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Abstract
Purpose of review In recent years, legged robots locomotion has been transitioning from mostly flat ground in controlled
settings to generic indoor and outdoor environments, approaching now real industrial scenarios. This paper aims at
documenting some of the key progress made in legged locomotion control that enabled this transition.

Recent findings Legged locomotion control makes extensive use of numerical trajectory optimization and its online
implementation, model predictive control. A key progress has been how this optimization is handled, with refined models
and refined numerical methods. This led the legged locomotion research community to heavily invest in and contribute to
the development of new optimization methods and efficient numerical software.

Summary We present an overview of the typical approach to legged locomotion control, which involves primarily planning
a sequence of contacts with the environment and computing a corresponding dynamically feasible trajectory of the Center
of Mass of the robot. We then detail recent progress in contact planning and trajectory optimization with either the full
Lagrangian dynamics of legged robots or with reduced models.
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Introduction

Legs are used by robots to push on their environment with
end effectors and provide an active suspension [1], allowing
the motion of the main body of the robot to be smoother than
the underlying terrain profile. We will colloquially refer to
all end effectors used to push on the environment as feet,
whatever their form and function. A leg can be temporarily
lifted off the ground to make a step, so that discontinuous
terrains can be overcome, allowing locomotion in places
out of reach otherwise. The number of legs, their kinematic
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structure and degrees of freedom, and the type of feet (flat,
deformable, pointy, wheeled) can vary but the underlying
principles are the same. As a matter of fact, the last few
years have seen approaches originally developed for biped
humanoid robots with flat feet quickly adapted to quadruped
robots and all forms of feet.

The control objectives are to find adequate positions for
establishing contact between the feet and the environment,
and execute a corresponding dynamically feasible motion.
The general approach which permeates almost all forms
of legged robots locomotion now makes extensive use of
numerical trajectory optimization and its online implemen-
tation, model predictive control (MPC), in order to handle
alternating contacts and the corresponding constraints on
contact forces, which are the key difficulty in legged loco-
motion control.

Aside from adapting this general approach to different
numbers of legs and different types of feet, the main
progress over the last few years in the field of legged
robots locomotion control has been how this trajectory
optimization is handled, with refined models and refined
numerical methods. This has enabled transitioning from
biped walking on mostly flat ground to more general multi-
contact locomotion on uneven terrain with various legged
robot morphologies.
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Typical Approach to Legged Locomotion
Control

The Dynamics of Legged Locomotion The Newton equation
of motion of a robot makes it clear that external forces fi

generated through contact with the environment are needed
to move its center of mass (CoM) c in a direction other than
that of gravity g:

m (c̈ − g) =
∑

i

fi, (1)

where m is the total mass of the robot. The related Euler
equation of motion makes it clear that the positions of the
contact points si with respect to the CoM c are critical
to controlling the angular momentum L of the robot body
around its CoM at the same time:

L̇ =
∑

i

(si − c) × fi . (2)

The artificial synergy synthesis approach proposes to
focus on this centroidal dynamics Eqs. 1–2 which is directly
bound to contact forces, separately from the precise joint
posture of the robot which is more directly bound to joint
torques [3], and illustrated in Fig. 1. This approach is
central today to legged locomotion control, but in situations
where balance and posture must be tightly coordinated,
the full Lagrangian dynamics of the complete articulated
body is preferred as it naturally embeds the centroidal
dynamics [4, 5].

One challenge of legged locomotion is that contact forces
are usually unilateral: the robot can push on contact surfaces

gravity

centroidal dynamics 

contact/interaction forces

Fig. 1 Illustration of the centroidal dynamics and its connection to the
whole-body dynamics (adapted from [2])

but not pull. Consequently, the forces fi can be oriented
only in specific directions, constrained by the limits of
friction. Additionally, each contact is binary: either there is
contact and a contact force, or there is no contact and no
contact force. Impacts can also occur when a leg collides
with a surface. Contact switching and impacts are discrete
events affecting the continuous time dynamics Eqs. 1–2: the
dynamics of legged robots is hybrid in this respect, which
constitutes a second challenge.

