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Abstract
Purpose of Review Research in underwater manipulation has mostly focused on solving individual parts of the manipulation 
challenge; however, we believe a systemic approach needs to be taken to achieve full autonomy. With this survey, we aim 
to provide a review of the different dynamic modeling, control, motion planning, and perception methodologies presented 
in the literature, and, more importantly, we intend to highlight the necessary steps that need to be taken to achieve fully 
autonomous underwater manipulation.
Recent Findings Achieving autonomous manipulation in underwater environments is a complex and multi-disciplinary challenge. 
Recent works have focused on moving from simulation-based environments to experimental validation of the proposed methods. 
Furthermore, the advancements of machine learning have been making an impact in the underwater manipulation, data-driven 
strategies playing a central role in the last years developments.
Summary We present an overview of the current trends in the area of autonomous underwater manipulation. First, we provide a 
review of state-of-the-art algorithms developed in the area of dynamic modeling, control, motion planning, and perception. Second, 
we discuss the limitations of the current systems and present possible avenues to obtain robust autonomous manipulation.
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Introduction

Underwater manipulation has become an important research 
topic, with applications ranging from subsea oil and gas [1], 
construction [2], military and archaeological intervention 
[3, 4], to deep sea specimen collection [5]. The majority 
of these applications rely on teleoperated systems [6] that 
have high operational costs, use large infrastructures, and 
require trained operators. To lower the burden of the opera-
tors, Ocean One [7, 8], an underwater humanoid robot, has 
been developed. One of the focuses of this system is the 
improvement of the human-robot interface for teleoperated 
underwater operations.

As highlighted in [9], there is a strong interest from vari-
ous stakeholders to achieve autonomous underwater manipu-
lation. Nevertheless, there are still many open challenges 
to enable underwater manipulators to perform autonomous 
intervention operations in a constantly changing environ-
ment. A truly autonomous underwater system should be able 
to complete a mission without human intervention; it should 
be able to cooperate with other autonomous agents, or with 
other humans, to achieve its objective. The development of 
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such a system requires many technological advancements 
and the integration of multiple systems.

Research in the area of underwater manipulation is 
growing every year, with thousands of articles indexed 
in scientific search engines. These works have focused 
on various aspects such as manipulator and end-effector 
design, dynamic modeling, control strategies, motion and 
task planning, perception systems, or development of light-
weight underwater vehicle-manipulator systems, as the 
one seen in Fig. 1. Although each of these areas presents 
explicit challenges that need to be solved independently, 
to obtain a fully autonomous system, there is a need for 
studies that look at designing these aspects in a more coor-
dinated and coherent approach.

An overview of survey papers addressing these chal-
lenges is seen in Fig. 2. An initial survey [10] gives a time-
line for all funded underwater intervention projects. More 
recently, Aldhaheri et al. [11] provided an updated overview 
of funded European projects focused on underwater manipu-
lation discussing the limiting factors of these. In [12] the 
authors present an overview of control systems for under-
water manipulation, briefly addressing the modeling aspect 
of the problem. A discussion of common control systems is 
also introduced in [13], focusing on both the type of tasks 
executed and testing environment. The most common algo-
rithms for manipulator motion planning are given in [14]. A 
detailed survey of types of underwater manipulators that are 
commercially available and their application for industry are 

presented in [6]. Flexible and soft robots used in underwater 
environments are described in [15], while [5] discusses the 
design of grippers focusing on deep sea collection. A spe-
cial case of underactuated, compliant, tendon-driven robotic 
hands for deep sea exploration is presented in [8]. These sur-
veys provide useful insights into specific parts of the under-
water manipulation problem, but they fail to address how 
these aspects come together to enable robust and long-term 
manipulation. With this review paper we go a step further, 
by identifying what the critical aspects are in the robust and 
long-term autonomy, and discuss the design of informed and 
interconnected components.

The main contributions of this survey are to (1) identify 
the depending areas that facilitate underwater manipulation, 
(2) provide a description of the methods utilized for solving 
each of the identified areas, and (3) discuss the necessary 
steps to achieve fully autonomous underwater manipulation.

