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Abstract
A circular shift operator (or cyclic rotation gate) ���

k
 applies a rightward (or leftward) shift to an input register of n qubits 

o by as many positions as encoded by an additional input k ∈ ℕ . Specifically, the qubit at position x is moved to position 
(x + k) mod n . While it is known that there exists a quantum rotation operator that can be implemented in O (log(n))-time, 
through the repeated parallel application of the elementary ���� operators, there is no systematic procedure that concretely 
constructs the quantum operator ��� for variable size n of the quantum register and a variable parameter k. We fill the gap, 
providing a systematic implementation of the cyclic rotation operator (denoted ��� ) in a quantum circuit model of com-
putation whose depth is O (log(n)) . We show how the circular shift operator can be utilized in quantum approaches to text 
processing, focusing on the problem of getting all possible cyclic rotations of a string in O (log2(n)) depth.

Keywords Quantum computing · Quantum gates · Combinatorics on words

Introduction

Quantum computing represents an avant-garde domain 
within the realm of computer science, where the intricate 
principles of quantum mechanics are harnessed to engineer 
formidable computing systems that manifest striking devia-
tions from classical counterparts. In stark contrast to clas-
sical computers, which process information using discrete 
binary bits constrained to exclusively one of the states 0 
and 1, quantum computing harnesses the power of quantum 
bits, or qubits, which effortlessly inhabit the superposition 
of multiple states. Moreover, the entanglement of two or 

more qubits bestows upon them the extraordinary ability to 
execute correlated operations.

In the recent few decades quantum computing has 
emerged as a transformative technology with the potential 
to revolutionize fields ranging from cryptography to mate-
rials science. This nascent field has witnessed significant 
milestones that underscore its potential to solve problems 
previously thought to be intractable for classical computers. 
Among the most notable achievements, quantum supremacy 
was demonstrated, showing that quantum computers can 
perform specific tasks faster than the world’s most power-
ful supercomputers.

In the recent few decades quantum algorithms have 
made substantial progress in optimization and simulation 
tasks. For instance, Grover’s [2] and Shor’s [3] algorithms 
provided early examples of quantum advantage by offering 
quadratic speedup in database searching and exponential 
speedup in integer factorization, respectively. These theo-
retical advancements set the stage for practical applica-
tions in secure communications and complex problem 
solving. In addition to these developments, recent stud-
ies [4] have successfully applied quantum computation to 
tackle NP-complete problems, which are notoriously chal-
lenging for classical algorithms [5]. In natural language 
processing tasks as well, classifiers integrating quantum 
and classical computing techniques are anticipated to have 
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a substantial impact on key aspects, particularly in areas 
concerning classification [6].

As quantum hardware continues to evolve and algo-
rithms become more sophisticated, the integration of 
quantum computing into broader scientific and industrial 
applications appears increasingly feasible. This progres-
sion promises not only to expand our computational capa-
bilities but also to redefine problem-solving paradigms 
across numerous disciplines.

In this paper, we address the construction of a quantum 
cyclic shift (or cyclic rotation) operator, in the quantum 
circuit model of computation. Given a vector x of length n 
and an input parameter s < n , a cyclic rotation of a vector 
is a transformation that shifts the elements of the vector in 
circular positions, while maintaining their relative order. 
In other words, each vector entry is moved by s positions, 
and the last s elements are brought back to the first posi-
tions of the vector.

Cyclic rotations of vectors have various applications, 
including, for instance, image and signal processing, 
where they can be employed to perform cyclic shifts on 
images or signals, such as image rolling [7] or time delay 
of a signal. Cyclic rotations can be also used to design 
efficient algorithms sorting data [8]. In addition, sequences 
admitting cyclic rotations are also relevant in various bio-
logical contexts, including viruses [9, 10] and bacteria 
[11]. Thus, the analysis of organisms with a cyclic struc-
ture can benefit from algorithms designed for strings that 
allow for cyclic rotations [12].

