Ag2S, and LaF3 are examples of inorganic salts that make 
up crystalline/solid-state membranes. Solid-state/crystalline 
membrane sensors are mostly used to monitor F and Cl. To 
make a liquid membrane, one ion-exchanger, also known as 
an ionophore, is submerged in a gelatinous organic mem-
brane. Liquid transmembrane electrodes are mostly used to 
measure Ca2+. A polymer membrane is usually comprised 
of plasticizers, PVC, and an ion carrier or exchanger. Pol-
ymer membrane electrodes are used to monitor ions like 
Ca2+, K + , NO3, and Cl [31]. Potentiometric E-tongues are 
also used to classify single olive cultivar olive oils [15], 
distinguish honey prepared in various US states [32], dis-
tinguish between various promotional wines and beer [33], 
and measure the amount of sugar present in solutions. This 
research has shown good accuracy when compared to con-
ventional analytical approaches. Potentiometric sensors 
have the essential advantage of offering a large selection of 

(1)E = Eo + RT∕nF (lnln C∕Cr)

Table 1   Pattern recognition algorithm and E-tongue classification method

Sensors Aim Classifier Results References

Potentiometric sensors Assessment of the umami flavor in 
extracts from mushrooms

ANOVA – [50]

Identifying adulterated beer kinds using 
argan oil

PCA
SVM

85% of the original oil could be identi-
fied, while 87% of the tampered oil 
could be identified

[18]

Voltametric sensors Quality and storage duration of open pas-
teurized milk are being monitored

SVM
PLS

– [38]

Geographic origins of olive oil SVM – [51]
Commercialized e-tongue Non-volatile components and beef’s 

sensory qualities
ANOVA
PLS

– [52]

Differentiate between brands and types of 
orange beverages and Chinese vinegar

RF
ANN

– [53]

Six piezolelectirc quartz crystals Analysis of raw and pasteurized milk’s 
role in cheese ripening

PCA
PLS-DA

Separation of cheeses based on milk type [54]
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electrode membranes, both selective and non-specific [34]. 
Therefore, a huge variety of chemical substances in fluids 
can be measured by potentiometric sensors. Potentiometric 
sensors have a number of drawbacks, including a sensitivity 
to temperature. Therefore, a huge variety of chemical sub-
stances in fluids can be measured by potentiometric sensors. 
Potentiometric sensors have a number of drawbacks, includ-
ing a sensitivity to temperature [35].

Voltammetric Chemical Sensors

Like potentiometric sensors, these voltammetric sensors 
have a functioning electrode along with a reference elec-
trode. After measurement, the working electrode is applied 
a potential (voltage) to measure the current produced by the 
oxidation and reduction of analytes [36]. The target analytes’ 
concentration and the current’s value are correlated. Here 
is the relationship between E and the resultant current (I):

where B is an electrode-related equivalent capacitance con-
stant, t is the time that has passed since the start of a volt-
age pulse, and RS is the analyte solution’s resistance. Pulse 
voltammetry is frequently used for voltammetric e-tongue 
measurements. The two types of pulse voltammetry that are 
most commonly used are large-amplitude pulse voltammetry 

(2)I = Eê − t∕
(

BRs

)

RS

(LAPV) and short-amplitude pulse voltammetry (SAPV). 
Staircase voltammetry has also been used in some situa-
tions [37]. Previous studies have investigated the amount 
of diluted argan oil with sunflower oil [18], the quality and 
shelf life of unsealed pasteurized milk [38], the separation 
of honey samples according to floral designs [39], and a 
numerical evaluation of quality parameters in spring water 
[40].

Bioelectric Sensors

Electronic sensors that are referred to as “bioelectric sen-
sors” sense using biomaterials. Biological materials such 
as enzymes, whole cells, connective tissue, antibodies, or 
receptors were often employed to build sensors for the use of 
e-tongue, including as impedimetric, voltammetric, conduc-
tometric, and potentiometric, sensors. One of the common 
biological processes that leads to the transfer of electrons, 
which are ions, or molecules is the enzyme–substrate reac-
tion. Figure 2b presents a schematic diagram that summa-
rizes the operation of bioelectric sensors. Because they add 
sweetness and sourness to food, acidic substances and sweet-
eners are essential components. Voltammetric bioelectric 
sensors are widely employed in the identification of sweets 
like lactate, glucose, and sucrose, as well as acids like lactic 
acid, citric acid, acetic acid, and sialic acid. The glucose oxi-
dase enzyme, which converted glucose into hydrogen per-
oxide by ingesting oxygen, was the basis for earlier studies. 