Contributing Research Areas

The IEEE Robotics & Automation Society states that mobile 
manipulation requires autonomous solutions from the field 
of sensor fusion, control, planning, perception, and machine 
learning [16]. Additionally, for mobile manipulators that 
operate in underwater environments, understanding the 
dynamics of the system is part of obtaining robust autonomy. 
A diagram showing the dependencies among these areas is 
presented in Fig. 3, highlighting several works that studied 
two or more aspects as part of the autonomous underwater 
manipulation research area.

Dynamics

Mathematical models of robotic systems have proven to be 
a central part of validating and designing control systems 
[17]. However, achieving a reasonable level of accuracy is 
challenging for articulated multi-body systems operating in 
underwater environments. This is due to assumptions made 
for the mechanical design of the system and the hydrody-
namic effects.

Physics-based approaches are the main methods that 
make such assumptions. The dynamic study of a manipulator 

Fig. 1  Lightweight underwater vehicle-manipulator system: the 
Reach 5 Alpha manipulator mounted on a modified Bluerov2Heavy 
robot

Fig. 2  Overview of the surveys 
done in underwater manipula-
tion. There have been observed 
three avenues: (1) algorithm 
development, the focus has been 
on control and planning, (2) 
overview and applications, and 
(3) mechanical design of new 
manipulators and end-effectors
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in a fluid environment is introduced in [27], which proposes 
an approximation approach to obtain the generalized forces 
that act on the manipulator. The coefficients for the hydro-
dynamic forces are computed based on the geometry of the 
links, the generalized coordinates, and the relative position 
of the manipulator with respect to the surface of the fluid. In 
[28] and [18] the dynamic model for a two-link rigid manip-
ulator is presented. The links are approximated as cylinders 
and the in-line hydrodynamic forces are modeled based 
on 2-D strip theory. This research shows how the drag and 
added mass forces coefficients can be defined as functions 
of the distance travelled, describing how the angle between 
consecutive links influences the hydrodynamic coefficients. 
Similar studies are introduced in [29] for a closed form 
dynamic model using Kane equations [30]. The method is 
demonstrated for a 3-degree-of-freedom (DOF) manipula-
tor attached to a 5-DOF vehicle. Navier-Stokes equations 
and a Lagrange representation are used in [31] to model 
the dynamics of an underwater manipulator attached to a 
Remotely Operated Vehicle (ROV). The dynamic model 
of a planar manipulator with revolute joints attached to an 
Autonomous Underwater Vehicle (AUV) is presented in 
[19], using a Newton-Lagrange formulation. Disturbances 
such as currents or ripples are not considered in the model, 
but the dynamic coupling effects of the manipulator motion 
on the vehicle are incorporated in the model. The Composite 
Rigid Body (CRB) approach is presented in [20], obtain-
ing the dynamic model of a lightweight underwater vehi-
cle-manipulator system (UVMS) and providing an analytic 
method to estimate dynamic coupling effects. Lagrangian 
approaches are proposed in [32••] and [33] for a planar and a 
3-DOF manipulator, respectively. Hyper-redundant manipu-
lators, known as underwater swimming robots, are modeled 
in [34, 35], and [36]. The kinematic modeling aspects of 
these types of robots are presented based on redundancy 

resolution. In [34] the results show how the hydrodynamic 
coefficients influence the behavior of the robot in a simu-
lation environment. The works presented in [35] and [36] 
focus on using the dynamic model for the control system of 
the robot, without model validation.

Data-driven approaches for underwater manipulator 
dynamics have been created as an alternative to the analyti-
cal and physics-based approaches. Hydrodynamic modeling 
for underwater manipulators is introduced in [37] and [38]. 
Single-link manipulators with cylindrical and rectangular 
representations are considered for these studies. The nec-
essary data is captured from sensors such as accelerome-
ters, encoders, and optical sensors, while the manipulator 
is moving through water. In [37] 3D strip theory is used 
to determine the correlation between the added mass, drag 
coefficients, and the distance travelled by the manipulator. 
Experiments shown in [38] demonstrate that the added mass 
is not strongly dependent on the angular accelerations of the 
robotic manipulator. The dynamics of underwater manipu-
lators are obtained in  [39], using a feed-forward neural 
network based on joint velocity, but the accuracy of the 
obtained model is not validated.

