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Abstract
Purpose of Review  The field of humanoid robotics, perception plays a fundamental role in enabling robots to interact 
seamlessly with humans and their surroundings, leading to improved safety, efficiency, and user experience. This scientific 
study investigates various perception modalities and techniques employed in humanoid robots, including visual, auditory, 
and tactile sensing by exploring recent state-of-the-art approaches for perceiving and understanding the internal state, the 
environment, objects, and human activities.
Recent Findings  Internal state estimation makes extensive use of Bayesian filtering methods and optimization techniques 
based on maximum a-posteriori formulation by utilizing proprioceptive sensing. In the area of external environment under-
standing, with an emphasis on robustness and adaptability to dynamic, unforeseen environmental changes, the new slew of 
research discussed in this study have focused largely on multi-sensor fusion and machine learning in contrast to the use of 
hand-crafted, rule-based systems. Human robot interaction methods have established the importance of contextual informa-
tion representation and memory for understanding human intentions.
Summary  This review summarizes the recent developments and trends in the field of perception in humanoid robots. Three main 
areas of application are identified, namely, internal state estimation, external environment estimation, and human robot interaction. 
The applications of diverse sensor modalities in each of these areas are considered and recent significant works are discussed.
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Introduction

Perception is of paramount importance for robots to estab-
lish a model of their internal state as well as the external 
environment. These models allow the robot to perform its 
task safely, efficiently and accurately. Perception is facili-
tated by various types of sensors which gather both propri-
oceptive and exteroceptive information. Humanoid robots, 

especially those which are mobile, pose a difficult challenge 
for the perception process: mounted sensors are susceptible 
to jerky and unstable motions due to the very high degrees 
of freedom afforded by the high number of articulable joints 
present on a humanoid’s body, e.g., the legs, the hip, the 
manipulator arms or the neck.

We organize the main areas of perception in humanoid 
robots into three broad yet overlapping areas for the pur-
poses of this survey, namely, state estimation for balance 
and joint configurations, environment understanding for 
navigation, mapping and manipulation, and finally human-
robot interaction for successful integration into a shared 
human workspace, see Fig. 1. For each area we discuss the 
popular application areas, the challenges and recent meth-
odologies used to surmount them.

Internal state estimation is a critical aspect of autono-
mous systems, particularly for humanoid robots in order to 
address both low level stability and dynamics, and as an 
auxiliary to higher level tasks such as localization, mapping 
and navigation. Legged robots locomotion is particularly 
challenging given their inherent under-actuation dynamics 
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and the intermittent contact switching with the ground dur-
ing motion.

The application of external environment understanding 
has a very broad scope in humanoid robotics but can be 
roughly divided into navigation and manipulation. Naviga-
tion implies the movement of the mobile bipedal base from 
one location to another without collision thereby leaving 
the external environment configuration unchanged. On the 
other hand, manipulation is where the humanoid changes 
the physical configuration of its environment using its 
end-effectors.

It could be argued that human robot interaction or HRI 
is a subset of environment understanding. However, we 
have separated the two areas based on their ultimate goals. 
The goal of environment understanding is to interact with 
inanimate objects while the goal of HRI is to interact with 
humans. The set of posed challenges are different though 
similar principles may be reused. Human detection, gesture 
and activity recognition, teleoperation, object handover and 
collaborative actions, and social communications are some 
of the main areas where perception is used.

State Estimation

Recent works on humanoid and legged robots locomo-
tion control have focused extensively on state-feedback 
approaches [4]. Legged robots have highly nonlinear 
dynamics, and they need high frequency ( 1 kHz ) and low 
latency ( < 1 ∶ ms ) feedback in order to have robust and 
adaptive control systems, thereby adding more complexity 
to the design and development of reliable estimators for the 
base and centroidal states, and contact detection.

Challenges in State Estimation

Perceived data is often noisy and biased and it gets magni-
fied in derived quantities. For instance, joint velocities tend 
to be noisier than joint positions, as these are obtained by 
numerically differentiating joint encoder values. Rotella 
et al. [5] developed a method to determine joint velocities 
and acceleration of a humanoid robot using link-mounted 
Inertial Measurement Units (IMUs), resulting in less noise 
and delay compared to filtered velocities from numerical dif-
ferentiation. An effective approach to mitigate biased IMU 
measurements is to explicitly introduce these biases as esti-
mated states in the estimation framework [6, 7].

The high dimensionality of humanoids make it computa-
tionally expensive to formulate a single filter for the entire 
state. As an alternative, Xinjilefu et al. [8] proposed decou-
pling the full state into several independent state vectors, 
and used separate filters to estimate the pelvis state and joint 
dynamics.

