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Abstract
Purpose of Review  This review provides an overview of the current state of the art in Underwater Human-Robot Interac-
tion (U-HRI), which is an area that is quite different from standard Human-Robot Interaction (HRI). This is due to several 
reasons. First of all, there are the particular properties of water as a medium, e.g., the strong attenuation of radio-frequency 
(RF) signals or the physics of underwater image formation. Second, divers are bound to special equipment, e.g., the breathing 
apparatus, which makes, for example, speech recognition challenging, if not impossible. Third, typical collaborative marine 
missions primarily requires a high amount of communication from the diver to the robot, which accordingly receives a lot 
of attention in U-HRI research.
Recent Findings  The use of gestures for diver-to-robot communication has turned out to be a quite promising approach for 
U-HRI as gestures are already a standard form of communication among divers. For the gesture front-ends, i.e., the part 
dealing with the machine perception of individual signs, Deep Learning (DL) has become to be a very prominent tool.
Summary  Human divers and marine robots have many complementary skills. There is hence a large potential for U-HRI. 
But while there is some clear progress in the field, the full potential of U-HRI is far from being exploited, yet.

Keywords  Human-Robot Interaction (HRI) · Human-Machine Interaction (HMI) · Marine robotics · Underwater sensors · 
Underwater vision · Sonar · Diver · Remotely Operated Vehicle (ROV) · Autonomous Underwater Vehicle (AUV) · Deep 
Learning (DL)

Introduction

Human-robot interaction (HRI) is a well-established 
research field covered by books, e.g., [1, 2], conferences, 
e.g., the Annual ACM/IEEE International Conference on 
Human-Robot Interaction [3], and survey articles, e.g., [4, 
5]. But the situation is quite different for HRI in the context 
of underwater robotics.

On the one hand, collaboration of humans and robots is 
very desirable in this domain. There are many tasks that 
— despite significant advances in marine robotics — still 
can only be done by divers. But Remotely Operated Vehi-
cles (ROV) and Autonomous Underwater Vehicles (AUV) 

can substantially assist and mitigate risks for divers [6, 7] 
though they also may induce risks themselves [8, 9]. Espe-
cially in marine scenarios that involve complex manipulation 
or require very good situational awareness, the collabora-
tion of humans and robots has a very high potential as they 
can complement each other. Examples include marine sci-
ence, archeology, oil and gas production (OGP), handling of 
unexploded ordnance (UXO), e.g., from WWII ammunition 
dumped in the seas, or inspection and maintenance of marine 
infrastructure like pipelines, harbors, or renewable energy 
installations.

On the other hand, the implementation of Underwater 
Human-Robot Interaction (U-HRI) is more challenging 
than on land due to the differences in machine perception 
that render a straightforward application of well-established 
methods and technologies difficult, if not impossible (Fig. 1). 
In general, the human factors in the operation of underwater 
robots are quite different from the handling of their ground 
or aerial counterparts [10–12], e.g., with respect to situation 
awareness, trust, or human-to-machine communication. In 
[12], a human factors model for U-HRI is presented that can 
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be a very useful template for taking these aspects in a design 
into account. The model is based on the core components 
human, robot, task and environment, for which selected 
aspects of human factors engineering are discussed.

Regarding the aspects of machine perception, image for-
mation is, for example, in water significantly different to in 
air [17, 18]. There are several strong effects that challenge 
standard computer vision methods in underwater scenarios, 
e.g., (a) refraction effects, which can be quite complex in the 
water column itself due to temperature or salinity gradients 
as well as at the housing to water interface which renders 
standard camera models obsolete for flat-panel interfaces 
[19], (b) the wave-length dependent attenuation of colors 
[18], and (c) the almost omni-presence of turbidity due to 
scattering [20–22]. Nevertheless, optical cameras and the 
related imaging systems play a very important role for 
marine systems [23–27].