In the past years, the areas of flexible and continuum 
underwater manipulators have gained attention. In [40] a 
cable-driven underwater manipulator is presented, where 
each section of the manipulator is controlled by a buoyancy 
adjustment unit. The dynamic analysis studies how the cable 
tension influences the motion of the manipulator and the 
buoyancy regulation system. In [21] a manipulator with one 
flexible link and one rigid link is discussed. To develop the 
equations of motion and corresponding boundary condi-
tions, Hamilton’s Principle is used. A Raleigh Beam repre-
sentation is used for an underwater flexible manipulator in 
[41] and Bond graphs are leveraged to obtain the dynamic 
behavior of the system. Gümüşel and Özmen [21] states that 

Fig. 3  Dependencies between 
areas that facilitate underwater 
manipulation autonomy as 
discussed in several articles: 
[18–26], etc
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an Euler-Bernoulli flexible beam representation is the most 
common approach to describe flexible manipulators. This 
is confirmed in [42], where the system is modeled using 
the finite element method based on a Lagrangian approach. 
Similar methods are introduced in [43] and [44] to represent 
a biologically inspired continuum underwater robot from an 
octopus. Experimental validation demonstrates that, due to 
assumptions that are regularly made for underwater environ-
ments, the estimated model has some differences compared 
to the experimental results. Similar evaluation is presented 
in [45] where a flexible-link underwater manipulator is mod-
eled using a recursive Gibbs-Appell formulation. In-air and 
underwater experimental validation are performed and it 
was observed that the deformation of flexible links and the 
rigid-body motion decrease due to the fluid-arm interaction. 
Data-driven models have also been used for the modeling of 
flexible robots. In [46] a system identification technique is 
presented based on parametric modeling using meta-heuris-
tic algorithms such as cuckoo search and flower pollination, 
while [47] presents a recurrent neural network for the devel-
opment of the dynamic model. Similarly, in [48], a deep 
neural network is used to compute the inverse kinematics of 
a rigid-flexible manipulator.

An overview of the approaches and algorithms used to 
model underwater manipulators is presented in Table 1. 
The vast majority of approaches are designed using an 
Euler-Lagrange formulation and are validated through 
simulation work. Moreover, disturbances and payloads are 
not considered in the dynamics. Therefore, it should be the 
aim of future research to develop more robust algorithms 
that are applicable to a wide variety of environmental and 
payload considerations.

Control

The need for control laws that provide desired performance 
in the presence of disturbances and uncertainties has led to 
intense interest in the development of control methods for 
underwater manipulators.

In [49], position control of single-link underwater robot 
using a Proportional Integral Derivative (PID) controller is 

