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Abstract
Purpose of review The purpose of this review is to clarify the problems and discuss the recent research to achieve multi-
contact activities by humanoid robots from the viewpoint of contact planning, motion planning, and motion control. We also
provide a brief discussion about the future perspective to improve the capability of humanoid robots in real-world applications.
Recent findings Multi-contact activities by humanoids are required when they work in unstructured environments such as
large-scale manufacturing. To achieve them, recent works improve the computational efficiency of contact planners in the
global search for a feasible contact sequence and tackle the problem of coupled kinematics and dynamics of the robot in
whole-body motion planning. Combining them with the real-time controller to compensate for unexpected disturbances,
humanoid robots have achieved complex multi-contact activities in the real world.
Summary Since it is computationally expensive to plan multi-contact motion with non-coplanar contact and acyclic contact
transitions from scratch, we decompose the framework for multi-contact activities into contact planning, motion planning, and
motion control. Then, we investigate the problems and overview the recent efforts to solve them in each component. Finally,
we summarize the current achievements and discuss future directions to improve the capability of multi-contact activities by
humanoids.

Keywords Multi-contact motion planning and control · Humanoid robot

Introduction

The improvement of productivity is a key feature to solve
the problem of labor shortages in an aging society. Indus-
trial robots have contributed to this issue by automating
the repetitive tasks in structured environments such as fac-
tories, but there are still numerous tasks that are difficult
for them and human workers have to work on. Humanoid
robots are expected to be promising solutions to take over
these tasks because they have human-like body structures to
work in unstructured environments designed for humans. In
these scenarios, humanoid robots need to traverse challeng-
ing environments and perform tasks in a human workspace
while interacting with the environment with both its arms
and legs, which we call multi-contact activities, as shown
in Fig. 1. For example, disaster response in a plant is one
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of the scenarios where humanoid robots are needed because
the environment is originally designed for human workers
and cannot be adjusted for robots. In that case, humanoid
robots are required to performmulti-contact activities such as
crawling to expand their support area for safety and climbing
up a vertical ladder [2–4]. Large-scale manufacturing such
as house construction [5] and airplane manufacturing [6] is
another promising application for humanoid robots. Since it
is difficult to introduce a production line for the large struc-
tures, the humanoid robots are expected to traverse the inside
of the target structure using stairs with handrails [7•] or go
into a confined space [8] interacting with the environment.

This review provides a brief overview of the recent
research, mainly on model-based approaches, to solve the
problems of planning and controllingmulti-contact activities
for humanoid robots. We clarify the difficulties to achieve
multi-contact activities and decompose the entire problem
into hierarchical subproblems to make it tractable. Then, we
investigate the technological advancements in each subprob-
lem and discuss the open problems to improve the capability
of a humanoid robot in real-world applications. We note that
there is a book chapter on this topic written by Bouyarmane
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Fig. 1 Example of multi-contact
activities by the humanoid robot
HRP-5P [1]. Left: crawling by
the quadrupedal locomotion,
Center: getting over a fence,
Right: reaching an object while
grasping handrails in a scaffold

et al. [9]. Although it mainly focused on themethodologies to
formulate multi-contact activities as optimization problems,
we cover not only optimization-based motion generation
but also search-based contact planning and review recent
research updates in this field.

Problem Statement

The notable characteristics of multi-contact activities by
humanoids are the non-coplanar contact and acyclicity of the
contact transitions [10]. They expand not only the capability
of humanoid robots but also the complexity of the problem
formulation compared to the classical bipedal locomotion
framework. The search space of candidate contact transitions
increases because we need to consider a large set of poten-
tial contact between the robot and the environment in the 3D
space. The acyclic contact pattern, which may change the
number of contacting limbs by making or breaking contact,
also increases possible contact transitions to be considered.
To guarantee the feasibility of the resulting motion, we need
to explicitly consider the whole-body kinematics and cen-
troidal dynamics of the robot with a high degree of freedom
(DoF). The constraints of contact with the environment make
the multi-contact motion planning problem in configuration
space more difficult than traditional path planning because
contacting limbs should reach the environment while other
parts of the robot need to avoid collision with it.

