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Abstract

Purpose of review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a
sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracel-
lular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA
sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmo-
nary endothelium and identified vascular changes in patients with IPF.

Recent findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung
capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In
addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of
pulmonary fibrosis.

Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may
contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the

functional role of these vascular changes.

Keywords Fibrosis - Endothelium - Permeability - Bronchial - Capillary - Vasculature

Introduction

Across multiple organs, fibrosis represents a state of end-organ
dysfunction following severe or recurrent injury due to an
inability to return to tissue homeostasis in the setting of im-
paired wound-healing and ineffective repair. In the lung, idio-
pathic pulmonary fibrosis (IPF) is a devastating lung disease
marked by dysfunction of the alveolar compartment resulting
in significant morbidity and mortality. The current paradigm
of IPF pathophysiology involves recurrent insults to the alve-
olar epithelium leading to fibroblast activation corresponding
to the characteristic histologic findings of spatiotemporally
heterogeneous injury and fibroblastic foci [1]. This cycle of
injury and pathologic tissue repair is a complex process
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resulting from interactions between epithelial, immune, vascu-
lar, and other mesenchymal cell populations. There is growing
evidence for endothelial abnormalities in patients with pulmo-
nary fibrosis, including recently published results demonstrat-
ing loss of capillaries and expansion of an endothelial cell
population expressing markers of the bronchial circulation.
There have also been recent explorations into the ability of
the aged vasculature to repair from injury in the context of
fibrosis and the role of sphingolipids sphingosine-1-phosphate
(S1P) and lysophosphatidic acid (LPA) in vascular barrier
function and development of fibrosis in pre-clinical models.
Here we review recent data on endothelial heterogeneity in
both health and disease, with a particular focus on recent pub-
lications exploring the endothelium in pulmonary fibrosis.

Section 1: Normal Lung Endothelium
Adult Anatomy
The adult human lung has two distinct vascular supplies, the

pulmonary circulation optimized for gas exchange, and the
systemic bronchial circulation which nourishes the lung tissue
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itself. The pulmonary circulation is a low-resistance vascular
bed which receives the entirety of right ventricular cardiac
output. Deoxygenated systemic venous blood is pumped into
the pulmonary arteries. Pulmonary arterioles course alongside
terminal bronchioles and transition into capillary plexuses
around alveolar sacs that participate in gas exchange between
the environment, alveolar epithelium, and the vascular system.
Oxygen-rich blood then flows from alveolar capillaries to pul-
monary veins and into the left atrium. These arteries, capil-
laries, and veins constitute the “pulmonary circulation.”

In contrast, the bronchial circulation receives about 1% of
left ventricular output, originating with 2-4 paired bronchial
arteries branching directly off the thoracic aorta [2—4]. Unlike
pulmonary arteries, bronchial arteries are oxygen-rich and are
thought to provide nutritive blood to the conducting airways,
including bronchioles, through capillary plexuses around
these structures [4, 5]. Initial characterization of the bronchial
veins revealed two anatomical categories: 1) “deep bronchial
veins” forming rich, “lacy” networks around bronchioles, and
2) “pleuro-hilar veins”, which were notable for an extensive
subpleural network [6]. Bronchial veins can direct blood ei-
ther back into the right atrium through the azygous vein which
drains deoxygenated blood from the posterior chest into the
superior vena cava, or interface with the pulmonary circula-
tion at the post-capillary level [2, 6-8]. While bronchial ves-
sels lack direct association with alveoli, bronchial arteries may
influence alveolar function via anastomoses with pulmonary
arterioles at the pre-alveolar level [4, 6-9]. Detailed reviews of
the bronchial arteries, capillaries, and veins, collectively called
the “bronchial circulation,” can be found elsewhere [2, 8].