investigated without considering the dynamic modeling. In 
[50] a cascaded Proportional Integral (PI) controller with an 
inverse dynamic feed-forward component is used for a two-
link manipulator attached to an underwater vehicle. In [51] 
a kinematics-based controller for an UVMS is presented, 
that uses a decoupled control architecture of the vehicle and 
manipulator. Furthermore, a combination of task-priority 
redundancy resolution and task concurrence approaches, 
without any complex hydrodynamic model are investigated. 
Similarly, a decoupled kinematic control law is compared 
with a fully coupled control architecture for UVMS in [52]. 
The experimental results show the potential of the kinematic 
control laws in maintaining a certain end-effector configura-
tion in an environment that has currents. These results are 
confirmed in [53], which presents a decentralized task-pri-
ority kinematic control algorithm for two UVMS collabo-
ratively manipulating an underwater pipe. A soft manipu-
lator arm is attached on a legged robot in [54]. The paper 
discusses the inverse kinematics control architecture of the 
manipulators collecting objects in confined spaces. Simula-
tion results for a flexible underwater manipulator controlled 
by fuzzy logic are presented in [55]. For fully known system 
dynamics, a fuzzy logic controller can be designed for effec-
tive robust operation. In [56] a robust single input fuzzy 
logic controller (RSIFLC) scheme is successfully applied 
for task-space trajectory control of a simulated UVMS. 
The benefits of this controller have been shown by com-
parison to a feedback linearization proportional controller. 
The experimental evaluation of the feedback control of a 
11 DOFs UVMS is presented in [57]. An adaptive model-
based controller and a PID control architecture have been 
compared for the UVMS, showing similar behaviors for the 
cruise phase. An adaptive robust control strategy, known 
as active disturbance rejection control (ADRC) is shown in 
[58], successfully maneuvering a manipulator while com-
pensating for dynamic coupling effects. In the absence of 
the precise analytical description of the system, the ADRC 
uses nonlinear state error feedback to estimate disturbances 
online with a state observer. In [58] a disturbance observer is 
used to regulate a manipulator attached to an ROV. A similar 
observer is proposed in [59]. In combination with a sliding 

Table 1  Dynamic model algorithms, where EL is Euler-Lagrange, NE is Newton-Euler, KM is Kane’s Method, BG is Bond Graph, GA is the 
Gibbs-Appell formulation, ML is Machine Learning approaches, DF is Data Fitting

Properties Methods

EL NE KM BG GA ML DF

Single-link manipulators [27] [47] [37, 38]
Multiple body representation [31, 32••, 33, 42, 43] [20, 40] [28, 29] [41] [45] [39]
Disturbances and payloads
Simulation validations [31, 32••, 33, 42] [20, 27, 40] [29] [41] [37, 45] [46]
Experimental validation [32••] [43] [28] [37, 38]
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mode controller, this controller is capable of compensating 
for external disturbances and ensuring that the manipulator 
completes the task in a finite amount of time. A combined 
controller-observer scheme is designed in [60] for a vehicle-
manipulator system. The observer is used to estimate the 
system’s velocities in a model-based control formulation.

In [61] Sliding Mode Control (SMC) is applied to dem-
onstrate the behavior of the underwater manipulator when 
tracking a predefined trajectory and handling a variable pay-
load. A saturation function is introduced to solve the prob-
lem of chattering. A double-loop fractional integral sliding 
mode control (DLFISMC) is presented in [62] for trajectory 
tracking of an underwater manipulator with bounded exter-
nal disturbance. The results show high-precision trajectory 
tracking performance and strong capability of disturbance 
rejection. An integral sliding mode controller is proposed 
in [63] in the context of parallel position-force control for 
an underwater manipulator in contact with the environment. 
Experimental results with an electric manipulator in contact 
with rigid and compliant environments show the benefit of 
such method.

Machine learning algorithms, specifically Neural Net-
work (NN) and Reinforcement Learning (RL), have gained 
recognition in underwater robotics. Such approaches have 
been able to identify nonlinear system parameters and result 
in reliable behaviors. In [64] a Deep Reinforcement Learning 
(DRL) based on visual information is used for the control 
of a dual manipulator system mounted on a ROV. Through 
simulations, the benefits of such an approach for three DOF 
manipulators are presented. A DRL controller based on the 
deterministic policy gradient algorithm was developed in 
[65]. The controller was evaluated in simulation on a four 
DOF manipulator and showed befits for working under posi-
tion and torque constraints. In [66], reinforcement learning 
is used for adjusting the feed-forward prediction model of 
a soft manipulator for grasping applications in underwa-
ter environments. In [67••], a NN is used to estimate the 
dynamics of a manipulator and incorporate them into an 
adaptive Model Predictive Control (MPC) controller. This 
system has been used in an experimental set-up for a four-
link manipulator and demonstrated how it can account for 
changes in the dynamics made by variable payloads. Simi-
larly, the dynamics are incorporated into the control system 
for an underwater robotic manipulator using an adaptive NN 
in [68]. The optimal parameters of the controller have been 
obtained using Genetic Algorithms, and the behavior of the 
system for trajectory tracking has been evaluated through 
simulations. Imitation learning is used in [69] for an UVMS 
tasked to open underwater valves. Dynamic movement prim-
itives are used to encode the UVMS trajectories and their 
efficiency is shown through tests performed in a water tank.