Fig. 2   Diagrammatic representation of a potentiometric chemical sensor (a) and a biosensor (b)



174	 Current Food Science and Technology Reports (2024) 2:169–182

The hydrogen peroxide concentration was then measured 
using voltammetric bioelectric sensors [41]. The reactions 
is represented in Eqs. (3) and (4):

Typically, fructose is calculated using an electron accep-
tor acting as an electrophysiological mediator and D-fruc-
tose-5-dehydrogenase (FDH) [42]:

The quantities of glucose and galactose can be deter-
mined by measuring the glucose that was created during the 
enzymatic hydrolysis of the two sugars. The enzymes used to 
undergo hydrolysis galactose and sucrose, respectively, were 
galactosidase and invertase. Similar operating principles 
were also applied in the enzymatic measurement of malic 
acid, acetic acid, lactic acid, vitamin C, and citric acid [42].

Typically, the impedimetric biosensor consists of 2–3 
electrodes that are subjected to a sinusoidal voltage. As a 
consequence of the analyte attaching to the electrodes, it 
detects the change in impedance (Z):

where the components’ resistance (R) and capacitive reactance 
(XC), respectively, are represented. Biomaterials mostly used to 
immobilize analytical substances on the electrode surface include 
lectins, nucleic acids, bacterial phage, and antibodies. Conse-
quently, bacteriophage-based sensors, lectin-based detectors, 
nucleic acid–based detectors, and antibody-based sensors were 
the four main categories into which impedimetric biosensors 
were commonly classified. Impedimetric biosensors have been 
used to identify food poisoning [43, 44] and herbicide coupled 
with chemical residues in food [45]. Impedimetric biosensors, 
which stick to the target bacterium directly or render its conduc-
tive metabolites immobile, are frequently employed to measure 
microbial growth [46]. Numerous food pathogens have already 
been examined, including Salmonella Typhimurium [47], E. Coli 
O157:H7 [48], Staphylococcus aureus, and Bacillus cereus [49].

Potential Food Applications

Dairy Products

Numerous varieties of milk, yoghurts and other fermented 
beverages, aged and soft cheeses, and sour creams are just a 
few of the numerous goods that the dairy business creates. 

(3)
D − glucose =O2 glucoseoxidase

→ d − gluconicacid + H
2
O

2

(4)H
2
O

2
+ (Med) red peroxidase → (Med)Ox + H2O

(5)

D − fructose + (Med) OxFDH

→ 5 − keto − d − fructose + (Med) red

(6)Z2 = R2 + XC
2

The dairy industry uses a variety of fermentation processes, 
microbes, and food additives, as well as several kinds of raw 
milk from various mammal species. The increasing use of 
E-tongue applications to analyze dairy products is due to the 
need to maintain product homogeneity, ensure freshness, and 
prevent adulterations [18–20].

E-tongues serve the primary purpose of conducting quali-
tative analyses, leading to numerous studies exploring their 
application in recognizing, classifying, or identifying milk 
and fermented milk samples. A recent experiment focused 
on classifying fermented milk samples employed a hybrid 
E-tongue utilizing potentiometric, voltametric, and conduc-
tometric measurements. Remarkably, this hybrid approach 
successfully differentiated all six samples under analysis, 
with the variations in microbes between various fermen-
tations being evident in the principal component analysis 
(PCA) results. The study also highlighted the significance 
of illuminating the measurement situation from multiple 
positions and combining data from various sources, thereby 
introducing an additional dimension of information and 
showcasing the system’s potential across diverse fields [55]. 
Winquist et al. [56] utilized a custom-designed voltametric 
E-tongue integrated directly into the dairy process line. The 
combination of E-tongue signals and multivariate statistics 
proves to be fast and effective for tasks like sample classifi-
cation, discrimination, recognition, identification, and com-
pound concentration prediction. The versatility of employ-
ing various sensors in E-tongue design opens up numerous 
practical applications.

