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Abstract
Purpose of Review Humanoid robots are versatile platforms with the potential to assist humans in several domains, from
education to healthcare, from entertainment to the factory of the future. To find their place into our daily life, where complex
interactions and collaborations with humans are expected, their social and physical interaction skills need to be further
improved.

Recent Findings The hallmark of humanoids is their anthropomorphic shape, which facilitates the interaction but at the
same time increases the expectations of the human in terms of advanced cooperation capabilities. Cooperation with humans
requires an appropriate modeling and real-time estimation of the human state and intention. This information is required both
at a high level by the cooperative decision-making policy and at a low level by the interaction controller that implements the
physical interaction. Real-time constraints induce simplified models that limit the decision capabilities of the robot during
cooperation.

Summary In this article, we review the current achievements in the context of human-humanoid interaction and cooperation.
We report on the cognitive and cooperation skills that the robot needs to help humans achieve their goals, and how these
high-level skills translate into the robot’s low-level control commands. Finally, we report on the applications of humanoid
robots as humans’ companions, co-workers, or avatars.

Keywords Humanoid robots · Human-robot interaction · Cooperation

Introduction

Employing humanoid robots in real-world scenarios is still
a challenge because of the inherent complexity of locomo-
tion, balancing, and interaction with humans or unknown
environments. However, their versatility and their anthro-
pomorphism make them the ideal platform to operate in
environments conceived and designed for humans. Several
research projects and international competitions have high-
lighted the potential of humanoid bipedal technologies [1,
2]: with their extended mobility in unstructured or cluttered
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environments, they can be used in a range of different appli-
cations, such as search and rescue, disaster response [1], and
aircraft manufacturing [2]. In the last decade, the advances
in mechatronics technologies made it possible for compa-
nies such as Honda, Boston Dynamics, and Agility Robotics
to produce prototypes and commercial platforms (ASIMO
[3], Atlas [4] and Digit [5], respectively) that showcase the
level of maturity required for robots to operate in the real
world. Yet, further advancements are required to integrate
such robots into our daily lives, where complex interactions
and collaborations with humans are expected.

In contrast to the structured working space of the labo-
ratory or production/testing site, the environment in which
the robots are expected to operate is characterized by a high
level of dynamic uncertainty, and by the presence of sev-
eral human collaborators or bystanders. In this context, the
robot must be able to socially and physically interact with
the human counterparts. It also needs to exhibit advanced
cognitive interaction skills to cooperate with human work-
ers, assisting them in their tasks. Figure 1 illustrates some
examples of human-humanoid interaction and cooperation,
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Fig. 1 Examples of human-humanoid interaction and cooperation: A social interaction with a Pepper; B cooperative load carrying with a Talos;
C passive physical interaction with an iCub; D iCub teleoperated by a human operator

where the robot’s degree of co-presence ranges from remote
(e.g., in teleoperation) to proximal, even in the human’s
peripersonal space.

In this article, we review the key elements of human-
humanoid interaction and cooperation. We present and
analyze the current achievements from a human-centered
point of view, considering that a humanoid robot interacting
with humans should help them improve their health or
working conditions. Figure 2 shows the interconnection
between the key building blocks that enable a robot to make
complex decisions and take actions to cooperate with a
human: it is meant to guide the reader through the different
topics and sections. In “Social and Cognitive Interaction”,
we discuss the principal issues in building cognitive and
social skills. In “Cooperation: a Decision Problem”, we
formalize the concept of physical human-robot cooperation,
while in “Motion Control for Physical Interaction” we

overview the main interaction control approaches that
enable low-level physical interaction between the robot
and the human. The knowledge of the human “state” is
required by both the high- and the low-level controls to build
human-aware control plans: hence, we present the main
methods used to model and perceive the humans in “Human
Perception and Modeling”. Finally, in “Applications of
Humanoids Interacting and Cooperating with Humans ”, we
report on the current main application of humanoid robots
interacting and cooperating with humans: humanoids as
personal assistants, co-workers, and avatars.

