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Abstract
This paper proposes a study motivated by the problem of minimizing the environ-
mental impact of air transport considering the complete air network, thereby several
aircraft. Both CO2 and non-CO2 effects are taken into account to calculate this impact.
The proposed methodology takes a network point of view in which airspace capacities
evolve as well as the traffic itself over time. Finding the shortest path with numerous
constraints and various cost functions is a common problem in operations research.
This study deals with the special case of multiple shortest paths with capacity con-
straints on a time-dependent subgraph. Multiple shortest paths are understood as one
shortest path per vehicle considered. The static special case is modeled as a mixed
integer linear program so that it can be efficiently solved by standard off-the-shelf
optimization solvers. The time-dependent nature of the problem is then modeled via
a sliding-window approach. Encouraging numerical results on the contrail-avoidance
application show that the environmental impact can be significantly reduced while
maintaining safety by satisfying the airspace capacity constraints.
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1 Introduction

Transportation, and in particular air transportation, offers an important source of oper-
ations research problems, such as the shortest path under constraints. Motivated by the
question ofmore eco-responsible transport and in a sustainable development approach,
these problems generally focus on theminimization of environmental costs. In particu-
lar, for air transport, driven by a global will of the sector, the issues of green operations
are gaining importance.

The air transportation environmental impact is not solely due to CO2 effects. The
non-CO2 effects involve other greenhouse effect gases such as nitrogen oxide (NOx ) or
other more complex phenomena like condensation trails (named contrails hereafter).
Contrails form white trails at the back of the aircraft engines under certain conditions
of humidity and temperature. They can disappear very quickly or on the contrary
persist and turn into clouds, called cirrus [1]. These can cause a parasol effect, usually
during the day, preventing the solar rays from reaching the Earth. On the contrary,
they can also create a greenhouse effect, by reflecting the rays emitted by the Earth. In
total, despite the important uncertainties that remain, contrails have a negative effect
on the climate [2].

Avoiding contrails, therefore, requires aircraft to avoid certain areas that are favor-
able to their formation.These areas are zoneswhere humidity is above a given threshold
value, and the temperature under another given threshold value. See Appendix B for
more details about the computation of contrail areas. Avoiding these areas is, there-
fore, important in order to minimize the total environmental impact. However, if this
costs too much in terms of CO2, a contrail area should not be avoided. Areas that are
favorable to contrails should, therefore, be viewed as soft obstacles, and the expression
“contrail avoidance” used in the sequel does not refer to a hard constraint. Different
metrics to compare the effect of CO2 and the contrail impact are proposed in the
literature. This study focuses on the Global Warming Potential metric [3], which cor-
responds to a penalty for flying through contrail areas. It is described later in this
paper (Section 4.2). Remark that contrails are not to be avoided at the expense of
flight safety. This study proposes to plan flight trajectories a few hours before take-
offs or in quasi-real time, where information is fixed for a given amount of time, and
enriched with updated information at the end of the time period. Contrail data are too
uncertain several hours before the flight, the strategic phase is then not studied here.
In contrast, weather data are not continuously updated, but at a given time frequency
(for instance every 30min or hours), so a real-time approach is not appropriate.

At this scale, ensuring safetymeans satisfying airspace capacity constraints. Indeed,
the airspace is divided into sectors under the responsibility of one or several air traffic
controllers. Thus, by limiting the number of aircraft per sector per time period, it
is understood that the air traffic controllers’ workload will be acceptable to ensure
safety. On a shorter time scale, a few minutes before arriving in an airspace sector for
example, the air traffic controllers ensure safety by enforcing vertical and horizontal
separations between aircraft.

To satisfy airspace capacity constraints, two approaches are possible: an airline-
centered or a network-centered approach. On the one hand, flight operators propose
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several flight plans and the network manager1 looks for a valid and best potential
combination. On the other hand, the computations are done directly by the network
manager, assimilated in the sequel to the air traffic control. This network-centered
approach allows one to reach an optimum, to avoid more cases without a solution
satisfying the capacity constraints and to evaluate the consequences of politics to
avoid the negative impact of contrails. This approach is the one chosen in this paper.

The considered problem is close to the classical operations research issue of finding
shortest paths, which includes several types of problems. A first example is the well-
known standard shortest-path problems which can be solved by efficient polynomial-
time algorithms. There are several extensions of this classical problem, for instance,
the time-dependent shortest-path problemwith dynamic costs and constraints. Variants
involving constraints are NP-hard problems even when dealing with a single vehicle.
Other problems deal with several vehicles simultaneously. The problem under study is
at the intersection of these mentioned problems: one seeks paths for several vehicles,
under constraints, and with dynamic costs and constraints.

Themain contribution of this paper is the proposition of a network approach for con-
trail avoidance. This low environmental-impact aircraft trajectory application comes
with a realistic illustrative instance, that is made publically available, and preliminary
numerical experiments that show that contrails can be mitigated at the network scale.
First, an optimization model first is proposed for the static case. It computes simul-
taneously (not sequentially) a path for each vehicle considered that satisfies capacity
constraints on subgraphs. A sliding-window methodology is then proposed to address
time-dependent costs and constraints. This heuristic enables the problem to be solved
a few hours before flight departure, or in quasi-real-time, taking into account infor-
mation updated as time passes and the time window changes.

This paper proposes first in Section 2 a literature review of individual route opti-
mization for contrail avoidance and route optimization for several vehicles. Then, it
presents in Section 3 an optimization model for the static case and its extension to
the time-dependent problem. The application to the contrail-avoidance aircraft trajec-
tory problem is addressed in Section 4. Promising numerical experiments are shown
and discussed in Section 5 through a sensitivity analysis of the different parameters
involved. Section 6 presents general conclusions and perspectives. Appendix A gives
the time-discretized optimization model, and Appendix B details how the application
input data are computed.

2 Previous RelatedWorks

This section presents previous related works by focusing first, in Section 2.1, on
individual route optimization for contrail avoidance. Then, in Section 2.2, different
works done on assigning routes for several vehicles are presented.

1 National or international entity that aims to ensure the best possible use of the airspace according to its
capacities by adapting the traffic. In Europe, the network manager is Eurocontrol. In the United States, the
equivalent is the Air Traffic Control System Command Center (ATCSCC).
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2.1 Individual Route Optimization for Contrail Avoidance

In recent years, driven by various initiatives, the issue of green aviation has become
more prominent in the literature. For instance, finding trajectories with the least possi-
bleCO2 emissions is a topicwell represented in the literature in particular by proposing
studies calculating the optimal wind trajectories (see for instance [4–6]). In addition,
non-CO2 effects are a particularly important topic. Several methods taking different
points of view and with different resolution strategies have been developed. In the
sequel, only one non-CO2 effect is taken into account: contrails.