Sonar is also an important sensor for underwater per-
ception as it works unlike optical cameras in low visibility 
conditions and over extended ranges. But it has severe limi-
tations in its spatial-temporal resolution and there is a high 
presence of noise including structural noise effects. There 
are several main reasons for this. First, propagation of sound 

in water is slow and it is influenced by many factors in the 
water column [28]. Second, sonar samples the environ-
ment only with very coarse approximations of rays through 
beamforming, which leads to side-lobes [29–35], i.e., an 
inhomogeneous illumination of the scene. Third, interfer-
ing echoes due to multi-paths generate structural noise, typi-
cally in form of clutter [36–38]. Last but not least, active 
sensing with sound has the potential to affect marine life or 
even divers. But the design parameters of devices used in 
the context of U-HRI, especially with respect to their power 
levels, are considered to be in a very safe and harmless range 
[39–41]. Nonetheless, passive sensing using, e.g., vision, is 
of course definitely on the safe side from a human factor as 
well as environmental protection perspective.

As discussed in the following sections, U-HRI uses a 
combination of technologies and methods that are relatively 
strongly adapted to the specific constraints of the marine 
environment, respectively the specific requirements of typi-
cal underwater missions. In “Diver Detection and Tracking”,  
a short overview of work on the detection and tracking of 
divers as a basic element in U-HRI is presented. Communi-
cation plays an essential role to enable U-HRI. Methods and 
technologies for communication from the robot to a diver are 
discussed in “Communication from the Robot to the Diver”. 
The more challenging other way round, i.e., research on the 
communication of a diver to a robot, is treated in “Com-
munication from the Diver to the Robot”. Some attention is 
given to work on using gestures, which includes gesture rec-
ognition through machine perception (“Front-ends to Detect 
and Recognize Diver Gestures”) as well as their interpreta-
tion in form of suited languages (“Back-ends for Interpreting 
Underwater Languages”). As Deep Learning (DL) [42, 43] 
has received quite some attention in recent years for diver 
detection/tracking as well as underwater gesture recogni-
tion in particular, related underwater datasets that are openly 
available are shortly presented in “Datasets for Training and 
for Evaluation”. “Conclusion” concludes the article.

Diver Detection and Tracking

The first step towards U-HRI is the detection and tracking 
of one or multiple divers (Fig. 2). For this purpose, the full 
range of sensors for underwater object recognition and track-
ing is used, i.e., especially optical and acoustic devices.

Vision is typically used for the near field and it includes 
both monocular cameras as well as stereo systems to employ 
range information. Acoustic methods are typically used to 
cover the medium to far range. An overview of the different 
sensor technologies is provided in Table 1.

Also, the whole range of methodologies in machine per-
ception can be found as shown in Table 2. Please note that 
the USBL/pinger based approaches are not included in this 

Fig. 1   The CADDY system for assistance in diver missions as an 
example for U-HRI [7, 13–15]. The Buddy-AUV [16] is equipped 
with a Blueprint Subsea X150 USBL for localization, an Underwater 
Tablet, a BumbleBeeXB3 Stereo Camera, and an ARIS 3000 Imag-
ing Sonar for diver tracking, monitoring and communication (right). 
Commands or even full missions can be signaled by a diver with ges-
tures (top). An Autonomous Surface Vehicle (ASV) named PladyPos 
provides among others global positioning (bottom)
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table. They provide an inherent (detection and) tracking of 
the divers as they are engineered as localization devices. One 
can observe that there is a clear shift over time from classical 
methods of Computer Vision (CV) over classical Machine 
Learning (ML) towards Deep Learning (DL), which has 
become the dominant paradigm in recent years.

Some work in this context is also more or less agnostic 
to the actual machine perception for the detection, e.g., [70] 
considers safe motions of an AUV among divers. Aspects 
of AUV-control to safely work with divers and to aid them 
are also studied in [60]. Furthermore, different protocols for 
interaction and control can also be studied and trained either 
fully [61, 71] or partially in simulation [72]. Aspects of the 
motion control also include the anticipation of the future 
motion trajectory of divers [57] or the combination of diver 
following with terrain-relative navigation [61].