Social and Cognitive Interaction

Endowing humanoids with cognitive skills is a pivotal step
to safely blend them in our society. Such skills go beyond
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Fig. 2 Schematic drawing of the components involved in human-humanoid interaction and cooperation

the abilities of reasoning, exploration, and learning, and
are rather oriented towards a mutual interplay between
the humanoid “brain,” its physical embodiment, and its
environment. In this sense, cognitive skills emerge from
a proper and coherent exploitation of stochastic internal
models of the knowledge the robot has of itself and of its
surrounding. These models mediate past knowledge with
new perceptions and are continuously and incrementally
updated according to feedback from new experiences [6].
As inherently probabilistic, the models are not only able
to represent temporal information through short- and long-
term memories [7], but also spatial deixis [8] , surmounting
the limits of the Cartesian definition of space, embracing the
more flexible concepts of “here” and “there” and of “this,
“these,” “that,” and “those.”

A consistent social interaction is achieved when the robot is
perceived by the human partners as “believable” through its
appearance and through the consistency of its actions and its
social behaviors. Any physical or behavioral inconsistency
can be quickly spotted, perceived as “strange,” making the
robot become unacceptable for the human partners.

Because of their anthropomorphic appearance, humans
tend to spontaneously attribute social intelligence to
humanoid robots [9]. Designers can exploit and enhance
this tendency, inducing in partners the projection of traits,
emotions, and intentions typically associated with humans.
However, even if it makes robots more appealing and
acceptable, anthropomorphism raises the expectation people
have about their actual cognitive abilities. In this sense, the

behavior consistency requested to humanoids is not limited
to a coherent sequence of actions, but it is extended to the
challenge of being “readable,” “legible,” and “predictable”
by human partners [10]: the robot reveals its intentions and
its internal state through a coherent production of verbal and
non-verbal social cues. Achieving coherent robot behaviors
in response to the human reactions strictly relies on the
production of metrics, models, techniques, and algorithms
aimed at capturing and describing the dynamics of the social
interplay [11], and on the development of robot “socio-
cognitive” skills capable of explicitly taking into account
the human presence in their perception-cognition-action
loop [12]. This socio-cognitive skill will endow humanoids
with a sort of theory of mind [13], making them able to
attribute mental states, intents, emotions, and personalities
to themselves and to the others. Models based on such
concepts have already shown their potential and can be
particularly interesting for achieving engagement in long-
term interactions [14], where the customization of behaviors
becomes central.

The feeling of “illusion of life” [15], elicited by the
coherence between the humanoid’s embodiment, its actions,
and its social behaviors, can vary among the scenarios in
which such robots are employed, among category of users
and among people, being strictly dependent on the bias
they have towards humanoids, towards robots and, more in
general, towards technology.

To evaluate how people perceive robots, several ques-
tionnaires have been proposed, such as Godspeed [16], and
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Negative Attitudes Toward Robots Scale (NARS) [17].
Results from such questionnaires, together with human’s
behavioral metrics, are extremely useful tools to evaluate
the effectiveness of the social interplay with humanoids in
real-world scenarios [14].

Cooperation: a Decision Problem

Social and cognitive skills are critical to make the robot
believable and to ensure it can perform in day-to-day
interactions to significant endeavors. These skills are the
building blocks that enable a humanoid robot to pro-
actively cooperate with humans and help them achieve their
goals. Developing these skills requires a human-centered
design of the robot’s intelligence that at many decision
levels should integrate the goals and costs of the human’s
actions to plan suitable high-level assistance actions and
translate those decisions into the robot low-level control
commands. Figure 2 shows the interconnection between
these skills: to cooperate, the robots needs to formulate
the problem of finding the best sequence of actions that
assist the human in achieving their goals and minimizing
their costs, considering the constraints and limits of the
robots and the human as individuals first, then as interacting
agents. This requires also cognitive reasoning, in particular
taking the human perspective [13]. Solving this problem
requires high-level decision making capabilities, which are
then translated at a lower level into the modules producing
social and physical interaction behaviors, also translated
into lower-level motor commands for the robot.