To solve the problem in the most general case, optimal control methods have been
implemented. Since the constraints related to the mechanics of flight are enforced, the
computed trajectory is flyable in the free space. The methods chosen differ according
to the dimension of the instance addressed, the objective function considered, and
the number of aircraft involved. In [7], the problem is solved in 2D, thanks to optimal
control byminimizing an objective function that takes into account contrail avoidance,
fuel, and flight time. It has been used on one-aircraft instances but also for trajectories
between 12 city pairs. Hartjes et al. [8] solve the problem in 3D for a single aircraft,
also by minimizing fuel, time, and time in contrail areas. Some other papers present
methods taking into account time, such as [9].

Other studies rely on metaheuristics to solve the problem. For instance, Yin et al.
[10] use genetic algorithms to compute transatlantic flight trajectory to mitigate the
impact of contrails.Methods based on graphs are also used, likeA* in [11] orDijkstra’s
algorithm [12].

Finally, other methodologies rely on mixed integer linear program [13] or on mixed
integer quadratic programming [14] formulations.

Simorgh et al. remark in [15] thatAir TrafficManagement (ATM) considerations are
less often taken into accountwhenmultiple aircraft are considered, although the impact
on airspace capacity and controller workload is certain. Indeed, a risk is to empty the
spaces favorable to contrails by strongly congesting adjacent airspaces. Addressing
problems that aim at avoiding such situations is one of the main contributions of this
paper.

2.2 Assigning Routes for Several Vehicles

Finding the shortest path is a common problem in operations research. The literature
presents various ways to solve such problems. The graph version of the problem
can be addressed by integer linear programming [16], or other efficient algorithms
such as Dijkstra’s algorithm [17], A* [18] or Bellman’s algorithm [19] (dynamic
programming). In some cases, optimal control techniques [20] can be used, especially
if the path is to be computed in a continuous space and not on a graph. Variants of
the shortest path problem are subject to constraints that typically involve an upper
limit on a function of the arcs. For instance, the goal can be to minimize the distance
traveled by a vehicle with an upper bound on the travel time. This type of problem is
usually expressed for one vehicle, for one path. It is an NP-hard problem for which
some efficient methods have been developed [21–24].
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Some other problems compute several shortest paths, i.e., several vehicles are con-
sidered via a global criterion to beminimized. This is the case for the traffic assignment
problem (TAP) which aims at reaching an equilibrium for the vehicles or for the whole
system. The type of chosen equilibrium determines the objective function to be mini-
mized. An example is theWardrop user and system equilibrium [25, 26]. The problem
is subject to flow conservation constraints and capacity constraints on arcs and, in
the case of system equilibrium, it minimizes the average journey cost. This problem
considers cooperation and possibly a decentralized management of the traffic. On the
other hand, the user equilibrium is reached when no vehicle can lower its transporta-
tion cost through unilateral action. It is for instance used in road network applications,
where roads do not have infinite capacity but the number of vehicles that can use each
road in a given amount of time is limited.

The previouslymentioned problems take into account the arcs of the graph to define
routes, and possibly capacities on these routes. However, there are also other types of
problems in which the grain is coarser: nodes are defined by geographical sectors, and
a total capacity on each of these sectors is imposed.

This special case, therefore, involves capacities on the vertices of the graph. This
type of problem appears in air transportation: it is then named air traffic flow man-
agement problem (ATFMP), originally defined in [27]. The objective function of the
ATFMP is the total cost of aircraft delays, but variants can be derived by considering
other objective functions. For example, the total cost of trajectories in terms of flight
time, distance flown, or CO2 emitted can be taken into account. Optimization models
addressing this problem typically involve the following decisions to be made for each
flight:

• which sector to fly and when (which may induce speed modulations)?
• when to take off (by imposing delayswith respect to the scheduled departure time)?

Various capacity upper bounds are imposed on:

• the total number of aircraft in each sector at any given time (sector capacity con-
straints),

• the total number of aircraft in each airport at any given time (airport capacity
constraints).

This is a large-grained problem, but it is also necessary to take into account themore
precise spatial scale of the arcs to know where to fly through a sector at a given time.
This is done in the variant of the ATFM problem that involves rerouting (Air Traffic
FlowManagement with Rerouting Problem), and is solved in [28] (in its deterministic
version). The level of detail in this problem is very high since it completely defines
the trajectory followed, and it decides the speed of each aircraft on flown arcs. It takes
into account the cost on each arc. This cost can be the flight time, the distance flown,
or estimated CO2 emissions on this arc, for each aircraft. This problem is usually
addressed well in advance of takeoffs, several hours to several days before.

This paper proposes a method to organize traffic while ensuring safety by satisfying
capacity constraints on sectors. Moreover, it is also able to take into account contrails
for minimizing the traffic environmental impact. The methodology proposed allows
one to compute trajectories a few hours before takeoffs or to compute them in a quasi-
real-time framework, by taking benefit of enriched information as time goes.
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3 Mathematical OptimizationModel

This section presents the mathematical optimization models for the subgraph-capacity
multiple shortest-path problem. Section 3.1 presents the static case. This model is a
building block for the time-dependent case, addressed by a heuristic described in
Section 3.2.

3.1 Static Case

This subsection focuses on the subgraph-capacity multiple shortest-path problem in
the static case (input data do not evolve with time).

The classical shortest-path problem on a graph involves only one vehicle. It is
defined on a weighted graph G = (V , A), where V is the set of vertices, A is the
set of arcs, and w : A → R is the weight function. The model is built with the
decision-variable vector X that has component xu,v for each arc (u, v) ∈ A, where
xu,v indicates whether the arc (u, v) is part of the solution path or not, minimizing the
cost of the solution path and satisfying classical flow constraints (see, for instance,
[16]) from the starting node s ∈ V toward the ending node e ∈ V .

This classical problem can be adapted in the case of several vehicles with vehicle-
specificweight functions,whose (u, v, i)-component is notedwu,v,i , (u, v) ∈ A, i =
1, 2, . . . , M , whereM is the number of vehicles, and for each vehicle i = 1, 2, . . . , M ,
a start vertex si ∈ V , and an end vertex ei ∈ V are given. The model is built with the
decision-variable vectors Xi whose (u, v, i)-component is equal to 1 if the arc (u, v)

is part of the solution path for flight i and to 0 otherwise.
Finally, a subgraph-capacity extension can be defined, provided a set cover⋃N
k=0 Ak = A of the set of arcs is given with corresponding capacities Ck, k =

1, 2, . . . , N , where N is the number of arc subsets considered. In the sequel, we shall
call sector each of these arc subsets. This model can also be compared with capacited
network flowmodels [29]. In general, in such models, capacity constraints are defined
on arcs [30] or on nodes [31]. In our case, the capacity constraints are defined on
subsets of the arc set.