A general overview of person-following in the context 
of Human-Robot-Interaction is also provided in [73], which 
covers work using underwater as well as aerial and ground 
vehicles.

Communication from the Robot to the Diver

While the communication from the diver to the robot has 
received quite some attention as discussed later on in more 
detail in “Communication from the Diver to the Robot”, the 
other way round, i.e., the communication from the robot to 
the diver, is a bit less prominent research topic. There are 
multiple reasons for this.

First and foremost, the diver is often mainly interested in 
commanding the robot to do certain tasks in typical under-
water missions. The robot-to-diver communication is hence 
primarily seen as a confirmation channel that a command 
was received, respectively that the task execution has started.

Second, it is often even immediately visible to the diver 
if the robot starts the intended task execution or not with-
out explicit communication feedback. Hence, the amount 
and expressiveness of the robot-to-diver communication are 
often considered to be not so essential or even completely 
negligible.

Third, there are relatively simple technical means of pro-
viding feedback from the robot, e.g., just blinking lights, as 
discussed below (“Signaling with Lights”). Nevertheless, 
also some more sophisticated ideas on robot-to-diver com-
munication also exist, e.g., the use of displays, respectively 
tablets (“Displays and Tablets) or of robot motion in form 
of kinemes (“Robot Motion and Kinemes”).

Signaling with Lights

A very simple form of robot-to-diver feedback can be pro-
vided by using lights. Lights are a typical default hardware 
on ROV and AUV anyway as they are helpful for underwater 
vision. Also, they are by default controllable by the vehicle’s 
software. The disadvantages of using lights are that the illu-
mination of the scene changes when they are switched on 

Table 1   For diver detection and tracking, different sensor modalities 
can be used

Multimodal approaches [58] [69•], [60] appear in several columns 
according to the different sensor modalities that they use

vision acoustic

monocular stereo USBL/pinger sonar

[44–57] [58–61] [58, 60, 62–65] [58, 60, 66–68]

Fig. 2   The detection and tracking of divers is an important first step 
as basis for U-HRI. The example shown here is based on monocular 
vision and a classic machine learning approach [48]

Table 2   The full range of different perception methods is used for 
detection and tracking of divers. There is a clear shift towards Deep 
Learning in recent years as can be seen from the range of the years of 
appearance of the different publications provided below

USBL/pinger based approaches are not included in this table

Classic Computer 
Vision (CV)

Classic Machine 
Learning (ML)

Deep Learning (DL)

[44–46] [47–49, 50, 66] [51–59, 61, 67, 68, 69•]
2007–2011 2013–2019 2017–2021
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and off for communication, i.e., computer vision on the robot 
is difficult during these periods. Furthermore, there is a very 
low expressive power in using blinking lights — unless the 
diver is trained in understanding, e.g., Morse code.

The typical use of lights in U-HRI is hence limited to the 
confirmation that a command was received. A publication 
that explicitly mentions the use of lights for robot-to-diver 
communication is [75]. But this idea is so straightforward 
and basic that it seems to be not explicitly mentioned in 
the literature; though pictures and videos suggest that it is 
widely used as feedback loop in research on diver-to-robot 
communication. This includes, for example, also early own 
work on U-HRI [46, 74] (Fig. 3, top).

Displays and Tablets

A more sophisticated form of robot-to-diver communication 
can be based on the use of displays, respectively tablets 

(Fig. 3, bottom). Early work in that direction is presented 
in [76]. There, a tethered underwater tablet carried by the 
diver is used. Concretely, an optical fiber is employed as 
tether, which has the advantage of a high bandwidth and 
a low latency. Detailed graphical information can hence 
be provided for the diver. But the use of a tether from a 
diver-tablet to a robot leads to practical limitations, e.g., 
with respect to the maximum distance of the diver to the 
robot, or the risk of entanglement of the system or even of 
the diver in the cable.