Since a cyclic rotation of a vector of n elements of s 
positions to the right consists essentially of a permutation 
of the input vector in which each element of position i is 
moved to position (i + s) mod (n) , it is easy to construct 
a classical procedure capable of achieving such a rotation 
in linear time. In fact, in a classical model of computa-
tion, the problem has Ω(n)-time complexity, since in the 
worst-case scenario, every element in the array needs to 
be shifted. A specialization of the cyclic rotation prob-
lem arises when the vector is a string of bits (of classical 
machines). Here is interesting to observe that while many 
concrete computers have a built-in shift instruction that 
shifts the target bits to the left (or to the right), such an 
operation would still need to be executed on all the bits; 
furthermore, the cyclic desired manner of the shift slightly 
requires more effort than just shifting towards one side.

In the field of quantum computation, the cyclic rota-
tion of the states of a given register of qubits has been 
effectively used in solutions for text processing [13–15], 
and specifically for exact and approximate string matching 
[16, 17]. The recent algorithm by Niroula and Nam [13] 
makes clever use of cyclic rotations of the registers encod-
ing the input strings to achieve a superposition of all their 

possible alignments and to perform a parallel comparison 
against the pattern.

This idea was later generalized by Cantone et al. in [14] to 
get a quantum solution to the string matching problem allow-
ing for swaps of adjacent characters, which is more time-
efficient than the best known classical counterpart. In their 
paper, Niroula and Nam provide insight into the fact that a 
circuit performing a cyclic rotation of the states of a given 
register of qubits can be executed in time O(log(n)) . The 
basic idea is that at each step of the algorithm that accom-
plishes the permutation, it is possible to place at least half of 
the qubits that still need to be moved to their final position. 
Since the number of qubits to be placed decreases by at least 
half at each iteration, O(log(n)) steps are needed to achieve 
the target permutation. However, they do not provide any 
procedure explaining how to construct this quantum circuit 
systematically, nor do they provide a more formal proof of 
its complexity.

In an attempt to fill the gap, this paper aims to provide 
a precise method for the construction of a circular rotation 
operator for a quantum register of dimension n as the param-
eter s, indicating the shift relative to the rotation, varies. 
As far as we know, this is the first work offering such a 
construction. A proof of the correctness of our procedure is 
also provided, along with an analysis of the time complexity 
of the resulting circuit.

We believe that this result may be of interest to the sci-
entific community concerned with the design and simula-
tion of quantum algorithms, especially in the area of text 
processing.

The paper is organized as follows. In Sect. Preliminaries 
and Definition of the Problem we recall some basic notions, 
introduce some useful notations adopted along the paper and 
give a more formal definition of the problem. In Sect. An 
Algorithm for k = 2m we present a solution for the specific 
case where s = 2p for some p ∈ ℕ , prove its correctness and 
discuss its complexity analysis. In Sect. The General Algo-
rithm for 1 ≤ k ≤ n − 1 we extend our solution to the general 
case. In Sect. The controlled circular shift gate for character 
strings, we exhibit an algorithm for the controlled circular 
shift operator, a quantum circuit operating any circular shift 
of an input quantum register encoding a character string �q⟩ 
of any arbitrary size n. Finally, we draw our conclusions in 
Sect. Discussion and Conclusions.

Preliminaries and Definition of the Problem

The fundamental unit in quantum computation is the qubit. 
A qubit is a coherent superposition of the two orthonor-
mal computational basis states, which are denoted by �0⟩ 
and �1⟩ , using the conventional bra-ket notation. Formally, 
a single qubit is an element from the state space H , that is 
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the two-dimensional Hilbert space on the complex numbers 
equipped with the inner product; therefore, the mathemati-
cal expression of a qubit ��⟩ is a linear combination of the 
two basis states, i.e. ��⟩ = ��0⟩ + ��1⟩ , where the values � 
and � are called amplitudes, are complex numbers such that 
|�|2 + |�|2 = 1 , representing the probability of measuring the 
qubit in the state �0⟩ or �1⟩ , respectively. A quantum measure-
ment is the only operation giving access to the information 
on the state of a qubit; however, this operation causes the 
qubit to collapse to one of the two basis states.

Multiple qubits taken together are referred to as quantum 
registers. A quantum register ��⟩ = ��q0, q1, .., qn−1⟩ of size n 
is an element from the tensor product of n state spaces, H⊗n , 
and thus it is expressed as a linear combination of the 2n 
states in {0, 1}n , that is ��⟩ = ∑2n−1

k=0
�k�k⟩ , where the values 

�k represent the probability of measuring the register in the 
state �k⟩ , and such that with 

∑2n−1

k=0
��k�2 = 1.

