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Abstract
Purpose of Review  The purpose of this review is to survey recent work in the area of perception for underwater robots. We 
consider problems such as object-level identification and classification, Simultaneous Localization and Mapping (SLAM), 
and 3D reconstruction. Our goal is to understand the current state of the art, how old shortcomings have been addressed, 
and the new issues introduced by recent work.
Recent Findings  We consider findings in several key areas. In vision, lower-cost consumer-grade cameras have been employed 
to perform mapping of large-scale areas. In sonar imaging, we find major steps forward in terms of reconstruction quality, 
with datasets for semantic labeling still incomplete. In bathymetry, we find many mature and robust systems. Lastly, in side-
scan sonar we find a budding research area, with much promise ahead and some impressive initial work.
Summary  We break our survey down by sensor modality and consider three key areas; object-level identification and clas-
sification, SLAM, and 3D reconstruction.

Keywords  Marine robotics · Sonar · Computer vision · Localization and mapping · Machine learning

Introduction

Perception is a fundamental task for robots. We consider 
perception as the problem of processing observations of the 
surrounding environment to achieve situational awareness. 
Perceptual tasks can range from high-level mapping, down 
to object-level understanding and robot state estimation. 
In our view, perception is the first in several critical steps 
toward autonomy. Downstream processes such as planning 
and control require reliable, robust, and consistent percep-
tual systems to function.

In contrast to other environments, underwater perception 
is inhibited by the environment itself: plagued by low light, 
varying water conditions, the attenuation of light and other 

signals in water, and environmental disturbances far beyond 
the control of human monitors. These factors limit the tools 
for underwater perception. Low-cost structured light sen-
sors and infrared LiDAR cannot be used over long distances 
underwater because water absorbs most or all of the infrared 
laser energy directed through it, resulting in a very weak or 
absent return. Radio signals are similarly attenuated, mak-
ing inter-platform communication a challenge. The Global 
Positioning System (GPS) provides key pose information for 
above-surface localization and navigation tasks. However, 
the electromagnetic signals from orbiting satellites are heav-
ily attenuated by the water, thus, GPS is not adequate for 
underwater applications. This leads to a more challenging 
localization procedure, with subsea systems relying on iner-
tial and acoustic sensors for dead reckoning, with numerical 
integration errors that worsen over time. A common strat-
egy to rectify drift is self-correction by using environmental 
features; this can be achieved by employing Simultaneous 
Localization and Mapping (SLAM).

Optical underwater navigation is challenging due to 
its susceptibility to poor visibility caused by suspended 
particles, inadequate lighting, and unwanted distortions. 
Additionally, visual odometry feature extraction relies on 
texture-rich images, which can be sparse in underwater set-
tings. Nevertheless, in contrast to acoustic sensing, visual 
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navigation can be well suited for precise mapping of feature-
rich scenarios such as ship hull and shipwreck inspections. 
Furthermore, cameras provide colorful and detailed infor-
mation helpful in object detection and classification tasks. 
Moreover, the use of cameras in this domain has spawned 
a research area addressing the issues caused by the water 
medium.

The use of sonar sensors is motivated by the challenges 
for cameras imposed by the underwater environment. Sonar 
is immune to lighting conditions, has a long range due to the 
properties of sound in water, and is robust to water turbidity. 
Nonetheless, sonar is not a plug-and-play solution and has 
specific drawbacks. Several varieties of sonar are available, 
and here we will consider imaging, side-scan, and profiling. 
Profiling sonar uses an array of narrow “pencil” beams to 
recover accurate distance measurements at known bearing 
angles. However, to build an understanding of the environ-
ment, a dead reckoning system is required to stitch line scans 
together. Imaging sonar, on the other hand, is lower in cost 
and returns a panoramic view of the environment across a 
wide horizontal aperture. Imaging sonar, however, does not 
measure the location of observations in the vertical aperture, 
resulting in high ambiguity about the location of observed 
points in 3D space. Lastly, side-scan sonar has two trans-
ducer arrays that send and receive acoustic pulses; it is an 
excellent tool when performing seafloor searches, especially 
when covering large areas at low image resolution.