To account for kinematic modeling errors such as joint 
backlash and link flexibility, Xinjilefu et al. [9] introduced 
a method using a Linear Inverted Pendulum Model (LIPM) 
with an offset which represented the modeling error in the 
Center of Mass (CoM) position and/or external forces. 
Bae et al. [10] proposed a CoM kinematics estimator by 
including a spring and damper in the LIPM to compensate 
for modeling errors. To address the issue of link flexibil-
ity in the humanoid exoskeleton Atalante, Vigne et al. [11] 
decomposed the full state estimation problem into several 
independent attitude estimation problems, each correspond-
ing to a given flexibility and a specific IMU relying only on 
dependable and easily accessible geometric parameters of 
the system, rather than the dynamic model.

Fig. 1   Perception for humanoid robots split into three principal areas. Left: State estimation being used to estimate derived quantities like CoM 
and ZMP from sensors like IMU and joint encoders. Right: Environment understanding has a very broad scope which varies from localization 
and mapping to environment segmentation for planning and even more application areas. Human Robot Interaction is closely related but deals 
exclusively with human beings rather than inanimate objects. Center: Some sensors which aid in perception for humanoid robots. Sources for 
labeled images- (a):[1], (b): [2] and (c): [3]
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In the remainder of this section, we classify the recent 
related works on state estimation into three main catego-
ries [12]: proprioceptive state estimation, which primarily 
involves filtering methods that fuse high-frequency propri-
oceptive sensor data; multi-sensor fusion filtering, which 
integrates exteroceptive sensor modalities into the filtering 
process; multi-sensor fusion with state smoothing, which 
employs advanced techniques that leverage the entire history 
of sensor measurements to refine estimated states.

Finally, we present a list of available open-source soft-
ware for state estimation from reviewed literature in Table 1.

Proprioceptive State Estimation

Proprioceptive sensors provide measurements of the robot’s 
internal state. They are commonly used to compute leg 
odometry, which captures the drifting pose. For a compre-
hensive review of the evolution of proprioceptive filters on 
leg odometry, refer to [22], and [23].

Base State Estimation

In humanoid robots, the focus is on estimating the posi-
tion, velocity, and orientation of the “base” frame, typically 
located at the pelvis. Recent state estimation approaches in 
this field often fuse IMU and leg odometry.

The work by Bloesch [6] was a decisive step in intro-
ducing a base state estimator for legged robots using a 
quaternion-based Extended Kalman Filter (EKF) approach. 
This method made no assumptions about the robot’s gait 
and number of legs or the terrain structure and included 
absolute positions of the feet contact points, and IMU bias 
terms in the estimated states. Rotella et al. [7] extended it 
to humanoid platforms by considering the full foot plate 
and adding foot orientation to the state vector. Both works 
showed that as long as at least one foot remains in contact 
with the ground, the base absolute velocity, roll and pitch 
angles, and IMU biases are observable. There are also other 
formulations for the base state estimation using only pro-
prioceptive sensing in [16, 24], and [25].

Centroidal State Estimation

Centroidal states in humanoid robots include the CoM posi-
tion, linear and angular momentum, and their derivatives. The 
CoM serves as a vital control variable for stability and robust 
humanoid locomotion, making accurate estimation of centroi-
dal states crucial in control system design for humanoid robots.

When the full 6-axis contact wrench is not directly avail-
able to the estimator, e.g., the robot gauge sensors measure 
only the contact normal force, some works have utilized sim-
plified models of dynamics, such as the LIPM [26].

Piperakis et al. [27] presented an EKF to estimate cen-
troidal variables by fusing joint encoders, IMU, foot sensi-
tive resistors, and later including visual odometry in [13]. 
They formulated the estimator based on the non-linear 
Zero Moment Point (ZMP) dynamics, which captured the 
coupling between dynamics behavior in the frontal and lat-
eral planes. Their results showed better performance over 
Kalman filter formulation based on the LIPM.

Mori et al. [28] proposed a centroidal state estimation 
framework for a humanoid robot based on real-time inertial 
parameter identification, using only the robot’s propriocep-
tive sensors (IMU, foot Force/Torque (F/T) sensors, and 
joint encoders), and the sequential least squares method. 
They conducted successful experiments deliberately altering 
the robot’s mass properties to demonstrate the robustness of 
their framework against dynamic inertia changes.

By having 6-axis F/T sensors on the feet, Rotella et al. 
[29] utilized momentum dynamics of the robot to estimate 
the centroidal quantities. Their nonlinear observability anal-
ysis demonstrated the observability of either biases or exter-
nal wrench. In a different approach, Carpentier et al. [30] 
proposed a frequency analysis of the information sources 
utilized in estimating the CoM position, and later for CoM 
acceleration and the derivative of angular momentum [31]. 
They introduced a complementary filtering technique that 
fuses various measurements, including ZMP position, 
sensed contact forces, and geometry-based reconstruction 
of the CoM by using joint encoders, according to their reli-
ability in the respective spectral bandwidth.

