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Abstract
Purpose of Review The goal of this paper is to review current developments in the area of underwater robotics regarding the 
use of AI, especially in model learning, robot control, perception and navigation as well as manipulation.
Recent Findings AI technologies and advanced control techniques are finding their way into robotics systems to deal with 
complex and challenging conditions and to equip them with higher levels of autonomy.
Summary Although AI techniques and concepts are already a focus area in research on autonomous underwater systems, 
broad adoption to commercial systems is still in its infancy. Nonetheless, major advances have been done in recent years, 
especially on integrating different capabilities (perception, navigation, advanced control) in a single system and with first 
approaches on interaction and autonomous manipulation.
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Introduction

Various socio-political transformations in recent years, such 
as climate change or the steadily growing world population, 
require and promote new technologies and the creation of 
the corresponding infrastructure. This “Green New Deal” 
has a major impact also on the maritime economy [1]. For 
example, existing offshore installations, especially in the oil 
and gas industry, will have to be checked much more fre-
quently and thoroughly than before for their environmental 
compatibility and a vast number of new offshore parks with 
corresponding foundation structures are being created in the 
area of offshore wind energy. Aquaculture plantations take 
up space in sensitive local ecosystems and require mainte-
nance and monitoring above water and especially underwater 

and on the seabed. The attempt to better understand the 
large- and small-scale interrelationships and processes in 
the oceans and to further investigate the effects of interven-
tions in these ecosystems is also leading to an increase in 
marine research infrastructures, such as semi-autonomous 
measuring stations in the sea.

All these infrastructures, some of which are quite com-
plex, must somehow be built, monitored, maintained and, 
if necessary, dismantled in the future. It is foreseeable that 
the capacities of conventional diving operations will not 
be sufficient [2, 3]. Diving operations are also dangerous, 
highly dependent on weather, wind and waves and only pos-
sible down to shallow depths. The deeper they are, the more 
expensive and dangerous to human health they become.

So what can be done? Ignoring the dangers and simply 
not looking and not carrying out repairs at all or only when 
a damaging event occurs is clearly not an option. Making 
the design and construction of subsea facilities so robust and 
self-sustaining will not be realistically a viable path either; 
nature and time will lead to failures sooner or later. As in 
other industrial sectors, we will have to automate large parts 
of these necessary processes, but not in the traditional sense, 
such as in conventional factories with high plant density 
and very frequent recurring identical processes. Rather, we 
will have to gradually increase the degree of autonomy of 
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intelligent systems, in which the use of artificial intelligence 
is playing a crucial role.

In the early stage of robotics and AI, one prominent goal 
was to build embodied intelligent systems [4]. Some see AI 
as a field of research that emerged from cybernetics or even 
as a subdomain of robotics, and others see all of robotics 
nowadays as a sub-field of AI (a good overview on this is 
given in [5] and [6••]), so basically all advances in the field 
of maritime robotics would somehow qualify as “AI”. In the 
following, however, we will take a closer look and discuss 
where artificial intelligence is applicable in the different lay-
ers of AUVs (autonomous underwater vehicles) and how this 
can lead to intelligent behaviour and robust systems that can 
solve challenges in harsh maritime application scenarios. We 
will furthermore elaborate on selected topics in the area of 
model learning for vehicle control and manipulation as well 
as navigation and environment perception.

AI in Underwater Robotics

Machine learning plays a dominant role in the current per-
ception of AI, and it is also indispensable in many domains 
of maritime robotics. However, AI has significantly more 
manifestations that are being used in various areas of 
unmanned underwater vehicles [7••], be it in classical 
remotely operated vehicles (ROVs), gliders, crawlers up 
to fully autonomous intervention AUVs like the Cuttlefish 
depicted in Fig. 1 and all of their (hybrid) variations.

Not taking into account the use of AI-related techniques 
already in the concept and construction phase of unmanned 
underwater vehicles (UUVs), major areas that benefit 
from or imply AI in maritime robotics are as follows (top-
down): (1) mission planning, spatio-temporal scheduling, 
multi-robot deployment coordination and logistics (see [8, 
9•], [10]); (2) mission decomposition, task execution [11] 
and action monitoring [12], behaviour composition using 
behaviour trees [13]; (3) constraint-based path planning 

with consideration of adaptive capabilities, sensor cov-
erage planning etc. [14•]; (4) guidance and navigation 
including SLAM and similar probabilistic sensor-fusion 
approaches [15], machine learning of system disturbances 
(for example ML-based magnetic field distortion compensa-
tion) [16], underwater obstacle avoidance [17, 18], docking 
and homing [19]; (5) environment perception and -repre-
sentation [20], object detection and classification [21•]; (6) 
introspection and failure detection [22, 23]; (7) model-based 
control (see the “Modeling” and “Control” sections); (8) 
object grasping and manipulation, interaction with subsea 
structures (see the “Control”  section).