Insights from Single-Cell RNA-Sequencing
Alveolar Capillaries

Integration of single-cell RNA-sequencing (scRNA-seq) with
histology has led to a new appreciation for lung endothelial
heterogeneity [10—14]. Within the pulmonary circulation, the
alveolar endothelium is composed of two intermingled capil-
lary cell types termed aerocyte (aCap) and general capillary
(gCap) [10-13]. Aerocytes are expansive, with an average
per-cell volume ~5-fold greater than that of gCap cells [10],
and are intimately associated with type 1 pneumocytes at al-
veolar entrances [10], often without intervening pericytes [15,
16]. While the number of gCap cells typically exceeds
aerocytes by a ratio of 2 to 5:1 [10, 11], aerocytes likely
constitute the majority of alveolar capillary surface area and
are therefore pivotal for gas exchange. High expression of
membrane-bound carbonic anhydrase 4 (Ca4), which cata-
lyzes CO, production, distinguishes both aerocytes and
gCap cells from the remainder of lung endothelium in humans
[10]. The Antarctic icefish, which lacks red blood cells and
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therefore cannot use red blood cell carbonic anhydrase (CA2)
for CO, production, uses CA4 to produce CO, in its gills [17],
suggestive of a possible conserved role for CA4 in CO, me-
tabolism in alveolar capillaries.

gCap cells are capable of both self-renewal and aerocyte
differentiation, indicating that gCap cells can function as spe-
cialized progenitors that replenish capillary endothelium dur-
ing maintenance and repair [10]. Normal morphogenesis of
airway structures and lung vasculature requires locally coor-
dinated signaling pathways [18]. A collection of ligand-
receptor pairs are expressed by type 1 pneumocytes (AT1),
pericytes, acrocytes, and gCap cells [10, 11, 16], suggestive of
paracrine signaling during alveologenesis. For example, AT1-
derived VEGFA is essential for aerocyte development [16],
possibly via VEGFR2, which is expressed at higher levels in
aerocytes than in gCap cells [10, 11, 16]. Additionally,
aerocytes express the ligands Apelin (APLN) and Kit-ligand
(SCF) while gCap cells express Apelin receptor (APLNR) and
KIT [10, 11, 13, 16]. Considering the known pro-angiogenic/
proliferative role of APLN [19-23], it is possible that an
aerocyte-gCap APLN-APLNR signaling axis promotes regen-
eration or expansion of pulmonary capillaries, while a SCF-
KIT axis maintains the gCap progenitor population by a
mechanism similar to that in hematopoietic [24] and epider-
mal [25] homeostasis. In mice, KIT+ endothelial cells com-
prise ~60% of endothelium from embryonic day 16.5 to 14
days of age and this frequency is halved to ~30% at 90 days
[26], consistent with the notion that stem and progenitor pop-
ulations generally decline over time [27]. A more recent study
that used scRNA-seq similarly observed a ~25% reduction in
KIT+ gCap cells during the transition from embryonic to early
postnatal life, whereas aerocytes first appear at embryonic day
~16.5 and constitute ~25% of the lung endothelium by post-
natal day 3 [28]. Putative paracrine relationships among alve-
olar cells related to vasomotor control, leukocyte trafficking,
antigen presentation, hemostasis, and lipid metabolism are
discussed in Gillich et al. (2020) [10].

Bronchial Vasculature

scRNAseq of healthy human lungs has revealed a distinct
cluster of endothelial cells that are enriched with transcripts
encoding COL15A1, PLVAP, POSTN, as well as venous
markers (e.g., ACKR1, VWF, IGFBP7) [11]. Immuno-
localization revealed COL15A1+ endothelial cells in
subpleural and peri-bronchial regions associated with
ACKRI1+ venules [11, 12]. These collective findings led to
the designation of COL15A1+ endothelial cells as systemic-
venous, although there is no evidence to rule out the presence
of capillary-like cells within COL15A1+ scRNA-seq clusters.
Notably, COL15A1+ vessels correspond to the anatomical
location of bronchial veins described previously [6] (discuss-
ed above), substantiating their designation as systemic-
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venous. We refer to these endothelial cells as bronchial endo-
thelial cells.

