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Abstract
Energy providers are faced with the challenge of effectively managing electri-
cal energy systems amidst uncertainties. This study focuses on the management 
and dispatch of energy demand in the electricity microgrid, employing an inter-
val optimization strategy to address electricity price uncertainties. The demand 
response program (DRP) incentive modeling is utilized to implement demand dis-
patch. To mitigate the impact of electricity price uncertainties, an incentive mod-
eling approach based on offering reduced electricity demand during peak periods is 
proposed. The interval optimization approach is employed to minimize operational 
costs, with the epsilon constraint-based fuzzy method utilized to solve and address 
the problem. The effectiveness of the proposed modeling approach under conditions 
of uncertainty is demonstrated through the use of the microgrid in various case stud-
ies and numeric simulations. The participation of the DRP leads to minimizing the 
average and deviation costs by 9.5% and 6.5% in comparison with non-participation.
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Nomenclature
t, T  Time (hour)
m, M  Micro turbine (MT) index (–)
NC  Consumers’ number
Deq, DRE  Consumers’ demand and demand reduced by DRP (kW)
ΨRE  Offer price for DRP ($)
CRE  DRP price ($)
A, B, C  MT fuel cost ($)
Pm, PPM  MT power and PM power (kW)
cPM  Price of electricity in PM ($)
ΘRE  Binary variable of the DRP
τRE, κRE  Binary variable for before and after DRP

1 Introduction

1.1  Aims

Currently, electrical networks are developing by using modern and new technologies 
like smart grids with communication and computing infrastructures, offering great 
opportunities for automation and management [1–3]. With smart grids, the task of 
consumers in relation to energy grids has shifted to that of user participants and is no 
longer a passive consumer [4–6]. As a result, consumers are more actively participat-
ing in energy exchange strategies. For this purpose, a power or energy control system 
can be taken into account as a modern tool to intelligently manage power demand on 
the consumers’ side [6, 7]. Regarding data and information such as electricity prices in 
energy markets and peak power demand, energy optimization on the consumers’ side is 
used to adjust the power consumption modeling of users as part of a demand response 
program (DRP) [8]. In addition, in view of the growing environmental and economic 
problems in many countries, the use of smart grids and different approaches to opti-
mal energy scheduling is increasing. In recent decades, fossil fuels have been the main 
resource of energy production, especially energy electricity [9–12]. Therefore, the use 
of diverse solutions is required to address all the mentioned challenges and problems. 
Thus, smart grids and communication links between energy companies and consumers 
have been deployed to improve economic and technical indicators [12–14]. In addition, 
consumers can participate in energy savings based on electricity price signals by inte-
grating smart grids into electricity networks [14]. The consumer can be assumed as a 
backup resource in power grids to reduce power production during peak demand [15]. 
By using this solution, the role of the generator is taken over by the consumers, and the 
power in the energy plans is limited to the peak demand [16].

1.2  Related Works, Research Gaps and Contributions

Energy management in power grids has been studied in recent years by research-
ers; a number of these studies are presented. In [17] used the power dispatch of 
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the electrical grids through the classification of devices and on minimizing the 
cost of power consumption. In [18] discusses energy optimization with regard to 
emissions and power production costs in power grids. The optimal joint of electri-
cal microgrids with the optimal energy design of renewable resources is reported 
in [19]. The optimal power management in power grids considering the uncer-
tainty of plug electric vehicles (PEV) was studied in [20]. In [21], onsite power 
production and consumer load management are implemented to reduce costs and 
maximize reliability. Authors in [22] the self-planning of power resources con-
sidering risk control under conditions of load uncertainty is examined in order 
to maximize power savings. The hybrid modeling of the optimization is intro-
duced in [23] to manage the demand in power grids during emergency hours. In 
[24] economic modeling of power grids with optimal participation of renewable 
energy sources and load planning is examined. The evaluation of electrical grids 
with a view to maximizing energy efficiency by modeling the optimal configura-
tion has been proposed in [25]. The minimization of the total annualized cost and 
lifecycle emissions of the residential building by data-driven demand modeling 
is presented in [26]. In this reference, the optimal joint of the energy system with 
demand is modeled via a mobility model and robust approach based on electric-
ity price. In [27] Mixed Integer Linear Programming approach is implemented to 
optimize the operation of the heating and cooling energy system at Parma Univer-
sity to improve thermal comfort using heat pumps. In Table 1, a summary of the 
mentioned papers in the literature is compared with this paper. Although appro-
priate studies are investigated in the literature on the optimal energy management 
of microgrids and energy grids, there are several research gaps which should be 
addressed as follows:

1. The aim of most studies is to meet the demand for energy systems with the mini-
mum cost without considering DRP modeling. The proposed models are solved 