There have been significant advances in all of these top-
ics of robotics in recent years, which will find their way into 
maritime robotics or were even driven by UUV research, like 
the aspects discussed in the following.

Modeling

A robot model is a fundamental tool to predict the behaviour 
of a system and thereby facilitate trajectory planning, con-
trol and localization. In the marine and underwater domain, 
models are typically computed as the combination of Newto-
nian rigid-body dynamics, hydrostatic effects due to buoyant 
forces and hydrodynamics due to the interaction between the 
robot and its surrounding fluid. Given a geometric represen-
tation of the robot and the physical parameters of the sur-
rounding fluid, its motion within the fluid can be computed 
using the Navier-Stokes equations. This approach however 
is impractical for any robotic application since, first, full 
knowledge of the environmental parameters must be accu-
rately estimated, and second, solving a high dimensional 
problem like the Navier-Stokes on board of a robot’s com-
puter is computationally infeasible.

Literature such as [24] provides finite-dimensional 
approaches to approximate the hydrodynamics of under-
water rigid-bodies, and thereby provides computationally 
feasible solutions that could be used to design model-based 
control and observer algorithms. This has become a widely 
accepted set of equations for motion for unmanned under-
water vehicles, expressed as

where � is a vector representing the 6-DOF velocities in a 
body-fixed frame, and �i

b
∈ SO3 is a rotation matrix from 

the body-fixed frame {b} to an inertial frame {i} . The rest of 
the parameters can be describer as follows: M represents the 
combination of rigid-body and added inertia, C(�) the Corio-
lis and centripetal forces, d

�
(�) the hydrodynamic damping 

effect, b restoring effects due to buoyant and gravitational 
forces, and � represents external forces and moments applied 
on the body.

(1)� = M�̇ + C(�)� + d
�
(�) + b(�i

b
)

Fig. 1  Dual-arm intervention 
AUV Cuttlefish hovering in 
upright manipulation pose in 
front of a subsea panel at DFKI 
RIC’s test basin
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While the inertia, Coriolis and restoring terms are gen-
erally standardized in the literature, the damping term is 
yet one of the most uncertain and hard to model terms. As 
described by [24], hydrodynamic damping is mainly due to 
dissipative forces caused by forced oscillations, viscous skin 
friction, lifting forces and vortex shedding. Several manifes-
tations of damping models based on various approximations 
are reported in the literature. The author of [25] identified 
eight different damping models which are labeled as Fossen 
[24], uncoupled, Prestero [26], Coe [27], Linear, Gertler-
Hagen [28], pitch-yaw and McFarland-Whitcomb [29]. 
Each of these reported models assumes different properties 
of vehicle geometry and fluid parameter and thus differs in 
parameter complexity and coupling effects.

The main challenge when modeling a certain robot is 
to select the most optimal model that fits the application 
and populates it with the true coefficients that represent the 
motion of such robot most accurately. Two paradigms stand 
out in the literature when approaching this problem: (1) 
system identification (SI) and (2) model learning. SI is one 
of the most popular approaches used to estimate the model 
parameters where observations of the vehicle motion states 
are gathered in an experimental setup. An optimization pro-
cess is run to adjust the model parameters while minimizing 
the error between the observations and predictions. Model 
learning on the other hand is a pure data-driven approach 
where no assumptions about a fixed mathematical form of 
the model are considered. A hypothesis model that relates 
the robot’s states and actions is built directly from the data 
using machine learning techniques. We review next SI and 
model learning approaches applied to underwater vehicles.

System Identification One of the most common techniques 
for parameter identification is the least squares (LS) methods 
which is an optimization algorithm that minimizes the quad-
ratic loss between the observed and predicted data points. 
Several studies such as [30–37] addressed the identification 
of low-order decoupled hydrodynamic models using LS 
techniques. These studies reduced the dynamics of the sys-
tem to a set of linearly independent differential equations, 
each representing the motion of the system in one degree 
of freedom (DOF). To identify the model of the vehicle at 
hand, various state observers were utilized to gather the nec-
essary measurements.