While alveolar capillary biology appears largely conserved
between mouse and human, components of bronchial vascu-
lature are rare in mice as bronchial arterioles are primarily
found in the wall of the trachea and proximal bronchi and
are absent in visceral pleura [29]. scRNA-seq studies support-
ed these early observations, reporting that endothelium of
bronchial vasculature constitutes ~5-7% of human lung vas-
culature from explants [11], whereas these cells occur at a
much lower frequency (~0.5%) in mouse lungs [11]. Rats,
pigs, and dogs, on the other hand, have bronchial vasculatures
more similar to that of humans [29, 30]. These differences in
vascular structure likely follow differences in airway structure.
For example, humans, monkeys, dogs, and cats have several
orders of respiratory bronchioles that follow large tracheo-
bronchial airways, whereas analogous respiratory bronchioles
are very abbreviated or absent in rats and mice [31].

Section 2: Vasculature in Pulmonary Fibrosis

Over the years, the literature describing the vasculature in
pulmonary fibrosis has demonstrated potentially conflicting
findings. There have been reports of heterogeneously in-
creased sprouting angiogenesis [32], increased capillary den-
sity and endothelial proliferation [33, 34], as well as contrast-
ing observations of endothelial apoptosis and reduced capil-
lary density [33-36]. These seemingly conflicting observa-
tions may be explained by the concept of alveolar capillary
depletion co-occurring with expansion of a population of en-
dothelial cells expressing bronchial markers (e.g. COL15A1)
[12]. Evidence for this phenomenon was identified by
scRNA-seq analysis of lung tissue from explanted end-stage
IPF patients and healthy donors, which showed marked dif-
ferences in endothelial composition. The proportion of
aerocytes and gCap cells was reduced in IPF [12]. In contrast,
the sequencing studies revealed an ~7-fold increased frequen-
cy of a population of endothelial cells in IPF expressing bron-
chial markers [12]. While we do not know the origin or ter-
minus of the expanded cells, scRNA-seq analysis identified
this population as belonging to a cluster of endothelial cells
derived from systemic vessels within the bronchial circulation
[11, 12]. Increased “bronchial” vessel density in IPF lung
tissue was substantiated by immunohistochemistry for the
bronchial endothelial marker COL15A1 [12].

Markers such as CD31, CD34, and VWF have traditionally
been used to describe endothelium in the lung; however, the
emergence of endothelial subtype-specific markers [10, 11] is
an invitation to more accurately describe vasculature in pul-
monary fibrosis. Moving forward, investigation of endothelial
apoptosis, proliferation, permeability, association with colla-
gen deposition, or association with specific cell types (e.g.,

immune, epithelial, fibroblast), should differentiate between
bronchial, aCap, and gCap endothelium. Detailed imaging of
bronchial, aCap, and gCap endothelial cells in IPF will be
needed for insight into the spatial relationship between these
cells and the cellular constituents of fibrotic and non-fibrotic
microenvironments.

Alveolar Capillaries

The frequencies of AT1 cells, acrocytes, and gCap cells are
markedly reduced in affected tissue of IPF patients (Figure 1).
Fibroblastic foci show decreased VEGF immunoreactivity rel-
ative to surrounding non-fibrotic tissue [36], and VEGF is
reduced at the mRNA level in the alveolar wall [35] and at
the protein level in BALF [36, 37] in lung tissue from patients
with a pathologic diagnosis of usual interstitial pneumonia
(UIP). Considering the essential role of AT1-derived VEGF
in aerocyte development [16], these findings suggest that the
fibrotic microenvironment does not support aerocyte or gCap
survival, possibly downstream of AT1 dropout. scRNA-seq
data from IPF patients and healthy controls shows a marked
upregulation of APLNR and APLN in gCap cells and
aerocytes, respectively [12, 14]. It is possible that paracrine
endothelial Apelin signaling is upregulated as a compensatory
mechanism to regenerate pulmonary capillaries, consistent
with evidence for gCap cells as aerocyte progenitors [10].
Selective targeting of gCap cells and aerocytes in animal
models using genetic ablation or alteration of gene expression
can provide insight into the roles these cells play in the path-
ogenesis and repair of lung injury and to evaluate the extent to
which alveolar capillary dysfunction influences IPF onset and
progression. Such studies may reveal targetable factors that
promote differentiation, expansion, and incorporation of func-
tional aerocytes within alveolar walls.