Underwater-specific obstacles have resulted in an impres-
sive body of work containing all sensors employed in this 
domain. In this survey paper, we consider recent develop-
ments in perception for underwater robots, categorized by 
sensor and their respective subfields.

Imaging Sonar

In this section, we will discuss imaging sonar and its recent 
perceptual algorithms. It is known by several names that are 
often used interchangeably: imaging sonar, wide aperture 
multi-beam sonar, and forward-looking sonar. However, 
when we discuss imaging sonar, we mean a multi-beam 
sonar with a non-trivial vertical aperture. This sensor pro-
vides an expansive field of view and is effective for imaging 
large volumes of water, making it an excellent tool for situ-
ational awareness, allowing a robot to perceive much of the 
environment around it. Further, sonar is robust to lighting 
conditions and water quality, making it the sensor of choice 
when operating in turbid environments. However, imaging 
sonar does not report information in 3D. While the sensor 
can measure range and bearing, the elevation angle of an 
observed point is lost in the image formation process. More-
over, these sensors have a low signal-to-noise ratio as well as 
multi-path and other characteristics that make it challenging 
for automated perceptual algorithms. Examples of an imag-
ing sonar’s field of view and imagery are given in Fig. 1.

Object Identification

Identifying, classifying, and understanding objects in the 
environment is a fundamental task for underwater robots. 
Firstly when considering object identification, or automated 
target recognition, many classification methods have been 
applied. However recently, in settings such as vision and 
LiDAR, deep learning methods have far eclipsed classical 
approaches [2]. Critically though, when considering imaging 
sonar there are few datasets and even fewer with labels to 
support object classification or similar.

Fig. 1   (a) shows an example of a Bluefin HAUV conducting a ship 
hull inspection mission; note the large volume of the imaging sonar 
footprint shown in blue (From: Hover F.S., et  al. The International 
Journal of Robotics Research (Volume 31 Issue 12). Pages 1445-

1464. ©2012 by SAGE Publications, Reprinted by Permission of 
SAGE Publications) [1]. (b) shows an example sonar image with a 
floating dock in view, and a range of 30m
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The focus of recent work has been learning labels while 
only utilizing a few labeled samples. However, unlike in 
other settings, this is motivated by necessity and not the 
desire to reduce data procurement overhead when training. 
Transfer learning from other image domains to initialize 
the weights of a Convolutional Neural Network (CNN) is 
sometimes used, reducing the number of training samples 
required in the sonar data [3, 4]. A Generative Adversarial 
Network (GAN), in this case, CycleGAN, is used by Liu 
et al. [5] to generate synthetic training data. Chen et al. [6] 
use the method of few-shot learning, which requires only a 
few training examples of each class. Rather than requiring 
explicit labels, this work trains using image similarity. Inter-
estingly, Wang et al. [7] avoids the need for unknown object 
classification by introducing an engineered target. This tar-
get can be classified using more standard methods, similar 
to AprilTags [8]. Although promising, relying on engineered 
targets [7] requires human effort for building and placing 
markers on existing structures.

3D Reconstruction

Recall that imaging sonar does not contain 3D information, 
even though the sensor observes a 3D volume of water. This 
creates some open questions, about how to recover the 3D 
data and build a 3D understanding of the environment. This 
is critical, especially when considering robots using this 
sensing modality that may need to operate outside of a fixed 
plane.

Firstly we consider approaches that utilize multiple views 
to resolve the ambiguity in the vertical aperture of an imag-
ing sonar. Akin and Negahdaripour [9] use a space carving 
approach, with Westman et al. [10] enhancing space carving. 
Wang et al. [11] extend Acoustic Structure-From-Motion 
(ASFM) [12] in tracking salient point features through 
space to minimize their ambiguity. DeBortoli et al. [13] use 
a CNN to detect salient imagery, removing the imagery that 
is unproductive when completing 3D reconstruction with 
ASFM as the backend. Westman et al. [14] introduce a vol-
umetric framework to perform 3D reconstruction, testing 
sonars with a narrow and wide aperture.