A sensor fusion approach to observe the states of tor-
pedo-shaped AUV was presented in [38, 39], where a model 
decoupled into three simplified slightly interacting subsys-
tems (speed, steering and diving) was considered. In these 
studies, the authors compared the performance the 3-DOF 
coupled model and an uncoupled model showing that the 
coupled model outperformed its uncoupled counterpart 
when evaluated on the same dataset.

An alternative optimization method to LS based on the 
minimization of a Lyapunov candidate function was pre-
sented in [40]. The method presented could be run iteratively 
and without the need of explicit acceleration measurements. 
The authors evaluated this method on a ROV to identify a 
decoupled model, showing that the model parameters remain 
bounded during identification. This work was extended later 
by [29, 41] to a identify the parameters of a 6-DOF fully 
coupled model.

A novel identification method based on a null-space 
least-squares optimization was presented in [42] to identify 
a 3-DOF fully coupled second-order modulus model. Only 
given that the net buoyant force is known beforehand, the 
authors report being able to simultaneously identify both 
the vehicle and actuator models, contrary to the rest of the 
literature which required the actuator model to be identified 
beforehand.

An approach based on a global derivative-free black-box 
optimization was presented in [43]. The authors identified 
a 4-DOF model of the Girona 500 AUV, representing the 
surge, sway, heave and yaw coordinates. The presented 
methodology could be applied on-line due to the iterative 
nature of the optimization algorithm. A framework based 
on recursive least squares (RLS) optimization was presented 
in [44] to identify the model parameters of a small ROV. In 
addition to the parameter estimation module, the authors 
presented state estimation, collision avoidance and excitation 
modules to run the identification process in an unsupervised 
fashion.

An on-line identification method was presented in [45] 
which takes an initial crude model that was developed from 
theory. The model parameters are then optimized using a 
Nedler-Mead simplex algorithm by running a set of open-
loop maneuvers with the vehicle. In this work, a decoupled 
model in yaw, pitch and depth coordinates was selected.

In a comparative study, the authors of [46] evaluated five 
different hydrodynamic models with varying complexities 
using an ROV for gathering the required data. The study 
reports that a 3-DOF coupled second-order modulus model 
outperformed uncoupled model variations. This work was 
later extended to a fully coupled 6-DOF Model in [29, 47], 
showing again that the coupled model outperforms uncou-
pled ones.

Two comparative studies [25, 48] evaluated the perfor-
mance of the eight different viscous hydrodynamic models 
discussed above. Both works report that the Mcfarland-Whit-
comb [29], Gertler-Hagen [28] and linear models achieved 
the lowest errors. In both works, the identification was done 
using a dataset collected by a small torpedo-shaped AUV.

Model Learning From our perspective, model learning for 
underwater vehicles is yet understudied in comparison with 
system identification for analytical models.
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A multi-layer perceptron (MLP) architecture was pre-
sented in [49] to identify only the damping term of the 
model. The authors tested the proposed methodology using 
a simulation of an AUV and no real sensory data was consid-
ered. Another work that used a simulated AUV to generate 
training data was presented in [50]. The authors compared 
an MLP and a recurrent neural network (RNN) architecture, 
showing a slight improvement of the RNN performance over 
the MLP.

A least squares support vector regression (LS-SVR) was 
used in [51] to identify the Coriolis and damping terms of a 
model underwater vehicle by using towing tank experimen-
tal data. This method was validated only using a simulated 
model. An auto-regressive neural network combined with 
a genetic algorithm was used in [52] to learn the dynamics 
of a simulated AUV with variable mass due to a payload 
change. Another simulation based study was presented in 
[53]. The authors propose a symbolic regression method to 
automatically construct a parametric model through genetic 
programming from simple mathematical components. A 
multi-output Gaussian process regression (GPR) was used 
in [54] to identify the dynamics of a simulated 6-DOF AUV. 
The authors showed that the multi-output GPR manages to 
outperform a RNN-based approach.