Table 1   Open-source software for humanoid robot state estimation. All cited software are available as ROS packages

Paper Software Language Description

Extended Kalman Filtering
[13] SEROW[14] C++ Multi-sensor state estimation (IMU, joint encoders, visual odometry)
[12] PRONTO[15] C++ Multi-sensor state estimation (IMU, joint encoders, LiDAR, camera)
[16] InEKF[17] C++ Invariant EKF (using IMU motion model, with different measurement models)

Factor Graph
[18] WOLF[19] C++ Multi-sensor state smoothing (IMU, joint encoders, LiDAR, camera)

Learning
[20] GEM[21] Python Unsupervised gait-phase estimation (IMU, joint encoders, F/T sensors)
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Contact Detection and Estimation

Feet contact detection plays a crucial role in locomotion 
control, gait planning, and proprioceptive state estimation in 
humanoid robots. Recent approaches can be categorized into 
two main groups: those directly utilizing measured ground 
reaction wrenches, and methods integrating kinematics and 
dynamics to infer the contact status by estimating the ground 
reaction forces. Fallon et al. [2] employed a Schmitt trigger 
with a 3-axis foot F/T sensor to classify contact forces and 
used a simple state machine to determine the most reliable 
foot for kinematic measurements. Piperakis et al. [13] adapted 
a similar approach by utilizing pressure sensors on the foot.

Rotella et al. [32] presented an unsupervised method for 
estimating contact states by using fuzzy clustering on only 
proprioceptive sensor data (foot F/T and IMU sensing), sur-
passing traditional approaches based on measured normal 
force. By including the joint encoders in proprioceptive sens-
ing, Piperakis et al. [20] proposed an unsupervised learning 
framework for gait phase estimation, achieving effectiveness 
on uneven/rough terrain walking gaits. They also developed 
a deep learning framework by utilizing F/T and IMU sensing 
in each leg, to determine the contact state probabilities [33]. 
The generalizability and accuracy of their approach was dem-
onstrated on different robotic platforms. Furthermore, Mara-
vgakis et al. [34] introduced a probabilistic contact detection 
model, using only IMU sensors mounted on the end effector. 
Their approach estimated the contact state of the feet without 
requiring training data or ground truth labels.

Another active research field in humanoid robots is moni-
toring and identifying contact points on the robot’s body. 
Common approaches focus on proprioceptive sensing for 
contact localization and identification. Flacco et al. [35] 
proposed using an internal residual of external momentum 
to isolate and identify singular contacts, along with detect-
ing additional contacts with known locations. Manuelli 
et al. [36] introduced a contact particle filter for detecting 
and localizing external contacts, by only using propriocep-
tive sensing, such as 6-axis F/T sensors, capable of handling 
up to 3 contacts efficiently. Vorndamme et al. [37] devel-
oped a real-time method for multi-contact detection using 
6-axis F/T sensors distributed along the kinematic chain, 
capable of handling up to 5 contacts. Vezzani et al. [38] 
proposed a memory unscented particle filter algorithm for 
real-time 6 Degrees of freedom (DoF) tactile localization 
using contact point measurements made by tactile sensors.

Multi‑Sensor Fusion Filtering

One drawback of base state estimation using proprioceptive 
sensing is the accumulation of drift over the time, due to sen-
sor noise. This drift is not acceptable for controlling highly 

dynamic motions, therefore it is typically compensated by 
integrating other sensor modalities from exteroceptive sen-
sors, such as cameras, depth cameras, and LiDAR.

Fallon et al. [2] proposed a drift-free base pose estima-
tion method by incorporating LiDAR sensing into a high-
rate EKF estimator using a Gaussian particle filter for laser 
scan localization. Although their framework eliminated the 
drift, a pre-generated map was required as input. Piperakis 
et al. [39] introduced a robust Gaussian EKF to handle out-
lier detection in visual/LiDAR measurements for humanoid 
walking in dynamic environments. To address state estima-
tion challenges in real-world scenarios, Camurri et al. [12] 
presented Pronto, a modular open-source state estimation 
framework for legged robots Fig. 2. It combined proprio-
ceptive and exteroceptive sensing, such as stereo vision and 
LiDAR, using a loosely-coupled EKF approach.

Multi‑Sensor Fusion with State Smoothing

So far, we have explored filtering methods based on Bayes-
ian filtering for sensor fusion and state estimation. However, 
as the number of states and measurements increases, compu-
tational complexity becomes a limitation. Recent advance-
ments in computing power and nonlinear solvers have popu-
larized non-linear iterative maximum a-posteriori (MAP) 
optimization techniques, such as factor graph optimization.