While using multiple views to resolve sonar ambiguity is 
principled and draws on many methods from outside under-
water robotics, it may be desirable to recover 3D information 
without multiple frames. Guerneve et al. [15] use a blind 
deconvolution and Westman and Kaess [16•] use an acous-
tic generative model to recover the missing data in a sonar 
image. Both of these methods are effective and draw on clas-
sical methods to recover the elevation angles of the observed 
points. DeBortoli et al. [17] employ a CNN and synthetic 
training data to predict the missing data in a sonar image, 
with Wang et al. [18] learning from each beam rather than 
image-to-image, making a comparison to [17]. All of these 

methods recover the missing elevation angle to accompany 
the 2D range-bearing observations of a single sonar image, 
at a single viewpoint.

A new set of methods, introducing a second sonar in a 
stereo array have also been proposed [19–21]. These meth-
ods recover point clouds from a pair of concurrent sonar 
images at the same robot viewpoint using sonars with dif-
ferent perspectives, with McConnell et al. [19] focusing on 
an orthogonal array of sonars. McConnell and Englot [22] 
extend their prior work [19] by using object-level inference 
about simple objects, greatly increasing the coverage rate 
for a given trajectory.

SLAM

When considering perception, SLAM is considered a critical 
task, and in the context of imaging sonar a non-trivial one. 
In this section, we will consider three subtopics of SLAM; 
sonar odometry, loop closure, and SLAM systems.

Generally speaking, SLAM solutions depend on two cat-
egories of measurement constraints; sequential constraints, 
typically derived from odometry or scan-matching, and 
non-sequential constraints, often referred to as loop clo-
sures. Loop closures are typically achieved in two steps, 
identifying loop closures and computing the relevant trans-
formation between frames to be inserted into the SLAM 
backend. Franchi et al. [23] consider the problem of deriv-
ing linear speed measurements from sonar imagery, akin 
to sonar odometry. Henson and Zakharov [24] build sonar 
mosaics using optical flow as a basis for transform estima-
tion. Almanza-Medina et al. [25] use a neural network to 
learn 3-DOF transformations between sonar images and 
Song et al. [26] consider sonar image registration; both of 
these works could be utilized for either odometry or loop 
closure. Santos et al. [27] consider the use of a graph struc-
ture to describe a scene for both loop closure identification 
and registration. Ribeiro et al. [28] use a CNN with triplet 
loss to train a network for sonar image-based place recogni-
tion, framed as an image retrieval problem.

While using objects as landmarks for SLAM is relevant, 
most of the recent approaches have focused on pose SLAM 
or landmark-based SLAM using point features as landmarks. 
Firstly, Westman et  al. [29] use point features in sonar 
imagery as a basis for SLAM, taking special care to handle 
their vertical ambiguity. Ribeiro et al. [30] use a local ASFM 
as well as loop closure to build a 6-DOF state estimate. 
Wang et al. [31] estimate the robot state in 3-DOF while 
enforcing in-plane motion; this work uses Iterative Closest 
Point (ICP) based scan-matching to derive both sequential 
and non-sequential measurement constraints. Teixeira et al. 
[32] use a factor graph with odometry as well and a surfel-
based map. Hinduja et al. [33] propose a degeneracy-aware 
SLAM system to manage possible degenerate factors. Xu 
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et al. [34] use a sliding window to stay robust to front-end 
outliers. Recently a new area has been considered for under-
water robots in littoral settings; using satellite images as an 
aid in the SLAM problem. Dos Santos et al. [35] use a neu-
ral network to compute the similarity between a possible 
location in the satellite image and a given sonar scan from 
the robot’s current state. This similarity is used as the basis 
for particle filter localization in the survey area. McConnell 
et al. [36] utilize a similar concept, except instead of using 
a neural network to find the similarity it generates an image 
predicting the above-surface appearance of the observed 
underwater structures, to enable the registration of sonar 
images to the provided satellite image. McConnell et al. [36] 
then use this registration as another factor in a SLAM solu-
tion that includes odometry and standard loop closures.