Bronchial Vasculature

Expansion of bronchial vasculature in pulmonary fibrosis was
first described by Margaret Turner-Warwick [9], who ob-
served numerous atypical branches from subpleural bronchial
vessels extending into the lung and communicating with
branches of the pulmonary artery [9]. Bleomycin-induced in-
terstitial fibrosis in rats similarly results in expanded bronchial
vasculature in both peribronchial and subpleural regions [38].
Subpleural fibrosis is a hallmark of IPF [39] and its quantifi-
cation may have prognostic value [40]. These collective ob-
servations raise the possibility that bronchial vessels not only
react to the fibrotic microenvironment but also contribute to
disease. Interestingly, a review of recently published scRNA-
seq data [12, 14, 41, 42] also suggested expansion of a popu-
lation of endothelial cells which express bronchial markers
(Table 1).
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Fig. 1 IPF Pathogenesis: Current Working Model Incorporating Vascular
Changes. IPF is believed to occur as a result of epithelial dysfunction,
influenced by genetics and environmental factors, leading to fibroblast
activation and extracellular matrix accumulation. In addition, there are
contributions from the interplay between epithelial dysfunction,
inflammation, repair processes and vascular changes. 1. Risk factors for
pulmonary fibrosis include age, genetics, toxins, and viral infections. 2.
Epithelial dysfunction including senescence and loss of AT2 and ATI

Gene expression patterns observed in bronchial endothelial
cells are seen in systemic extra-thoracic vasculature at both
homeostasis and fibrotic disease states (Table 1). Vascular
elements with specialized function (e.g., pulmonary capil-
laries, renal glomeruli, blood-retina barrier) acquire an
organotypic [43] phenotype during development through spa-
tiotemporal coordination of growth factor gradients and spe-
cific cell-cell interactions [16], [44—46] [47-50].

Pathologic tissue repair can fail to recapitulate developmen-
tal processes [51-58] and involve expansion of non-specialized
endothelium [12, 58—64]. Expansion of non-specialized
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cells has been observed, as well as increased numbers of Krt5-Krt17+
transitional cells. 3. Inflammatory processes, such as macrophage
activation, have been identified in fibrotic lungs. In addition, fibroblast
activation has been shown to play a major role in fibrosis. 4. Vascular
changes observed in pulmonary fibrosis include loss of alveolar
capillaries and expansion of a systemic venous endothelial population
expressing bronchial markers

vasculature in fibrosis may occur in response to hypoxia, in-
creased metabolic demand, and/or growth factors from infiltrat-
ing immune or fibroblastic cells [43, 61, 65-71]. In IPF, possi-
ble consequences of bronchial vessel expansion include in-
creased vascular leak (PLVAP, ANG2), thrombogenesis
(MMRNT1), and recruitment of mononuclear phagocytes
(POSTN, CCL14, PLVAP, SELE). These effects of bronchial
endothelium have the potential to contribute to the chronic path-
ologic repair process that characterizes IPF (Figure 1).
Expansion of bronchial vasculature has been reported in
diseases other than IPF, including lung cancer [72-74],
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- potentiates RhoA-mediated endothelial - facilitates cellular uptake of glucose [208]

SLC2A3; Solute Carrier

cell motility [207]

Family Member 3

(GLUT3)
MMRNI; Multimerin 1

- enhances platelet adhesion and thrombus

formation [209]
- proangiogenic factor that signals via

CYTLI; Cytokine-Like 1

autocrine and paracrine mechanisms

[210]

- transcription factor that can regulate cell

MYC; MYC

metabolism and growth [211]
- has five major domains with unique

- upregulated in subpleural fibrotic regions

HSPG2; Heparin sulfate

affinities for matrix proteins, integrins,

and growth factors [213]

in IPF [212] and dermal endothelium of

patients with systemic sclerosis [62]

proteoglycan 2 (Perlecan)

endothelium during diapedesis [214]