Several approaches are possible to design this robot high-
level decision making system. Among those approaches, the
robot’s policy can be designed based on expert knowledge
or directly learnt through interactions with a human;
however, in both cases, this would require encompassing all
the possible encountered situations and the variety of human
reactions (needing a complete knowledge of all the possible
situations in the first case or an important amount of data
in the second one). In this section, we propose specifically
to consider the use of a planning approach to compute the
high-level robot’s intelligence.

Whereas a planning approach requires a representation
of the interaction situation, a detailed knowledge of its
dynamics, and an adaptation of the high-level strategy to
low-level controls, it still seems a promising direction to
us: (1) it can leverage generic models and algorithms to
automatically compute a robot’s strategy from the definition
of the collaborative task, (2) planning approaches are able
to deal with several sources of uncertainties like sensor
noises or uncertainties regarding the human behavior or
mental state, (3) planning approaches are generic and
various questions of paramount importance for collaborative

humanoid robotics have been represented and can merged
in that same framework like intention estimation [18], role
attribution and/or inference of user profile [19], and (4)
planning allows computing strategies considering the long-
term consequences of the robot’s behavior which could have
a huge impact in the decision process (e.g., when optimizing
the user’s fatigue).

More precisely, in a planning context, a collaboration
problem can be modelled as a multi-agent sequential deci-
sion problem where two agents, the human and the robot,
select actions according to their respective policies in a
coordinated way to achieve a common task, where typi-
cally cumulative shared rewards represent the common goal.
This problem can typically be addressed in game theory
framework, defining the agents’ strategies and the rewards.

Due to the difficulty in modelling the complex and
often unpredictable human behavior, the most common
formulations of human-robot interaction and cooperation
resort to single-agent problems: they only consider the
robot’s point of view, while the human is assumed as
part of the environment and modelled as purely reactive
agent with a known policy [20]. Solving a single-agent
problem consists in building the long-term robot’s policy
and potentially influencing the human reactions in order to
complete the collaborative task in the most efficient way
[21].

The robot decision problem is often formalized by a
Partially Observable Markov Decision Process (POMDP),
a general framework well suited to model different
collaboration situations faced by the robot: it assumes that
the robot is acting in an uncertain environment, described
by a Markov Decision Process (MDP) but the robot cannot
directly observe its underlying state. The uncertainty of
the human reaction can be represented by considering a
stochastic evolution of the system. A POMDP is usually
defined by the tuple: < S, A, T , �, O, r, b0 > [22]. At each
time step, the agent in a state s ∈ S performs an action
a ∈ A influencing the evolution of the state of the system
according to a probability distribution T (s, a, s′) = P(s′ |
s, a) and receives an observation o ∈ � depending on the
new state that has been reached and the observation function
O(o, s) = P(o | s). The agent has no direct access to the
state of the system but only to those observations. Using past
observations, the agent infers a belief-state, a distribution of
probability over the true state of the system, and makes their
decision based on this estimate.

Several algorithms can be used to build the optimal robot
policy (e.g., [23]), which may also include actions to gather
information about the human state and simultaneously
estimate the hidden variable conditioning their actions (e.g.,
their profile or objective) [24]. As such, POMDPs are ideal
to develop collaborative robot strategies in the absence of
structured rewards or structured cooperation instructions.
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One of the main difficulties in using this approach lies in
the modelling of the human behavior: the critical questions
are how to consider the expectation of the human towards
the robot and how they will adapt their policy depending on
the robot’s actions. Often, the interaction between human
and robot is structured along “roles,” e.g., leader/follower,
which may determine not only high-level decisions but also
low-level actions (e.g., stiffness in impedance control). For
example, in a strictly asymmetric leader-follower case, the
humans’ cognitive abilities can be used to supervise or to
lead the robots’ superior physical capabilities, whereas in
an egalitarian roles distribution, where the leadership is not
specified, the robot may need to continuously adjust its
own role, and consequently its behavior, according to the
human’s intention and estimated role [25].