To address the issue of visual tracking loss in visual 
factor graphs, Hartley et al. [40] introduced a factor graph 
framework that integrated forward kinematic and pre-inte-
grated contact factors. The work was extended by incor-
porating the influence of contact switches and associated 
uncertainties [41]. Both works showed that the fusion of 
contact information with IMU and vision data provides a 
reliable odometry system for legged robots.

Solá et al [18] presented an open-source modular estima-
tion framework for mobile robots based on factor graphs. 
Their approach offered systematic methods to handle the 
complexities arising from multi-sensory systems with asyn-
chronous and different-frequency data sources. This frame-
work was evaluated on state estimation for legged robots 
and landmark-based visual-inertial SLAM for humanoids 
by Fourmy et al. [26].

Environment Understanding

Environment understanding is a critical area of research 
for humanoid robots, enabling them to effectively navigate 
through and interact with complex and dynamic environ-
ments. This field can be broadly classified into two key 
categories: 1. localization, navigation and planning for the 
mobile base, and 2. object manipulation and grasping.

130 Current Robotics Reports (2023) 4:127–140
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Perception in Localization, Navigation and Planning

Localization focuses on precisely and continuously esti-
mating the robot’s position and orientation relative to its 
environment. Planning and navigation involve generating 
optimal paths and trajectories for the robot to reach its 
desired destination while avoiding obstacles and consider-
ing task-specific constraints.

Localization, Mapping and SLAM

Localization and SLAM (simultaneous localization and 
mapping) relies primarily on visual sensors such as cam-
eras and lasers but often additionally use encoders and 
IMUs to enhance estimation accuracy.

Localization  Indoor environments are usually considered 
structured, characterized by the presence of well-defined, 
repeatable and often geometrically consistent objects. 
Landmarks can be uniquely identified by encoded vectors 
obtained from visual sensors such as depth or RGB cameras 
allowing the robot to essentially build up a visual map of 
the environment and then compare newly observed land-
marks against a database to localize via object or landmark 

identification. In recent years, the use of handcrafted image 
features such as SIFT and SURF and feature dictionaries 
such as the Bag-of-Words (BoW) model in landmark rep-
resentation has been superseded by feature representations 
learned through training on large example sets, usually by 
variants of artificial neural networks such as convolutional 
neural networks (CNNs). CNNs have also outperformed 
classifiers such as support vector machines (SVMs) in deriv-
ing inferences [42, 43]. However, several rapidly evolving 
CNN architectures exist. Ovalle-magallanes et al. [44] per-
formed a comparative study of four such networks while 
successfully localizing in a visual map.

The RoboCup Soccer League is popular in humanoid 
research due to the visual identification and localization chal-
lenges it presents. [45, 46] and [47] are some examples of 
real-time, CNN based ball detection approaches utilizing RGB 
cameras developed specifically for RoboCup. Cruz et al. [48] 
could additionally estimate player poses, goal locations and 
other key pitch features using intensity images alone. Due 
to the low on-board computational power of the humanoids, 
others have used fast, low power external mobile GPU boards 
such as the Nvidia Jetson to aid inference [47, 49].

Unstructured and semi-structured environments are encoun-
tered outdoors or in hazardous and disaster rescue scenarios. 
They have a dearth of reliably trackable features, unpredictable 

Fig. 2   State estimation with multi-sensor filtering, integrating LiDAR for drift correction and localization. Top row, filtering people from raw 
point cloud. Bottom row, state estimation and localization with iterative closest point correction on filtered point cloud. From [12]
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lighting conditions and are challenging for gathering training 
data. Thus, instead of features, researchers have focused on 
raw point clouds or combining different sensor modalities for 
navigating such environments. Starr et al. [50] presented a sen-
sor fusion approach which combined long-wavelength infrared 
stereo vision and a spinning LiDAR for accurate rangefinding 
in smoke-obscured environments. Nobili et al. [51] success-
fully localized robots constrained by a limited field-of-view 
LiDAR in a semi-structured environment. They proposed 
a novel strategy for tuning outlier filtering based on point 
cloud overlap which achieved good localization results in the 
DARPA Robotics Challenge Finals. Raghavan et al. [52] pre-
sented simultaneous odometry and mapping by fusing LiDAR 
and kinematic-inertial data from IMU, joint encoders, and foot 
F/T sensors while navigating a disaster environment.