To find antibiotic residues in cow’s milk, Wei and Wang 
[19] created a voltammetric e-tongue with five metallic 
electrodes. These antibiotics can enter the milk from 
medicated animals, potentially affecting milk fermentation 
and causing allergies in consumers. The study demonstrated 
the e-tongue’s capability to distinguish bovine milk 
containing various antibiotics through discriminant function 
analysis (DFA). Moreover, the e-tongue accurately predicted 
antibiotic concentrations using partial least squares (PLS) 
with correlation coefficients (R2) exceeding 0.9. The 
same research team then used a comparable voltammetric 
e-tongue with different metallic electrodes (Au, Pt, Ag, and 
Pd) to track quality and amount of time; 26 pasteurized milk 
samples were stored for 72 h after being unsealed at various 
intervals. They also assessed the physical characteristics 
of several kinds of set yogurts using the e-tongue [57, 58]. 
Chemical field effect transistors (chemFETs) were used 
by Hruskar et al. [59] to compare sensory analysis with an 
Astree potentiometric e-tongue in order to track changes and 
categorize different kinds of probiotic fermented milk with 
various flavors. ANN and PLS approaches were used to link 
the e-tongue responses with sensory assessments, during 
20 days at two temperatures (+ 4 and + 25 °C). The study 
established the e-tongue’s capacity to evaluate milk quality 
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by demonstrating its ability to monitor deterioration during 
storage, forecast sensory qualities, and categorize probiotic 
fermented milk based on flavor. Hruskar et al. [60] described 
a different use in which 40 samples of probiotic-fermented 
milk were subjected to simultaneous measurements using 
an Astree e-tongue. ANN was used to link the e-tongue 
data with milk component levels ascertained by enzymatic 
methods via reactivity with appropriate enzymes. Similar 
to this, Bougrini et al. [18] used a hybrid e-nose—which 
consists of commercial and homemade MOX sensors, 
humidity sensor, and temperature probe, as well as 
voltammetric e-tongue, which consists of different metallic 
working electrodes (Pt, Ag, Au, glassy carbon) to distinguish 
pasteurized milk brands and determine its storage period. 
Since there was no pretreatment applied to the milk samples 
before analysis, the first storage day’s variation in the milk 
brands could be easily distinguished, resulting in 80.8% of 
the variance. Using PCA classification to combine e-nose 
along with e-tongue data allowed for identification during 
all milk storage days. After combining the data, the SVM 
was successfully used to identify all pasteurized milk 
storage days. Lvova et al. [20] showed how multimodal 
systems might be used to track the release of salt from model 
domestic soft cheeses while they were being digested in 
an artificial gut system. These methods were also applied 
to determine the salinity of packaged Italian mozzarella 
cheeses made from cow and buffalo milk. Na + amount was 
determined by HPLC and compared with the data obtained 
from two sodium-sensitive electrodes that select ions (ISEs): 
a handmade Na-ISE 2 based on monensin dodecyl ester 
and a Na-ISE 1 from Metrohm Ion Analysis as well as an 
ISE array consisting of five homemade ISEs for calcium, 
nitrate, ammonia, chloride, and potassium. When it came to 
determining the Na + content, the ISE array outperformed 
individual selective sensors. The ISE array predicted 
PLS findings for Na + that revealed high slopes (0.887), 
correlation coefficients (0.952), and RMSEPs of 14.4 mM. 
Furthermore, the ISE array successfully identified the kind 
of milk (bovine or buffalo) and assessed the saltiness of 
samples of commercial mozzarella cheese. Two grams of 
freshly made for examination, mozzarella cheese or partially 
metabolized cheese was removed from artificial mouth and 
other parts of an artificial digestive tract. Ten milliliters of 
distilled water was used to extract the samples after they had 
been reduced to fragments, if needed. One milliliter of the 
liquid extract was taken for sensory examination following 
centrifugation. In ISE array, 87.5% of the mozzarella cheese 
were accurately detected (Table 2).

Fish and Meat

The crucial significance that protein-rich foods—espe-
cially meat and seafood—play in maintaining a balanced 