Another difficulty is defining the right rewards, so that
the robot policy can truly help the human achieve their
goal. This is not an easy task since, usually, the utility we
would like to optimize is not reduced to a single dimension
and must consider all possible criteria. It might involve
not only the efficiency of the task achievement but also
the human ergonomics and physiological comfort and the
cognitive load, as well as unknown objectives [18]. This is
a problem of paramount importance due to reward hacking
problems [26]: the produced policy will optimize the given
reward but might have unexpected side effects that could be
counter-productive or dangerous.

Building policies able to simultaneously estimate the
hidden variables determining the human reactions and
consider long-term consequences of the robot actions are a
key component to build adaptive robots that collaborate with
humans in a proficient way.

Those models will turn out to be very useful in assistive
robotics in order to adapt the robot behavior to the user
profile and to their physiological status.

Motion Control for Physical Interaction

Once the cooperation strategy with the human has been
defined, and the robot has access to the human state
estimation, it has to be controlled adequately to enable the
physical interactions. The previous section discussed how
the robot can plan for cooperative actions, at the high level,
taking into account the human’s goals and states. High-
level decisions must be translated into low-level commands,
typically by means of desired behaviors, implemented as
desired trajectories, which need to be translated into motor
commands, as represented in Fig. 2. The critical aspect
that distinguishes a robot motion controller for cooperation
with humans from a generic one for the robot alone in
the environment is to consider the human in the design
of the motion control, i.e., to design a “human-aware”

controller [27]. This means to consider the human state,
their dynamics [28], their intended movement [29], and
use the predictions of their future states to plan suitable
robot motions and physical interactions. These interactions
often result in complex behaviors, where the humanoid
needs to simultaneously control various aspects of its
internal and external motion like locomotion, posture,
gaze, manipulation, and contact stability. All these aspects
are usually considered different tasks and the whole-
body controller becomes a multitask optimization problem.
This is classically formulated as a Quadratic Program
(QP), where the control input (the motor torques, the
joint positions, or velocities) is found so to minimize a
multivariate quadratic function related to the difference
between the actual value of the tasks and their references.
The QP formulation provides extreme flexibility in the
choice of the type of control, allowing one to solve inverse
kinematics [30], inverse dynamics [31], or momentum-
based [27] control problems for both position-controlled
and torque-controlled humanoid robots.

In dynamic environments and in the presence of
humans, momentum-based control methods on torque-
controlled robot are generally the preferred choice. These
approaches in fact can ensure safety and contact stability
under unexpected physical interactions [32], so they are
appropriate to handle possible collisions between the robot
and the humans during the robot’s trajectory execution.
In other situations, the robot has to adapt its motion to
that of the human, considering some variability in the
execution of the various task references and considering
perceived external forces. In this case, to achieve a stable
robot behavior while maintaining contacts with the human,
compliant control approaches such as impedance control
[33], and admittance control [34] have been applied.
Early works proposed separation of tasks: impedance-based
upper body manipulation with lower body balancing [35].
However, this solution is not well suited for bipedal walking
under physical interactions and whole-body control is better
suited [31].

During interaction, one key point for the robot is the
computation of the reference task: it usually defines the
robot motions, but it may also be used to influence the
human motion through physical contact. An optimized
choice of the interaction trajectory (for instance, at the end-
effector) could be used to reduce the human effort [36]
and make the cooperation more comfortable and safe [37].
This computation is highly dependent on the estimated
human intention. Following the terminology of [36], we
could divide the robot strategies into reactive and proactive.
In reactive strategies, the belief of human reference task
is computed online and the robot react accordingly. These
kinds of approaches are highly dependent on the sensors
integrated in the robot; for this reason, a discussion
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about them has been presented in “Human Perception and
Modeling”. On the other hand, in proactive strategies,
the robot predicts a long-term belief of human reference
task and plan solutions accordingly [38]. Once the robot
has access to the human current (reactive) or long-term
(proactive) intention, it can use the information to compute
its own reference task. The final task computation depends
on the human intention and the estimated role as cooperative
agent [39].