The authors of [55] used locally weighted projection 
regression to compensate the mismatch between the phys-
ics-based model and the actual navigation data an AUV. 
The learned model was validated on experimental data 
to improve the performance of an extended Kalman filter 
(EKF)–based observer. A comparison of different machine 
learning methods was evaluated in [56]. The results showed 
that ML-based identification outperforms the LS approach; 
however, the experiments were for each DOF independently. 
In [57], several variants of support vector regression (SVR) 
approaches were compared to the McFarland-Whitcomb 
and Gertler-Hagen approach identified with LS. The authors 
showed that generally SVR-based models outperformed the 
physics-based approaches, with a distance-weighted-kernel 
SVR achieving overall the best performance. This method 
was extended in [58, 59] to an online framework with added 
nodes for including and pruning data samples, keeping a 
consistent performance while changing the system dynam-
ics. This methodology was further adapted in [60] using a 
long short-term memory (LSTM) network with a memory-
efficient rehearsal method to reduce the effect of catastrophic 
forgetting.

Control

To ensure trajectory tracking or station keeping in the pres-
ence of disturbances and uncertainties, motion control is 
a crucial subsystem of AUVs. Furthermore, most ROVs 
feature motion control systems to relieve the operator from 

specific tasks like depth or heading control. Consequently, 
motion control has been a focus of underwater robotics 
research for several decades and a variety of control archi-
tectures have been proposed. An overview of common con-
trollers is presented by [61] and [62]. Compared to other 
fields of robotics, the motion control for UUV faces unique 
challenges that must be addressed. For instance

• Hydrodynamics are highly non-linear, time varying and 
subject to a high degree of uncertainty;

• The dynamic behaviour varies with payload, requiring 
the motion controller to adapt;

• The heterogeneity of actuation types on a single vehicle, 
e.g. thrusters, control surfaces, buoyancy engines and 
electric/hydraulic drives on a manipulator;

• Thrusters are characterized by relatively slow dynamics 
and control rates;

• Underwater vehicles are often under-actuated with cer-
tain degrees-of-freedom remaining uncontrollable.

An additional control problem originates when equipping 
the underwater system with a robotic manipulator, which 
still poses big challenges for its real-world deployment 
[63–65]. One challenge is due to the the uncertainty and 
complexity of the vehicle and hydrodynamics models, as it 
has been previously mentioned. Additionally, it is especially 
relevant due to the dynamic coupling of forces between 
manipulator and vehicle, that is, the motion of the manipu-
lator (and possible contact forces with the environment) can 
disturb the motion of the vehicle [66]. On the other side, and 
as previously noted, the fact that most vehicles are under-
actuated (i.e. equipped with less actuators than degrees of 
freedom to be controlled) might make the manipulation 
more complicated, since it requires of higher dexterity and 
precision [67]. Worth mentioning is a recent a paper describ-
ing the control architecture for the “Ocean One” underwater 
humanoid system based on whole-body control strategies as 
well as initial experimental field trials [68]. Despite those 
and other remarkable results and recent advances, the manip-
ulation capabilities and range of operations of underwater 
systems are still very limited in practical application due 
to the lack of sufficient dexterity and autonomy. Moreover, 
the current control strategies still do not consider the vehi-
cle-manipulator system as a homogeneous system, thus not 
exploiting the full possibilities that such advanced control 
strategies would also bring for dexterous manipulation.

In recent years, modern control techniques based on 
tools and methods from the field of AI have been devel-
oped to tackle some of these challenges. Notably, this 
includes various flavours of machine learning (mostly 
reinforcement learning) and fuzzy-logic based control 
as well as optimization and decision-making (optimal 
control). Furthermore, AI methods have been proposed 
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in combination with classical control schemes. The fol-
lowing will present recent advances in AI-based control 
techniques in the field of underwater robotics.

Reinforcement Learning With the advent of reinforcement 
learning (RL) and the promising results this framework 
has been showing in various robotic applications such as 
manipulation and indoor navigation, the marine robotics 
community has been tending to further explore this field for 
providing solutions where model uncertainty and environ-
mental disturbances are a main hindrance to model-based 
or classical control approaches. The ability to learn control 
policies from noisy and high-dimensional sensory inputs 
could be a potential benefit for marine robots to achieve 
adaptive behaviour in challenging and harsh environments.