We define an auxiliary decision-variable vector, Yi , for each vehicle i , i =
1, 2, . . . , M , whose (k, i)-component yk,i is equal to 1 if vehicle i uses arcs of sector
Ak, k = 1, 2, . . . , N and to 0 otherwise. The optimization model for the subgraph-
capacity multiple shortest-path problem is then:

min
X ,Y

M∑

i=1

∑

(u,v)∈A

wu,v,i xu,v,i (1a)

s.t.
∑

(u,v)∈A

xu,v,i −
∑

(v,u)∈A

xv,u,i = 0, u ∈ V \{si , ei },
i = 1, 2, . . . , M

(1b)

∑

(si ,v)∈A

xsi ,v,i −
∑

(v,si )∈A

xv,si ,i = 1, i = 1, 2, . . . , M (1c)
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∑

(ei ,v)∈A

xei ,v,i −
∑

(v,ei )∈A

xv,ei ,i = −1, i = 1, 2, . . . , M (1d)

M∑

i=1

yk,i ≤ Ck, k = 1, 2, . . . , N (1e)

yk,i = 1 if and only if
∑

(u,v)∈Ak

xu,v,i ≥ 1, i = 1, 2, . . . , M,

k = 1, 2, . . . , N

(1f)

∑

(u,v)∈A

tu,v,i xu,v,i ≤ (1 + ηi ) t0,i i = 1, 2, . . . , M (1g)

Xi ∈ {0, 1}|A|, i = 1, 2, . . . , M (1h)

Yi ∈ {0, 1}N , i = 1, 2, . . . , M, (1i)

whereηi > 0, i = 1, 2, . . . , M , is a user-defined parameter. Constraints (1b), (1c), and
(1d) are the usual path flow conservation constraints for each vehicle, and constraints
(1e) and (1f) are the new subgraph-capacity constraints. Constraints (1f) enforce the
definition of the auxiliary binary variables Y1,Y2, . . . ,YM . These constraints can be
linearized and the Yi ’s can be relaxed into continuous variables, as shown below by
Proposition 1. Constraints (1g) are used to force the travel time (

∑
(u,v)∈A tu,v,i xu,v,i )

for each vehicle i to be less than 1+ηi times a reference travel time. This is an optional
constraint that prevents one or more vehicles from being significantly more penalized
than others. This can also be desirable when there are constraints on reusing a vehicle
for another journey, for example.

Proposition 1 Each of the constraints (1f), i = 1, 2, . . . , M, k = 1, 2, . . . , N, can be
replaced and linearized by:

yk,i ≥ xu,v,i , (u, v) ∈ Ak, (2)

yk,i ≤
∑

(u,v)∈Ak

xu,v,i , (3)

yk,i ∈ [0, 1]. (4)

Proof Consider a sector k and a vehicle i . One can easily show that 1 − yk,i =∏
(u,v)∈Ak

(
1 − xu,v,i

)
. Applying then the classical Fortet linearization extended to a

product of several binary variables (see [32], Subsection 3.3.2),

1 − yk,i ≤ 1 − xu,v,i , (u, v) ∈ Ak,

1 − yk,i ≥ 1 −
∑

(u,v)∈Ak

xu,v,i ,

1 − yk,i ∈ [0, 1].

This yields straightforwardly the desired result.
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3.2 Heuristic Approach for the Time-Dependent Case

This subsection defines themathematical formulation of the problem in the case where
input data evolve with time. In the general case, we are considering time-dependent
costs.Moreover, constraints (1e) and (1f) are time-dependent in the casewhere a sector
is only occupied by the vehicle during a certain amount of time and it is not occu-
pied when the vehicle is not in the sector yet/anymore. The associated time-discretized
model is detailed inAppendixA.Thismodel cannot be used for a quasi-real-time appli-
cation for two main reasons. First, the computation time required for solving directly
the time-discretizedmodel is too high. Somework has focused on pre-processing tasks
to overcome this problem, especially in the ATFM problem framework such as in [28,
33]. A low computation time is necessary in a quasi-real-time context but also when
addressing the problem a few hours before takeoffs since computations can be done
several times, for comparing several scenarios for instance. However, there remains
an issue with an approach based on the time-discretized model in the context of this
study. Indeed, it is not adapted to the case of recomputation in the event of updated
information (costs, aircraft positioning, capacity), since the entire computation has to
be performed again with full knowledge of all the information for the entire period
under consideration.

To take into account the release of the capacity of sectors by vehicles as they move,
the paths are optimized for a succession of (sliding) time windows. More precisely, the
paths on the graph are computed based on sector occupancy during the time interval
under consideration. Then, the time is incremented by the sliding-window length �t ,
and the start vertex si of each vehicle i is updated: it is replaced by the vertex reached
by vehicle i in the previous sliding-window optimization. This process is illustrated
by Fig. 1. When, at the end of a time window, a vehicle is on an arc but not at a node,

Fig. 1 Sliding-window computation of a shortest path. The final path is computed sequentially, in pieces,
for each of the time windows
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an artificial node is created. The process is stopped when each vehicle i has reached
its final destination vertex ei , i = 1, 2, . . . , M . The entry time in the simulation
of each vehicle is not artificially changed to coincide with the beginning of a time
window. This time-window approach may lead to suboptimal solutions. It is used as a
resolution heuristic for the following reasons. First, the time-dependent shortest path
for a single vehicle is already a difficult problem [34], not tomention the case involving
several vehicles plus capacity constraints. Moreover, in the context of our air transport
application, the time-windowmethodology is tailored to operational concerns. Indeed,
all relevant information is not always known for the subsequent time slots, and this
time-sequential approach reduces drastically the uncertainties at each time window,
by taking into account updated information.

The time-window approach that we are proposing may clearly lead to suboptimal
solutions; it is thereby used here as a heuristic but it has several advantages over an
approach based on the time-discretized model. First, the time-dependent shortest path
for a single vehicle is already a difficult problem [34], not tomention the case involving
several vehicles plus capacity constraints. Second, in the case where the computations
are done a few hours before takeoffs, it helps to reduce the computation time. Finally,
it is particularly adapted to the quasi-real-time framework. Indeed, the time-window
approach fixes the information for the duration of the time window, and updates the
different costs, capacities, and positions when a new time window is considered.

The paths on the graph are computed taking into account capacity reduction due
to a vehicle crossing the sector for a time period longer than the time-window size
defined by an anticipation parameter, K ≥ 1, whose precise value is set by the user.
This is illustrated by Fig. 2. More precisely, constraints (1f) are modified as follows:

yk,i = 1 if and only if
∑

(u,v)∈Ak,K �t

xu,v,i ≥ 1, i = 1, 2, . . . , M,

k = 1, 2, . . . , N ,

(5)

where Ak,K �t is the subset of arcs from Ak that have at least one end reachable by
vehicle i from si within a time less than K �t . The anticipation parameter, K , allows
one to anticipate somehow future time windows. This improves safety in cases where
uncertainties may occur in the knowledge of vehicle position and speed. For example,
if the vehicle’s true position is updated at the end of a sliding window, positioning
errors will be mitigated. This is particularly interesting in the case of quasi-online
optimization.