Table 1  Survey of mentioned studies with this work

Ref Uncertainty parameter Uncertainty approach Optimization method DRP model
Electricity Price Interval approach Epsilon-constraint Incentive

[17] ✓ Χ Χ Χ
[18] Χ Χ Χ Χ
[19] Χ Χ Χ Χ
[20] Χ Χ Χ Χ
[21] Χ Χ Χ Χ
[22] Χ Χ Χ Χ
[23] ✓ Χ Χ Χ
[24] ✓ Χ Χ Χ
[25] Χ Χ Χ Χ
[26] ✓ Χ Χ Χ
[27] Χ Χ Χ Χ
Our study ✓ ✓ ✓ ✓
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regarding the technical constraints of the system. Therefore, in these studies, there 
are no appropriate models to increase the flexibility of the system.

2. The incentive strategy is taken into account as the DRP for consumers in the opti-
mal energy management in the microgrid. However, participation in the incentive 
strategy is not considered in the literature.

To address these gaps, this work proposed the optimal performance of electrical micro-
grids under severe uncertainty of power market price and under DRP through an interval-
based optimization model which is not investigated in the previous works. The interval 
approach converts a single objective problem into a bi-objective model in which the aver-
age and deviation costs of the electrical microgrid should be minimized. To solve such a 
bi-objective problem, epsilon constraint and fuzzy methods are used. Also, DRP is imple-
mented to help the electrical microgrid reduce its operation costs through the reduction of 
load in peak times. The DRP is implemented through incentive modeling. As a solution, 
incentive modeling based on the bid price to reduce electricity demand is proposed as a 
reserve strategy. However, innovations in this work can be highlighted as follows:

(A) An incentive strategy is considered as demand-side reserve to peak demand reduction.
(B) The interval approach is proposed to solve electricity price uncertainty.
(C) The epsilon constraint and fuzzy methods are employed to solve the bi-objective 

model with average and deviation costs as new functions.

2  DRP Modeling

In this section, the incentive strategy based on the power microgrid is modeled through 
consumer participation in energy saving. The DRP will be implemented on the condi-
tion that consumers are offered prices that allow them to control and reduce their self-
consumption. The DRP mathematics is formulated as follows:

Equation (1) is the operating cost of DRP, and the DRP time for demand reduction is 
formulated by Eq. (2). The starting and ending time of DRP for each consumer at time 
t is modeled by Eq. (2).

3  Electricity Price Modeling

The electricity price model is proposed under conditions of uncertainty in the power 
market. The log-normal function is employed to model the electricity price, the uncer-
tainty price modeling is as follows [28]:

(1)CRE =

T∑
t= 1

�RE × DRE (t) × �RE (t) ∀t

(2)�RE (t) − �RE (t) = �RE (t) − �RE (t − 1) ∀t
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where Ѳ, µ, and σ are the distribution function parameter, standard deviation and mean 
value, and respectively. The parameter of the distribution function (electricity price) is 
produced as a random variable according to the Monte Carlo method at bounds [pE

min,  
pE

max]:

The Monte Carlo method is used for random generation of the electricity price and 
prevents data creation in the optimization process.

4  Objective Function 

A scheme of the power microgrid is shown in Fig. 1. The generation side is the micro-
turbine (MT) and the power market (PM). MTs run on fossil fuels to generate electric-
ity. PM electricity production has various prices at any hour of the day.

(3)G(pE,�, �) =
1

pE�
√
2�

e

�
−
(Ln(pE )−�)

2

2�2

�

(4)pmin

E
≤ pE (t) ≤ pmax

E

Fig. 1  Microgrid overview
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The operator acts as a coordinator between the MTs and PM with the demand side 
through data communication in the grid. Consumers can receive an optimal share 
of power consumption by using the price of the offer to reduce demand and the data 
transmitted by the operator. Thus, the objective function is formulated in the power 
microgrid, provided that the fuel costs MTs, PM costs, and DRP costs are minimized 
by Eq. (5):

Here, the costs of the MTs, PM, and DRP are formulated in the objective function 
Eq. (5). The first, second, and third terms of the objective function Eq. (5) are the cost 
of MT, PM, and DRP, respectively.

4.1  Demand Supply Modeling

The energy requirement must always be covered by the generators. In these con-
straints, energy generation on the generation side should be equal to energy demand 
at each time. This constraint yields an energy supply to demand as follows:

4.2  DGs Capacity Constraint

The power generation by MTs has a minimum and maximum limit. Hence, limited 
power generation by MTs is formulated as follows:

5  Modeling Uncertainty of the Objective Function 

The interval modeling for solving the objective Eq. (5) with price uncertainty in the 
power market is formulated. In this method, the lower and upper intervals of the 
objective function Eq. (5) are formulated considering uncertain parameters (electric-
ity price) [29].