diet has drawn a lot of attention to the precise quality and 
safety management of these commodities. The meat and 
seafood market industry places a high value on freshness, 
and multisensory analysis has shown to be a useful tool 
for tracking postmortem and shelf-life durations. The uti-
lization of e-tongue technique for fish freshness control, 
quality assessment, and taste evaluation has been investi-
gated in a number of research [21, 70, 71]. When fish from 
the Cyprinid family spoiled, Rodríguez-Méndez et al. [70] 
used phthalocyanine-modified screen-printed electrodes 
and voltammetric carbon paste which are used to detect a 
variety of amines, including histamine, cadaverine, ammo-
nia, dimethylamine, and trimethylamine. They employed 
the methods of PCA identification and discriminant analy-
sis using partial least square (PLS-DA) to determine the 
freshness of the fish and determine the postmortem time. 
Before measuring, 1 g of fish muscle was cut into pieces 
and under ultrasound for 5 min in 25 mL of 0.1 M KCl to 
produce the liquid component for e-tongue measurements. 
In a related study, Apetrei et al. [21] demonstrated the 
usefulness of employing screen-printed conductors altered 
with polypyrrole in a voltammetric e-tongue for determin-
ing the freshness of Pontic shad fish. Ruiz-Rico et al. [72] 
employed a voltametric e-tongue with two arrays of metal-
lic electrodes, one containing noble metals like Ir, Pt, Rh, 
and Au, and the other non-noble ones like Ag, Cu, Co, and 
Ni, to ascertain the shelf-stability of fresh cod fish. The 
cumulative volatile basic nitrogen (TVB-N), pH, humidity, 
ATP-related compounds, mesophilic microbes, and Enter-
obacteriaceae counts were evaluated using the e-tongue 
data in accordance with published protocols. The success-
ful completion of PLS fitting for TVB-N and mesophilic 
bacteria validated the possible use of the voltammetric 
e-tongue in evaluating cod degradation.

More often than not, e-tongues are used for categori-
zation tasks instead of taste evaluation. Research on the 
extraction and structural behavior of taste peptides from 
raw, farmed puffer fish muscle was carried out by Zhang 
et al. [73]. Using matrix-assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry, the taste peptides in 
the various fish muscle fractions were identified (MALDI-
TOF–MS). These protein molecules were discovered to 
elicit distinct tastes (such as umami, bitter, kokumi) based 
on their structural makeup. Gil et al. [74] used a range of 
potentiometric electrodes to track the freshness of pork loin 
that was refrigerated for 10 days. The electrodes and a refer-
ence electrode were put straight on the beef slice sample in 
order to gather data. Significant connections between the 
e-tongue data and the K-index, which gauges the byproducts 
of ATP degradation, were discovered through the use of 
PLS regression. Furthermore, PCA and ANN analysis let 
us determine the postmortem time of meat. Similar research 
team measured nitrate, nitrite, and chloride levels in brines 
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and minced meat using an e-tongue based on pulse voltam-
metry. It was comprised of a collection of noble and non-
noble electrodes [25].

Fruits and Vegetables

Multisensory systems find applications in assessing the 
freshness, sweetness, and nutrient components of fruits and 
vegetables. Grapes, being a vital starting product for wine, 
are particularly important in this regard, often focusing 
on evaluating phenolic antioxidants. Using voltammetric 
biosensors based on nanostructured materials and phenol 
oxidases, Medina-Plaza et al. [14] created the E-tongue 
system, which allows for the differentiation of many grape 
varieties based on their phenolic content (laccase and 

tyrosinase). Enzymes were added to an arachidic acid (AA) 
Langmuir–Blodgett (LB) film doped with lutetium bisph-
thalocyanine (LuPc2) as an electron mediator to create the 
sensors. The grape samples were assessed as 50% diluted 
musts in water, and the bio E-tongue demonstrated the abil-
ity to differentiate five distinct grape varietals and identify 
phenols by measuring the quantity of phenolic groups that 
bound to the grape samples’ structure. A metallic voltam-
metric e-tongue was used by Campos et al. [26] to measure 
the ripeness of seven Spanish grape varietals. After harvest-
ing, the grapes were cut and crushed, and juice that was 
taken out of the pulp was tested. With errors of less than 
15%, the e-tongue showed good prediction ability for both 
total acidity and sugar content. Wang’s study group evalu-
ated firmness and sugar content in several pear varieties and 

Table 2   Uses, advantages, and application of E-tongue in different food products

Food product Uses of E-tongue Advantages Applications References

Wine Quality assessment Detecting 
adulteration

Differentiate varietals
Monitoring fermentation process

Quick and accurate results
Non-destructive testing
Can analyze multiple wine sam-

ples simultaneously
Cost-effective alternative to human 

sensory panels

Winemaking industry
Wine quality control
Wine authentication

[61•]

Fruit Juice Flavor profiling
Quality control
Sensory analysis

Eliminates subjective human 
sensory evaluation

Consistent and repeatable results
Faster analysis compared to tradi-

tional methods

Beverage industry
Quality assessment of fruit juices
Flavor optimization

[62••]

Cheese Defect detection
Cheese classification based on age 

or type
Sensory profiling

Objective and reliable analysis
Reduced time and labor
Less sample consumption

Dairy industry
Quality control of cheese produc-

tion
Cheese flavor and texture analysis

[63•]