The majority of the papers discussed above have been 
focused on trajectory tracking or motion control, with a few 

exceptions (see [63]). Nevertheless, the interaction with the 
environment and corresponding control structures have been 
also studied. In [70] a force/position tracking control for an 
UVMS in contact with a compliant environment is proposed. 
Direct force and position regulation control laws are lever-
aged in a cascaded architecture and the performance of the 
system is presented through simulations and experimental 
results. A MPC controller is developed in the framework of 
force/position control for an underwater manipulator system 
in [71], with active force and position control laws. Stability 
analysis using Lyapunov functions and simulation results 
present the benefits of this approach.

The above referenced papers are a few examples of meth-
ods used for control in underwater manipulators. A more 
detailed review of these approaches can be seen in [12, 13].

Planning

Planning in the context of autonomous underwater manip-
ulation is considered a complex problem due to the high 
dimensionality and lack of environmental structure. The 
dynamic nature of the underwater environment necessitates 
that planning methods be able to adapt to things such as 
moving obstacles, and to be able to handle uncertainties in 
the workspace and localization.

A review of common approaches used in motion planning 
is given in [72]. An analysis of most common approaches 
used in underwater manipulation planning is presented in 
[14], where three categories are tested: (1) sampling-based 
[73], (2) optimization-based [74, 75], and (3) search-based 
[76]. Simulations results are presented for both unobstructed 
and cluttered environments, as well as manipulation through 
a narrow passage. It is shown that sample-based planners 
outperform search-based and optimization-based motion 
planners in both planning time and path length for unob-
structed environments. Nevertheless, for overall perfor-
mance, it is concluded that non-optimal sampling-based 
techniques work well for time-critical applications, but at 
the cost of smoothness and path length. It is also shown that 
search heuristic-based planners are able to produce optimal 
trajectories with more natural motion and higher consist-
ency, but often require more parameter tweaking.

Current planning methods are primarily focused on robot 
kinematics and function under the assumption that the envi-
ronment is known, but motion planning in real-world envi-
ronments can include a high degree of uncertainty. The work 
in [77] presents an adaptive planning method using a closed-
loop rapidly exploring random tree algorithm, and provides a 
simulation framework for testing active control and planning 
algorithms in a dynamic environment. Another search-based 
planner, Multirepresentation - Multiheuristic A*, is demon-
strated in [78••], where an underwater manipulator succeeds 
to complete a valve-turning intervention in a water tank, in 
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a previously unknown environment. In [79] an autonomous 
docking planner is presented in the context of intervention 
AUVs. The paper is primarily focused on scheduling the 
tasks to be perform, leveraging both sonar and camera sys-
tems. A motion state planning architecture is presented in 
[80] for an UVMS based on adaptive tracking differentia-
tor framework. This approach is shown to be beneficial for 
high-dimensional underwater systems that have difficulties 
in tracking fast changing trajectories, such as step signals.

Machine learning approaches have been shown to also be 
viable for vehicle path planning. An improved path planning 
algorithm capable of dealing with localization uncertainty 
is proposed in [81], where reinforcement learning is used 
to find an optimal path in GPS-denied scenarios with noisy 
measurement data. This type of approach could be extended 
to work with a UVMS.

Perception

The perception system plays an essential role in achieving 
autonomous underwater manipulation [13, 82]. Its impor-
tance for applications where underwater interaction is 
needed has been highlighted in [23] stating that perception 
represents a major pillar for offshore robotic applications. 
Furthermore, [83] highlights the importance of having coor-
dinated control and sensing strategies for the advancement 
of autonomy in the UVMS context.