A limitation of most existing controllers for physical
human-robot interaction is the representation of the human
state, which is vastly simplified as an external force or
end-effector’s pose; this limits the quality of the solutions
proposed by the robot and the extent to which the robot
can reason about the human. For this reason, recent work
[27] proposed to extend the classical quadratic program
whole-body formulation in the case of human-humanoid
physical interaction, and to include the human model in
the system model. This allows to reason about the whole-
body dynamics of the human, considering their dynamics
(e.g., joint torques), their posture, and even ergonomics-
related quantities that may be instrumental to ensure a safe
and ergonomically optimized collaborative motion. One key
issue is how to model the human kinematic and dynamic
properties. Depending on the extent and objectives of the
cooperation, humans could be represented by a simple
linear inverted pendulum [40] or a more complex Digital
Human Model (DHM) [27]. Choosing the correct level
of abstraction and simplification in the human model can
make the difference in real-time performance. In the next
section, we will discuss how to model the human and
how to estimate their state based on multi-modal sensor
measurements.

Human Perception andModeling

Similarly to other cooperative robots, humanoid robots need
to estimate the human physical, physiological, and cognitive
state in order to collaborate with their human partner
effectively: as discussed in the previous sections and shown
in Fig. 2, the human state is a critical input for the high-
level decision planning and lower level motion planning and
control. The perception of the human state relies on sensors
that can be placed in the environment, embedded on the
robot, or worn by the human. A list of sensors commonly
used to perceive humans is presented in Table 1. State-
of-the-art motion capture techniques remain widely used
to provide high-fidelity and high-frequency measurements
of human kinematics. While human kinematics can serve
to inform about human’s intent, the on-line estimation of

human dynamics is receiving a lot of attention since it
enables the robot to consider aspects such as balancing,
or humans’ internal force distribution [43]. Dynamics
estimation requires a measure of external forces, either via
generic force/torque (F/T) sensors that can be embedded
in the robot, or via specific sensors such as force plates
for human/ground reaction force. Wearable force sensors
such as sensorized insoles are also of interest due to their
portability [45].

Measurements of physiological quantities are also com-
mon in human-robot cooperation. Physiological quantities
can be used as such, for instance, electromyography (EMG)
signals have been used to estimate human muscle fatigue
[47]. But physiological quantities can also serve to estimate
the human cognitive state: electrocardiography (ECG) and
galvanic skin response (GSR) signals have been linked to
stress and anxiety levels [58], while eye gazing was corre-
lated with engagement and proactivity levels during social
human robot interactions without physical contact [55].

In more recent work, there are indications that individual
factors such as personality can affect the human posture
and motion while interacting with a humanoid robot [59]
(motor contagion), or even the level of trust towards the
robot [53]. These emotional and perception factors should
also be monitored by the robot in order to provide mental
safety during interactions [60].

Finally, the abovementioned measurements are often
used in combination with a model of the human body, in
order to retrieve further information. Many levels of details
exist to represent the human body [61], but the most widely
used in human-robot cooperation are the rigid body and
musculoskeletal models. In rigid body models, the human
body is represented as a kinematic chain of rigid segments
linked together by ideal joints. This is typically done to esti-
mate joint torques via inverse dynamics [43]. Such robotics-
based models are also used to simulate human motion at a
low computational cost [62]. Musculoskeletal models [63]
include muscles and possibly tendons, providing a better
degree of realism, obviously at a higher computational cost.