Underwater Vision

In this section, we will consider camera-based systems in 
the underwater domain. Cameras provide dense, expansive 
information about the environment. Unlike sonars, they 
provide rich color and texture information and are easy to 
interpret by untrained human operators. Cameras can sup-
port a wide range of tasks from the object level to SLAM. 
Moreover, the broader vision field is large and quickly grow-
ing, providing a significant body of research to draw upon.

Cameras, like all sensors, have their drawbacks. These 
sensors are passive, and therefore require sufficient ambi-
ent lighting or lighting onboard the vehicle to make them 
useful. Further, camera data may be corrupted by water 
quality. If water turbidity is high and visibility low, cameras 
may simply not offer a useful path forward for underwater 
perception. Lastly, the properties of water create a loss of 
red channel as well as hazing in images, creating a loss of 
texture required for many automated perception methods. 
Examples of underwater imagery in different conditions are 
given in Fig. 2.

Underwater Image Enhancement

The properties of water create a loss of red and texture in 
images that can be problematic for image processing sys-
tems. This has spurred an impressive body of research on 
color correction and image dehazing solutions. There have 
been many approaches to this problem but in general, they 
either use a physics-based model or employ machine learn-
ing to recover the lost information. Non-learning approaches 
are also used to recover some of the missing information 
[38–44]. These approaches are effective as they require lit-
tle prior information about the environment to recover lost 
data. Machine learning in this case is challenging as labeled 
data is usually required, including examples of scenes with 
and without the effects of water immersion. For tank scenes 
this is feasible, but for scenes in the field, it may not be. 

Fig. 2   (a)–(f) show examples of camera images from a variety of environments, lighting conditions, and water qualities. (©[2019] IEEE. 
Reprinted, with permission, from [37].)
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When learning image correction in underwater vision, a 
recent focus has been the use of GANs, to create synthetic 
data for supervised learning [45–50]. The use of a GAN is 
of great importance as it may not be possible to generate 
enough training data for image enhancement, even when 
using data-efficient methods. GANs, however, may create a 
performance gap due to training on synthetic data and testing 
on real-world underwater scenes.

Object Identification

Object identification and classification are widely explored 
tasks in vision systems. Accurate and detailed analysis of 
subsea images is relevant for evaluating and monitoring eco-
system states [51], assessing environmental impact, robot 
orientation prediction [52], tracking life forms [53], and car-
rying out many other tasks. However when underwater, there 
are unique problems: mainly lower image quality and the 
lack of training data. Obtaining large datasets can be expen-
sive and impractical in underwater environments because 
of high operational costs, time constraints, and scarcity of 
specific objects. Nonetheless, there are several examples of 
supervised learning for classification using deep learning for 
seafloor image classification [54], wildlife monitoring [55], 
and coral detection [51]. To deal with the lack of sufficient 
training data, a common technique in deep learning is to 
use transfer learning, pre-training on a large dataset then 
fine-tuning on the domain-specific data [56–58]. Another 
option to obtain sufficient data is to train using synthetic 
samples, shown by O’Byrne et al. [59]. To entirely avoid 
the need for a large dataset, algorithms capable of learn-
ing from only a handful of samples can be leveraged, Ochal 
et al. [60] analyze several “few-shot” learning techniques 
over underwater imagery. Furthermore, Yamada et al. [61] 
use environmental metadata, such as horizontal location and 
depth of the observed seafloor, to regularize learning and 
enhance the accuracy of the self-supervised classification 
process. Detection has also been used to enable “follow me 
autonomy”, where a vehicle follows along with a human 
diver [62, 63] or for multi-robot operations [64].