Since it is computationally expensive to find feasible
motion considering the above complex features, a robot
system for multi-contact activities generally consists of the
offline planning to generate globally optimal motion of the
robot and a real-time controller that achieves the desired
motion while compensating disturbances utilizing the sen-
sor information as shown in Fig. 2. In the later part of this
review, we focus on the planning and control of environmen-
tal interaction to achieve multi-contact activities assuming
that environmental information has already been obtained. In
terms of the offline planner, its major difficulty is the coupled

problem of contact and motion planning. The whole-body
motion of the robot is governed by the joint torques and con-
tact forces through contact of the limbs, but the sequence
of contact should be selected so that there is a continuous
motion of the robot which satisfies its kinematic and dynamic
constraints. Some holistic approaches consider contact in the
optimization problem for whole-body motion planning [11,
12, 13•, 14]. However, it is difficult for these optimization-
based approaches to globally search both the optimal contact
sequence and motion of the robot because they can find only
local optimumaround its initial guess in principle. Therefore,
decomposing the entire problem into contact andwhole-body
motion planning sequentially as shown in Fig. 2 is commonly
adopted though the decomposed problems are not strictly
equivalent to the original one.

Contact Planning

The target of contact planning for multi-contact activities
is finding a globally optimal contact sequence to navigate
the robot from the current to the desired state with a fea-
sible motion in the given environment. Traditionally this
problem was solved by the hierarchical method that first
searches a sequence of discrete sets of simultaneous con-
tact, which are called stances, and then plans continuous
motion to reach them. This method is called the “stance-
before-motion” approach, which is originally investigated
in the field of climbing robots [15] and then introduced to
humaonids [16]. The problem is that there are infinite sets
of possible contact between the robot and environment in
mult-contact activities. A sampling-based approach such as
a probabilistic roadmap (PRM) is a classical solution to this
problem [17], but the required number of stances to cover
the possible contact transitions is extremely large. The major
issue of contact planning is how to efficiently reduce the
search space of the candidate contacts by focusing on its
promising part.
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Fig. 2 A general structure of a robot system to achieve multi-contact
activities by humanoids. Based on the environmental measurements, a
contact planner finds a feasible contact sequence and a motion planner
generates the kinematically and dynamically consistent motion of the

robot. Given the desired motion, the real-time controller sends com-
mands to each joint of a robot while generating a CoM trajectory and
contact forces to stabilize it under disturbances

Search-Based Contact Planners

There are several contact planners which utilize search-based
methods such as A* [18]. The sequence of contact transitions
can be modeled as the graph structure, and graph-search
algorithms can efficiently find an optimal path in it with-
out the exhaustive search if we can properly design the
costs and heuristics. Dornbush et al. [19] proposed the single
search algorithm to plan multi-modal humanoid locomotion
such as walking, crawling, and climbing in an adaptively-
dimensional search space with multiple heuristics. However,
it is not easy to design appropriate costs and heuristics for
graph-search algorithms in contact planning becausewe need
to estimate the cost of the target contact transition in the
future. In recent works, these features which are not easy to
be estimated are represented by neural networks instead of
explicit functions. Lin et al [20] trained neural networks to
estimate the robustness in centroidal dynamics of the contact

transition and consider it in the cost function for Anytime
Non-parametric A* (ANA*) search to find a dynamically
consistent contact sequence. Noda et al. [21] used neural
networks to estimate whether keyposes can be expected to
the goal in multi-contact locomotion planning.