SLAM  SLAM subsumes localization by the additional map 
construction and loop closing aspects, whereby the robot has 
to re-identify and match a place which was visited sometime 
in the past, to its current surroundings and adjust its pose his-
tory and recorded landmark locations accordingly. A humanoid 
robot which is intended to share human workspaces needs to 
deal with moving objects, both rapid and slow, which could 
disrupt its mapping and localizing capabilities. Thus, recent 
works on SLAM have focused on handling the presence of 
dynamic obstacles in visual scenes. While the most popular 
approach remains sensor fusion [53, 54], other purely visual 
approaches have also been proposed, such as, [55] which 
introduced a dense RGB-D SLAM solution that utilized opti-
cal flow residuals to achieve accurate and efficient dynamic/
static segmentation for camera tracking and background recon-
struction. Zhang et al. [56] took a more direct approach which 
employed deep learning based human detection, and used 
graph-based segmentation to separate moving humans from 
the static environment. They further presented a SLAM bench-
mark dedicated to dynamic environment SLAM solutions [57]. 
It included RGB-D data acquired from an on-board camera 
on the HRP-4 humanoid robot, along with other sensor data. 
Adapting publicly available SLAM solutions and tailoring it 
for humanoid use is not uncommon. Sewtz et al. [58] adapted 
the Orb-Slam [59] for a multi-camera setup on the DLR Rollin’ 
Justin System while Ginn et al. [60] did it for the iGus, a mid-
size humanoid platform, to have low computational demands.

Navigation and Planning

Navigation and planning algorithms use perception informa-
tion to generate a safe, optimal and reactive path, consider-
ing obstacles, terrain, and other constraints.

Local Planning  Local planning or reactive navigation is gen-
erally concerned with local real-time decision-making and 

control, allowing the robot to actively respond to perceived 
changes in the environment and adjust its movements accord-
ingly. Especially in highly controlled applications rule-based, 
perception driven navigation is still popular and yields state-
of-the-art performance both in terms of time demands and 
task accomplishment. Bista et al. [61] achieved real-time 
navigation in indoor environments by representing the envi-
ronment by key RGB images, and deriving a control law 
based on common line segments and feature points between 
the current image and nearby key images. Regier et al. [62] 
determined appropriate actions based on a pre-defined set 
of mappings between object class and action. A CNN was 
used to classify objects from monocular RGB vision. Ferro 
et al. [63] integrated information from a monocular camera, 
joint encoders, and an IMU to generate a collision-free visual 
servo control scheme. Juang et al. [64] developed a line fol-
lower which was able to infer forward, lateral and angular 
velocity commands using path curvature estimation and PID 
control from monocular RGB images. Magassouba et al. [65] 
introduced an aural servo framework based on auditory per-
ception, enabling robot motions to be directly linked to low-
level auditory features through a feedback loop.

We also see the use of a diverse array of classifiers to 
learn navigation schemes from perception information. Their 
generalization capability allows adaptation to unforeseen 
obstacles and events in the environment. Abiyev et al. [66] 
presented a vision-based path-finding algorithm which seg-
regated captured images into free and occupied areas using 
an SVM. Lobos-tsunekawa et al. [67] and Silva et al. [68] 
proposed deep learned visual (RGB) navigation systems for 
humanoid robots which were able to achieve real time per-
formance. The former used a reinforcement learning (RL) 
system with an actor-critic architecture while the latter uti-
lized a decision tree of deep neural networks deployed on a 
soccer playing robot.

Global Planning  These algorithms operate globally, taking 
into account long-term objectives and optimize movements 
to minimize costs, maximize efficiency, or achieve a specific 
outcome on the basis of a perceived environment model.

Footstep Planning is a crucial part of humanoid loco-
motion and has generated substantial research interest for 
itself. Recent works exhibit two primary trends related to 
perception. The first is providing humanoids the capabil-
ity of rapidly perceiving changes in the environment and 
reacting through fast re-planning. The second endeavors to 
segment and/or classify uneven terrains to find stable 6 DoF 
footholds for highly versatile navigation.

Tanguy et al. [54] proposed a model predictive con-
trol (MPC) scheme that fused visual SLAM and propri-
oceptive F/T sensors for accurate state estimation. This 
allowed rapid reaction to external disturbances by adap-
tive stepping leading to balance recovery and improved 
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localization accuracy. Hildebrandt et  al. [69] used the 
point cloud from an RGB-D camera to model obstacles as 
swept-sphere-volumes (SSVs) and step-able surfaces as 
convex polygons for real-time reactive footstep planning 
with the Lola humanoid robot. Their system was capable 
of handling rough terrain as well as external disturbances 
such as pushes (see Fig. 3). Others have also used geomet-
ric primitives to aid in footstep planning, such as surface 
patches for foothold representation [70, 71], environment 
segmentation to find step-able regions, such as 2D plane 
segments embedded in 3D space [72, 73], or represented 
obstacles by their polygonal ground projections [74]. Sury-
amurthy et al. [75] assigned pixel-wise terrain labels and 
rugosity measures using a CNN consuming RGB images 
for footstep planning on a CENTAURO robot.