Let k be an integer value that can be represented by a 
binary string of length n. The symbol �k⟩ denotes the reg-
ister of size n such that �k⟩ = ⨂n−1

i=0
��ki⟩ , where ��ki⟩ takes 

the value of the i-th least significant binary digit of k. For 
example, the quantum register �9⟩ with 4 qubits is given by 
�9⟩ = �1⟩⊗ �0⟩⊗ �0⟩⊗ �1⟩.

We use �q⟩⊕n to denote a quantum register of size n such 
that each of its constituent qubits is in the state �q⟩.

The Quantum Circuit Model

The model of computation we adopt in this paper is that of 
quantum circuits. In fact, there are several ways to model 
quantum computation, each with its own advantages and 
challenges. These include the adiabatic model [18], based on 
the adiabatic theorem of quantum mechanics, the topological 
model [19], based on the principles of topological quantum 
field theory, and the measurement-based model [20], where 
the computation is performed by making measurements on 
an entangled resource state known as a cluster state.

Perhaps, the the most common and widely used model 
in actual quantum programming is the circuit model [21].

In general, a computational circuit can be represented as a 
direct acyclic graph whose nodes are to be interpreted as the 
gates that operate on the information carried by the edges. 
While circuit models are also used to formalize classical 
computation, e.g. Boolean circuits and arithmetic circuits, 
there are a few requirements on quantum circuits that depend 
on the principle of quantum mechanics. Indeed, a quantum 
circuit needs to be reversible, this means, in particular, that 
for each gate the number of input edges equals that of output 
edges. Furthermore, because of the No-Cloning Theorem 
[22], we cannot either copy or split (fan-out) the information 
carried by an edge. As a consequence, we can see the graph 
representation of a circuit as a sequence of parallel wires 

(each corresponding to a qubit) passing through certain gates 
that operate on them.

There are two major measures of the computational time 
complexity in the circuit model. One of them is the total 
number of basic gates, namely the size of the circuit, and the 
other is the depth of the direct acyclic graph that represents 
the circuit. The latter is usually the measure of election for 
the complexity of quantum circuits. The reason is that in 
a quantum system it is often possible to run two or more 
gates in parallel whenever they operate on disjoint sets of 
qubits. Therefore, the depth of a quantum circuit coincides 
with the number of time steps performed before the output, 
that is, with its computational time. The space complexity 
of a quantum circuit is the number of qubits that it involves, 
which can also be pictured as the number of parallel wires 
of the circuit representation.

The popularity of the quantum circuit model is due also 
to the existence of fundamental quantum circuit libraries 
provided by almost every concrete quantum programming 
language (e.g., IBM Qiskit, Google Cirq, Microsoft Q # ), 
which allow for high-level programming of real quantum 
machines and quantum simulators. This contributes to mak-
ing the design and simulation of efficient quantum circuits 
capable of solving specific tasks, including through the use 
of artificial intelligence models [23], a particularly active 
area of research in recent years.

Elementary quantum gates are those performing elemen-
tary operations that are implemented in constant time by 
real quantum machines and, by definition, have depth Θ(1) 
in the quantum circuit model. There is a great variety of ele-
mentary quantum operators that can be combined to obtain 
non-elementary gates that perform more complex quantum 
operations. We only list the two elementary gates that will 
be used in this paper. To define such basic operations, we 
use the linearity of quantum maps.

• The controlled NOT gate (or CNOT) operates on a reg-
ister of size two qubits q0, q1⟩ . If the control qubit ��q0⟩ is 
in the state �1⟩ , CNOT complements the target qubit ��q1⟩ 
otherwise, all qubits stay the same. Formally, it maps 
��q0, q1⟩ to ��q0, q0 ⊕ q1⟩.

• The Swap gate is a two-qubit operator that swaps the 
state of the two qubits ��q0, q1⟩ involved in the operation, 
mapping them to ��q1, q0⟩ . Interestingly, the swap gate can 
be achieved by the application of three CNOT operators.

Fig. 1  The representation of the CNOT and Swap gates. The Swap 
gate corresponds to three CNOT gates
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Figure 1 shows the representation of the CNOT and Swap 
gates.