One alternative is therefore to use wireless commu-
nication. Though not specifically developed for U-HRI, 
the underwater tablets with multimedia communication 
[77] developed in the project “Autonomous underwater 
Robotic and sensing systems for Cultural Heritage dis-
covery Conservation and in situ valorization (ARCHE-
OSUb)” could be used for that purpose. As radio-fre-
quency (RF) signals are heavily attenuated underwater, 
acoustic communication needs to be used. This is linked 
to limitations in, e.g., bandwidth and latency [78–80]. 
Furthermore, it can be tedious for a diver to constantly 
carry a tablet with her/him.

One option is hence to place the display or tablet directly 
on the robot (Fig. 3, bottom). The underwater tablet devel-
oped in the project “Cognitive autonomous diving buddy 
(CADDY)” was, for example, used for this purpose [7, 
13–15]. The CADDY-tablet can also be carried by the diver 
and it is in addition capable of getting inputs via a water-
proof pen, i.e., it can also be used for diver-to-robot com-
munication (cCommunication from the Diver to the Robot”).

Displays or tablets on the robot have the disadvantage 
that they require dedicated hardware and take space on the 
vehicle. But they do not interfere with other components and 
they provide a high expressive power, especially if their full 
potential is used in terms of displaying text as well as using 
colors and temporal elements, e.g., blinking.

Robot Motion and Kinemes

An interesting option is also to use the motion of the robot 
itself for the communication. As mentioned before, the diver 
can relatively easily perceive in many application scenarios 
if the robot starts a task execution; typically, this is just a 
transition from station-keeping while receiving the com-
mand to any kind of motion that relates to (the start of) the 
execution of the task. But this is of course a quite informal 
and potentially error-prone method for a kind of robot-to-
diver “communication”.

The use of robot motions as explicit, dedicated signals 
to the diver is in contrast proposed in [82, 83•]. While [82] 
concentrates on specifically an underwater robot, an appli-
cation of the concepts to aerial and terrestrial robots is in 
addition included in [83•].

Fig. 3   The communication from the robot to the diver typically just 
serves as feedback that a command was received and that the task 
will be executed. This can be based on very simple means like just 
blinking lights (top) [46, 74] or more sophisticated devices like an 
underwater tablet (bottom) [7]
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The robot motions are denoted in [82, 83•] as kinemes, 
which is a term from kinesics, i.e., the field of study of 
(human) body motions in communication [84, 85]. An 
overview of several kinemes executed by an Aqua robot 
[81] in Fig. 4. The advantage of kinemes is that they do 
not require additional hardware. And there is the option 
to try to exploit motions that may be naturally understood 
by humans like a kind of nodding behavior for a “Yes” or 
a shaking for a “No”.

But the according motions can also be challenging depend-
ing on the platform used. For example, roll and pitch motions 
are typically intentionally suppressed by the mechanical design 
of underwater robots to increase their stability within a hori-
zontal 2D motion plane to only use one additional degree-of-
freedom for diving, i.e., to only actively change the elevation 
above the sea-floor. Also, these motions can interfere with the 
perception components on the robot, e.g., by inducing motion 
blur or by simply not orienting the robot, and hence the sen-
sors, towards a target while a nodding or shaking behavior is 
executed. Last but not least, there are some limitations in the 
overall expressive power of robot motions — at least in com-
parison to tablets/displays.

Nonetheless, the concept is very interesting and it 
has quite some room for further work in the context of 
cooperative human-robot mission execution, e.g., when 
the diver is further away from the robot or when reading 
information on a table generates too much overhead.

Communication from the Diver to the Robot

The communication from the diver to the robot is as dis-
cussed before an essential part of U-HRI as the human is 
often primarily interested in commanding the execution of 
tasks or even of complete missions to the robot.