The focus of the following paragraphs is on perception 
systems designed specifically for underwater manipulation 
tasks. One of the first papers that have looked at the idea of 
coordinating the perception system with the action of the 
underwater robotic system is [24], discussing the integra-
tion of reactive intelligence in ROVs. Several works have 
focused on the design of new perception systems, centered 
around optical cameras, lasers, or sonars. Among these, in 
[22] a stereoscopic telepresence vision system is presented 
for the enhancement of underwater intervention. The work 
describes the integration of optical cameras with a pan and 
tilt system that allows for higher coverage of the environ-
ment. A multi-camera system is designed in [84] and used 
with visual markers for underwater intervention. The cam-
era uses a CCD sensor with good capabilities for low light 
conditions, similar with the optical cameras used in [85, 
86]. Furthermore, [84] also focuses on the study of vari-
ous algorithms for object detection, recognition, and 3D 
mapping for dexterous underwater manipulation. Libraries 
such as OctoMap [87] and methods such as active contours 
based on superellipse fitting [88] are used to achieve these 
goals. A stereo vision system is designed in [25] for pipe 
manipulation. The focus of the system is object pose estima-
tion and localization. Algorithms such as the Sobel gradi-
ent operator, and perspective geometry concepts are used 
to solve these problems. In [89] an ORB feature detector is 

incorporated to detect an object of interest based on template 
matching, where the perception system is used to design 
intuitive learning by demonstration methods. A convolution 
neural network (CNN) is presented in [90] to estimate the 
pose of targets. A fish-eye camera is used due to its capabil-
ity to cover large areas without a decrease of the imaging 
sensor footprint. A visual servoing strategy is introduced in 
[91]. The visual information, obtained from a stereo camera 
system based on edge detection algorithms, is presented to 
control the motion of an underwater manipulator. In [92], a 
monocular camera is used for an image-based visual servo-
ing control. The focus is on designing a distortion model that 
enables online camera calibration and compensates for inac-
curacies in the image-tracking caused by the deflection of 
light rays passing through different mediums. A monocular 
camera is also used for grasping objects in [93]; however, 
the object detection is done by means of a CNN architecture. 
A vision-based feedback control using inverse kinematics is 
presented in [94] for UVMS. The paper uses the Single-shot 
MultiBox Detector (SSMD) with a kernelized correlation fil-
ter for the detection and tracking of underwater targets, when 
a binocular camera system is mounted on the vehicle and 
an on-hand monocular camera is mounted on the manipula-
tor. The importance of camera calibration in perception for 
manipulation is also mentioned in [95]. This paper presents 
a visual servoing system for hydraulic underwater manipula-
tion. A set of fiducial markers are used to establish the pose 
of the target. Fiducial markers have proven their applica-
bility and robustness for object detection and localization, 
being used in [4] for detecting tools for autonomous under-
water soil sampling.

Nevertheless, some of the approaches discussed above 
assume that the target always has either specific character-
istics known a priori and/or labels that can be mounted in 
advance on the target. Some of these limitations have been 
addressed by developing object recognition and pose estima-
tion using laser systems.

In [96] a fast laser scanner is used to build 3D color-
less point clouds for autonomous underwater intervention 
in man-made structures. The proposed architecture uses 
segmentation algorithms, template matching approaches, 
and designs characteristic descriptors. This information rep-
resents the central aspect of a semantic Extended Kalman 
Filter (EKF)-based Simultaneous Localization and Map-
ping (SLAM). 3D reconstructions using multi-view laser 
approaches in the framework of underwater manipulation 
are presented in [97] and [98]. Laser peak detection and 
triangulation algorithms, demonstrated experimentally, are 
used to obtain the 3D reconstructions. Experimental results 
are also discussed in [99] for facilitating several grasping 
strategies based on the 3D reconstructions obtained with the 
multi-view laser. A laser combined with a camera system 
is used in [100] for object detection and recognition. The 
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approach presented combines a machine learning algorithm 
to detect the target in color images, while the laser informa-
tion is used to obtain the depth information.