Extracting meaningful information over a broad range 
of environments and image quality conditions is challeng-
ing. As previously mentioned, producing large underwater 
datasets is costly and the intensive effort of manual labeling 
often makes supervised learning techniques impractical. 
Topic models are a family of Bayesian probabilistic mod-
els, suitable for unsupervised semantic clustering. Gird-
har et al. [65] proposed a Realtime Online Spatiotempo-
ral Topic (ROST) modeling framework, which attempts to 
model the semantics of the streaming observed visual data. 
Using ROST, a “surprise” score of incoming observations 
is computed. This score is used to determine the presence 
of high-level patterns in the scene, and differentiate between 

previously observed or new data. Moreover, the topic labels 
computed using ROST are suitable for use by autonomous 
agents working with real-time constraints. Based on ROST, 
Kalmbach et al. [66] developed a full and robust feature 
extraction pipeline that can accommodate video recorded 
under less than ideal quality conditions.

SLAM

Vision-based SLAM is a mature field with a large body of 
work to draw from. There are even some prominent open-
source systems such as ORB-SLAM [67, 68] upon which 
underwater SLAM systems can be based. Underwater 
SLAM, however, is challenged by domain-specific environ-
mental conditions: poor lighting conditions, water turbidity, 
and the reduction in image quality due to the properties of 
water.

The performance of open-source frameworks in underwa-
ter conditions have previously been evaluated [37, 69–71]. 
Zhang et al. [72] and Ferrera et al. [73] propose robust vis-
ual odometry systems for use in underwater environments. 
While the underwater domain imposes new challenges on 
cameras, it does offer some additional tools. These range 
from acoustic devices such as sonars and Doppler Velocity 
Logs (DVLs) to simple pressure sensors. Xu et al. [74] and 
Vargas et al. [75] enhance visual SLAM with DVL and iner-
tial/DVL fusion, respectively. Sonar has been employed to 
augment a visual SLAM system with acoustic range meas-
urements [76, 77]. Rahman [78] show stereo visual SLAM 
assisted by a pressure sensor and inertial measurement unit 
(IMU) and Hu et al. [79] use a pressure sensor for scale ini-
tialization with a monocular camera. Rahman et al. [80, 81] 
consider the artifacts of artificial light in an underwater cave, 
such as harsh shadows and contours. Most recently, however, 
a GoPro-9 camera with integrated IMU has been used for 
SLAM, potentially enabling complex missions while mini-
mizing hardware overhead [82•]. While Bosch et al. [83] 
does not consider the SLAM problem, it does open the door 
for the use of omni-directional cameras in an underwater 
setting. Xanthidis et al. [84] show an example of multi-robot 
visual SLAM around shipwrecks. Suresh et al. [85] avoid 
some of the issues in underwater vision, by looking at the 
ceiling outside of the water, and performing state estimation 
using those features. However, this approach is limited to 
indoor applications.

Bathymetry and Profiling

Of all the underwater perception systems, profiling and 
bathymetric mapping are perhaps the most relevant in com-
mercial and industrial settings. They are used in support of 
many offshore construction projects including oil and gas, 
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offshore wind, telecommunications cabling, and many more. 
Bathymetry is typically the process of using a narrow beam 
scanner to recover precise distance information between a 
robot and the seafloor/riverbed, while profiling can refer to 
scanning in any direction, including in a forward-looking 
orientation. Most commonly, these single scans are regis-
tered into submaps using a highly accurate inertial navi-
gation system, often including a DVL. Once submaps are 
formed, tools such as point cloud registration can be applied 
to enhance inter-submap alignment and search for loop clo-
sures. In this section, we will consider recent developments 
in this area, including bathymetry and profiling performed 
with both narrow beam sonars and laser scanners. An exam-
ple of submap formation during a bathymetry survey is 
shown in Fig. 3.

In bathymetric mapping and profiling, objects of inter-
est in the survey area can greatly enhance SLAM per-
formance. Guernev et al. [87] perform semantic mapping 
using prior CAD models of expected objects in the survey 
area. When these priors are available, they can be of great 
value, however, they may not always be an option, making 
the case for techniques such as submap registration. Tor-
roba et al. [88] perform a comparison of modern method-
ologies for submap registration. Hitchcox and Forbes [89] 
use Gaussian process regression for point cloud registra-
tion, enabling bathymetric SLAM using a laser scanner. 
Jung et al. [90] enhance ICP performance by regularizing 
terrain height. ICP however can be degenerate, and it is 
critical to indicate to SLAM backends which measure-
ments can be relied upon, often with a covariance matrix. 
Sprague et al. [91] learn ICP covariance rather than deriv-
ing it with variable initial guesses.