4 Application to Contrail Avoidance and CO2 Minimization

Section 4.1 shows that contrail avoidance for several aircraft can be seen as an instance
of the time-dependent subgraph-capacity multiple shortest-path problem modeled in
Section 3. Then, the cost-function computation is detailed in Section 4.2. Finally,
Section 4.3 details the required input data.
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Fig. 2 Capacity computation
along time windows. We
consider that a vehicle i
consumes the capacity of the
sectors that are reachable from
the start point si within a time
less than K �t (here: capacity is
consumed only on red arcs)

4.1 General Description of the Application

In the sequel, the French upper airspace is considered. Aircraft fly above France
following a sequence of 3D or 2D points linked by straight-line segment routes. These
points are namedwaypoints, and all thewaypoints defined aboveFrance are the vertices
of the graph. The segment routes defined between the waypoints define the set of arcs
of the graph. The graph is thereby a directed graph, since aircraft routes are typically
constrained to one direction. The problem of finding a trajectory for a flight, therefore,
boils down to finding a path in a graph. The aim here is to minimize the global impact
of all flights on the environment. More precisely, the goal is to minimize the total
environmental cost while ensuring that the airspace capacities are not exceeded. The
controller point of view is taken into account, and fairness among aircraft and airlines
must be kept in mind. For this reason, and in order to avoid suboptimal solutions, a
sequential (one aircraft at a time), greedy-like, computation of trajectories cannot be
used, even though there are very efficient algorithms to solve single-vehicle shortest-
path problems.

The problem is designed to compute only the cruise part of the trajectories. Indeed,
departing and arriving an airport is subject to numerous extra operational constraints
that leave almost no degree of freedom. Moreover, the altitudes concerned by the
contrails are cruising altitudes which are quite high. It is, therefore, generally not
relevant to address low-altitude parts of the trajectories. Then, the application we
consider in this study is solved only in the 2D plane, i.e., the altitude is not to be
decided by the optimizer. The altitude is generally little modified during the cruise
phase for reasons of passenger comfort. It is moreover already optimized by airlines
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to minimize fuel consumption and reduce engine worn out. Finally, the point of view
chosen in this study is that of air traffic control. However, the weight of the aircraft
being part of commercial data, it is not known by air traffic control. Without this data,
it is not possible to know the ability of the aircraft to climb and to quantify precisely
the environmental impact of a climb or a descent.

In the case of ground transportation, applications involving for instance cars on a
road network, one can set a limited capacity per arc. In our air transportation appli-
cation, the capacity limit is on areas (subsets of arcs), called sectors. These sectors
represent subdivisions of the upper airspace, and more precisely a set cover of the set
of arcs. If the trajectories were to be computed sequentially, then some vehicles, the
first ones, would be favored over the others. However, in the case of air transport, from
the point of view of air traffic control, no airline should be favored over another, so
such a sequential approach is not satisfactory. Above all, on the simple point of view
of optimization, the greedy-like sequential approach is likely to lead to undesirable,
suboptimal solutions.

Remark that satisfying capacity constraints allows one to ensure safety on the
strategic time scale (several hours before takeoffs) that is considered here. It guarantees
that the controllers will be able to manage the number of aircraft in their sector, while
avoiding possible losses of separation in the shorter term.

Airspace capacities evolve with time and their occupancy evolve as aircraft enter or
leave airspaces. Moreover, weather data, and also wind and contrail area data, evolve
with time. The sliding-window approach is particularly adapted in this case for several
reasons. Airspace capacities are defined on given time slots (in number of aircraft per
time slot), and can be adapted from a time slot to another. It is also adapted for contrail
area consideration since weather predictions are given for a period of time and are
refined as time runs. Additionally, this technique can be seen as a quasi-real-time
optimization technique. As previously mentioned, weather forecasts are evolving, so
it is possible to update them, but it is also possible to update aircraft positions. The
speed of planes may occasionally deviate from the reference value, causing them to
fly faster or slower. As a result, positions can be updated by implementing a quasi-
online optimization strategy, which motivates the use of the anticipation parameter K
as illustrated in Fig. 2.

Remark that sectors can, in some cases, be reconfigured (sector grouping or split-
ting) to accommodate demand. In this study, the areas are considered static (the airspace
configuration does not evolve with time).

4.2 Cost Computation

As explained before, the goal here is to take into account CO2 and non-CO2 effects,
and our application focuses on contrails. Then, in the sequel, the only non-CO2 effect
considered will be contrails. Reducing contrails because of their impact aims to avoid
favorable areas, or reducing the time (or distance) flown in these areas. Bi-objective
optimization is, therefore, a natural point of view to balance the two criteria which
may be contradictory (burn more fuel - CO2 - to avoid contrails - non-CO2). However,
the aim is to minimize the global environmental impact, and for this, we use a metric
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that is common in the climate-change literature [15, 35, 36] to balance the two effects.
Indeed, it is difficult to make decisions on these parameters independently, when the
aim is tominimize the total impact on the environment. The cost,wu,v,i of an arc (u, v)

for aircraft i is, therefore, the result of the (weighted) sumof theCO2 and contrail costs:
wu,v,i = w

CO2
u,v,i+wcontrails

u,v,i . Asmentioned before, the only non-CO2 impact considered

in this study is the contrail phenomenon:wnon-CO2
u,v,i = wcontrails

u,v,i . To quantify the relative
impact of contrails versus that of CO2, we use the Global Warming Potential (GWP)
metric. Since the goal is to minimize the overall impact, it is necessary to quantify
the relative impact of contrails versus that of CO2. For this, a metric known as Global
Warming Potential (GWP) is used. This metric relates the impact of most greenhouse
gases to the impact of CO2, under the form of a multiplicative factor, considering that
the impact of CO2 corresponds to GWP = 1. It acts as a penalty for flying through
areas favorable to contrails in a “soft obstacle” approach, considering that all areas
produce contrails with the same impact on the climate. This metric depends on a time
horizon over which the impact is computed. More details about GWP can be found
in [3]. Table 1 gives different values of GWP for contrails according to the different
considered time horizons, H . In the sequel, the contrail-induced cirrus (CIC) GWP
will be noted gH .