(5)
minf =

T∑
t= 1

�
M∑

m= 1

�
AP2

m
(t,m) + BPm(t,m) + C

��
+

T∑
t= 1

�
PPM (t) × cPM (t)

�
+

T∑
t

�
CRE

�

(6)
PPM (t) +

M∑
m= 1

Pm (t,m) =

Deq (t) − DRE (t)

(7)Pmin

m
≤ Pm(m, t) ≤ Pmax

m

(8)max f (x) = fmax(x)
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In the following, the upper and lower of the objective function are formulated by 
deviation and average amounts by bi-objective function as follows:

Finally, the objective function should be formulated by new modeling via average 
and deviation amounts as follows:

6  Optimization Method

The bi-objective functions are obtained by the interval method that has a conflict 
nature with solutions of the Pareto front. Hence, the epsilon constraints method is 
implemented to generate the solutions of the Pareto front of the average and devia-
tion amounts. The epsilon constraint method can be modeled as follows [30]:

Subject to:

where z, j, and x are objectives, main objective function, and variables, respectively.

6.1  Decision‑Making Method

Since, average and deviation amounts are optimized in this study, simultaneously. The 
frontier solutions will be obtained. The energy operator must determine the optimal solu-
tion for objectives in the frontier solutions as a decision maker. Hence, the max–min 
fuzzy method is proposed for a determined optimal solution as follows [31, 32]:

Here, Γ (fz (ϑ)) and fz(ϑ) are membership functions or solutions in the zth objec-
tive and value of objective at ϑth frontier solutions, respectively. Also, to determine 
the optimal solution in frontier solutions maximum and minimum procedure is 

(9)min f (x) = fmin(x)

(10)f d (x) =
fmax(x) + fmin(x)

2

(11)f a (x) =
fmax(x) − fmin(x)

2

(12)min
[
f d (x), f d (x)

]

(13)min
x∈X

fj (x)

(14)fz (x) ≤ �z z = 1, 2, ..., Z z ≠ j

(15)Γ
�
fz(�)

�
=

⎧⎪⎨⎪⎩

0 otherwise
fmax
z

−f
z
(�)

fmax
z

−fmin
z

fmin
z

≤ f
z
(�) ≤ fmax

z

1 fmin
z

≥ f
z
(�)
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presented in Eq. (16). In Eq. (16), a high rate of minimum solution is introduced as 
the optimal solution.

7  Simulation and Numerical Results

Modeling the proposed microgrid based on energy management and uncertainty of 
the electricity price in the energy market is implemented by numerical simulation 
in this section. Hence, two case studies were performed to numerically simulate the 
power management. The cases are the following:

(16)max
{
minΓ

(
fz(�)

)}
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Fig. 2  Microgrid test system
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• Case 1) Energy management of the microgrid without DRP.
• Case 2) Energy management of the microgrid with DRP.

The case studies considering non-participation (Case 1) and participation (Case 
2) of consumers in the demand reduction approach as a reserve strategy for demand 
management in peak time are introduced. The 37-bus test grid as a microgrid is 
depicted in Fig. 2 [33]. The bid price for DRP implementation and demand curve 
are provided in Fig. 3 and Table 2, respectively. The MT data based on fuel costs 
is listed in Table 3. The price of electricity in PM considering uncertainty is shown 
in Fig. 4. It should be mentioned that the value of the uncertainty is considered by 
15% than the expected value. In this figure, the lower, upper, and expected electric-
ity price is considered. The DICOPT solver and MINLP program are used in GAMS 
software for obtaining results of the numerical simulation.

7.1  Results Analysis

The validation of the energy management in microgrids for case studies 1 and 2 
is analyzed through a discussion of the results. The analysis includes the exami-
nation of power demand with and without the DRP setup, as shown in Fig. 5. It 
is evident that consumer involvement in the DRP strategy reduces power require-
ments during peak times. The DRP strategy is not limited to hours 14:00 and 
15:00; instead, the maximum DRP for demand reduction is scheduled between 