Some standard forms of in-air HRI have unfortunately 
severe limitations underwater. For example, the use of 
speech recognition is tremendously difficult for U-HRI. 
The diver has a breathing apparatus that makes it chal-
lenging to clearly voice anything. It is even a challenge 
for communication between humans using high-end com-
mercial speech communication links for divers [86, 87].

One option is dedicated input devices like underwa-
ter tablets, which are discussed in “Underwater tablets 
for User Input”. A more natural way is to use visual 

Fig. 4   An Aqua robot [81] 
using different Kinemes, i.e., 
dedicated signaling motions, 
which can be used for robot-to-
diver communication [82, 83•] 
(figure courtesy of Michael 
Fulton)
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interactions. In early work on U-HRI [88], artificial fidu-
cial markers are used to provide signals to the robot. The 
cards with the artificial markers have the significant advan-
tage that they ease the challenges of underwater vision. 
But there are also significant disadvantages like the num-
ber of cards that the diver must carry and the effort to 
handle them.

The standard form of communication among divers is 
based on gestures. It is hence a natural choice to also use 
them in the context of U-HRI. As pointed out in [89•], 
gesture recognition can be divided into two parts that both 
have received some dedicated attention in research, namely 
a front-end (“Front-ends to Detect and Recognizes Diver 
Gestures”) where the machine perception of individual ges-
tures takes places and a back-end (“Front-ends to Detect and 
Recognizes Diver Gestures”) that deals with higher-level 
language aspects, i.e., which serves for the interpretation of 
symbol sequences, error detection and correction, as well as 
feedback to the diver.

Underwater Tablets for User Input

As already discussed in “Display and Tablets”, tablets are 
interesting options to provide information from the robot to 
the diver, i.e., to serve as displays. The other way round is 
more challenging, i.e., to provide input to an AUV or ROV 
with a tablet. Commercial off-the-shelf (COTS) tablets have 
to be put into water-proof housings, which renders touch-
based input with the standard capacitive sensing extremely 
difficult, if not unusable. Water-proof buttons and dials exist 
that may be used as an alternative [90], but they tend to 
significantly add to the system’s complexity and can easily 
become point of failures in terms of functionality as well as 
water-tightness.

As discussed in “Display and Tablets”, a tethered tablet is 
used as display in [76]. The option of diver-to-robot commu-
nication is only mentioned in that context by possibly using 
the Inertial Measurement Unit (IMU) for joystick or Wii-like 
inputs. This may be an idea to test, but this requires the tablet 
to be carried by the diver. This can be tedious. Furthermore, 
it involves the challenges of underwater wireless networking 
[77] or the limitations of a tether [76].

As mentioned before, the CADDY underwater tablet [65] 
can be mounted on a robot [7, 13]. It has the significant 
advantage that the COTS tablet used as underlying basis 
has an inductive pen. In contrast to the standard capacitive 
solutions used in most COTS tablets, the inductive technol-
ogy is still properly functioning when both the tablet and the 
pen are in their custom-made watertight housings. Though 
a tablet with a pen allows easy, intuitive input by humans, 
it also has the disadvantage that the diver has to get close to 
the robot to do this.

Front‑ends to Detect and Recognize Diver Gestures

Gestures are a natural basis for diver-to-robot communica-
tion. First and foremost, they are already extensively used 
by divers who can easily adopt them for interacting with 
robots, even if they did not have any according experiences 
before [13–15, 89•]. Second, there are inherent limitations 
of water as a medium, e.g., in form of its substantial damp-
ing of RF-signals, which impede the use of many commu-
nication approaches used in air.

Nonetheless, also underwater vision, respectively the use 
of sonar has also its particular challenges as already dis-
cussed in the introduction. Furthermore, gestures are based 
on motions, which induce in the water column a counter-
motion of the diver. Also, there can be currents and waves 
inducing unintended motions of the diver and of the robot. 
These factors can affect the distance of the diver and espe-
cially her/his orientation towards the robot. Hence, multiple 
system components like station-keeping, tracking, image 
segmentation, or fault detection and recovery do play a 
role for a fully functioning, field-able system. It is there-
fore of interest to note whether a method only addresses 
a specific aspect, e.g., the recognition of gestures in pre-
segmented images in a dataset under benevolent conditions, 
or the method, respectively a combination of methods, has 
been shown to also work in field trials under real mission 
conditions.