Improve Efficiency of Global Contact Planning

If the motion of the robot can be roughly estimated in
advance, it is reasonable to search for candidate contacts
around it. Escande et al. [22] introduced a potential field
to guide the best-first search for contact transitions. This
potential field is generated from the small number of key
postures for guidance. These can be automatically computed
by projecting a collision-free posture to the contact manifold
in the configuration space with the statics constraint [23],
but it is computationally expensive to solve inverse kinemat-
ics in each projection to confirm its validity. Tonneau et al.
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[24] tackled this problem by focusing on the reachability of
the robot. They constructed the reachable workspace of the
limb, which is the convex volume of the end-effector poses
for randomly sampled configurations of the target limb, and
search the trajectory of the root link such that the trunk of the
robot is collision-free while reachable workspaces of limbs
can interact the environment. Then, they deterministically
find the contact sequence along the obtained path by gen-
erating the sequence of whole-body configurations with the
static equilibrium while retrieving the sampled limb config-
urations. This idea of approximating the contact manifold
by geometrical condition improved the computational effi-
ciency of contact planning. Kumagai et al. [25] extended this
approach by narrowing down the possible range of feasible
contacts focusing on the sustainability of contact. Lin et al.
[26] evaluated the guiding path for the contact planner based
on the traversability of the environment, which represented
its difficulty of contact planning by learned regressors. Since
we decomposed the multi-contact motion planning problem
into contact planning and motion planning, it is important
in contact planning to guarantee that the motion planner can
generate a kinematically and dynamically consistent trajec-
tory to follow the resulting contact sequence. Fernbach et al.
[27] proposed the convex resolution of centroidal dynamic
trajectories(CROC), which represents a conservative CoM
trajectory for the contact transition by a Bezier curve. This
method was extended to the continuous formulation and
integrated with a contact planner to provide a conservative
feasibility criterion of the target contact transition because it
can be efficeintly computed by solving linear program (LP)
[28••].

Motion Planning

Motion planning is responsible for generating the whole-
body joint trajectory for the robot to follow the contact
sequence found by global contact planning discussed in
Section “Contact Planning”. To explicitly consider the kine-
matics and dynamics of the robot, optimization-basedmotion
planning approaches are widely adopted to solve the whole-
body motion planning problem for a humanoid robot.

Optimization Problem for Motion Planning

In general, an optimization problem for whole-body motion
planning is formulated as Eq.1, where x is the decision vari-
able [7•, 29].

min
x

F(x) (1a)

s.t. A(x) = b (1b)

C(x) ≤ d (1c)

In multi-contact motion planning, the target of the optimiza-
tion is finding an optimal x which satisfies desired task
function e(x) = 0 under the kinematics and dynamics con-
ditions represented as the equality constraints in Eq.1b and
inequality constraints in Eq.1c. In practice, equality con-
straints may be integrated into the task function with large
weights in favor of solvability over strictness. Therefore,
we can represent the optimization problem of multi-contact
motion planning as Eq.2.

min
x

F(x) s.t. C(x) ≤ d (2a)

where F(x) ≡ 1

2
‖e(x)‖2 (2b)

Equation2 is a non-linear optimization problem, but it can
be solved by sequential quadratic programming (SQP) [30].
SQP solves Eq.2 by solving the quadratic program Eq.3 for
�xi and iteratively updating the decision variable as xi+1 =
xi + �xi .

min
�xi

F(xi ) + ∇F(xi )T�xi + 1
2�xi∇2F(xi )�xi (3a)

s.t. ∇C(xi )T�xi ≤ d − Ck(xi ) (3b)

where ∇F(xi ) =
(

∂e(xi )
∂xi

)T
e(xi ) (3c)

∇2F(xi ) ≈
(

∂e(xi )
∂xi

)T
∂e(xi )
∂xi

(3d)

In Eq.3, ∇C(xi )T is a Jacobian matrix and we approxi-
mate the Hessian of the Lagrangian by ∇2F(xi ).