- positively regulates slow rolling of
mononuclear phagocytes along

SELE; E-Selectin

Abbreviations: PH, pulmonary hypertension; /PF, idiopathic pulmonary fibrosis; /R, ischemia-reperfusion; 742, T helper 2 cell

pulmonary artery occlusion [75-80], congenital cardiovascu-
lar malformations [9, 81], systemic sclerosis (SSc)-associated
ILD [9], chronic lung infections (discussed in [82]), chronic
thromboembolism ([83] and reviewed in [61]), idiopathic pul-
monary arterial hypertension [84], cystic fibrosis [85, 86], and
asthma (reviewed in [2]). These diseases share common
themes of interstitial lung injury, hypoxia, and/or inflamma-
tion with subsequent angiogenesis. It is possible that expan-
sion of bronchial vessels is a generalized and rapid response to
lung injury with a resolution phase that includes regeneration
of'the specialized pulmonary circulation. However, resolution
may be impaired in slow-progressing fibrotic diseases such as
IPF and SSc-ILD.

Bronchial Vasculature in the Context
of Epithelial and Immune Cells

Histopathologically, IPF is characterized by foci of myofibro-
blast clusters with temporal and spatial heterogeneity. The
frequency of AT1 cells is markedly reduced whereas ectopic
secretory (SCGB3A2") and transitional AT2-like
(SCGB3A2+/SFTPC+) cells occur [12, 14], consistent with
reports of AT2 hyperplasia in IPF [87]. Interstitial and
peribronchial regions show marked expansion of a dysplastic
KRT5-/KRT17+/KRT8+/TP63+ “aberrant basaloid” popula-
tion found in IPF patients but not in healthy controls [12, 14].
These dysplastic cells appear to be stalled in a transitional state
between AT2 and ATI1 stages of differentiation [88]. The
metaplastic and dysplastic changes associated with bronchial
epithelium, including basal, ciliated, club, and goblet cells
[12, 14, 67, 89], is evidence for the well-described phenome-
non of “bronchiolization” of the distal lung in IPF [90, 91]
(Figure 1). These collective epithelial changes, including ex-
pansion of aberrant basaloid cells, are also observed in SSc-
ILD [92, 93]. It remains uncertain to what extent the presence
of pathologic bronchiolization in IPF is a cause or conse-
quence of the alterations in lung vasculature [12, 14, 92].
Disease-promoting interactions between the expanded endo-
thelial population with bronchial markers and AT1 and/or
AT?2 cells may occur (Table 1, discussed above). Deeper in-
vestigation in this area is warranted considering the critical
role of endothelium in pulmonary physiology and the central
role of AT1 and AT2 cells in alveolar regeneration and current
models of IPF pathophysiology [87].

Acute exacerbations of IPF (AE-IPF) are clinically defined
by short-term respiratory deterioration (< 1 month) with evi-
dence of new alveolar infiltrates on high-resolution computed
tomography that cannot be explained by infection or edema
alone [94]. Despite the clear association between AE-IPF and
mortality, there is a paucity of information on the pathophysi-
ology or effective treatment [94]. There are notable similarities
between acute respiratory distress syndrome and AE-IPF
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including association with endothelial hyperpermeability
[95-98], histologic appearance [99—101], and variable re-
sponse to corticosteroids or other immunosuppressive agents
[94, 102]. Consistent with the hypothesis that inflammation
may be involved in AE-IPF, IPF disease progression correlates
with plasma levels of B-Lymphocyte Stimulator [103], plasma
IgA autoreactivity [104], and enlargement of mediastinal
lymph nodes [105, 106]. In addition, lungs of a subset of IPF
patients harbor ectopic lymphoid aggregates containing B cells
[103, 104, 107] and plasma cells [104, 108, 109]. Notably,
these lymphoid aggregates are primarily in association with
bronchioles [110-112]. Thus, bronchial endothelium may con-
tribute to AE-IPF through expression of pro-inflammatory
genes (Table 1, discussed above). In addition, neovessels
may be a source of the increased vascular leakage that has
been observed in lungs of IPF patients [95-97]. To deter-
mine the vascular sources of endothelial hyperpermeability
in IPF, future studies can aim to differentiate between bron-
chial and pulmonary vasculature. Such studies may im-
prove the predictive value of vascular leakage measure-
ments with respect to disease progression. Ongoing clinical
trials are assessing Rituximab (B cell depletion), intravenous
immunoglobulins, and therapeutic plasma exchange in pa-
tients with AE-IPF (NCT03584802 and NCT03286556).
Considering the conjoint relationship between inflammation
and endothelial hyperpermeability, the bronchial vasculature
may be an unappreciated target of anti-inflammatory agents
used in AE-IPF.