Depending on the timehorizon H considered, the contrails havemore or lessweight.
Notably, they have less impact compared to CO2 in the long term. The parameter H
could, therefore, be interpreted as a parameter controlling the respective weight of
the two criteria (CO2 and contrails). In the following, only cirrus clouds induced by
contrails will be taken into account, since they are the most impacting effect on the
climate. However, other contrails can also easily be considered by our model, by a
simple change in the cost function. Then, the cost for an arc (u, v) flown by an aircraft
i is: wu,v,i = (1 + λu,v gH ) w

CO2
u,v,i , where λu,v ∈ [0, 1] is the proportion of the arc

(u, v) that lies is in a persistent contrail area.
Concerning the cost of CO2, it is the total quantity of CO2 emitted by the aircraft

as it flies over the arc. The amount of CO2 emitted per liter of standard jet fuel
is constant. This cost is then directly proportional to the fuel consumption. Then,
w

CO2
u,v,i = CCO2 fu,v,i tu,v,i , where CCO2 is the constant quantity of CO2 emitted by

1kg of standard jet fuel, fu,v,i is the fuel flow of aircraft i above the arc (u, v), and
tu,v,i its flight time. Then, the cost-function reads:

wu,v,i = (1 + λu,v gH )CCO2 fu,v,i tu,v,i . (6)

In the case studied, the aircraft evolve in the 2D plane and are assumed not to
change speed. The fuel flow is then more or less constant and can be approximated by

Table 1 Global Warming Potential for contrail for various time horizons, H

H = 20 years H = 100 Years H = 500 years

GWPcontrail(H) 0.74 0.21 0.064

GWPCIC(H) 2.2 0.63 0.19
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a representative fuel flow (given altitude and speed, representative mass of the cruise
phase), f ri . Then, the cost function is rather written as:

wu,v,i = (1 + λu,v gH ) f ri tu,v,i , (7)

where multiplicative constants have been removed.
As mentioned earlier, a sliding-window approach is adapted to the case of such

weather-dependent cost functions, since there are uncertainties on weather forecast.
In particular, contrails are difficult to predict, and their impact is even more difficult
to predict [37]. Considering short-term path computation mitigates the uncertainties.

Details about how weather data are processed for the cost-function computation
can be found in Appendix B.

4.3 Data

This subsection details the input data of the problem. It explains in particular how
the graph is built, and how the sectors are defined. The wind encountered and the
areas favorable to contrails are also known data but the process to obtain the related
information is detailed in Appendix B.

The present study follows the new principle of Free Route Airspace (FRA) which
is applied nowadays to the European upper airspace. The aim of FRA is to remove the
previously established principle of air routes, and to replace it by navigation points,
calledwaypoints, throughwhich aircraft pass freely.Aflight plan is, therefore, a simple
sequence of waypoints through which the aircraft flies. This new paradigm allows one
to consider an increased number of possible direct routes. As a consequence, the
distance flown and thereby the CO2 emissions, can be decreased.

Rules are still established to fly from a point to another even if their number aims
to be decreased. Here, these rules are approximated by the rules established to build
the graph G = (V , A) required for the optimization model. The vertex set, V , is the
set of considered waypoints. The arcs (set A) connect two waypoints when their inter
distance is less than some user-defined threshold distance, D. One could alternatively
consider the complete graph, but this would not be coherent with operational practice,
not to mention the increase of complexity in regard with the preliminary nature of the
present study.

We construct instances based on the Frenchwaypoints that are located in thewestern
and southern parts for now, see Fig. 3 (the arcs are not displayed as they depend upon
the maximum threshold distance, D, chosen).

Our set of arcs is, therefore,

A = {(u, v) | u ∈ V , v ∈ V , du,v ≤ D}, (8)

where V is the set of waypoints, and du,v is the distance between waypoints u and v.
For the subgraph capacities, the set cover of the set, A, of arcs yields N subsets,

called sectors, {Ak}k=1,2,...,N , initially defined with respect to the waypoint set, as
shown in different colors in Fig. 4 for our instances. Then, all arcs with one of its ends
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Fig. 3 The FRA waypoints
above France constituting our
instance set

in one such waypoint set, noted Vk for some k = 1, 2, . . . , N , is considered to be in
the (arc-set) sector: Ak = {(u, v), u ∈ Vk or v ∈ Vk}.

The next section reports computational results.

5 Results and Sensitivity Analysis

This section presents an illustrative instance of the subgraph-capacity multiple
shortest-path problem together with various results obtained from numerical experi-
ments resulting from a sensitivity analysis of the different parameters involved. An
example of results is given in Section 5.1. Then, Section 5.2 focuses on the impact of
wind on the results, while Section 5.3 addresses the impact of the time horizon chosen

Fig. 4 The vertex subsetsVk ’s considered above France for building the arc-set sectors Ak ’s for our instances
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for the GWP computation on the results. Finally, the impact of the imposed airspace
capacity, Ck , for sector Ak, k = 1, 2, . . . , N , is discussed in Section 5.4.

5.1 Description of the Illustrative Instance

In the sequel, one instance of the problem is addressed but with various cost functions
and various levels (right-hand side) for the capacity constraints. This subsection details
the definition of this instance.

The graph is computed thanks to rules detailed in Section 4 (see Figs. 3 and 4).
Twenty aircraft are entering (taking off or entering the French upper airspace) per
30min simultaneously, for 3 h. The source-end vertex pair (si , ei ) of each aircraft i ,
i = 1, 2, . . . , M , is chosen randomly in the vertex set so that the minimum distance
(as the crow flies) is 200 nautical miles (a Nautical Mile (NM) is the distance unit
used in aeronautics, and corresponds to 1.852 km). The resulting instance is named
FRA-200. In order to define the arc set, A, we set the maximum distance between two
linked points to D = 75 NM. The airspeed of all aircraft is set to 400 knots (a knot
(kt) is the speed unit used in aeronautics and corresponds to 1 NM/h or 1.852 km/h).
This speed is chosen in adequacy with the typical airspeed of a standard commercial
aircraft, namely the Airbus A320 [38]. Then, to simplify the presentation, the fuel flow
is assumed to be the same for all flights (identical aircraft types, engines, and weights).
Figure 5 displays the wind encountered, and Fig. 6 shows the persistent contrail areas.

The length of the sliding window for time-dependence consideration is set to �t =
15 min. The parameter K for capacity consumption (as defined in Eq. (5)) is set to
K = 1.25. If nothing else is explicitly mentioned, it is considered that:

• the capacity of each sector k is set to Ck = 20, k = 1, 2, . . . , N ;
• the time horizon chosen for the GWP computation is set to H = 100 years;
• the anticipation parameter K (defined in Eq. (5)) is set to K = 1.25;
• the parameter ηi of each flight i = 1, . . . , M is fixed to an infinite value, i.e., the
flight time is not constrained (in other words, constraints (1g) are not considered).

Fig. 5 Wind encountered in
instance FRA-200
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Fig. 6 Persistent-contrail areas
used for instance FRA-200

Table 2 summarizes the features of instance FRA-200. More details about the
instance can be found in [39].

Instance FRA-200 is solved using the sliding window process explained in
Section 3.2. The following results are obtained with the Java API of CPLEX [40]
on a computer with an Intel Core i5-10210U, 1.60 Hz, with 8 Go RAM and a Debian
Linux OS. The code is available at [41]. Figure 7 shows the solution obtained on
instance FRA-200 on maps. The trajectories are represented by groups of 20 aircraft
on different maps for reading purposes. The computation time is 137.2 s.