It is possible in theory to define the set of viable states,
from which the robot is able to summon appropriate contact
forces to avoid falling. Cyclic motions and equilibrium
points are easy to identify as viable, and if the robot is able
to reach such a cycle or equilibrium in a few steps from a
given state, then it is viable as well [6]. This is the essence
of the capturability analysis [7], which is key to many of the
existing approaches to legged locomotion control [8].

Control Architecture A sequence of contact points si is
usually planned beforehand in both space and time using
random sampling methods, considering the environment of
the robot and its goal, accounting for kinematic and static
balance constraints [9–11]. This is called contact planning.
Pre-planned steps can be adjusted later during execution,
to adapt to unstable terrain and perturbations [12]. A
corresponding CoM motion and angular momentum can
be obtained online with a model predictive control scheme
[13, 14], accounting for the centroidal dynamics Eqs. 1–2
and making sure that the state of the robot is always kept
capturable [8].

When considering locomotion on a flat ground, with
co-planar contact points si , the forces fi are typically
reduced to their Zero-tilting Moment Point (ZMP), which
is bound to the convex hull of contact points [6, 16] (non
co-planar contact points can be considered as well with a
polyhedral projection of unilateral contact constraints [17]).
In this case, efficient linear formulations are possible by pre-
defining the vertical motion of the CoM. The most common
is the linear inverted pendulum (LIP) model, which assumes
a planar CoM motion and zero angular momentum [18].
Accounting for a non-zero angular momentum does not
affect the linearity of this model but has rarely been
considered [19], probably due to limited benefits when
walking on flat ground [20].

The execution of the computed CoM motion, angular
momentum and contact positions with the whole body of
the robot is usually handled with inverse kinematics [21]
or feedback linearization of the whole-body dynamics in
the Cartesian space [22], using Quadratic Programs (QPs)
to account for instantaneous kinematic, dynamic, force and
torque constraints [22–24]. Hierarchical QPs are sometimes
considered to account for different priorities in the control
objectives [25], but singularities can be an issue [26].
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Inverse kinematics and feedback linearization can be very
sensitive to model inaccuracies, especially on the position,
steadiness and stiffness of the ground contact, which are
crucial elements for the balance of the robot. Passivity-
based approaches are a promising alternative, much less
dependent on accurate contact models [27–29].

This general approach to legged locomotion control,
illustrated in Fig. 2, has been developed originally for
biped walking and demonstrated successfully in a wide
array of humanoid robots including Kawada’s HRP-2 [13],
Honda’s Asimo [30], Aldebaran’s Nao [31] and Boston
Dynamics’ Atlas [32••]. More recently, it has been adapted
to quadruped robots such as ANYbotics’ ANYmal [33],
IIT’s HyQ [34] and MIT’s Cheetah [35], and robots with
feet rolling on the ground such as Aldebaran’s Pepper [36]
or ETHZ’s wheeled ANYmal [37] and Ascento [38].

Recent Progress in Contact Planning

Contact planning is a particular instance of motion planning,
which is known to be PSPACE-hard in general, and
therefore NP-hard [39]. In the case of legged locomotion,
the discrete nature of contact states is a particular source
of combinatorial explosion, adding to the overall non-
convexity of the motion planning problem. In order to tackle
this unfavorable computational complexity, mixed-integer
formulations have been proposed to exploit state-of-the-art
off-the-shelf solvers and find globally optimal sequences
of contacts in a matter of seconds or even less, accounting
for kinematic and even dynamic feasibility constraints on
uneven terrain [40–42].

An alternative approach builds on the volume reachable
by the feet of the robot to provide a necessary and suffi-
cient condition for the existence of a contact sequence. This
way, the motion of the robot can be approached without hav-
ing to specify the exact contact sequence in the first hand,
which reduces dramatically the complexity of the motion
planning problem, enabling fast online replanning to adapt
to changing environments in a fraction of a second. The

exact contact sequence is recovered in a second stage using a
variety of heuristics such as maximizing robust quasi-static
balance, accounting for kinematic and even dynamic feasi-
bility constraints on uneven terrain [15, 43–45]. This mul-
tistage approach can be very efficient but the reliance on
heuristics can be a source of failure.