Although sonar systems are widely used for localization 
and scene reconstruction in underwater environments [101, 
102], they have been used significantly less in the context 
of underwater manipulation, due to limitations such as high 
noise levels, loss of texture information, and lack of color 
information [103, 104]. To address some of these challenges, 
a physics-based simulator of a multibeam sonar is presented 
in [105] specifically for autonomous underwater manipula-
tion. In [106] a simulated multibeam sonar imaging system 
is used to detect targets and to define the trajectory of an 
underwater manipulator.

Future Work

While previous works focused on specific aspects of the 
manipulation problem, we argue that a manipulator system 
capable of autonomous intervention requires more than 
designing state-of-the-art algorithms.

Specifically, we consider that autonomy needs a degree of 
reasoning, a few examples being to infer from the environ-
ment where it operates, to act accordingly to its own state, 
or to account for out of distribution cases. This leads to the 
need of a deeper interaction between the components of the 
system, including a high-level decision making component.

In human intelligence, our brain creates models based 
on our perceptions [107], humans are capable of making 
long-term predictions, but also, of acting instinctively and 
performing fast reflexive behaviors [108]. This is a clear 
demonstration of how human senses, actions, and planning 
capabilities come together for making us effective in our 
day to day lives. Similarly, we could ensure that underwater 
manipulators can be autonomous and effective if we design 
informed and interconnected components.

Taking the example of mathematical models presented 
in Section 2.1, several aspects can be well represented by 
analytical formulations (e.g., coupling effects and restoring 
forces), while others would require data-driven formula-
tion to obtain reliable representations (added mass and drag 
coefficients). Nevertheless, these two types of modeling 
techniques can be combined to obtain semi-parametric 
models, leveraging known analytical models with informa-
tion obtained through direct real-world experience. Other 
aspects that need to be addressed in the underwater modeling 
domain for manipulator systems, are considerations towards 
dynamic payloads (as seen from Table 1), coupling effects 
between manipulators, or proper characterization of hydro-
dynamic effects regardless of the body of water where they 
operate. Solving such problems could play a huge impact 

in obtaining better simulation environments and designing 
digital twin systems.

Obtaining dynamic models through experience highlights 
the importance of perceiving accurately the environment 
where the system operates. Furthermore, perception systems 
are essential in guaranteeing that the underwater manipula-
tion task is feasible. Optical perception modules in under-
water systems face specific difficulties, such as low light 
scenarios, backscattering, or wavelength attenuation. Laser 
systems have limited spectrum range that they can effec-
tively operate underwater, while sonar systems suffer from 
lack of texture and details in the obtained data. Restricted 
field of view and slow computation are some of the spe-
cific limitations for perception systems in the underwater 
manipulation context. Further developments in the design 
of novel sensors and computational approaches are needed 
to address these challenges. Efforts should also be made to 
reduce the gap between simulated and real environments 
which will allow for faster knowledge transfer and will 
facilitate the adoption of underwater robotic systems [109]. 
Furthermore, for underwater manipulators with eye-in-hand 
configurations [110], small footprint perception system must 
be designed.

Accurate perception of the world can facilitate the mak-
ing of optimal decisions. Low level control systems can 
leverage the manipulator models and the observations of 
the environment to achieve optimal behaviors. As the vast 
majority of underwater manipulators are attached to a vehi-
cle, the control system needs to ensure there is coordination 
between the vehicle and manipulator, be resilient to distur-
bances, and produce robust and feasible behaviors. Devel-
opment of model-based adaptive control strategies that are 
easily transferable among various underwater manipulators 
and capable of operating in various conditions should be 
designed. Developments in machine learning, such as rein-
forcement learning, can be leveraged to obtain optimal con-
trollers; however, emphasis on safety needs to be a central 
part for such methods. Furthermore, more attention should 
be given to interaction control structures, as the purpose of 
underwater manipulators is to interact with the environment. 
From Section 2.2, it can be seen that only a few works have 
focused on theoretical and experimental validation of the 
proposed control system, and even less papers have deployed 
the system in real-world conditions such as open waters.