5.2 Impact ofWind

The wind has a certain impact on the results. To quantify this impact, we solve two
variants of instance FRA-200:

Table 2 Features of the
illustrative instance, FRA-200

Feature Notation FRA-200

Aircraft and trajectory features

Number of aircraft M 20 per 30 min
for 3 h

Airspeed of aircraft 400 kts

Minimum distance between si and ei 200 NM

Airspace features

Number of sectors N 23

Maximum distance for arc definition D 75 NM

Capacity of each sector Ck 20

Optimization model features

Time-window length �t 15 min

Time horizon for the GWP computation H 100 years
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Fig. 7 Results obtained on instance FRA-200, grouped by 20 aircraft, sorted by increasing entry time

1. without wind and without contrails: wu,v,i = du,v, (u, v) ∈ A, i = 1, 2, . . . , M ;
2. with wind and without contrails: wu,v,i = tu,v, (u, v) ∈ A, i = 1, 2, . . . , M .

Figure 8 displays the additional flight distance and flight time in the second case
(with wind) in comparison with the first case (without wind).

The results show that in general, the flight distance is increased to the benefit of a
reduced flight time, which was expected.
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Fig. 8 Additional flight time and
flight distance when the wind is
considered (flight time
minimization) in comparison
with results obtained when the
wind is not taken into account
(only distance is minimized:
wu,v,i = du,v)

5.3 Impact of the Time Horizon Used for GWP Computation

As explained in Section 4.2, the cost factor associated with contrails depends on the
chosen time horizon, H . Intuitively, the shorter the time horizon is, the more impact
the contrails have, and therefore the more beneficial it is to lengthen the trajectories to
avoid contrails. To confirm this thought, we solve three variants of instance FRA-200:

1. no contrail consideration: gH = 0;
2. contrail consideration with H = 100 years: gH = g100 = 0.63;
3. contrail consideration with H = 20 years: gH = g20 = 2.2.

Figures 9 and 10 display comparative results for variants 1 and 2, and for variants
1 and 3, respectively.

The flight time is higher because of the avoidance of contrail areas. Figures 9 and 10
show that the dependence on the time horizon is important since in the case of a short
horizon, the optimal trajectories are much longer than in the case of a longer time
horizon. If the contrail impact is considered high, the flight time has a lower impact
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Fig. 9 Additional flight time and
flight distance when H = 100
years (gH = g100 = 0.63) when
compared with the case without
contrails (gH = 0)

on the objective function, and then is highly increased to avoid as much as possible
the areas favorable to contrails. Indeed, Fig. 10 shows optimal trajectories with an
increase of more than 30% in flight time. Fuel consumption therefore explodes.

Froman environmental point of view, the use of the chosenmetric leads to this result.
At first sight, this choice seems questionable. Nevertheless, given the assumptions
associated with the metric, this result is the one that minimizes the environmental
impact, although it may not be operationally acceptable. There are many reasons why
this result may not be operationally acceptable. Firstly, some aircraft are clearly at a
disadvantage, and it is difficult to know whether they were diverted to avoid contrails,
or in order to satisfy capacity constraints. Moreover, the aircraft may have to ensure
connections and therefore cannot arrive too late. Finally, the fuel on board must be
sufficient not only tomake the trip, but also to account for the event of being diverted to
another airport, so there is a constraint on the length of the detour. Then, the constraints
restricting the detour can be added in the model (through constraints (1g)). Figure 11
shows an example of results obtained when such constraints are added with ηi = 0.1,
i = 1, 2, . . . , M (10% of additional flight time is allowed).
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Fig. 10 Additional flight time
and flight distance when H = 20
years (gH = g20 = 2.2) when
compared with the case without
contrails (gH = 0)

Because of the sliding-window process, the extra constraints are not globally sat-
isfied, but they are satisfied locally at each step, and are nearly satisfied at the global
scale, as can be observed in Fig. 11.

5.4 Impact of Airspace Capacity

Another parameter to be studied is each of the airspace capacity valuesCk’s. The same
setup concerning aircraft is taken with a GWP computed with, this time, H = 100
years. Several results are impacted by changing the airspace capacity, especially the
obtained optimal objective-function value, and the computation time required. Indeed,
in order to satisfy capacity constraints, some aircraft may be forced to fly longer or
through contrail zones. The problem can be harder to solve if the capacity constraints
are too restrictive, and so the computation time increases. Figure 12 shows the evolution
of the optimal objective-function value obtained and the computation time required
for various capacity levels, Ck , assumed constant for every sector k, k = 1, 2, . . . , N ,
and at each time window.
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Fig. 11 Additional flight time
and flight distance with extra
flight time constraints added
when H = 20 years, in
comparison with the case
without contrails

Fig. 12 Result comparison in
terms of objective-function value
and computation time when the
airspace capacity, Ck , changes
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The above results show how the right-hand side of the airspace capacity constraints
affect the feasibility of the problem and the environmental impact. The higher the
capacity of the airspace is, the better the results are. However, beyond a certain value
of Ck , no change is observed in computation time, nor in objective-function value
since the capacity constraints are not saturated.

5.5 Impact of the Anticipation Parameter

The value of the anticipation parameter K defined in Section 3.2 has an impact on the
computation time and on the objective-function value obtained. Solving the illustrative
instance FRA-200 for different values of K yields the results displayed on Fig. 13.

One observes that the computation time and the optimal value of the objective
function increasewith K (rapidly for the computation time). The number of constraints
does not increase nor does the number of problems solved, since the size of the time
window does not change. However, the capacity constraints (constraints (1e)) become
more restrictive, involvingmore decision variables in the left-hand side term. Figure 14
shows an example considering one aircraft for which the red path is assigned. In this
example, if K = 1.25, at the current iteration of the algorithm proposed, the aircraft
is only counted in sector 1, and not in sector 2. However, if K = 1.5, the aircraft
consumes capacity in both sectors at the given iteration. The optimization problem
is more constrained as the anticipation parameter increases, the optimal value of the
objective function can only deteriorate.

The value of the anticipation parameter K should be set according to the use case,
depending on the desired level of conservatism in view of increasing safety and robust-
ness to the uncertainty of the position of aircraft (recall however that the value of K
should be chosen greater than 1 for the reasons given earlier in Section 3.2). The antic-
ipation parameter allows one to take into account positioning uncertainties in a context
of quasi-real time. It also makes it possible to anticipate potential future problems, by
reducing the risk of late infeasibility, while avoiding to take into account too far in
advance the occupancy of sectors (which would be too restrictive and would make no
operational sense). Therefore, the value of K should not be set too high, especially
since this would make computing time unreasonably long. The value of this parameter

Fig. 13 Result comparison in
terms of objective-function
value and computation time
when the anticipation parameter,
K , changes
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Fig. 14 Example with one
aircraft of capacity consumption
according to the value of the
anticipation parameter K . Here,
in the case where K = 1.25, the
aircraft does not consume any
capacity in sector 2, but it does
when K = 1.5

should be fixed depending on the specific considered application and depending on
any computation time limit (e.g., in a quasi-real-time context). For instance, in our
computational experiments, the computation time increases drasticallywhen K > 1.6.
Therefore, if the positioning uncertainties are not too large, a value under 1.6 is clearly
desirable.