Novel Findings from Pre-clinical Models

It is well-established that susceptibility to IPF increases
with age. Accordingly, studies have used the mouse to
identify cellular changes and signaling pathways associ-
ated with pulmonary fibrosis in young and aged animals.
Intratracheal administration of a single dose of bleomycin
in young mice causes pulmonary fibrosis that diminishes
within 3 months and is associated with a transient in-
crease in pulmonary capillary density [113]. In contrast,
bleomycin administration to aged mice causes sustained
pulmonary fibrosis characterized by fibroblastic foci with
reduced capillary density in both the short- and long-term
[113]. Thus, a transient increase in pulmonary capillary
density is associated with healing of injured tissue in
mice, whereas pulmonary capillary dropout is observed
in chronic fibrosis in both mice and humans [12,
33-36, 113].

Genetic and pharmacologic studies of bleomycin-treated
mice have highlighted roles for several signaling pathways
that directly involve endothelium and are associated with pul-
monary fibrosis:

Sphingolipid Signaling

Sphingosine 1-phosphate (S1P) and lysophosphatidic acid
(LPA) are the two bioactive sphingolipid species with well-
characterized roles in vascular development, physiology, and
disease [50, 96, 114]. S1P signaling through endothelial S1P
receptor 1 (S1PR1) is associated with stabilization of maturing
vasculature, maintenance of the endothelial barrier and activa-
tion of endothelial nitric oxide synthase (eNOS), whereas endo-
thelial LPA signaling increases stress fiber formation, vascular
permeability, and sprouting angiogenesis [50, 96, 115]. FACS-
sorted lung endothelial cells from young mice show high ex-
pression of SIPR1, LPA receptor 4 (LPAR4), and LPA receptor
6 (LPAROG) [50, 116]. The different effects of SIP and LPA on
endothelium are likely attributable to differential signaling path-
ways activated by their respective G protein-coupled receptors;
S1PR1 signals through Gy;/Rac, whereas LPAR1, LPAR4 and
LPARG signal through Gg2/13 RhoA and its target ROCK1/2
[50].

Endothelial SIPR1 expression and signaling declines with
age in mice [117]. Mice with deficient endothelial SIPR1
signaling show enhanced bleomycin-induced fibrosis [118],
acid-induced lung injury [117], and vascular leakage relative
to wild-type animals [117-119]. Consistent with the notion
that endothelial SIPR1 is protective, SIPR1 expression is
reduced in pulmonary capillary endothelial cells of IPF pa-
tients relative to healthy controls [118]. In contrast to the pro-
tective effects of endothelial S1PR signaling, LPAR activation
likely promotes bleomycin-induced pulmonary fibrosis and
vascular leakage through ROCK1/2 [120].

Heterozygous loss of the transcription factor FOXF1
causes a rare, lethal developmental disorder called alveolar
capillary dysplasia with misalignment of pulmonary veins
(ACD/MPV) characterized by respiratory failure shortly after
birth [121]. On microscopic examination, alveolar capil-
laries are sparse and generally fail to associate with alveolar
walls which, rather than displaying thin AT1 cells, are pre-
dominantly composed of hyperplastic cuboidal AT2 cells
[121]. In mice, haploinsufficiency or endothelial-specific
deletion of FOXF1 causes alveolar capillary dysplasia with
reduced endothelial density, reduced endothelial prolifera-
tion and increased apoptosis, enhanced endothelial perme-
ability, susceptibility to pulmonary inflammation and ede-
ma, respiratory insufficiency, lethality, and reduced SIPR1
expression [26, 122, 123]. S1PR agonist administration to
endothelial FOXF1-deficient mice rescues the lung perme-
ability deficit, prolongs survival, and reduces inflammation
[122], suggesting that FOXF1-mediated SIPR1 expression
is a key feature of alveologenesis.