Deep deterministic policy gradient (DDPG) was used 
by [69] to perform 5-DOF waypoint navigation in an 
end-to-end fashion to derive a control policy that takes 
as input the raw sensor information. The position and 
velocity of the AUV w.r.t the goal and produced thrust 
were taken as input signals to reach a dynamic goal that is 
defined by a small neighbourhood around the goal point. 
The approach was tested using a simulation while using 
a reward function comprising of euclidean distance and 
thruster usage. The controllers adaptability was tested by 
simulating thruster failure wherein one of the thrusters was 
intentionally switched off during testing. Another study by 
the same authors [70•] attempted to achieve continuous 
domain control of a real AUV, based on raw sensor input. 
The authors used a deep RL actor-critic architecture tak-
ing linear and angular velocity readings from the AUV’s 
Doppler velocity log (DVL) and inertial measurement unit 
(IMU) and output direct thruster commands. The policy 
was first pre-trained in simulation for 500 training epi-
sodes, and then fine-tuned on the real system. The authors 
demonstrate that the RL agent was able to account for 
non-linearities of the AUV dynamics while keeping track 
of the given command.

The authors of [71] evaluated the performance of deter-
ministic policy gradient (DPG) to learn policies for solv-
ing problems such as depth control in the XZ-plane, curved 
depth tracking and seafloor tracking according to different 
target trajectories, while assuming constant surge velocity of 
the AUV. The authors compared their learned policy com-
parison model-based controllers linear quadratic integral 
(LQI) and non-linear model predictive controller (NMPC), 
showing that their method and NMPC outperformed LQI 
since it uses a linear approximation of the non-linear AUV 
dynamics. While the DPG achieved performance compara-
ble to that of NMPC, yet due to the availability of the tuned 
system model, the NMPC was able to achieve faster con-
vergence and smaller overshoot than the model-free DPG.

Another research that used DDPG was reported in [72]. 
The authors attempted to train a policy to perform tracking 
control for both straight and curved trajectories of an AUV 
in the xy-plane. The state-space was defined by the position 
and velocity of the vehicle, whereas the actions were repre-
sented as the motor torques. By training on simulation data, 
the authors compared the performance of their approach to a 
PID agent showing that the DDPG controller was both more 
robust and more stable than the PID controller.

The research in [73] focused on training a RL agent to 
perform a docking task. This study was also done in simu-
lation where a vehicle was modeled to maneuver only in 
the vertical plane. This work compared different controller 
such as DDPG, Deep Q-Network (DQN), PID and an opti-
mal control approach based on minimizing a cost function 
over a predefined time interval. This study concluded that 
the DDPG algorithm resulted in the shortest docking time, 
while PID control took the longest. However, the output of 
the DDPG policy showed a chattering behaviour that would 
be unlikely to be performed on a real system.

The authors of [74] presented a benchmarking study on 
DRL for a docking application of an AUV. Three state-of-
the-art model-free methods were evaluated, namely proximal 
policy optimization (PPO), soft actor critic (SAC), and twin 
delay deep deterministic policy gradients (TD3). An exhaus-
tive evaluation of reward shaping was performed, showing 
that TD3 achieved a consistent and efficient docking, in com-
parison to the other two methods.

A policy-search approach was presented in [75] to learn 
swimming gaits for a flipper-propelled hexapod robot. The 
authors proposed the use of a technique called probabilis-
tic inference for learning control for selecting swimming 
gaits without the knowledge of the system’s dynamics. A 
simulated robot was used to optimize the policy for several 
behaviours by bootstrapping from random exploration over 
controllers. The optimized policies were then transferred 
onto a real system resulting in substantially different behav-
iour than the hand-engineered controller.

[76, 77] presented an end-to-end vision-based approach 
for performing obstacle avoidance in highly unstructured 
underwater environments such as corals and shipwrecks. 
Although this method does not follow the RL state-action-
reward framework, a policy is learned using supervised 
behavioural cloning (imitation learning), by taking camera 
images as input and predicting the pitch and yaw deviations 
to drive the robot away from obstacles. This approach was 
extended in [78] where the learned policy was augmented 
by a goal condition, incentivizing the robot to reach a prede-
fined goal while simultaneously avoiding obstacles.