6 Conclusion

Motivated by the issue of contrail avoidance at the network scale from the air traffic
control point of view, we introduced a new model for the multiple shortest-path prob-
lem that takes into account capacity constraints on subgraphs. In the static case, the
number of vehicles going through each considered subgraph is counted and bounded.
Dynamic aspects have also been taken into account by establishing an adapted model
with time windows over each of which the static model is solved. Taking this time-
dependent aspect into account is essential because as vehicles move, they free up
capacity, and costs can also change over time. The model used does not provide the
same quality of solution as if the static model had been discretized in time, but it fits
better the operational reality as illustrated by the application addressed in our study.
Moreover, the proposal methodology allows one to use a standard solver to solve
realistic air traffic instances.

The application addressed in this paper motivated the introduction of a new model
for the contrail-avoidance problem when considered at the network scale and from
the air traffic control point of view. The time-window strategy is particularly adapted
to model time-dependency since it can encompass diverse operational features such
as time between contrail forecasts and uncertainty on their prediction and airspace
capacities defined per time period. The trajectories are computed for all aircraft and
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not for each individual aircraft to avoid favoring any particular flight. Work has also
been done for computing cost of arcs, so that they can be adapted to the Air Traffic
Management point of view. This allows one to consider and to weigh CO2 and contrail
impact using Global Warming Potential with different time horizons, giving more or
less importance to contrail avoidance.Moreover, it allows one to take into account other
non-CO2 effects due to air transport, or to use more elaborated metrics to determine
the impact of contrails.

Future tracks of research should focus on the numerous sources of uncertainty
to be taken into account when addressing the contrail-avoidance problem. There
are several uncertainties to consider when studying contrail-favorable (or persistent-
contrail-favorable) areas, as shown by Gierens et al. [37]. Other sources of uncertainty
are the wind estimation and the presence of traffic.

Furthermore, it is particularly important in air traffic control that one airline is not sys-
tematically disadvantaged over another. The simultaneous computation of trajectories
helps to limit this pitfall, but fairness consideration is an open area for future research.

Finally, other decision variables could be considered. First, recall that in this study,
the airspace configuration is considered static, the sectors are not modified. However,
reconfiguration may also be involved in decisions to accommodate the location of
contrail areas. Also, the cruise altitude should be envisaged as a decision variable since
it is an efficient mean of mitigating contrail impact, as shown by Fichter et al. [42].

This leads to several issues including the knowledge of some critical aircraft param-
eters (such as its weight at any moment) that are not known from the air traffic control
point of view. Moreover, fuel consumption depends on the altitude as well as on the
type of aircraft. Models to estimate fuel flows from an air traffic control perspective
should be considered. The OpenAP [43] database, or other models based on machine
learning, could thereby be used, as in [44] for the approach and landing phases.

Appendix A: Time-Discretized OptimizationModel

The mathematical optimization model obtained in the static case can be discretized
to obtain the time-dependent optimization model. This transformation is based on the
classical time-dependent shortest-path problem [45].

Some notations should be defined first:

• Ti = {t0,i , . . . , t f ,i }: the set of time slots for vehicle i ;
• T = ⋃M

i=1 Ti ;• Ck,t : the capacity of sector k, k = 1, 2, . . . , N , for time slot t , t ∈ T ;
• wt

u,v,i : the cost for vehicle i , i = 1, 2, . . . , M , to go through arc (u, v) ∈ A at
time slot t , t ∈ Ti ;

• �t
u,v,i : the time necessary for vehicle i , i = 1, 2, . . . , M , to go through arc (u, v) ∈

A at time slot t , t ∈ Ti .

The decision variables are for each vehicle i , i = 1, 2, . . . , M :

• xu,v,i ∈ {0, 1} is equal to 1 if vehicle i goes through arc (u, v);
• ztu,v,i ∈ {0, 1} is equal to 1 if vehicle i enters arc (u, v) at time slot t ;
• ytk,i ∈ {0, 1} is equal to 1 if vehicle i flies through sector k at time slot t , t ∈ T .
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The model is then:

min
X ,Y ,Z

M∑

i=1

∑

t∈Ti

∑

(u,v)∈A

wt
u,v,i z

t
u,v,i (A1a)

s.t.
∑

(u,v)∈A

xu,v,i −
∑

(v,u)∈A

xv,u,i = 0, u ∈ V \{si , ei }, i = 1, 2, . . . , M (A1b)

∑

(si ,v)∈A

xsi ,v,i −
∑

(v,si )∈A

xv,si ,i = 1, i = 1, 2, . . . , M (A1c)

∑

(ei ,v)∈A

xei ,v,i −
∑

(v,ei )∈A

xv,ei ,i = −1, i = 1, 2, . . . , M (A1d)

∑

(u,v)∈A

ztu,v,i −
∑

(v,u)∈A

z
t+�t

v,u,i
v,u,i = 0, u ∈ V \{si , ei }, i = 1, 2, . . . , M, t ∈ Ti

(A1e)
∑

(si ,v)∈A

z
t0,i
si ,v,i = 1, i = 1, 2, . . . , M (A1f)

∑

t∈Ti
ztu,v,i = xu,v,i , (u, v) ∈ A, k = 1, . . . , N , i = 1, . . . , M

(A1g)
M∑

i=1

ytk,i ≤ Ck,t , k = 1, 2, . . . , N , t ∈ T (A1h)

ytk,i = 1 if and only if
∑

(u,v)∈Ak

ztu,v,i ≥ 1, i = 1, 2, . . . , M, k = 1, 2, . . . , N , t ∈ Ti

(A1i)

ytk,i = 0, i = 1, 2, . . . , M, k = 1, 2, . . . , N , t ∈ T \Ti
(A1j)

Xi ∈ {0, 1}|A|, i = 1, 2, . . . , M (A1k)

Zi,t ∈ {0, 1}|A|, i = 1, 2, . . . , M, t ∈ Ti (A1l)

Yi,t ∈ {0, 1}N , i = 1, 2, . . . , M, t ∈ Ti . (A1m)

Constraints (A1b), (A1c), and (A1d) are the flow conservation constraints. Con-
straints (A1e) and (A1f) enforce consistency of space-time flow conservation.
Constraints (A1g) make the link between the time-dependent and the static decision
variables. Constraints (A1h) are the time-discretized capacity constraints. Constraints
(A1i) and (A1j) define the auxiliary variables ytk,i . The former can easily be linearized,
as for the static model using Proposition 1.