We finally note that, in the definition of a circuit, it is 
often necessary to include ancillæ qubits, which are needed 
to achieve some specific tasks in computation that other-
wise could not be achieved. Such ancillæare needed to fan 
the information out, which would otherwise be impossible 
because of the No-Cloning Theorem.

The Circular Shift Operator

A rightward circular shift operator (or rightward cyclic 
rotation operator) ��� +

k
 applies a rightward shift of k posi-

tions to a register of size n so that the element at position 
x is moved to position (x + k) mod n . In other words, the 
elements whose position exceeds the size n of the register 
are moved, in a circular fashion, to the first positions of the 
register. Formally, the operator ��� +

k
 applies the following 

permutation

We call the parameter k the magnitude of the circular shift.
A leftward circular shift operator (or leftward cyclic rota-

tion operator) ��� −

k
 applies a leftward shift of k positions 

to a register of size n so that the element at position x is 
moved to position (x − k) mod n . Formally, the operator 
��� −

k
 applies the following permutation

All the results presented in this article refer to the rightward 
circular shift operator unless we explicitly declare that this is 
not the case. However, it is immediate to verify that

for every register of size n and every 0 ≤ k < n . Thus, all 
the results stated for the rightward circular shift operator 
hold true for the leftward circular shift operator, too, and 
the needed modifications in the algorithmic techniques are 
trivial. For this reason, often we simply write circular shift 
operator and ��� k referring to its rightward version.

In the next sections, we present an algorithm building a 
quantum circuit that systematically performs ��� k(n) for a 
quantum register encoding a character string of arbitrary size 
n and for arbitrary magnitude k. We present our algorithm 
and discuss its correctness in two steps. We first exhibit 
and discuss the construction of quantum gates perform-
ing circular shift with a magnitude of the form k = n

2�
 , for 

0 < � ≤ log(n) . Secondly, we slightly modify such construc-
tion to make it work in the general case, that is for any k such 
that 1 ≤ k ≤ n − 1.

��q0, q1,… , qn−1⟩ ⟼ ��qn−k, qn−k+1,… , qn−1, q0, q1,… , qn−k−1
�
.

��q0, q1,… , qn−1⟩ ⟼ ��qk, qk+1,… , qn−1, q0, q1,… , qk−1
�
.

��� −

k
�q⟩ = ��� +

n−k
�q⟩,

Finally, we exhibit a quantum circuit that, given the 
quantum register �q⟩ encoding a character string of length n 
over an alphabet of fixed cardinality, operates on this quan-
tum string circularly shifting �q⟩ by a number of characters 
depending on an input value k ranging from 0 to n − 1 . We 
call such a circuit the controlled circular shift operator. 
Throughout the document we assume that the size n of the 
quantum register to be rotated is of the form 2p for some 
p ∈ ℕ . We can make this assumption without loss of gen-
eralization because given a character string of length n we 
can always add to the string a suitable number of copies of a 
special character outside of the alphabet so as to get a string 
of length 2p for some p ∈ ℕ.

An Algorithm for k = 2
m

In this section, we describe an algorithm that cyclically 
rotates a quantum register ket q of size n by k positions, with 
0 ≤ k < n . We recall that we assume n = 2p for some p ∈ ℕ.

We first consider the case that the magnitude of the rota-
tion is of the form k = 2m , with m < p . Actually, it is enough 
to assume k = n

2h
 for some h ∶ 1 ≤ h ≤ p − 1 . The pseudoc-

ode of the quantum procedure performing the cyclic rotation 
is presented in Algorithm 2.

Our procedure performs a permutation of the qubits con-
tained in the input quantum register. This is done through a 
sequence of swap operations applied to pairs of qubits from 
the register. During the execution of the algorithm, we dis-
tinguish qubits having reached their final position, which we 
indicate by the term placed qubits, from qubits having not 
yet been placed correctly, which are indicated by the term 
out-of-place qubits.

In brief, the algorithm works as follows. At the beginning 
of the procedure, the register �q⟩ only contains n not-in-place 
qubits. Then, an iterative cycle starts: at each iteration, the 
algorithm selects half of the remaining not-in-place qubits 
and swaps them to their final positions. Therefore, the pro-
cedure stops in at most log(n) steps.