Applications of Humanoids Interacting and
Cooperating with Humans

Humanoid robots are versatile platforms that can interact
with and help humans in different contexts, relying on the
cooperative and human-aware decision and control skills
discussed in the previous sections. We discuss three main
scenarios and provide examples of recent work listed in
Table 2, reporting the type of robot and its control strategy
used for each application.
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Table 1 Sensors commonly used in human-robot studies to measure the human’s movement and behavior

Measure Sensor Pros Cons Applications

Whole-body
kinematics

Opto-electronic
motion capture

Accuracy (gold stan-
dard)

Hardly portable,
long equipment
time, occlusion,
camera field of view

Bi-manual human-
humanoid handover
[41]

Inertial motion capture Wearable, no occlu-
sion, no field of view
issue

Drift, requires model
calibration

Humanoid teleoper-
ation [30]

RGB video camera Cheap, less invasive
solution

Image processing
(low accuracy), field
of view, occlusions

Human pose estima-
tion with deep learn-
ing [42]

Forces Force plates Accuracy (gold stan-
dard)

Hardly portable,
expensive

Estimate human
dynamics [43]

Sensorized insoles Wearable Low accuracy, often
only pressure com-
ponent

Estimate human CoP
[44, 45]

Force/torque sensors Directly measure
contact forces,
accuracy

Expensive, not
portable

Estimate human
motion intention
[46]

Muscle activity Surface EMG (sEMG) Non-invasive Requires calibration
at each session

Estimate arm stiff-
ness modulation [47]

High-density sEMG Non-invasive, pre-
cise movement
classifications

Relatively new in the
literature, complex
processing

Generate robot input
from arm muscle
synergy [48]

Brain activity Electroencephalography
(EEG)

Non-invasive Not portable, cali-
bration

Command high-
level tasks for a
humanoid [49, 50]

Predict attitude
towards humanoid
robots [51]

Cardiorespiratory
activity

Electrocardiography
(ECG) monitor

Heart rate Sensors have a trade-
off between portabil-
ity and accuracy

Estimate cognitive
workload dur-
ing robot-assisted
surgery [52]

Photoplethysmography
(PPG)

Cheap alternative to
the ECG monitor,
heart rate

May interfere in
manipulation tasks

Investigation of
mental workload
[53]

Gaze Eye tracker Gaze direction, and
Eye blink rate

Generally not
portable, it may
generate excessive
physical loads

Estimate engage-
ment and proactivity
levels during
social human robot
interactions [54, 55]

RGB-D video cam-
era

Gaze, facial expres-
sion

Visual interest clas-
sification [56]

Speech Microphone Cheap, portable Natural language
processing is
complex

Enables verbal com-
munication [57]

Humanoids as Companions: Coaches and Education
Tools

Humanoids endowed with social skills have the potential to
assist humans in their daily endeavors (i.e., at a supermarket,
at school, at work, or at home) and as tools for education
and rehabilitation. The anthropomorphic shape coupled
with advanced cognitive and social behaviors, gestures, and

communication channels, can favor legibility, engagement,
attunement, and trust [51, 54].

The small humanoid NAO from Softbank Robotics is a
representative example of a robot that has been employed
in several researches as classmate [83] or tutor [84] in edu-
cational environments, as storyteller for children [85], as
fitness companion [86], as personal assistant in eating disor-
ders [87], and diabetes management [88]. Such applications
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Table 2 Examples of human-humanoid interactions classified by task/application: role assigned to the robot w.r.t. to the human partner, robot
type, and its control strategy

Tasks/applications Robot role Control strategy (robot) [Ref.]