A.1 Comparison with the Proposed Heuristic

The resolution of this model via CPLEX [40] has been compared to the proposed
heuristic approach. Table 3 shows the different results, with various instance sizes,
and two capacity scenarios: one retricting and the other non-restricting, with a time-
discretization step equal to the size of the slidingwindow. In this case, the timewindow
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Table 3 Comparison of the results obtained by solving directly the time-discretized model and using the
sliding window approach for three instance sizes and two capacity scenarios

Instance
size

Capacity
scenario

Method Computation
time

Objective function
value

10 Non-restricting Time-discretized method 95.49 s 8.9828

Sliding-window approach - K = 1.25 11.56 s (-88%) 8.9828 (+0%)

Sliding-window approach - K = 1.5 10.71 s (-89%) 8.9828 (+0%)

Restricting Time-discretized method 412.67 s 8.983

Sliding-window approach - K = 1.25 14.02 s (-97%) 8.9948 (+0.13%)

Sliding-window approach - K = 1.5 12.66 s (-97%) 9.0201 (+0.41%)

20 Non-restricting Time-discretized method 357 s 17.9535

Sliding-window approach - K = 1.1 19.61 s (-94%) 17.9535 (+0%)

Sliding-window approach - K = 1.25 19.72 s (-94%) 17.9535 (+0%)

Sliding-window approach - K = 1.5 20.05 s (-94%) 17.9535 (+0%)

Restricting Time-discretized method 613,15 s 17.9657

Sliding-window approach - K = 1.1 21.26 s (-97%) 17.9658 (+0.0005%)

Sliding-window approach - K = 1.25 21.43 s (-97%) 17.9897 (+0.13%)

Sliding-window approach - K = 1.5 22.54 s (-97%) 18.0376 (+0.40%)

60 Non-restricting Time-discretized method 501.36 s 53.8969

Sliding-window approach - K = 1.25 90.51 s (-82%) 53.8969 (+0%)

Sliding-window approach - K = 1.5 92.44 s (-82%) 53.8969 (+0%)

Restricting Time-discretized method 2466 s 53.8976

Sliding-window approach - K = 1.25 95.06 s (-96%) 53.9903 (+0.17%)

Sliding-window approach - K = 1.5 96.26 s (-96%) 54.0925 (+0.36%)

is small, because the discretization step must be smaller than the flight time on the
shortest arc. The impact of the value of the parameter K is also studied. These results
are presented in Table 3.

One observes differences between the two methods in terms of computation
time and objective function value. On the one hand, the heuristic approach yields
significantly lower computational times than that obtained by directly solving the
time-discretized model. On the other hand, despite differences in the objective func-
tion value results, the values obtainedwith the heuristic approach remain close to those
obtained with the exact method. The gain in computation time is what interests us here
with regard to the application case. Thus, the loss in objective function is reasonable
compared to the computational gain. All the more so as the chosen heuristic enables us
to directly take into account the data update at each time interval, whereas solving the
discretized model directly requires us to completely redo the computations each time.
This low computation time is required when solving the problem in quasi-real-time
framework but also a few hours before because computations can be repeated several
times, to compare several scenarios for example, and it is essential that computation
time is not too long.
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Appendix B: Data Processing for Numerical Experiments

This section shows how data for computational experiments have been extracted and
computed.AppendixB.1 dealswithwind data, whileAppendixB.2 focuses on contrail
data.

B.1Wind Data

The costs defined by (7) involve the computation of the flight time over each arc
(u, v) ∈ A. To compute these costs, the wind on the arcs, and the distance between u
and v, the two ends of the arcs, have to be known.

Let λu and λv be the latitude of vertices u and v respectively, and let φu and φv be
their longitude. The distance between u and v is given by:

du,v = R crad in km, (B1)

= 60 cdegrees in NM, (B2)

where R = 6, 371 km is the Earth radius, crad and cdegrees represent the following c
values, expressed in radians and in degrees respectively:

c = arccos
(
sin(λu) sin(λv) + cos(λu) cos(λv) cos(φv − φu)

)
. (B3)

Then, the flight time for aircraft i , noted tu,v,i , between points u and v is given by:

tu,v,i = du,v

GSu,v,i
, (B4)

where GSu,v,i is the ground speed of aircraft i on arc (u, v). It can be computed via:

GSu,v,i = Vai + Wu,v, (B5)

where Vai is the airspeed of aircraft i (considered constant), and Wu,v is the wind
encountered on the arc (u, v).

Wind data have been extracted from the website Windy [46] on a square grid of
size 0.2◦ above France, as shown in Fig. 15.

To compute the wind on each node of the graph, a so-called Shepard interpolation
[47] was used. More precisely, for each node P located in a 2D-square P1P2P3P4

Fig. 15 2D grid used for wind
data extraction from Windy [46]
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Fig. 16 Notations for estimating
the wind at P via Shepard
interpolation

of the data grid (see Fig. 16), the wind W (P) at P is calculated from the wind at
Pk, k = 1, 2, 3, 4, using the distance from P to each of these points (noted respectively
d1, d2, d3 and d4) as follows:

W (P) =
∑4

i=1 W (Pi ) ∗ d−p
i

∑4
i=1 d

−p
i

, (B6)

where p > 1 is a user-defined parameter (set to p = 2 in this study).
Finally, the wind along an arc (u, v) is simply defined as the average of that at u

and at v:

W(u,v) = W (u) + W (v)

2
. (B7)

Figure 17 shows data used for the examples presented in the result section (Section 5).

B.2 Contrail Data

Contrails are formed in cold and humid areas. They persist and induce cirrus if the air
is supersaturated in ice. The computation of persistent contrail areas is performed in
two phases:

1. Areas favorable to contrail formation
2. Areas in which contrails will persist (ice supersaturated areas).

In [36], contrail areas are computed thanks to the Schmidt-Appleman criterion.
This criterion gives a minimum threshold, rmin , of relative humidity of the air in
liquid water, noted RHw, above which contrails are formed: contrails are assumed to

Fig. 17 Wind encountered in the
example of the result
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Fig. 18 Persistent-contrail areas
in western France used for our
instances

form when RHw ≥ rmin , where

rmin = G(T − Tc) + eliqsat (Tc)

eliqsat (T )
, (B8)

eliqsat (T ) is the saturation vapor pressure over water, and Tc is the estimated threshold
temperature (in Celsius degrees) for contrail formation at liquid saturation. The latter
is computed via:

Tc = −46.46 + 9.43 log(G − 0.053) + 0.72 log2(G − 0.053), (B9)

where G = E IH2OCp P
εQ(1−η)

, E IH2O = 1.25 is the water vapor emission index, Cp =
1004 J .kg−1.K−1 is the heat capacity of the air, P is the ambient pressure (in Pascals),
ε = 0.6222 is the ratio of the molecular masses of water and dry air, Q = 43 ∗
106 J .kg−1 is the specific heat of combustion, and η = 0.3 is the average propulsion
efficiency of a commercial aircraft.

In [36], the ice super saturated areas are determined thanks to the following criterion:
RHi > 1, where the relative humidity over the ice, noted RHi is computed as follows:

RHi = RHw ∗ 6.0612 ∗ exp( 18.102∗T
249.52+T )

6.1162 ∗ exp( 22.577∗T
273.78+T )

, (B10)

and where T is the ambient temperature in Celsius degrees.
The relative humidity and temperature are also computed from data extracted from

Windy [46] on a 2D-grid, and interpolated via quadratic interpolation. Figure 18 shows
the data used for the examples presented in the result section (Section 5), where red
areas are persistent-contrail-favorable areas, to be avoided.
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