The worst case is obtained when each swap operation 
moves only one of the two involved qubits to its final des-
tination, terminating in log(n) steps. The best case occurs 
when each swap happening in the first iteration succeeds 
in placing both qubits in their final positions, in this case 
( k = n

2
 ), the algorithm terminates in constant time.

We now deepen into the design of Algorithm  1, 
which is based on a main iterative loop (line 1) that runs 
log(n) − log(k) times.1

1 We’ll discuss why the iterative loop on line 1 runs log(n) − log(k) 
times later.
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 Algorithm 1   Algorithm for k =  2m

In the first iteration (namely for i = 1 ), the algorithm 
decomposes the register �q⟩ into n

2k
 intervals, each of size 

2k (line 2). Let Ij , for 0 < j <
n

2k
 , be the j-th interval into 

which the register �q⟩ has been divided. The algorithm 
divides each interval Ij into two halves of size k. In this 
context, let I�

j
 be the left half of the interval Ij and let Ir

j
 be 

the right half of the same interval. The algorithm operates 
by swapping the qubits in I�

j
 with the corresponding qubits 

in Ir
j
 (line 3). Specifically it applies a ���� to the pair of 

qubits (qx, qx+k) for every x corresponding to a position in 
I�
j
 , that is x ∈ {2jk,… , (2j + 1)k − 1} . We stress the fact 

that the algorithm performs these swaps in parallel for 
each j ∈ {0,… ,

n

2k
− 1}.

Since this operation shifts the qubits in I�
j
 by exactly k 

positions to the right, after the first iteration, half of the 
qubits are correctly placed. It is immediate to see, indeed, 
that the algorithm correctly places the qubits that have 
b e e n  m o v e d  t o  p o s i t i o n s  x + k  ,  f o r 
x ∈ {2jk,… , (2j + 1)k − 1} and for j ∈ {0,… ,

n

2k
− 1}.

In Sect. Correctness of Algorithm 1 we prove that if 
k =

n

2
 , that is if log(n) − log(k) = 1 , we do not need fur-

ther iterations as also the qubits at positions qx , for 
x ∈ {2jk,… , (2j + 1)k − 1} and for j ∈ {0,… ,

n

2k
− 1} , are 

correctly placed and the algorithm correctly terminates. 
Otherwise, the algorithm starts a new iteration.

The interval decomposition that we described in the 
first iteration can be generalized in subsequent itera-
tions of the main for loop as follows. In the ith step, being 
1 < i ≤ log(n) − log(k) ), the algorithm decomposes the reg-
ister �q⟩ into n

2ik
 intervals, each of size 2ik (line 2).

Now observe that the first k elements of the left interval 
I�
j
 are in that position as a result of a swap of the previous 

iteration. We are, therefore, dealing with not-in-place qubits. 
The same is true for the first k qubits of the interval Ir

j
 . Thus, 

the algorithm swaps the qubits in the first k positions of I�
j
 

with the qubits in the corresponding first k positions of Ir
j
 

(line 3). This is done to forbid swaps of qubits that are 
already correctly placed.

More formally, the algorithm applies a swap to the pair of 
qubits (qx, qx+2i−1k) for every x corresponding to a position in 
the first half of Ij , that is x ∈ {2ijk,… , (2ij + 1)k − 1} . Also 
in this case the algorithm performs these swaps in parallel 
for each j ∈ {0,… ,

n

2ik
− 1} . Figure 2 illustrates the iteration 

of the algorithm implementing the circular shift operator for 
a register of 8 qubits in which a cyclic rotation by 1 posi-
tion is performed. Figure 3 illustrates the application of the 
circular shift operator as prescribed by Algorithm 2, for a 
register of 8 qubits in which a rightward circular shift of 
magnitude 1, 2, and 4 is performed. In the representation 
of each operator, the time steps, within which the swaps are 
executed in parallel, have been framed. Each time-step is 
associated with a label ���[i]

k
 , where k represents the shift 

amount and i enumerates the iterative steps.
To analyze the computational complexity, let us observe 

that in a quantum circuit model of computation the for-loops 
at lines 2 and 3 of Algorithm 1 can be executed in parallel. 
To see this it is enough to check that the aim of line 2 is to 
partition the register into disjoint intervals, while the aim of 
lines 3-4 is to swap disjoint qubits in such intervals. More 

Fig. 2  Illustration of the itera-
tions of the algorithm imple-
menting the circular shift opera-
tor for a register of 8 qubits in 
which a rotation of 1 position is 
performed. The coloured qubits 
are placed qubits 
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precisely, each iteration of line 3 refers to a specific interval 
among those individuated in line 2; because such intervals 
are disjoint, the whole computation described in lines 2-4 
happens in parallel in a one-time step.