Coffee Flavor evaluation
Quality control
Blending optimization

Analyzes multiple characteristics 
of coffee

Non-invasive testing preserves the 
integrity of the sample

Reduces the reliance on human 
sensory panels

Provides actionable insights for 
product improvement

Coffee industry
Quality assessment of coffee beans
Blending and roasting optimiza-

tion

[64•]

Meat Flavor profiling
Quality control
Sensory analysis
Detecting spoilage

Objective analysis
Reduced time and resource con-

sumption
Can detect subtle changes in qual-

ity or spoilage

Meat industry
Quality assessment of meat 

products
Spoilage detection

[65•, 66••]
Nasiru et al., 2022

Soft Drinks Flavor analysis
Quality control
Sensory evaluation

Provides detailed flavor profile 
analysis

Speeds up quality control pro-
cesses

Non-destructive testing

Beverage industry
Quality assessment of soft drinks
Flavor optimization

[67]

Olive Oil Authenticity determination
Sensory profile analysis
Quality control

Fast and reliable results
Non-destructive testing
Reduces reliance on costly chemi-

cal laboratory tests
Can detect adulteration or fraud

Olive oil production industry
Quality control of olive oil
Authentication and fraud detection

[68••, 69••]
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distinguished preserved licorice apricots using both vol-
tammetric metallic e-tongue and a-Astree potentiometric 
e-tongue [24]. The apricots have been diced and cooked in 
deionized water following centrifugation. Next, an e-tongue 
was used to measure the supernatant. Juice extracted from 
fruit cores and filtered through double-decked filter sheets 
was subjected to peer analysis. Kutyła-Olesiuk et al. [75] 
evaluated the effects of lead buildup in maize leaves using 
a flow-through analytical system equipped with a miniature 
ISE array. Following a 24-h exposure to 5–10 mM lead 
nitrate solutions, the leaves from 3–4-week-old plants were 
removed and lyophilized. In order to perform potentiomet-
ric tests, 0.2 g of dry weight plant material was mixed in 
flow-through mode with 0.3 mL of 96% H2SO4 and 10 mL 
of 30% H2O2. According to the study, when used in combi-
nation with PLS-DA, the developed e-tongue system may 
be able to evaluate the growing circumstances of plants 
undergoing bioindication or phytoremediation. In a follow-
up investigation, the same team used a hybrid E-tongue to 
do qualitative as well as quantitative evaluations of water-
based extracts from fresh and dried apples produced using 
various drying methods [76]. The system includes five 
potentiometric ISEs, conductometric, spectrophotometric, 
and amperometric sensors that depend on Au and glucose 
oxidase (GOx) readings. The findings showed that, in com-
parison to utilizing separate approaches, combining data 

from several measuring techniques increased the distinction 
of dried apple extract samples.

Wines and Vodka

Riul Jr et al. [77] utilized an e-tongue and artificial neu-
ral networks to accurately recognize wine samples stored 
under different circumstances, achieving 100% accuracy in 
identifying vintage, vineyard, and brands (Fig. 3). Buratti 
et al. [78] used an E-nose and an amperometric e-tongue 
to evaluate Italian wines according to grape category, pH 
value, bitterness, hues, astringency, and taste. In order to 
obtain outstanding judgment with good accuracy for par-
ticular sensory measures connected to the general excellence 
of dry red wines, they used genetic algorithms. PCA was 
used by Wu et al. [79] to categorize Chinese wines using 
cyclic voltammograms of copper electrodes, showing that 
the technique was successful in distinguishing between 
the samples. In a study looking at the effects of various 
variables in the wine industry, like aging in oak barrels, 
an e-tongue using perylene and polypyrrole chemicals in 
sensing units was employed. In addition, Rudnitskaya et al. 
[80] connected the deterioration of wine flavor to the lignin 
in wine bottles decomposing due to an elevated amount of 
phenol compounds in the cork damaged by fungus. Poten-
tiometric e-tongues were used in a different investigation 

Fig. 3   Diagram illustrating the utilization of artificial neural networks for the processing of data from an e-tongue based on impedance spectros-
copy. This process allowed different varieties of wine to be distinguished
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to successfully discern between various vodka brands and 
characteristics [81].