Bronchopulmonary dysplasia (BPD) is a chronic condition
that can result from use of oxygen therapy in newborns and is
associated with long-term health sequelae including impaired
lung function [124]. Perinatal mice exposed to hyperoxia
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exhibit alveolar simplification and are used to model BPD
[26]. By postnatal day 14, lungs of mice exposed to hyperoxia
show a marked reduction in KIT+ endothelial cells [26],
which may suggest an irreversible loss of gCap progenitor
cells. Endothelial-specific deletion of FOXF1 also results in
alveolar simplification and marked reduction of KIT+ endo-
thelial cells [26], and this phenotype is exacerbated by expo-
sure to hyperoxia. Adoptive transfer of KIT+ endothelial cells
to FOXF1-haploinsufficient mice increases lung angiogenesis
and prevents alveolar simplification following exposure to
hyperoxia [26]. Like mice, humans showed reduced frequen-
cy of KIT+ lung endothelial cells from the perinatal period to
adulthood [26]. Examination of scRNA-seq data from lungs
of patients with IPF [12, 14, 41, 42] revealed reduced expres-
sion of FOXF1 in aerocytes and gCap endothelial cells rela-
tive to healthy controls (unpublished observation). Taken to-
gether, these data suggest that an endothelial FOXF1-S1PR1
axis is important for normal lung development and may be
targeted to improve alveolar function.

Endothelial Nitric Oxide Synthase, Atrial Natriuretic
Peptide, and cGMP

In endothelial cells, cGMP accumulates in response to binding
of atrial natriuretic peptide (ANP) to guanylyl cyclase-A (GC-
A) or activation of eNOS [125-129] and can influence vascu-
lar permeability [114, 130, 131]. Inhibitors of phosphodiester-
ase 5 (PDEY) increase intracellular [cGMP] and are effica-
cious in the treatment of World Health Organization group 1
pulmonary arterial hypertension [132]. Like SIPR1 expres-
sion, endothelial eNOS mRNA levels decline with aging in
mouse lungs [113, 117]. Bleomycin administration to young
eNOS™ mice results in sustained pulmonary fibrosis [113]
whereas endothelial eNOS over-expression attenuates
bleomycin-induced fibrosis [133]. Similarly, administration
of ANP [134], a PDES inhibitor [135], or over-expression of
endothelial GC-A [134] each attenuates bleomycin-induced
pulmonary fibrosis. PDES inhibition results in reduced
RhoA and ROCK signaling activity in lungs of bleomycin-
treated animals [135], consistent with the notation that LPAR-
Rho/ROCK signaling promotes fibrosis. These data imply that
eNOS and GC-A promote pulmonary capillary function in the
context of injury-induced fibrosis. The extent to which
perivascular cells play a role in mediating beneficial effects
of nitric oxide or GC-A signaling in pulmonary capillaries
(e.g., via constriction or relaxation) is not clear and warrants
further investigation.

Lymphatics in Pulmonary Fibrosis

Lymphatic vasculature plays an essential role in fluid homeo-
stasis and leukocyte trafficking. Just as blood endothelium is
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specialized to accomplish unique tasks [136, 137], lymphatic
vessels vary with respect to morphology, permeability, mural
cell coverage, intravascular pressure, and gene expression to
permit vessel type-specific and organ-specific functions
[138-142].

In the normal human lung, lymphatic vessels are primarily
found in the pleura, subpleural, interlobular septa, and in asso-
ciation with bronchovascular bundles [143]. Bronchovascular
bundles are also the location of adventitial fibroblasts that ex-
press VEGFD [13], a potent angiogenic and lymphangiogenic
factor [144, 145].