Companion robot, Section “Humanoids as
Companions: Coaches and Education Tools”)

Dancing in couple Follower Coupled linear inverted pendulum-based compliant con-
troller (Dance Robot)

[64]

QP controller with skin-like sensors (REEM-C) [65]

Leader Coupled linear inverted pendulum-based compliant con-
troller (Dance Robot)

[66]

Assistance in standing up Mutual adaptation Child-robot [67]

Non-specified QP controller in combination with finite state machine
(HRP-4)

[68]

Momentum based whole-body controller (iCub) [27]

Healthcare physical assistance Non-specified QP controller in combination with finite state machine (Pepper) [69]

QP controller in combination with finite state machine
(HRP-4)

[68]

QP controller in combination with finite state machine (RIBA) [70]

Co-worker robot, Section “Humanoids as
Co-workers: Optimizing the Human
Ergonomics and Performance”)

Lifting and carrying objects, guided walking Follower Compliant upper body impedance controller (Cosero) [71]

Hybrid force-position controller (COMAN) [72]

Hybrid force-position controller (ARMAR-6) [73]

Whole-body controller: model predictive control at veloc-
ity level (iCub)

[74]

Stack of tasks (HRP-2) [75]

Variable role Compliant controller and state space learning (HRP-2) [76]

Non-specified Multi-robot QP controller at velocity level (HRP-4) [28]

Jerk control (iCub) [32]

Kinesthetic teaching of new tasks Follower Learning by demonstration and optimal control (HOAP-2) [77]

Impedance upper body, zero torque control (iCub) [54]

Impedance control (Justin) [78]

Division controls: upper body active compliance with
lower body reaction null space method (HOAP-2)

[35]

avatar robot, Section “Humanoids as Avatars:
Enabling Humans to Act in Remote Environments”

IED response Follower Momentum-based whole-body QP controller (Valkyrie) [79]

Teleoperation Follower Whole-body controller and model predictive controller
at velocity level (iCub)

[30]

Telexistence Follower IK-based controller (TELESAR VI) [80]

Search and rescue Follower Momentum-based whole-body QP controller (Atlas) [1]

Spacecraft maintenance Follower Not specified (G1) [81]

Dance show Follower ID-based QP controller (HRP-2) [82]

448 Curr Robot Rep (2021) 2:441–454

section*.12
section*.12
section*.13
section*.13
section*.13
section*.14
section*.14


heavily rely on the socio-cognitive abilities of the humanoid
that become an instrument for inducing a sustained engage-
ment into a shared activity. Humanoid robots have been also
successfully applied both as diagnosis instruments as well
as remediation tools for neurodevelopmental deficits (e.g.,
autism and attention deficit/hyperactivity disorder), aging,
and neurodegenerative diseases such as Alzheimer [89].

Finally, humanoids could also be teleoperated to enable
“distant” social interactions. Their human-like embodiment
simplifies the projection of the human operator into the
robotic body and can induce a sustained engagement into
shared activities with the human partner in the remote site.
More details about humanoid teleoperation are discussed
later (“Humanoids as Avatars: Enabling Humans to Act in
Remote Environments”).

Humanoids as Co-workers: Optimizing the Human
Ergonomics and Performance

Collaborative robots have received a lot of attention lately
due to their potential to act as co-workers that can pos-
sibly improve working conditions. While initially focused
on fixed-base robotic arms, research in this domain is now
moving towards robotic manipulators mounted on wheeled
mobile bases [90]. Even if providing more mobility, these
robots remain largely limited to indoor settings with flat
and uncluttered ground. Humanoid robots instead could
adapt to different environments and leverage their versa-
tility. Even if their capabilities have been mostly validated
in laboratory setups, the ultimate goal is to make them
proactively work side by side humans without the need of
protective cages [46]. To this end, they should also exhibit
advanced interpersonal communication skills, and be able
to learn new operations and new tasks through social inter-
action [91].

Even though most approaches proposed for robotic
manipulators can be ported to humanoids with limited adap-
tation, examples of legged humanoids as co-workers in a
physical interaction are still scarce. Most human-humanoid
collaboration studies were focused on object carrying. For
instance, Agravante et al. proposed a control framework
that takes into consideration constraints for both walk-
ing and interacting with a human in a carrying task [46].
Otani et al. proposed to take into account the whole-body
dynamics of the human to control an interacting humanoid
robot [28]. Similarly to [92] with a mobile manipulator,
Rapetti et al. propose to improve human ergonomics by
extending their humanoid whole-body controller to try to
minimize the estimated torque, and joint velocities from a
human partner [93].