Fuzzy Logic Control Fuzzy Logic Control (FLC) has been 
studied extensively in the context of underwater robotics, 
e.g. [79–81] and [82]. A single input FLC is proposed by 
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[83] and [84] to reduce the design effort and simplify the 
control structure compared to conventional FLC. An in-
depth survey on this topic is provided by [85•]. In recent 
years, the research around fuzzy control for underwater 
vehicles has focused on hybrid solutions and extensions. 
[86] propose a fuzzy controller based on an adaptive neural 
network. Trajectory tracking using adaptive fuzzy control 
is reported by [87] and [88]. Adaptive fuzzy sliding mode 
control is presented by [89] and [90].

Optimal Control In recent years, optimal control, e.g. lin-
ear quadratic regulation (LQR) and model predictive control 
(MPC), has gained popularity in humanoid or aerial robot-
ics and was also proposed for underwater vehicles. Early 
examples include the work of [91, 92] and [93]. [92] pre-
sents MPC for the AUV yaw angle while [93] considers 
dive-plane control using adaptive LQR. More recently, [94] 
present an H-2 optimal controller for the kinematic control 
of underactuated AUV. [95] combine an optimal PD control-
ler with a robust filter controller to control an hovering AUV 
despite unknown hydrodynamic parameters. For underwater 
gliders, LQR is proposed by [96] and [97]. Since the early 
work of [92], motion control of underwater vehicles using 
MPC has been extended to two or more coupled DOF. [98] 
proposes a Lyapunov-based MPC for planar trajectory track-
ing for an AUV [99]. proposes kinematic MPC in combina-
tion with an adaptive dynamic controller for the trajectory 
tracking problem for a manned underwater vehicle. Experi-
mental results, however, are rarely reported. Notable excep-
tions are the following works [100]. proposes MPC for the 
operation of an AUV in hovering- and flight-mode. Depth/
surge-velocity-control and depth/pitch-control is developed 
for the different operating modes and verified experimentally 
[101] develop a nonlinear model predictive positioning con-
troller to reject estimated disturbances in 6-DOF. The con-
troller was verified using a hardware-in-the-loop simulation. 
A combination of nonlinear MPC and SMC was proposed by 
[102•] in which experimental results from pool tests using 
the Flatfish AUV [103] are reported.

AI‑Extended Classical Control The PID controller (propor-
tional integral derivative) and SMC (sliding mode con-
trol) are among the most widely used control methods in 
underwater robotics. Extending these well developed clas-
sical controllers with AI methods is a common approach 
to introduce the ability to adapt to uncertain or changing 
parameters, e.g. due to varying payloads or unmodelled 
hydrodynamics. In [104] the authors propose a fuzzy-based 
auto-tuning component to extend a classical PID controller 
for an AUV. The fuzzy reasoner takes as input the error 
and the error change and outputs updates to the PID gains. 
A similar approach is presented in [105]. The authors pro-
pose a PID auto-tuning algorithm using a neural network. 

The neural network is used to chose the PID gains online 
in order to minimize tracking error and achieve stability. 
The effectiveness of the approach is verified experimen-
tally in pool experiments. In [106], the authors propose a  
neural-network-based nonlinear SMC for underwater vehi-
cles. The neural network is introduced to approximates the 
umodelled hydrodynamics and estimate the vehicle velocity.

To conclude, several control strategies have been pro-
posed for underwater vehicles. Extensive research has been 
performed on sliding mode and fuzzy control; however, 
linear PID-based methods are still frequently used. Several 
advanced control strategies have been proposed in research 
with the focus on combining or extending previous meth-
ods and tailoring them towards specific vehicles. In recent 
years, optimal control and reinforcement learning is playing 
an increasing role in underwater robotics. Simulation results 
indicate the benefits of modern control strategies; however, 
experimental results from pool tests or field trials are rarely 
reported.