The control and perception systems are essential parts in 
the design of effective motion planning algorithms for auton-
omous underwater manipulation. For example, information 
regarding the design of the control system can influence how 
close the waypoints generated by the motion planning sys-
tem have to be to avoid overshoot. A more obvious example 
is how the perception system needs to identify obstacles, 
for the planner to ensure obstacle avoidance capabilities. 
Moreover, lower computational real-time motion planners 
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should be designed to enable reactive on the fly behaviors 
and re-planning capabilities for underwater manipulators. 
One other aspect that needs to be considered in the motion 
and interaction planning framework is the design of planners 
that coordinate the motion of the vehicle and the manipula-
tor either in centralized or decentralized frameworks.

Finally, all of these subsystems need to directly interact with 
a hierarchical reasoning component, which is one of the sys-
tems which presents the highest difficulty. Previous research 
has shown different degrees of success in solving the control, 
perception and modeling issues; however, reasoning is still 
largely unresolved. RL is a suitable candidate for solving the 
problem by direct interactions with the environment, with the 
RL agent having a higher ranking in the hierarchy when inter-
acting with other subsystems. By maximizing a simple reward 
function, RL agents have been able to solve extremely complex 
problems [111]. However, RL has several issues: large amounts 
of data are required for learning [112], models are not easily 
transferable, agents do not give information on why specific 
actions are selected, and more importantly, some argue that 
simple scalar rewards are not enough to achieve general intelli-
gence [113]. Current alternatives in the literature are limited, but 
new developments in the field of neuroscience have shown that 
induction learning can be used to learn from few experiences to 
solve a wide range of tasks in an explainable way [114]. Another 
possibility is the development of multi-objective RL techniques. 
These types of intelligent agents utilize a multi-objective reward 
function, which can improve safety and explainability [113].

On top of these theoretical developments, one major 
aspect that we consider essential to ensure that autonomous 
underwater manipulation reaches the maturity similar to land 
and aerial robots is to have systems that are affordable and 
widely available. This requires a transition towards small 
electrical vehicle-manipulator systems, as the ones described 
in [115]. However, current autonomous UVMS systems are 
limited by the capacity of their batteries, which reduces their 
autonomy, requiring frequent recall of the system to the sur-
face for battery replacement or recharge. One solution to 
this problem would be the development of alternative in situ 
charging stations. Some preliminary studies have been done 
in [116]. Furthermore, efforts should also be made towards 
the development of components that are both energy and 
computational efficient. This can extend the mission dura-
tion, and operative range, while saving time, resources and 
limiting carbon emissions. Another important step that 
can be made towards the progress and wide adoption of 
autonomous underwater manipulators is the development 
and active maintenance of simulators and open- source soft-
ware-hardware architectures. Such tools would allow users 
to rapidly prototype and develop new algorithms, lowering 
entry cost. However, such efforts must be done by the com-
munity at large.

Conclusion

This survey presents the state-of-the-art work done in the 
field of dynamic modeling, control, motion planning, and 
perception in the context of underwater manipulation. In the 
past years, significant research has been done in these areas, 
contributing towards the maturity of autonomous underwater 
intervention. Data-driven and physics-based modeling tools 
have been designed, adaptive force/position control archi-
tectures have been studied, and optical and laser systems 
have been used for visual perception systems. Search-based, 
sample-based, and optimization-based motion planning tech-
niques have been applied for underwater intervention.

In this paper, we discuss the interconnections between 
modeling, control, perception, and planning, and the impor-
tance of designing approaches that consider these dependen-
cies. To achieve the same level of autonomy for underwater 
manipulation that terrestrial and aerial systems have, it is 
important to understand how the individual components 
influence each other, and create architectures that actively 
consider this aspect.

Lastly, we want to stress the importance of open-source 
software and hardware. Having open access to designs, and 
the ability to collaborate, can facilitate the advancement of 
new technology in the domain of autonomous underwater 
intervention, and can accelerate deployment to various 
industries. It can also serve to increase affordability and 
access to underwater technology.
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