Recent Progress with ReducedModels

Divergent Component of Motion One strength of the LIP
model is that it is simple enough to lend itself to thorough
mathematical analysis. Notably, the divergent part of its
dynamics can be represented by a single component, the
divergent component of motion (DCM), rather than the full
CoM state (position and velocity). Linear feedback control of
this DCM emerged as an efficient balance control strategy
for biped locomotion over flat terrain [20], simple enough
to be demonstrated on a variety of platforms, including
position-controlled [46] and torque-controlled robots [47].

The DCM follows a first-order dynamics with respect
to contact forces, simpler than the CoM’s second-order
dynamics Eq. 1, which helps to simplify other aspects of
the control of legged robots. Three recent progresses come
to mind. First, the DCM allows removal of the planar
CoM constraint to generate 3D walking trajectories with no
change in model dynamics [48]. Second, online step-timing
adaption can be included in the trajectory optimization
while keeping a small convex problem to solve thanks
to a suitable change of variable in the analytical DCM
trajectory [49]. Third, the DCM can be used as a viability
condition in the MPC problem for advanced stability and
feasibility proofs [50].

Centroidal Dynamics In multi-contact scenarios such as loco-
motion over uneven terrain or in confined spaces, reduc-
ing the model of contact forces to their ZMP is limiting.
Approaches based on the full centroidal dynamics Eqs. 1–
2 have emerged as a solution to compute a feasible CoM
trajectory, angular momentum and corresponding contact

Fig. 2 Typical control architecture, composed of three main stages: contact planning, centroidal dynamics resolution, and whole-body control
(adapted from [15])
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forces in generic contact configurations. Contact sequences
can even be optimized simultaneously [51].

Formulations exploiting the structure of the trajectory
optimization problem such as sparsity and convexity have
been developed [41, 44, 52]. Additionally, the inertia of
quadruped robots is often approximated with that of a single
rigid body [34, 35, 51], and locomotion-specific heuristics
can be designed to regularize the underlying nonlinear
optimization problem so that it can be solved faster
around nominal behaviors [53]. With these improvements,
approaches based on the full centroidal dynamics can run
online with computation times below 10 ms [54].

The centroidal dynamics does not account for kinematic
or actuator torque limits. To partly remedy these limita-
tions, extensions of the contact wrench cone to include
torque limits have been proposed [55] or learning-based
approaches have been introduced to represent more complex
whole-body constraints into the centroidal model itself [56].

Mixed Models An alternative, intermediate solution between
reduced and full dynamic models is to combine the cen-
troidal dynamics Eqs. 1–2 with a kinematic model of the
complete articulated body as a way to elaborate dynamically
feasible whole-body motions while maintaining moderate
computational complexity [57, 58]. With this approach,
a locally optimal feedback policy can be computed and
updated online in less than 70 ms [59]. The centroidal
dynamics can also be combined formally with a whole-
body dynamic model using an alternating descent method
to account for additional aspects of the full dynamics of the
robot [60]. An earlier approach combined in a unified, sin-
gle QP the instantaneous full dynamics of the robot with a
LIP model over a receding horizon to capture the long term
locomotion dynamics [61].

Recent Progress withWhole-BodyModels

Trajectory Optimization The complete nonlinear dynamics
of the robot can be used to obtain efficient coordina-
tions of limb motions, taking into account all kinematic
and dynamic feasibility constraints and objectives such as
minimal energy consumption through trajectory optimiza-
tion strategies such as collocation [62, 63] or multiple-
shooting [64] (which bring complementary advantages in
terms of speed, accuracy, stability and precision [65]).
Contact sequences can even be optimized simultaneously,
using relaxations of the contact model [66, 67]. Thanks
to efficient open-source numerical solvers [68–70] exploit-
ing the sparsity of the trajectory optimization problem and
exact derivatives of the dynamic models [71–73], whole-
body motions can be computed online in less than 7 ms
[70, 74, 75].

Reinforcement Learning The full dynamic model of the
robot can also be used offline to compute directly an opti-
mal feedback control policy operating from raw sensor
measurements and an estimate of the robot attitude, out-
performing more traditional approaches in challenging and
difficult to model indoor and outdoor environments thanks
to mature reinforcement learning techniques [76, 77••]. Key
ingredients for this approach to be effective are as fol-
lows: (i) an efficient simulator to generate a large amount
of sample behaviors [78], (ii) a curriculum strategy to
guide the optimization of the feedback control policy from
simple scenarios to more complex ones and (iii) account-
ing for difficult to model uncertainties in the actuator
models using a neural network trained on real hardware
measurements.