Food Authenticity and Quality

E-tongues are also emerging as promising supplemental 
techniques to classical analytical methods for a fast and 
low-cost detection of malpractices. E-tongues have shown 
their capability in the detection of food adulteration as well 
as in the authenticity assessment of different types of food-
stuffs. Electronic tongue devices have been widely used to 
detect different analytes, among which it is possible to find 
adulterants in olive oil and other adulterants in different 
matrices (Morais et al., 2019). E-tongues can aid in authen-
ticating food products by analyzing their taste signatures. 
For instance, expensive food products like olive oil, honey, 
and spices are often adulterated with cheaper substitutes. 
E-tongue analysis can distinguish between genuine and 
adulterated samples based on their taste profiles, helping to 
ensure product authenticity [82]. By analyzing the taste pro-
file of a food product, the e-tongue can identify any devia-
tions from the expected taste characteristics. For example, 
in milk, the presence of water or other additives can alter its 
taste profile, which can be detected by the e-tongue. Bever-
ages such as juices, wines, and soft drinks are susceptible to 
adulteration with water, sugar, or artificial flavors. E-tongue 
technology can help in monitoring the taste consistency of 
these beverages by comparing the taste profile of each batch 
with a reference standard [83]. Any deviations can signal 
potential adulteration. E-tongue technology can assist regu-
latory bodies in enforcing food safety and quality standards 
by providing rapid and reliable detection of adulteration. It 
can be used as a screening tool for large-scale monitoring 
of food products in the market, helping to identify poten-
tial risks and take appropriate actions to ensure consumer 
safety [84]. Zaukuu et al. [85] investigated the authenti-
cation of Tokaj Wine (Hungaricum) with the electronic 
tongue and near infrared spectroscopy. The study aimed to 
develop models to rapidly discriminate lower grade Tokaj 
wines, “Forditas I” and “Forditas II,” that were artificially 
adulterated with grape which must concentrate to match 
the sugar content of high-grade Tokaj wines using an elec-
tronic tongue (e-tongue) and two near infrared spectrometers 
(NIRS). There was a noticeable pattern of separation in PCA 
for all three instruments and 100% classification of adulter-
ated and nonadulterated wines in LDA using the e-tongue. In 
summary, e-tongue technology offers a promising approach 
to combat food adulteration by providing sensitive and accu-
rate detection of taste-based deviations in food products. Its 
application can contribute to maintaining the integrity and 
safety of the food supply chain, thereby safeguarding con-
sumer trust and public health.

Limitations and Future Trends of e‑Tongue

A sensor employed by an e-tongue presents a specific 
response toward the target analyte. However, most of the 
chemical sensors employed by e-tongue encountered sig-
nificant matrix effects when dealing with real food samples. 
Therefore, a sample pre-treatment step is typically added so 
that the sensors are designed to work toward specific ana-
lytes in certain types of samples. This pretreatment step is 
time-consuming when multiple analytes are analyzed at a 
time. Another limitation of e-tongue is the relatively short 
lifetime of the sensing materials, especially biomaterials, of 
the sensors. It requires the users to frequently examine the 
performances of the e-tongue. In addition, a great number 
of sample size (typically N = 10) for each type of sample is 
often required for training and validation. In some cases, the 
sample size needs to be even greater. One trend of e-tongue 
is the employment of biosensor with high selectivity and 
specificity, which reduces the impact of a complex and 
interferents. More biomaterials, including nucleic acids and 
aptamers, antibodies, cells, phages, and, namely, enzymes, 
will be used as recognition elements for those sensors. The 
development of standardized universal functions e-tongues 
will be very useful for food processors to determine the qual-
ity of their products. Similar to e-nose, the development of a 
shared online library where store pattern classifiers trained 
by data were obtained from standardized e-tongue. This can 
significantly improve the precision of e-tongues and make 
universal function e-tongues possible.

Conclusion

This review summarized the applications of e-tongue in 
determining the quality-related properties of foods. The 
functioning principles of a variety of sensors and the elec-
tronic gadgets that use them—such e-tongues—are intro-
duced in this article. Frequently employed algorithms for 
pattern identification and classification techniques—like 
ANN, CNN, PCA, PLS, and SVM—are also covered in the 
study because they are essential to the analysis. In conclu-
sion, pattern recognition algorithms in conjunction with 
e-tongue provide strong and affordable analytical instru-
ments that produce fast and precise findings. These meth-
ods can be employed for in-line and off-line measurements 
that make them helpful for tracking food processing and 
assessing the nutritional value of the final product. However, 
strict control over the collection of samples, testing, and 
data processing is required for the successful use of e-tongue 
technique. It is necessary to appropriately handle issues like 
low measurement repeatability and comparability and data 
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processing. These developments will definitely increase the 
e-tongue technologies’ potential in a variety of applications.
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