Fig.3  Offer price for DRP
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5:00 and 13:00. Overall, the DRP strategy successfully reduces the total power 
demand by 1.33  MW across all hours. This indicates that the DRP strategy is 
strategically scheduled during high PM prices, and the implementation cost of 
the DRP amounts to $386.4. Figure  6 shows the solutions of the Pareto front 
of average and deviation amounts for cases 1 and 2. The solutions are extracted 
by the epsilon constraint method and by fuzzy approach; the best solution was 
selected (optimal solution marked in red). In Case Study 1, the average and 
deviation amounts of the costs in the optimal solution are equal to $3685.3 and 
$153.2, respectively. The value of the optimal solution by the fuzzy method in 
Case 1 is 0.53. On the other side, amounts of the average and deviation with 
DRP in Case 2 and the optimal solution are equal to $3333.3 and $143.2, respec-
tively. The optimal solution has a value of 0.51, which is obtained by the fuzzy 
method. It is visible that the amounts of the average and deviation with par-
ticipation of the DRP are minimized by 9.5% and 6.5% according to Case 1, 
respectively. Also, the fuel costs of the MTs and PM in Case 2 are reduced by 
2.6% and 3.4% in comparison with Case 1, respectively. It can be concluded that 
thanks to the implementation of the DRP strategy, the operation of the electric-
ity microgrid is reliable and stable in conditions of electricity price uncertainty. 
Figures 7 and 8 present the power generation data for the MTs and PM in the 
Case studies. It is observed that the power generation by the MTs and PM in 
Case 2 is lower by 5.21% and 14.3%, respectively, compared to Case A. Figure 9 
provides a comparison between the results of Cases 1 and 2. The implementation 

Table 2  Electrical demand in 
microgrid

Hour Electrical demand 
(MW)

Hour Electrical 
demand 
(MW)

1 2.1 13 2.95
2 1.8 14 2
3 1.7 15 2
4 1.6 16 2.5
5 1.78 17 2.6
6 2 18 2.55
7 2.4 19 2.4
8 2.45 20 2.5
9 2.7 21 2.6
10 2.9 22 2.6
11 3 23 2.3
12 3.2 24 2.3

Table 3  MT data MT A ($/MW2) B($/MW) C($) Pmin (MW) Pmax (MW)

1 31.5 14.5 53.3 0 1.1
2 38.2 15.6 54.2 0 1.2
3 33.3 15.3 56.3 0 1.2
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of the DRP in Case 2 effectively reduces deviation and average costs, demon-
strating a robust approach to mitigating the impact of power price uncertainty in 
the energy market.

7.2  Verifying Optimization Method

In this section, the proposed optimization method is verified than the weight sum 
method for solving objective functions under changing uncertainty rates of the elec-
tricity prices for both case studies. Also, confirmation of the proposed optimiza-
tion method than weight sum method is analyzed by the maximum spread (MS) 
approach. The MS approach is modeled based on the convergence metric of objec-
tive functions than each other. The MS approach is calculated as follows [34]:
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(17)MS =

√√√√ n∑
j= 1

max

[
d
(
fmax

j
, fmin

j
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where fj
max and fj

min, d() are the maximum and minimum values of the jth objective 
function and Euclidean distance, respectively. In this section, the value of the elec-
tricity price uncertainty is taken by 30% for Cases 1 and 2. Also, solving objective 
functions such as average and deviation costs is done by epsilon constraint and weight 
sum methods. It should be mentioned that the steps of the weights for the weight 
sum method are equal to 0.1 for each objective. Hence, ten Pareto front solutions are 
obtained for objectives by epsilon constraint and weight sum methods. In Fig.  10, 
a comparison of the objective functions by utilization of the epsilon constraint and 

Fig. 10  Comparison of objective functions by epsilon constraint and weight sum methods. a Case 1. b 
Case 2
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weight sum methods for Cases 1 and 2 is shown. It is clear that the obtained Pareto 
front solutions by the epsilon constraint method have more optimal values than the 
weight sum method. In Table  4, the values of the MS approach for analyzing the 
convergence of epsilon constraint and weight sum methods are listed. As shown, the 
epsilon constraint method has more convergence than the weight sum method.

8  Conclusion 

An interval modeling is employed in this paper to represent the modeling uncer-
tainty of price-based in the microgrid. In order to account for the uncertainty of 
electricity prices, the deviation and average values are proposed as bi-criteria func-
tions. Furthermore, the demand side employed the DRP strategy to effectively 
regulate power usage during periods of high demand. To generate Pareto frontal 
solutions and determine the most suitable option from these solutions, the epsilon 
constraints and fuzzy methods were utilized. The study includes two separate case 
studies that involve numerical simulations and the analysis of results obtained for 
optimal energy management. In Case 1, the implementation of DRP was not taken 
into account. Conversely, in Case 2, DRP was integrated into the energy manage-
ment system. The outcomes of Case 2 demonstrate the achievement of optimal 
energy cost despite the uncertainties associated with electricity prices. The partici-
pation of the DRP in Case 2 leads to minimizing the average and deviation costs by 
9.5% and 6.5% in comparison with Case 1.
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Table 4  MS value for objective 
functions

Cases MS value

Methods

Epsilon constraint method Weight sum method
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amount ($)
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amount ($)
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amount 
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Case 1 28.3 5.3 31.6 5.8
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