Early work on the use of gestures for U-HRI is presented 
in [74], which specifically focuses on dynamic gestures 
with the diver’s arms or hands, e.g., the standard gesture 
for “stay at the same height”. Concretely, the waving ges-
tures are recognized by differential imaging. The improved 
Fourier Mellin Invariant (iFMI) is used to extract motions 
from subsequent frames by registering them with each other. 
This is followed up by classical methods of Computer Vision 
(CV) for segmentation, especially simple thresholding. The 
trajectories of arm or hand motions are then recognized with 
a Finite State Machine (FSM). The experiments in [74] are 
done in a pool.

In [92], an imaging sonar, which is also known as acous-
tic camera, is used as an acoustic sensor for gesture recog-
nition in the context of the CADDY project. First, pre-pro-
cessing stages with cascade classifiers and shape processing 
generate features. Based on this, three different classification 
approaches are used and evaluated, namely a convex hull 
method, Support Vector Machines (SVM), and the fusion of 
both. Experiments are conducted in a pool and during field 
trials with divers [13]. The selection of device parameters 
within a mission is a known challenge for this type of sensor, 
which is also reported in [92].

The main type of sensor for U-HRI in CADDY is there-
fore a (stereo-)camera. To cater for the special challenges 
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of underwater vision, a modification of Nearest Class 
Mean Forests (NCMF) is introduced, which is dubbed 
Multi-Descriptor NCMF (MD-NCMF) [48, 91]. MD-
NCMF partitions the sample space by comparing the dis-
tances between class means instead of comparing values 
at each feature dimension like in more traditional Random 
Forests approaches. Therefore, MD-NCMF can treat each 
feature-object pair as a new class, e.g., SURF-object1, 
SIFTobject2, SURF-object2, SIFT-background, etc. MD-
NCMF can then determine which one provides the best 
partitioning of the sample set. MD-NCMF is used both 
for diver detection and tracking [48] as well as for the 
classification of diver gestures [91]. Within the CADDY 
project, the divers wear standard diver-gloves augmented 
with color markers and experiments include realistic field 
tests [14, 15].

The gesture recognition front-end in [50] is based on 
Deep Learning (DL) models, which in general have become 
quite popular in this context (Table 3). More precisely, 
Single Shot Detector (SSD) [97] and Faster Region-based 
Convolutional Neural Networks (Faster R-CNN) [98] are 
investigated, which achieve above 90% accuracy when being 
trained with a 50K dataset. It is assumed in [50] that the 
diver wears no gloves. Therefore, skin detection and image 
contour estimation can be used. While this is on the one 
hand more general than the use of colored gloves like in 
CADDY, it also must be noted that professional — as well as 
many sport — divers tend to always wear gloves for protec-
tion and to avoid heat loss.

In [93], several DL methods are tested on the CADDY 
dataset [96], i.e., an open access dataset of labeled images 
from various field trials of divers wearing gloves with arti-
ficial color markers. The authors use transfer learning [99], 
i.e., pre-trained networks, to evaluate several standard DL 
methods, namely AlexNet [100], VggNet [101], ResNet 
[102], and GoogLeNet [103]. Classification rates of 95% 
are achieved with VggNet.

The same dataset [96] is also used in [104]. There, Adver-
sarial Learning [95] is used to augment the data for DL with 
Mask R-CNN performance of [105]. But though the use of 
Generative Adversarial Networks (GAN) has recently been 
quite successful in various cases of underwater vision, the 
performance gains are not that strong in this case.