Feasibility Constraints for Multi-contact Motion

We define task function and the inequality constraints to
obtain feasible multi-contact motion of a humanoid robot
to follow the desired contact sequence. First, we consider the
kinematic constraints of the robot. The contact constraints,
which require the pose of the end-effector pe ∈ SE(3) to
reach the target contact pose, are imposed as equality con-
straints in the task function. We may allow the contact poses
to be locally modified by the motion planner to satisfy other
mandatory constraints [25] if they have unconstrained DoF.
We can apply some additional tasks such as reference joint
angles, reference pose of the base link, reference trajectory
of a contact-free limb, and reference CoM position as the
task functions. As the inequality constraints, the joint limits
and collision avoidance constraints are imposed. For colli-
sion avoidance, the velocity damper [31] is commonly used.
The distances between the objects and their gradient can be
efficiently obtained if they have strictly convex shapes [32],
but the velocity damper still can be applied when they are
not strictly convex [33]. Using the configuration of the robot
q and its difference �q, the above kinematic conditions can
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be represented as task functions and inequalities which can
be imposed in Eq.3 [7•, 29]. Note that q consists of the joint
angles and base pose of the robot.

We also need to consider the dynamics of the robot to
make the resulting motion feasible. Considering the full-
body dynamics of a humanoid robot [34] can fully leverage
the capability of the human-like body structure. However,
since it is computationally expensive and has many local
optimums, the centroidal dynamics of the robot are widely
used in multi-contact motion planning [11]. Let f j and p j
represent a contact force and its point of application as shown
in Fig. 3. The Newton-Euler Equations can be formulated as
Eq.4 where c is the CoM, m is the mass of the robot, g is
the gravitational acceleration, N f is the number of contact
points, and L is the angular momentum.

m c̈ =
N f∑
j=1

f j + mg (4a)

L̇ =
N f∑
j=1

{(
p j − c

) × f j

}
(4b)

Equation4b includes the cross-product, which makes the
centroidal dynamics nonlinear. Ponton et al. [13•] proposed
the convex relaxation of the centroidal dynamics to make the
momentum dynamics tractable in an optimization problem.
Tazaki [14] restricted the direction of contact forces to obtain

Fig. 3 The variables for representing the centroidal dynamics of the
robot. In this review, we assume that the robot makes surface contact
with the environment

the closed-form solution of Eq.4. In multi-contact motion
planning, the quasi-static assumption is alsowidely approved
when the robot is expected not to perform dynamic motion
[24, 35], where we can assume c̈ = 0 and L̇ = 0. Then, we
can summarize Eq.4 by the linear equation as Eq.5, where

f =
[
f 1 . . . f N f

]T
and p̂ j is the skew-symmetric matrix

of p j .

[
I3 . . . I3
p̂1 . . . p̂N f

]
f =

[
O3×3

m ĝ

]
c+

[−mg
O3×3

]
(5)

The contact wrench w, which is the left side of Eq.5,
should also satisfy the inequality constraint as Eq.6.

CSw ≤ w±
l (6)

In Eq.6, C S is the selection matrix and w±
l is the wrench

limits of each end-effector. In addition to the Newton-Euler
equations, we need to describe the non-slipping condition
of each contact point. According to Coulomb’s law, we can
represent it as Eq.7 using the normal vector n j of the contact
surface and the friction coefficient μ.

nTj f j ≥ 0 (7a)

‖ f j −
(
nTj f j

)
n j‖ ≤ μnTj f j (7b)

Equation7a is the unilateral constraint of the contact force.
Equation7b is the friction cone, which is a second-order cone
constraint [36]. We can obtain its inner approximation using
a polyhedron. For example, let γ j1 and γ j2 represent tangent
vectors at the j-th contact point. We can describe a matrix
Vj which represents spans of the friction pyramid in Fig. 3
as Eq.8 [24].

V j =
[
n j +μγ j1 n j −μγ j1 n j +μγ j2 n j −μγ j2

]T
(8)

Then, the condition for the contact forces f to be inside
of their corresponding friction pyramids can be represented
as Eq.9 using coefficient vector β j .

∃β j ∈ R
4, β j ≥ 0 and f j = V jβ j (9)

According to the polyhedral convex cone theory [23], we
can obtain the set of inequality constraints equivalent to Eq.9
as Eq.10, where a1 . . . a4 are the normal vector of faces in
the friction pyramid [37].