It follows that the running time of Algorithm  1 is 
log(n) − log(k) , which is O (log(n)).

Correctness of Algorithm 1

In this section, we prove the correctness of Algorithm 1. We 
start by making the following considerations. 

1. At the ith iteration, with 1 < i ≤ log(n) − log(k) , a qubit 
is not involved in any ���� if and only if it has already 
been correctly shifted in a previous iteration, i.e. if and 
only if it is a placed qubit.

2. After log(n) − log(k) iterations of Algorithm 1, every 
qubit is correctly cyclically shifted by k positions right-
wardly, i.e. the jth qubit has been placed at position 
j + k mod (n).

For i ∈ {1,… , log(n) − log(k)} , the symbol qi
x
 denotes the 

xth qubit of the register �q⟩ at the end of the ith iteration 
of the algorithm; also, we set q0

x
∶= qx , and �qi⟩ = ⨂n

x=0
qi
x
 , 

accordingly.
The correctness of Algorithm 1 immediately follows from 

the next lemma.

Lemma 1   If 1 ≤ i ≤ log(n) − log(k) , at the end of the ith 
iteration of Algorithm 1, for every j ∈ {0,… ,

n

2ik
− 1} it 

holds that

• qi
x
= q0

x−k
 , for x ∈ {(2ij + 1)k,… , 2i(j + 1)k − 1} , and

• qi
y
= q0

y−(1−2i)k
 , for y ∈ {2ijk,… , (2ij + 1)k − 1}.

In particular, for i = � = log(n) − log(k) it holds q�
z
= q0

z−k
 , 

for z ∈ {0,… , n − 1} , that is, after � iterations of Algo-
rithm 1 every qubit is correctly placed.
Proof We prove the lemma by induction on the number of 
iterations i.

Fig. 3  The application of the 
circular shift operator for a 
register of 8 qubits in which a 
rotation of 1, 2, and 4 positions 
is performed, respectively

For i = 1 , it is immediate to see that for every 
j ∈ {0,… ,

n

2ik
− 1} , every y ∈ {2ijk,… , (2ij + 1)k − 1} , and 

every x = y + 21−1k = y + k , the execution of ���� |||q
0
x
, q0

y

⟩
 

yields |||q
1
x
, q1

y

⟩
 where q1

y
= q0

x
= q0

y+k
= q0

y−(1−2i)k
 and 

q1
x
= q0

y
= q0

x−k
.Let 1 ≤ i < log(n) − log(k) , assume the claim 

true for �q0⟩ ,… , �qi⟩ , and let us prove it is true for �qi+1⟩ . By 
inductive hypothesis, for j ∈ {0,… ,

n

2ik
− 1} , it holds

It does not require much effort to check that

and that

It follows that all the qubits involved in a swap during the 
(i + 1) st iteration of the algorithm are of the form 
qi
y
= q0

y−(1−2i)k
 .  T h e r e f o r e ,  qi+1

z
= qi

z
 f o r 

z ∈ {(2ij + 1)k,… , 2i(j + 1)k − 1} and j ∈ {0,… ,
n

2ik
− 1} . 

Moreover, during the (i + 1) th iteration, the algorithm exe-
c u t e s  t h e  o p e r a t i o n  ����

|||q
i
x
, qi

y

⟩
 f o r 

x ∈ {2i+1jk,… , (2i+1j + 1)k − 1} and y = x + 2ik , where 
j ∈ {0,… ,

n

2i+1k
− 1} ; each of these swaps results in 

|||q
i+1
x

, qi+1
y

⟩

To complete the proof it is enough to observe that

qi
x
= q0

x−k
, for x ∈ {(2ij + 1)k,… , 2i(j + 1)k − 1}, and

[0.2cm] qi
y
= q0

y−(1−2i)k
, for y ∈ {2ijk,… , (2ij + 1)k − 1}.