Conclusions

Legged locomotion means establishing a sequence of con-
tacts between the feet and the environment of the robot, and
executing a corresponding kinematically and dynamically
feasible motion. Numerical trajectory optimization plays a
central role, to handle alternating contacts and the corre-
sponding constraints on contact forces. Models of varying
complexity, from the simplest LIP model, to full centroidal
dynamics Eq. 1–Eq. 2, to models of the complete articulated
body can be used either alone or in combination to handle
different aspects of locomotion. Refinements in these mod-
els and advanced numerical methods, either off-the-shelf or
specifically tailored to legged locomotion, enabled a transi-
tion in recent years from flat terrain to generic indoor and
outdoor environments. The first successful demonstration
of reinforcement learning for quadruped locomotion in real,
complex situations was also achieved in the same way.

The central role of numerical optimization, both online
and offline, led the legged locomotion research community
to heavily invest in and contribute to the development of
new optimization methods and efficient numerical software.
Notable contributions were made to Lexicographic Pro-
gramming to safely handle multiple objectives with vary-
ing priorities, differential dynamic programming (DDP) to
leverage the sparsity of nonlinear trajectory optimization
problems, and even combinations of these two approaches
[79]. This involved the development of efficient and versatile
open-source software for dynamic models [80–82], simula-
tion [83], state estimation [84] and control design [85].

Open-source software, and open-source hardware with
printable parts, simplified electronics and actuation [86,
87•] could facilitate future reproducibility, dissemination
and democratization of well-established, robust and exten-
sively tested solutions, fostering faster iterations and inno-
vations with the possibility to easily share, extend and
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Table 1 Open-source software for legged robots

Name Language License Main features

Rigid body dynamics librairies

RBDL [80] C++ (Python) Zlib Standard rigid body algorithms

Pinocchio [81] C++ (Python) BSD-2 Standard rigid body algorithms + analytical derivatives

+ autodiff + code generation

RigidBodyDynamics.jl [82] Julia MIT Standard rigid body algorithms + autodiff

Contact planners

HPP [88] C++ (Python) BSD-2 Randomized contact planner

Optimal control librairies

The Control Toolbox [68] C++ BSD-2 Multiple shooting DDP + additional solvers

ALTRO [69] Julia BSD-2 Constrained DDP

Crocoddyl [70] C++ (Python) BSD-3 Multiple shooting DDP

TOWR [51] C++ (Python) BSD-3 Collocation

Whole-body control librairies

mc rtc C++ (Python) BSD-2 Task-space inverse solvers

TSID C++ (Python) BSD-2 Task-space inverse dynamics

Simulators

Bullet C++ (Python) Zlib Linear complementarity solver

ODE C/C++ BSD Linear complementarity solver

Dart [83] C++ (Python) BSD-2 Linear complementarity solver

Versatile frameworks

Drake [85] C++ (Python) BSD-3 Planning + control + simulation

Coppelia C++ (Python) GPL Planning + control + simulation

improve existing implementations (a list is provided in
Table 1).

Interestingly, the existing literature on legged locomo-
tion control relies almost exclusively on state feedback, but
the position and velocity of the CoM cannot be measured
directly as it is a virtual point and contacts with the environ-
ment can be difficult to detect and measure. State estima-
tion is therefore a crucial component, which has been sur-
prisingly little explored in this respect [2, 84, 89–93]. The
reliance on state estimation and feedback makes existing
legged robots extremely dependent on accurate hardware,
expensive and brittle. Sensor-based control could be an
alternative, largely unexplored so far [94]. Robust control
could be another alternative, not much explored either [95–
98]. A recent conclusion from robust control analysis of
legged balance is that perfectly stable feedback can be
obtained at surprisingly low frequency, as demonstrated
with both humanoid [97] and quadruped robots [59].

Building on the open-source software and hardware
mentioned earlier, such control approaches could contribute
to the development of cheaper, more robust and versatile
robots, which looks like the next logical step now that
legged locomotion is being demonstrated robustly in generic
indoor and outdoor environments and approaching real
industrial scenarios [99, 100]. Deformable elements could
also contribute to this objective [101].
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