∀k ∈ {1, . . . , 4} aTk f j ≤ 0 (10)

123



122 Current Robotics Reports (2023) 4:117–125

Del Prete et al. [38] proposed the computationally effi-
cient algorithm to test the static equilibrium with these
non-slipping conditions.

Coupled Kinematics and Dynamics in Motion
Planning

The major difficulty in multi-contact motion planning is the
problem of coupled kinematics and dynamics. As Eqs. 4, 6,
and 7, the centroidal dynamics of the robot is managed by
the CoM of the robot and contact forces. On the other hand,
the CoM is constrained by the body structure of the robot,
and points of application for contact forces can be modified
according to kinematic constraints such as collision avoid-
ance. The optimization problem formulated inEq.2 can solve
kinematics and statics simultaneously [29, 39] by considering
variables for statics such as contact forces and joint torques
in x while introducing Eqs. 5, 6, and 10 to the constraints
of the optimization. However, these approaches take a long
computational time because the size of the decision vari-
able increases, especially in multi-contact activities where
the number of contact points is large. One possible approach
is planning a centroidal trajectory according to the centroidal
dynamics first, and then using its result as the constraint
of whole-body kinematics [40]. Ruscelli et al. [35] com-
puted optimal force distributions, CoM, and contact positions
which can satisfy centroidal statics by non-linear program-
ming. Then, they searched for the feasible motion to connect
obtained stances by a sample-based algorithm. This approach
can decompose these two problems, but it cannot guarantee
the existence of valid whole-body configurations that satisfy
the pre-planned CoM trajectory.

Geometrical Projection of Stability Constraints

There are several approaches that compute the range of CoM
where the robot can satisfy the stability constraints [36, 41].
This range can be used as the inequality constraint of the
CoM in the optimization problem, which can project the sta-
bility conditions of the robot to kinematic constraints without
increasing the size of the decision variable [42]. Nozawa et
al. [43] proposed the algorithm which approximately com-
putes the CoM Feasible Region (CFR), where the CoM can
satisfy the centroidal dynamics and non-slipping conditions,
by iterative linear programming. Audren et al. [44] showed
the method to compute the 3D static stability polyhedron.
Orsolino et al. [45] proposed the feasible region, which
guarantees static equilibrium, non-slipping conditions, and
existence of the joint torques to support the robot’s body
weight. Although these methods assume unilateral contact
due to Eq.7a, Kumagai et al. [7•] extend CFR with a static
equilibrium by approximating bilateral contact as a pair of

surface contacts, which enabled a humanoid robot to climb
up steep stairs while grasping handrails.

Online Motion Control

After planning the reference multi-contact motion in a struc-
tured environment, we use onlinemotion control to adapt it to
a real environment with disturbances. In position-controlled
humanoid robots, motion control takes charge of generating
the CoM trajectory according to the actual contact points and
deciding appropriate contact force distributions to compen-
sate for the error of the CoM. In torque-controlled humanoid
robots, passivity-based controllers and inverse dynamics-
based controllers are developed to achieve multi-contact
stabilization under the model uncertainties and disturbances.

Computational Efficiency for Real-Time
Computation

One of the major issues in it is computational efficiency to
provide the reference CoM and compute contact wrenches
within a control cycle of the robot. The model predictive
control (MPC) is a commonly adopted method of CoM tra-
jectory generation because it can guarantee the existence of
dynamically feasible contact forces over the future [43, 46–
49]. However, the computational cost of MPC tends to be
large because it imposes constraints on all the state variables
in the predicted horizon to guarantee their dynamic feasi-
bility. Since multi-contact motion requires a large number
of contact points, the dimensionality of the constraints in
MPC makes it difficult to be solved in the high frequency.
Morisawa et al. [50] proposed the fast CoM trajectory genera-
tion method for multi-contact locomotion. They sequentially
generate the CoM trajectory based on the centroidal dynam-
ics formulated as a linear time-varying system (LTVS) by
introducing the force distribution ratio, which can consider
variable motion parameters such as the height of the CoM
and adjusted contact poses while largely reducing compu-
tational cost compared to QP in MPC. They also designed
themulti-contact stabilization frameworkwhich can estimate
CoM position and compute optimal contact wrench based
on the force distribution ratio and achieved multi-contact
locomotion on non-coplanar surfaces [51]. Murooka et al.
[52] proposed the CoM trajectory generation and stabiliza-
tion control method based on preview control with centroidal
feedback and wrench distribution. Although the proposed
preview control did not explicitly consider constraints of
dynamics and assumed rough approximations in angular
momentum dynamics, it largely reduced the computational
cost of the CoM trajectory generation while satisfying con-
tact constraints by the wrench projection.
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Compensating Unexpected Disturbances