Whole Body Planning in humanoid robots involves the 
coordinated planning and control of the robot’s entire body 
to achieve an objective. Coverage planning is a subset of 
whole body planning where a minimal sequence of whole 
body robot poses are estimated to completely explore a 
3D space via robot mounted visual sensors [76, 77]. Tar-
get finding is a special case of coverage planning where 
the exploration stops when the target is found [78, 79]. 
These concepts are related primarily to view planning in 

computer vision. In other applications, Wang et al. [80] 
presented a method for trajectory planning and formation 
building of a robot fleet using local positions estimated 
from onboard optical sensors and Liu et al. [81] presented 
a temporal planning approach for choreographing dancing 
robots in response to microphone-sensed music.

Perception in Grasping and Manipulation

Manipulation and grasping in humanoid robots involve 
their ability to interact with objects of varying shapes, 
sizes, and weights, to perform dexterous manipulation 
tasks using their sensor equipped end-effectors which pro-
vide visual or tactile feedback for grip adjustment.

Grasp Planning  Grasp planning is a lower level task specifi-
cally focused on determining the optimal manipulator pose 
sequence to securely and effectively grasp an object. Visual 
information is used to find grasping locations and also as a 
feedback to optimize the difference between the target grasp 
pose and the current end-effector pose.

Schmidt et al. [82] utilized a CNN trained on object 
depth images and pre-generated analytic grasp plans to 
synthesize grasp solutions. The solution generated full 

Fig. 3   Footstep planning on 
the humanoid Lola from [69]. 
Top left: The robot’s vision 
system and a human causing 
disturbance. Bottom right: The 
collision model with geometric 
obstacle approximations
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end-effector poses and could generate poses not limited to 
the camera view direction. Vezzani et al. [83] modeled the 
shape and volume of the target object captured from stereo 
vision in real-time using super-quadric functions allowing 
grasping even when parts of the object were occluded. 
Vicente et al. [84] and Nguyen [85] focused on achieving 
accurate hand-eye coordination in humanoids equipped 
with stereo vision. While the former compensated for 
kinematic calibration errors between the robot’s internal 
hand model and captured images using particle based opti-
mization, the latter trained a deep neural network predic-
tor to estimate the robot arm’s joint configuration. [86] 
proposed a combination of CNNs and dense conditional 
random fields (CRFs) to infer action possibilities on an 
object (affordances) from RGB images.

Tactile sensors, such as pressure-sensitive skins or finger-
tip sensors, provide feedback about the contact (surface nor-
mal) forces, slip detection, object texture, and shape infor-
mation during object grasping. Kaboli et al. [87] extracted 
tactile descriptors for material and object classification 
agnostic to various sensor types such as dynamic pressure 
sensors, accelerometers, capacitive sensors, and impedance 
electrode arrays. A Nao with artificial skin used for their 
experiments is shown in Fig. 4. Hundhausen et al. [88] intro-
duced a soft humanoid hand equipped with in-finger inte-
grated cameras and an in-hand real-time image processing 
system based on CNNs for fast reactive grasping.

Manipulation Planning  Manipulation planning involves the 
higher-level decision-making process of determining how 
the robot should manipulate an object once it is grasped. It 
generates a sequence of motions or actions which is updated 
based on the continuously perceived robot and grasped 
object state.

Deep recurrent neural networks (RNNs) are capable of 
predicting the next element in a sequence based on the pre-
vious elements. This property is exploited in manipulation 
planning by breaking down a complex task into a series of 
manipulation commands generated by RNNs based on past 
commands. These networks are capable of mapping features 
extracted from a sequence of RGB images, usually by CNNs, 
to a sequence of motion commands [89, 90]. Inceoglu et al. 
[91] presented a multimodal failure monitoring and detection 
system for robots which integrated high-level propriocep-
tive, auditory, and visual information during manipulation 
tasks. Robot assisted dressing is a challenging manipula-
tion task that has been addressed by multiple authors. Zhang 
et al. [92] utilized a hierarchical multi-task control strategy 
to adapt the humanoid robot Baxter’s applied forces, meas-
ured using joint torques, to the user’s movements during 
dressing. By tracking the subject human’s pose in real-time 
using capacitive proximity sensing with low latency and 
high signal-to-noise ratio, Erickson et al. [93] developed a 

method to adapt to human motion and adjust for errors in 
pose estimation during dressing assistance by the PR2 robot. 
Zhang et al. [94] computed suitable grasping points on gar-
ments from depth images using a deep neural network to 
facilitate robot manipulation in robot-assisted dressing tasks.