To ease the balance issues faced in legged locomotion,
humanoid torsos on wheels can also be used as co-workers
[73]. Even though they do not possess legs, humans perceive

them differently from robotic manipulators [59], which
could have a beneficial impact depending on the application.
In a recent work, Bolotnikova et al. presented a human-
friendly humanoid that is able to approach a person in need
and establish multimodal interactions for human assistance,
including initiating physical contact [94]. Even though there
was no shared task in [94], it gives a prime example of
how leveraging the human perception could be used for
assistance in the future.

Humanoids as Avatars: Enabling Humans to Act
in Remote Environments

There are many scenarios where the human presence at the
site is inherently dangerous (e.g., interventions in contam-
inated environments, construction sites, space exploration).
In such situations, robots could be employed to replace
humans at the site as physical avatars, protecting the oper-
ators from any potential hazards. Robot avatars could also
be helpful in contexts not necessarily dangerous, for exam-
ple to allow humans to virtually exist in another location in
view of a more ecological and time-efficient society with an
overall improved work-life balance.

A teleoperation system is a cooperative setup where the
robot imitates or replicates the human’s actions to reach
a common objective. First, the human motion is captured
and then converted in real-time into corresponding refer-
ences for a whole-body controller that generates the joint
or torque commands actuating the robot. The motion cap-
ture techniques are generally based on optical tracking or
inertial technology (“Human Perception and Modeling”).
Alternatively, the operator can directly control the robot
through dual-arm exoskeletons [95] or whole-body exoskele-
ton cockpits [96], in which case their motion is tracked by
the actuators and sensors of the device.

The captured human information is then transformed into
corresponding values for the robot. A common retargeting
method consists in performing an identity map between the
rotational motion of the human and the robot, while using
a fixed scaling factor for translational movements [97]. The
joint angles and velocity of the human joints instead are
either manually mapped to the corresponding joints of the
robot [30], or automatically found by recurring to learning
techniques [98].

The retargeted information is then corrected via feedback
controllers [99] to ensure the dynamical balance of the tele-
operated references on the humanoid robot. The resulting
dynamically feasible references are then sent to the low-
level controller, which is classically formulated as a QP [79],
as explained in “Motion Control for Physical Interaction”.
The QP optimization is solved by taking into account the
retargeted information as references, computing the actuat-
ing commands for the robot.
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While controlling the robot, it is of crucial importance
to sufficiently inform the operator of their avatar state, to
give them the illusion of being physically present at the site,
producing effective behaviors. A conventional way to pro-
vide situation awareness to the human operator is through
visual feedback. The user can wear VR headsets, con-
nected to the robot cameras or visualize on displays the
information coming from the cameras of the robot together
with images of the remote environment coming from LIDAR
sensors and other external cameras. However, visual feed-
back is not sufficient for many real-world applications,
especially those involving power manipulation or interac-
tion with other human subjects. In such scenarios also the
haptic feedback is required to exploit the human operator’s
motor skills in order to augment the robot performance.
Force feedback, tactile, and vibro-tactile feedback are the
most used [100]. Voice and sound feedback can further
enrich the virtual experience of the human operator espe-
cially in scenarios where other humans are present in the
remote robot location [80]. Table 2 reports some examples
of applications of teleoperated humanoid robots.

Conclusion

To guarantee proficient and adequate cooperative behaviors,
humanoid robots need to advance their cognitive, social,
and physical interaction skills. This article reported on the
current work in these areas of research, acknowledging
the main limitations due to the real-time nature of the
interaction and the complexity of modeling and identifying
the human state. Human-aware humanoid collaborators
capable of long-term interactions in real situations are the
next grand challenge.
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