Most studies of lung tissue from IPF patients report a direct
relationship between lymphatic vessel density and fibrotic se-
verity [146-148], with one exception that used a different
anti-podoplanin antibody to identify lymphatic vessels
[149], which may contribute to an alternate conclusion (re-
viewed in [150] and [143]). Murine models of pulmonary
fibrosis consistently report increased pulmonary lymphatic
vessel density [151] (reviewed in [150]). Baluk et al. (2020)
found increased pulmonary lymphatic vessel density in
models induced by bleomycin and telomere
dysfunction.[151]. However, induction of pulmonary lymph-
angiogenesis using a gain-of-function approach suggested a
protective role for lymphatics in pulmonary fibrosis [151].

A study of bleomycin-induced pulmonary fibrosis found
induction of LYVELI, a canonical marker of lymphatic endo-
thelium, in pulmonary blood vessels (vascular endothelium)
[150]. This finding highlights the importance of marker selec-
tion when studying lymphatic vessels and underscores our
incomplete understanding of pulmonary lymphatics in health
and fibrosis. Integration of sScRNA-seq with histology to de-
scribe lymphatic endothelial subtypes in healthy and fibrotic
human lung tissue will help close this knowledge gap.

Conclusions

The lung vasculature of patients with IPF has recently been
characterized at single cell resolution and shows loss of spe-
cialized pulmonary capillary endothelial cells (aerocytes,
gCap cells) as well as expansion of a population of vascular
cells expressing markers of bronchial endothelium. Expansion
of these endothelial cells could potentially occur in response
to increased metabolic demand from the bronchiolized fibrotic
microenvironment, which includes airway cell dysplasia and
metaplasia, fibroblast/myofibroblast activation, immune cell
infiltration, as well as regional hypoxia downstream of alveo-
lar dysfunction. Neovessels may have a hyperpermeable phe-
notype that, along with expression of chemoattractants, con-
tributes to inflammation. However, the role of this expanded
endothelial population in the process of fibrogenesis lacks
clarity.
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Loss of organ-specific vascular elements or function ap-
pears to occur not only in pulmonary fibrosis but also in a
number of other disease states including liver cirrhosis, dia-
betic retinopathy, macular degeneration, glaucoma, and to
some extent in focal segmental glomerulosclerosis and exper-
imental nephritis [12, 58—60, 152—-155] suggestive of a shared
relationship among failed regenerative processes. Following
IPF patients longitudinally to determine the chronologic rela-
tionship between expanded bronchial-like endothelium and
fibrotic change could help determine whether these vessels
have a causative role in disease progression. One such exam-
ple would be evaluating for the presence of this expanded
endothelial population in patient cohorts with early interstitial
lung abnormalities (ILA) which can progress to clinically sig-
nificant IPF [156]. In addition, these studies may reveal
whether expanded abnormal vasculature can predict prognosis
among patients. If so, these vessels could potentially be
tracked non-invasively using MRI or PET probes [96, 157]
targeting uniquely associated markers such as extracellular
COLI15A1.

Regardless of a causal role for vascular dysfunction in pre-
cipitating tissue injury, a lack of organ-specific vasculature
may perpetuate fibrosis and impair beneficial healing re-
sponses. Several proteins with defined roles in endothelial
cells (SIPR1, ROCK1/2, FOXF1, eNOS, guanylyl cyclase-
A) significantly influence lung development, function, and
response to injury. Aging is associated with reduced frequen-
cy of KIT+ gCap-like progenitor cells [26], as well as reduced
expression of genes that promote lung healing/regeneration in
alveolar capillaries.

Developmental studies have shed light on the signaling
interactions between endothelial cells, epithelial cells, mesen-
chymal cells, and pericytes that regulate alveologenesis [15,
18, 26, 122, 123, 158, 159]. Better understanding of alveolar
capillary biology, including responses to fibrosis, may lead to
endothelial-targeted therapies that improve survival and func-
tion of specialized aerocytes and gCap cells, as was demon-
strated in a proof-of-concept experiment that infused KIT+
endothelial cells into FOXF1*" mice with hyperoxic lung in-
jury [26]. This paradigm of endothelium-targeted therapy to
enhance organotypic vascular function may be generally ben-
eficial in diseases characterized by progressive organ fibrosis.
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