Human‑Robot Interaction

Human robot interaction is a subset of environment under-
standing which deals with interactions with humans as 
opposed to inanimate objects. In order to achieve this, a 
robot needs diverse capabilities ranging from detecting 
humans, recognizing their pose, gesture, and emotions, 
to predicting their intent and even proactively performing 
actions to ensure a smooth and seamless interaction.

There are two main challenges to perception in HRI - per-
ception of users, and inference which involves making sense 
of the data and making predictions.

Perception of Users

This involves identifying humans in the environment, detect-
ing their pose, facial features, and objects they interact with. 
This information is crucial for action prediction and emotion 
recognition [95]. Robots rely on vision-based, audio-based, 
tactile-based, and range sensor-based sensing techniques for 
detection as explained in this survey on perception methods 
of social robots done by [96].

Robinson et al. [97] showed how vision-based techniques 
have evolved from using facial features, motion features, 
and body appearance to deep learning-based approaches. 

Fig. 4   Left: A Nao humanoid equipped with artificial skin cells on 
the chest, hand, fore arm, and upper arm. Right: Visualization of the 
skin cell coordinate frames on the Nao. Figure taken from [87]
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Motion-based features separate moving objects from the 
background to detect humans. Body appearance-based algo-
rithms use shape, curves, posture, and body parts to detect 
humans. Deep learning models like R-CNN, Faster R-CNN, 
and YOLO have also been applied for human detection [96].

Pose detection is essential for understanding human 
body movements and postures. Sensors such as RGB cam-
eras, stereo cameras, depth sensors, and motion tracking 
systems are used to extract pose information. This was 
explained in detail by Möller et al. [98] in their survey 
of human-aware robot navigation. Facial features play a 
significant role in pose detection as they provide addi-
tional points of interest and enable emotion recognition 
[99]. A great demonstration of detecting pose and using it 
for bi-manual robot control using an RGB-D range sensor 
was shown by Hwang et al. [100]. The system employed 
a CNN from the OpenPose package to extract human 
skeleton poses, which were then mapped to drive robotic 
hands. The method was implemented on the CENTAURO 
robot and successfully performed box and lever manipu-
lation tasks in real-time. They presented a real-time pose 
imitation method for a mid-size humanoid robot equipped 
with a servo-cradle-head RGB-D vision system. Using 
eight pre-trained neural networks, the system accurately 
captured and imitated 3D motions performed by a target 
human, enabling effective pose imitation and complex 
motion replication in the robot. Lv et al. [101] presented 
a novel motion synchronization method called GuLiM for 
teleoperation of medical assistive robots, particularly in 
the context of combating the COVID-19 pandemic. Li 
et al. [102] presented a multimodal mobile teleoperation 
system that integrated a vision-based hand pose regression 
network and an IMU-based arm tracking method. The sys-
tem allowed real-time control of a robot hand-arm system 
using depth camera observations and IMU readings from 
the observed human hand, enabled through the Transteleop 
neural network which generated robot hand poses based on 
a depth image input of a human hand.

Audio communication is vital for human interaction, and 
robots aim to mimic this ability. Microphones are used for 
audio detection, and speakers reproduce sound. Humanoid 
robots are usually designed to be binaural i.e., they have 
two separate microphones at either side of the head which 
receive transmitted sound independently. Several research-
ers have focused on this property to localize both the sound 
source and the robot in complex auditory environments. 
Such techniques are used in speaker localization, as well 
as other semantic understanding tasks such as automatic 
speech recognition (ASR), auditory scene analysis, emo-
tion recognition, and rhythm recognition [96, 103].

Benaroya et al. [104] employed non-negative tensor 
factorization for binaural localization of multiple sound 
sources within unknown environments. Schymura et al. 

[105] focused on combined audio-visual speaker locali-
zation and proposed a closed-form solution to compute 
dynamic stream weighting between audio and visual 
streams, improving the state estimation in a reverberant 
environment. The previous study was extended to incor-
porate dynamic stream weights into nonlinear dynamical 
systems which improved speaker localization performance 
even further [106]. Dávila-Chacón et al. [107] used a spik-
ing and a feed-forward neural network for sound source 
localization and ego noise removal respectively to enhance 
ASR in challenging environments. Trowitzsc et al. [108] 
presented a joint solution for sound event identification 
and localization, utilizing spatial audio stream segregation 
in a binaural robotic system.