Results towards a classification under a wide range of 
conditions including divers with and without gloves are 
presented in [94]. Building upon a DL-based approach 
dubbed SCUBANet to recognize diver body parts [59], 
MobileNetV2 [106] is trained to recognize 25 image 
classes using finger count and palm direction — though 
the authors also state that a significant portion of these 
classes are unused in most gestures [94].

DL is also investigated in [89•]. There, the focus for the 
front-end is on a systematic evaluation of the performance 
of state-of-the-art DL methodologies [97, 97, 98, 98, 102, 
107, 108] in comparison to a “classical” Machine Learning 
method (ML) [48, 91]. Especially, the dependency of the 
different DL approaches and architectures on the amount 
and variability of training data is investigated. The training 
and testing are based on the CADDY dataset [96], i.e., the 
divers are wearing gloves with color markers. An important 
contribution of [89•] is to show how the real-world data can 
be artificially degraded in a physically realistic fashion to 
extend the amount of available data.

A completely different approach to the gesture front-end 
is presented in [67, 109, 110]. There, sensors are used to 
detect gestures with the diver’s glove itself. To this end, a 
regular diver glove is augmented with strain gauges suited 
for underwater operation [111, 112], an Inertial Measure-
ment Unit (IMU), and a processing unit with acoustic com-
munication to the robot. Though exact details on the under-
lying classification methods are not described, some clear 
evidence is presented that the approach can work across dif-
ferent individuals [109, 110].

Back‑ends for Interpreting Underwater Languages

While front-ends discussed in the previous section deal with 
the machine perception of individual signs, back-ends handle 
the interpretation of the actual gesture-based language [89•]. 
Hence, back-ends can be combined with different front-ends 
as they are agnostic to the way the symbols are perceived 
and recognized.

Already in early work on U-HRI [88], a conceptually 
quite sophisticated back-end is proposed. Based on artifi-
cial fiducial markers as front-end, the RoboChat language is 
introduced, which is a bit revised in [113]. The idea is that it 
provides a programming language with which missions can 
be specified. It hence has symbols for actions as well as for 
related parameters. Furthermore, conditionals, i.e., the use 
of “if”, and functional blocks are specified. One drawback 
is the lack of handling possible errors in the machine per-
ception and related feedback, i.e., it is assumed that there is 
an instantaneous, perfect recognition of commands in the 
front-end [88].

A very expressive language for U-HRI called Caddian is 
introduced in [114], which features a machine interpreter 

Table 3   The full range of different methods is used for visual gesture 
recognition front-ends, i.e., the machine perception of divers’ ges-
tures. Also here is a clear shift towards Deep Learning (DL) in recent 
years

Classic Computer 
Vision (CV)

Classic Machine Learn-
ing (ML)

Deep Learning (DL)

[74] [13, 15, 48, 91, 92] [50, 89•, 93–95]
2011 2015–2017 2019–2021
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with a phrase parser, syntax checker, and command dis-
patcher linked to the mission control [89•, 115]. It is based 
on a context-free grammar (CFG), that allows the diver to 
specify missions as a sequence of tasks. The syntax checker 
is implemented as a Finite State Machine (FSM). It provides 
feedback to the diver and hence allows in situ corrections 
if there are errors in the machine perception. The back-end 
in combination with the MD-NCMF gesture recognition as 
front-end [91] are evaluated in field tests with professional 
divers [14, 15].

A full language for U-HRI is also presented in [50, 116]. It 
is syntactically a bit simpler than Caddian as it does not feature 
a full CFG. The instruction decoder, i.e., the FSM in its inter-
preter is restricted to only one possible transition from state to 
state, i.e., gesture to gesture, to avoid ambiguities. It is more 
efficient than RoboChat [88, 113] in experiments with divers 
[50, 116], which stems from two effects, namely (a) the use of 
gestures instead of artificial markers for the front-end and (b) 
the restriction to a simpler back-end that does not feature a full 
CFG and just allows to command instructions with parameters.