{2i+1jk,… , (2i+1j + 1)k − 1 ∣ 0 ≤ j ≤
n

2i+1k
− 1}

= {2ijk,… , (2ij + 1)k − 1 ∣ 0 ≤ j ≤
n

2ik
− 2 such that j is even},

{(2i+1j + 2i)k,… , (2i+1j + 1 + 2i)k − 1 ∣ 0 ≤ j ≤
n

2i+1k
− 1}

= {2ijk,… , (2ij + 1)k − 1 ∣ 0 ≤ j ≤
n

2ik
− 1 such that j is odd}.

qi+1
x

= qi
y
= qi

x+2ik
= q0

x−(1−2i)k+2ik
= q0

x−(1−2i+1)k
, and

qi+1
y

= qi+1
x+2ik

= qi
x
= q0

x−(1−2i)k
= q0

x+2ik−k
= q0

y−k
.

{(2ij + 1)k,… , 2
i(j + 1)k − 1 ∣ 0 ≤ j ≤

n

2ik
− 1}

∪{(2i+1j + 2
i)k,… , (2i+1j + 1 + 2

i)k − 1 ∣ 0 ≤ j ≤
n

2i+1k
− 1}

={(2i+1j + 1)k,… , 2
i+1(j + 1)k − 1 ∣ 0 ≤ j ≤

n

2i+1k
− 1}.
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Indeed, the previous equality implies that

Finally, observe that for i = � = log(n) − log(k) , the 
variable j assumes only the value 0; furthermore, for 
x ∈ {0,… , k − 1} it holds

This completes our proof.
  ◻

To prove the correctness of Algorithm 1, it is enough to 
observe that, by Lemma 1, after � = log(n) − log(k) itera-
tions of Algorithm 1 every qubit is correctly placed, that is, 
rightward cyclically shifted by k positions.

Remark 1 From the proof of correctness (cf. Sect. Correct-
ness of Algorithm 1), it is easy to verify that Algorithm 1 
outputs a quantum circuit performing the circular rotation 
of a quantum register �q⟩ of size n by k positions in the more 
general case in which the quotient n

k
 of n and k is a power 

of 2.

The General Algorithm for 1 ≤ k ≤ n − 1

In this section, we present the algorithm implementing the 
circular shift operator on the input register of k positions to 
the right, for the general case in which 1 ≤ k ≤ n − 1.

The idea behind the general algorithm is very similar to 
the idea underlying the algorithm for k = 2m . The pseudoc-
ode of such a general procedure is depicted in Algorithm 2.

Specifically, a new parameter � is defined, by setting

To understand the choice of � , imagine the qubits from 
�q⟩ arranged circularly. Observe that, by its definition, � is 

qi+1
x

= q0
x−k

, for x ∈ {(2i+1j + 1)k,

… , 2i+1(j + 1)k − 1}, and j ∈
{
0,… ,

n

2i+1k
− 1

}
.

q�
x
= q0

x−(1−2� )k
= q0

x−k
.

� ∶= min{1 ≤ i ≤ log(n) ∣ 2ik = 0 mod (n)}.

Fig. 4  Illustration of the itera-
tions of the algorithm imple-
menting the circular shift opera-
tor for a register of 8 qubits in 
which a rotation of 6 position is 
performed. The coloured qubits 
are placed qubits. In this circu-
lar representation of the register 
is evident that all swapped pairs 
have the same distance

the smallest positive integer such that an interval of length 
2�k starting at the qubit q0 finishes at the qubit qn−1 when 
wrapped around �q⟩.

Algorithm 2:   Algorithm for a generic k ∈ {1, ... , n − 1}

 Informally, the main difficulty encountered when trying 
to extend the approach from Algorithm 1 to the general 
case consists in the fact that it is not possible to decompose 
the n-qubits register �q⟩ in disjoint intervals of length 2k, 
22k , etc., in general. However, once again, we can imag-
ine that the qubits from �q⟩ are arranged along a circle to 
which we wrap the decomposition in intervals of length 2ik 
around. Therefore, we can adapt Algorithm 1 to the gen-
eral case of an arbitrary k, by reasoning in the n-modular 
arithmetic. Indeed, by comparing the pseudocodes of the 
two algorithms, it is immediate to see that in Algorithm 2 
we replaced log(n) − log(k) by � , and k by n

2�
.