It is also important to compensate for unexpected dis-
turbances when stabilizing the robot in the real world.
The passivity-based controller enabled a torque-controlled
humanoid robot to stabilize it with contact points not only on
its end-effectors but also distributed across the entire body
such as its knee [53]. Abi-Farraj et al. [54] extended that
approach to adapt to high forces by introducing Gravito-
Inertial Wrench Cone (GIWC) and achieved multi-contact
stabilization in pushing a desk and kicking an extinguisher
without the knowledge of their weights. Although the above
passivity-based controllers assume torque feedback, Cis-
neros et al. [55] proposed the QP-based stabilizing frame-
work with inverse dynamics-based feedforward torques and
kinematic feedback to achieve passivity-based Lyapunov-
stable control. This framework enabled a humanoid robot
to achieve bipedal and multi-contact locomotion in a narrow
construction site despite disturbances caused by unexpected
collisions. Hiraoka et al. [56] proposed online motion gen-
eration and control framework based on prioritized inverse
kinematics with Position-Wrench-Torque (PWT) Jacobian
matrix, which represents the relationship between joint angle
commands, actual joint positions, contact wrench, and joint
torque. It enabled a position-controlled humanoid robot to
perform quasi-static multi-contact motion with links without
force-torque sensors while estimating the contact wrench on
it and reducing the temperature of joints.

Conclusion and Future Directions

In this review, we investigated the general framework to
achieve multi-contact activities for humanoid robots and
provided an overview of the recent research. Since it is com-
putationally expensive to handle this problem by a holistic
formulation due to the complexity caused by non-coplanar
contact and acyclic contact transitions, the entire framework
is decomposed into contact planning, motion planning, and
motion control. In contact planning, recent research inves-
tigates how to efficiently focus on the promising part of a
large number of candidate contacts in 3D space. After glob-
ally planning the contact sequence, the optimization-based
approaches are widely used to generate the whole-body joint
trajectory while explicitly considering the kinematics and
dynamics of the robot as its constraints. To compensate for
unexpected disturbances and model errors within the cycle
of the real-time control, efficient CoM trajectory generation,
and wrench distribution methods are developed. By combin-
ing these components as an integrated framework, humanoid
robots have achieved complex multi-contact activities in the
real-world [3, 7•, 56].

Themajor problems in each component have been tackled
and solved by recent research, but we still have a large gap
between structured experiments and unstructured real-world
environments. The adaptability to unknown environments is
one of the remaining issues to achieve multi-contact activi-
ties in real-world scenarios.We think that improvement of the
reactiveness in multi-contact planning, especially integrated
with the perceptive information [57], is important to achieve
it. A human can immediately decide where to make contact
or grasp when looking at the environment. To introduce this
ability to a humanoid robot, it needs to decide the next con-
tact according to the semantic information of the environment
and physical constraints of the robot in a short time. Recently,
Chemin et al. [58•] introduced reinforcement learning to pro-
vide the root trajectory which makes it easier for the contact
planner to find a feasible contact sequence. Although it is
still challenging for end-to-end learning to generate precise
motion [59], we consider that learning-based approaches are
promising to improve the capability of multi-contact activi-
ties by humanoids.
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