Perception and Navigation

Perception in the underwater environment is mainly done 
with acoustic or visual sensors [107]. Typical acoustic sen-
sors are acoustic measurement devices such as DVL (speed 
over ground, distance to ground), localization devices such 
as LBL and USBL (position relative to fixed stations) as 
well as imaging sonars such as multi-beam-echosounders 
(MBES), side-scan-sonars (SSS) or multibeam-sonars which 
all create an acoustic representation of the surrounding 
environment, often in the form of an image where the pixel 
intensity represents the degree of reflected acoustic waves. 
Visual sensors usually consist of a camera system together 
with an illumination source. These create two-dimensional 
images with the pixel intensity representing colour or grey-
scale information of the surrounding environment. A chal-
lenge of using such sensors is the the abundant sources of 
noise present in this natural environment: changes in water 
composition (salinity, temperature, depth), presence of air 
bubbles or disturbed sediment affect sonar sensors whereas 
turbidity affects visual sensors. Dealing with noisy data 
therefore becomes a main tasks for successful sensor data 
processing and interpretation. This is an area in which AI 
methods have proven very successful, and they have been 
applied to a number of tasks improving the results of text-
book approaches. One example of an area where AI methods 
can be helpful is the complex task of docking an AUV sys-
tem into a docking-station (see example in Fig. 2). While a 
number of approaches and physical solutions have been pro-
posed in literature (e.g. [108, 109]), most suffer from limita-
tions described above. In [19], a system combining the sen-
sor data from a camera system with a multi-magnetometer 
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sensor system to achieve docking guidance is described. 
The relative position between the marker target and the 
camera/magnetometer system was machine-learned using 
both an MLP network as well as a support vector regression 
approach in clear water, with the camera-based positioning 
as feedback signal. Afterward, the guidance could even be 
achieved if no camera image was present at all, leading to 
a much more stable system for a variety of environmental 
situations.

Another area which links the topics of perception and 
navigation closely together is SLAM (simultaneous locali-
zation and mapping). While initially realized in structured, 
indoor environments and with specialized sensors (such 
as laser-scanners), many vision-only systems have been 
described over the years. For the use with underwater robotic 
systems, SLAM has been proven to work in natural environ-
ments if additional sensors (such as orientation/compass, 
speed over ground, ambient pressure) are used in conjunc-
tion with visual/sonar sensors. One such example is the work 
by Eustice [110], as well as work by the authors [111, 112]. 
One of the key challenges in these algorithms is their robust-
ness to noise, which is addressed by fusing of a number of 
data sources to provide superior navigation properties to the 
vehicle which employ these [113, 114].

An opportunity of on-line sensor processing on a vehicle 
is the possibility not only to execute a pre-defined mission 
but to adapt this mission according to the measurements 
taken with various sensor systems. This is known as percep-
tion-based planning [115] and has many applications, e.g. 
interrupting a search-pattern of an AUV to follow a halo-/
thermocline encountered [116] or adapting a vehicle’s ini-
tially defined path to ensure complete sensor coverage of 
an area (coverage planning) [117]. The basic idea behind 
perception-based planning is to move the planning step for 
a mission from an off-line (preparatory) step into an on-line 
system running on the vehicle during mission execution. 
This on-line planner creates the initial mission similar to 

its offline counterpart (with fixed mission parameters and 
goals), but is fed selected sensor data which enables it to 
react to mission-relevant information and alter or re-plan the 
mission. A very basic example would be the case of obsta-
cle-avoidance [118], where a sensor (e.g. forward-looking 
sonar) detects an obstacle in the vehicle’s path and reports 
this to the on-line planning system. This system then tries to 
circumvent the obstacle while still reaching the mission goal, 
only aborting the mission if it cannot be fulfilled anymore.

Conclusions

The exploration and operation in underwater environments 
pose enormous challenges not only for humans but also 
for robotic systems. Though robotics and AI technologies 
advanced tremendously in the last 50 years in terrestrial and 
space applications, there has been a lower rate of robotics 
introduction in the underwater domain. However, in the last 
two decades, we are seeing an increasing interest in under-
water robotics, both by bringing existing research from other 
areas to the underwater domain and by developing novel 
approaches to deal with the unique conditions of that envi-
ronment. With respect to other more robotized areas (like 
the land-based industrial domain), underwater robotics is 
still in its infancy, however gaining rapidly momentum and 
recovering the gap. In contrast to other domains, and given 
the harsh environments, the autonomous capabilities are here 
of utmost importance. Currently, mainly systems developed 
by research institutes can show the integration of several 
autonomous capabilities in one system such as perception, 
advanced dynamic control, navigation, task planning, and 
even some initial manipulation and interaction capabilities, 
while mainstream adoption into the maritime industry is still 
pending.

In this paper, we highlighted some of the recent advances 
in AI for navigation and control of underwater robots and 
believe that the main challenge ahead lies in integrating 
these techniques in resilient and long-term capable autono-
mous systems in the first place, as well as in proving that 
such AI-enabled systems can function reliably in maritime 
real-world scenarios.
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