Ahmad et al. [109] in their survey on physiological signal-
based emotion recognition showed that physiological signals 
from the human body, such as such as heart rate, blood pres-
sure, body temperature, brain activity, and muscle activation 
can provide insights into emotions. Tactile interaction is an 
inherent part of natural interaction between humans and the 
same holds true for robots interacting with humans as well. 
The type of touch can be used to infer a lot of things such as 
the human’s state of mind, the nature of the object, what is 
expected out of the interaction, etc. [96]. Mainly two kinds 
of tactile sensors are used for this purpose - sensors embed-
ded on the robot’s arms and grippers, and cover based sen-
sors which are used to detect touch across entire regions or 
the whole body [96]. Khurshid et al. [110] investigated the 
impact of grip-force, contact, and acceleration feedback on 
human performance in a teleoperated pick-and-place task. 
Results indicated that grip-force feedback improved stability 
and delicate control, while contact feedback improved spatial 
movement but may vary depending on object stiffness.

Inference

An important aspect of inference with all the detected data 
from the previous section is regarding aligning the perspective 
of the user and the robot. This allows the robot to better under-
stand the intent of the user regarding the objects or locations 
they are looking at. This skill is called perspective taking and 
requires the robot to consider and understand other individuals 
through motivation, disposition, and contextual attempts. This 
skill paired with a shared knowledge base allows the individu-
als and robots to build a reliable theory of mind and collaborate 
effectively during various types of tasks [3].

Bera et al. [111] proposed an emotion-aware naviga-
tion algorithm for social robots which combined emotions 
learned from facial expressions and walking trajectories 
using an onboard and an overhead camera respectively. The 
approach achieved accurate emotion detection and enabled 
socially conscious robot navigation in low-to-medium-den-
sity environments.
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Conclusion

Substantial progress have been made in all three principal 
areas discussed in this survey. In Table 2 we compile a list of 
the most commonly cited humanoids in the literature corre-
sponding to the aforementioned categorization. We conclude 
with a summary of the trends and possible areas of further 
research we observed in each of these areas.

State Estimation  Tightly-coupled formulation of state esti-
mation based on MAP seems to be promising for future 
works as it offers several advantages, such as modularity 
and enabling seamless integration of new sensor types, and 
extending generic estimators with accommodating a wider 
range of perception sources in order to develop a whole-body 
estimation framework. By integrating high-rate control esti-
mation and non-drifting localization based on SLAM, this 
framework could provide real-time estimation for locomotion 
control purposes, and facilitate gait and contact planning.

Another important area of focus is the development of 
multi-contact detection and estimation methods for arbitrary 
unknown contact locations. By moving beyond rigid segment 
assumptions for humanoid structure and augmenting robots 
with additional sensors, such as strain gauges to directly 
measure segment deflections; the multi-contact detection and 
compensating for modeling errors can lead to more accurate 
state estimation and improved human-robot interactions.

Environment Understanding  With the availability of 
improved inference hardware, learning techniques are 
increasingly being applied in localization, object identifica-
tion, and mapping, replacing handcrafted feature descriptors. 
However, visual classifiers like CNNs struggle with unstruc-
tured “stuff” compared to regularly shaped objects, necessi-
tating memory-intensive representations such as point clouds 
and the need for enhanced classifier capabilities. In the field 
of SLAM, which has robust solutions for static environments, 
research is focused on handling dynamic obstacles by favor-
ing multi-sensor fusion for increased robustness. Scalability 
and real-time capability remain challenging due to the poten-
tial overload of a humanoid’s onboard computer from wran-
gling multiple data streams over long sequences. Footstep 
planning shows a trend towards rapid environment modeling 
for quick responses, but consistent modeling of dynamic 
obstacles remains an open challenge. Manipulation and 
long-term global planning also rely on learning techniques 
to adapt to unforeseen constraints, requiring representations 
or embeddings of high-dimensional interactions between 
perceived elements for complexity reduction. However, find-
ing more efficient, comprehensive, and accurate methods to 
express these relationships is an ongoing challenge.

Human Robot Interaction  Research in the field of HRI has 
focused on understanding human intent and emotion through 
various elements such as body pose, motions, expressions, 
audio cues, and behavior. Though this may seem natural and 
trivial from a human’s perspective, it is often a very chal-
lenging task to incorporate the same into robotic systems. 
Despite considerable progress in the above approaches, the 
ever-changing and unpredictable nature of human interac-
tion necessitates additional steps that incorporate concepts 
like shared autonomy and shared perception. In this context, 
contextual information and memory play a crucial role in 
accurately perceiving the state and intentions of the humans 
with whom interaction is desired. Current research endeav-
ors are actively focusing on these pivotal topics, striving to 
enhance the capabilities of humanoid robots in human-robot 
interactions while also considering trust, safety, explainabil-
ity, and ethics during these interactions.
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