Improving submap registration may not be enough, and 
further work may be required. Campos and Garcia [92] filter 
point clouds acquired from noisy sensors by creating a sur-
face mesh. Bore et al. [93] apply sparse Gaussian processes 
to reduce the storage overhead of bathymetric maps.

While many backends have been applied to bathymetric 
SLAM, Zhang et al. [94] use a particle filter backend for 
SLAM, with Teng et al. [95] employing one specifically 
for detecting invalid loop closures. Torroba et al. [86] fuse 
dead reckoning information and maximize geometric con-
sistency to produce accurate maps.

Lastly, profiling sensors can be applied for more than 
simply downward-looking bathymetric sweeps. Teixeira 
et al. [96] use profiling sonar submaps to perform 3D map-
ping of ship hulls. Palomer et al. [97] propose a calibration 
routine for a camera and laser scanner. Palomer et al. [98] 
use a laser scanner to perform SLAM about an object of 
interest. Norgren and Skjetne [99] propose SLAM around 
an iceberg, estimating robot state as well as iceberg drift 
rate, critical in ice monitoring.

Side‑Scan Sonar

In this section, we discuss the use of side-scan sonar 
(SSS). SSS provides an expansive 2D field of view, 
useful for large-scale searches of the seafloor, often-
times with human operators monitoring incoming 
images. The field of view of a side-scan sonar is illus-
trated in Fig. 4.

Recently, deep learning methods have been applied to 
address the Automated Target Recognition (ATR) prob-
lem. However, much like other areas discussed in this 
paper, the lack of training data is a problem. Thus, the 
use of GANs is proposed [100, 101]. Furthermore, Yu 
et al. [102] employed the YOLO architecture applied to 
SSS images.

Place recognition has also been studied using SSS 
images. Larsson et al. [103] train a network to perform place 
recognition using triplet loss. Lastly, Xie et al. [104•] use a 
CNN to infer the missing dimension in SSS images.

Fig. 3   An example of profiling line scans being stitched into sub-
maps shown in green and purple. Note the submap poses shown as x

i
 . 

(©[2019] IEEE. Reprinted, with permission, from [86])

Fig. 4   An example of side-scan sonar imaging a survey area. Note 
the image mosaic in gray-scale, with terrain elevation shown in color. 
(©[2021] IEEE. Reprinted, with permission, from [101])
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Conclusions

Underwater perception has seen much work over the past 
five years. However, some areas stand out as requiring more 
work and new solutions. Firstly, when considering identify-
ing and classifying objects in sensor data, there are few if 
any off-the-shelf solutions due to the lack of training data 
in this setting, especially for imaging sonar. While GANs 
and simulators have provided an outlet, evaluation is still 
challenging due to the lack of public benchmark data sets 
in a common setting (pool, reef, wreck, etc.). Critically, the 
lack of a common and robust object dataset has hampered 
efforts to incorporate semantic information into downstream 
processes.

When considering SLAM, while there are many inno-
vative underwater SLAM solutions, many of them test on 
their own specially gathered data, and subsequently do not 
share this data in the public domain. Compared to other 
fields, such as ground robotics, where the KITTI dataset has 
proliferated, our community does not have an easy-to-use 
benchmark dataset. When considering the future in our com-
munity, especially in the sonar setting, more open-source 
code and public data are required to enable comparison, 
benchmarking, and replication of results.

While underwater state estimation has continued evolv-
ing over the past several years, many of these methods use 
sensor packages that often drastically increase the cost. A 
research avenue that is of large potential impact is low-
cost perceptual and inertial sensor payloads running robust 
SLAM systems in 6-DOF. Such systems present the poten-
tial for larger-scale multi-robot deployments and an alterna-
tive to expensive inertial navigation systems that may be 
prone to failure in adverse conditions.
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