It is interesting to note in this context that Caddian [114, 
115] is also designed to work with gesture-based front-ends 
[89•] and that it features the fast interpretation of a sub-set of 
often used commands, which is denoted as CADDY-slang. 
The diver can hence profit from the best of the two worlds 
of a fast, direct signaling of (parameterized) instructions and 
the option of in situ programming of complex missions.

Datasets for Training and for Evaluation

Given the attention that Deep Learning (DL) has recently 
received for underwater perception in general as well as 
diver detection/tracking (Table 2) and underwater gesture 

recognition (Table 3) in particular, there is a certain impor-
tance of related underwater datasets that are openly available 
and that can hence be easily used for training and testing.

The CADDY dataset1 [96] consists of 12K stereo-images 
of divers swimming around during missions plus 10K stereo-
images with the explicit use of gestures for communication 
(Fig. 5). An interesting aspect is that in addition to annotated 
gestures, the ground truth poses of the divers are available. 
These are not derived as usual from manual annotation but 
from DiverNet, i.e., a combination of 17 Inertial Measurement 
Units (IMU) that are distributed over the diver [63]. As men-
tioned before, the divers wear gloves with artificial markers in 
the CADDY project. While gloves are a realistic assumption 
as they tend to be worn for protection and to avoid heat loss, 
the markers are a somewhat specialized solution.

The SCUBANet dataset2 also features images from a 
stereo-camera [59]. It consists of 1K images of divers that 
are annotated with labels for the head, the hands and the 
body. The data includes divers with and without gloves. The 
divers always wear standard equipment, i.e., if gloves are 
worn, they are made of the standard homogeneously black 
neoprene. There are also raw monocular videos for different 
gestures available3.

An other more general underwater dataset is presented 
in [55], namely the dataset for semantic Segmentation of 
Underwater IMagery (SUIM)4. It consists of 1.5K monocu-
lar images with pixel level annotations. The object classes 
contained therein are fish, reefs, aquatic plants, wrecks/ruins, 
human divers, robots, and sea-floor.

Fig. 5   Examples of images from the CADDY dataset with hand gestures of a diver [96]; more precisely, the left image from a stereo-camera is 
shown. The data is recorded during field trials in different environment conditions

1  http://​www.​caddi​an.​eu/
2  https://​vgr.​lab.​yorku.​ca/​tools/​scuba​znet/
3  https://​vgr.​lab.​yorku.​ca/​tools/​scuba​net-3-​0-​raw-​raw-​datas​et-​image​ry/
4  http://​irvlab.​cs.​umn.​edu/​resou​rces/​suim-​datas​et
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The Video Diver Dataset (VDD-C)5 consists of 105K 
annotated, monocular images of divers [117], i.e., it is a 
very large dataset. The divers were recorded in pools and 
the Caribbean off the coast of Barbados. An interest aspect 
is that features many images with multiple divers, which can 
be a challenge for diver detection and tracking, especially in 
the case of occlusions [53].

In [89•], it is shown how artificial image degradation can 
be used in the context of DL (Fig. 6). This includes physi-
cally realistic models of artifacts that commonly occur in 
underwater vision. These methods hence provide an alterna-
tive to the domain-agnostic use of GAN [95] and they are 
an option to augment visual underwater datasets in general.

Conclusion

An overview of the state of the art in Underwater Human-
Robot Interaction (U-HRI) was presented. First, the basis 
for U-HRI is presented in form of the detection and track-
ing of divers. Then, the topic of communication is dis-
cussed in some detail. It can be separated into the so-to-
say channel from the robot to the diver and the one from 
the diver to the robot. The latter, i.e., from the diver to 
the robot tends to be more challenging and it has received 
more attention in research. Within this line of work, the 
use of gestures by divers plays an important role. The 
discussion of according research was structured into 
front-ends, i.e., the machine perception of gestures, and 

into back-ends, i.e., the actual language interpretation. 
Given the increased use of Deep Learning (DL) in recent 
years for diver detection/tracking as well as for underwa-
ter gesture recognition, a presentation of several related 
underwater datasets is included in this survey.
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