Figure  4 illustrates the iterations of the algorithm 
implementing the circular shift operator for a register of 8 
qubits in which a rotation of 6 position is performed. Fig-
ure 5 and Fig. 6 provide an illustration of the application 
of the circular shift operator as prescribed by Algorithm 2, 
for a register of 8 qubits in which a rightward circular shift 
of magnitude 3, 5, and 6 is performed.

To analyze the computational complexity, we observe that 
- as in the case of Algorithm 1 - in a quantum circuit model 
of computation the for-loops at lines 3 and 4 are executed 
in parallel. This means that, once � is known, Algorithm 2 
executes � ≤ log(n) time-steps. Furthermore, to compute the 
number � of iterations needed, the algorithm has to perform 
at most log(n) multiplications. Therefore, the overall time-
complexity of Algorithm 2 is O (log(n)).
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The next Theorem states the correctness of the general 
algorithm.

Theorem 1 Algorithm 2 correctly outputs the rightward cir-
cular shifting of an input n-qubits register q by k positions.

To prove Theorem 1, we employ the following Lemma 2.

Lemma 2    If 1 ≤ i ≤ � , at the end of the ith iteration of 
Algorithm 2, for every j ∈ {0,… , 2�−i − 1} it holds that

• qi
x
= q0

x−k mod n
 , for x ∈ {(2ij + 1)k,… , 2i(j + 1)k − 1} , 

and
• qi

y
= q0

y−(1−2i)k mod n
 , for y ∈ {2ijk,… , (2ij + 1)k − 1}.

In particular, for i = � it holds q�
z
= q0

z−k mod n
 , for 

z ∈ {0,… , n − 1} , that is, after � iterations of Algorithm 1 
every qubit is correctly placed.

Fig. 5  The application of the circular shift operator for a register of 
8 qubits in which a rotation of 3 positions is performed. Observe that 
all the pairs of qubits swapped in the same iteration have the same 
distance. For instance, in ��� [1]

3
 , the pair q6 and q1 have distance 

1 − 6 = 3 mod (8) , which is the same distance between the other 
swapped pairs of qubits. Similarly, all the swapped pairs of qubits in 
���

[2]

3
 have distance 6 mod (8)

Fig. 6  The application of the 
circular shift operator for a 
register of 8 qubits in which a 
rotation of 5 and 6 positions is 
performed, respectively

Lemma 2 and its proof are very similar to Lemma 1 and 
its proof, respectively. Nevertheless, we report the proof 
of Lemma 2 for clarity and completeness.

Proof We prove the lemma by induction on the number of 
iterations i. For i = 1 , it is immediate to see that for every 
j ∈ {0,… ,

n

2ik
− 1} , every y ∈ {2ijk,… , (2ij + 1)k − 1} , and 

every x = y + 21−1k = y + k mod n , the execution of 
����

|||q
0
x
, q0

y

⟩
 y i e l d s  |||q

1
x
, q1

y

⟩
 w h e r e 

q1
y
= q0

x
= q0

y+k
= q0

y−(1−2i)k mod n
 and q1

x
= q0

y
= q0

x−k mod n
.

Let 1 ≤ i < � , assume the claim true for �q0⟩ ,… , �qi⟩ , and let 
us prove it is true for �qi+1⟩ . By inductive hypothesis, for 
j ∈ {0,… ,

n

2ik
− 1} , it holds

It does not require much effort to check that

and that

It follows that all the qubits involved in a swap during the 
(i + 1) st iteration of the algorithm are of the form 
qi
y
= q0

y−(1−2i)k mod n
 .  T h e r e f o r e ,  qi+1

z
= qi

z
 f o r 

z ∈ {(2ij + 1)k,… , 2i(j + 1)k − 1} and j ∈ {0,… ,
n

2ik
− 1} . 

Moreover, during the (i + 1) th iteration, the algorithm exe-
c u t e s  t h e  o p e r a t i o n  ����

|||q
i
x
, qi

y

⟩
 f o r 

x ∈ {2i+1jk,… , (2i+1j + 1)k − 1} and y = x + 2ik mod n , 
where j ∈ {0,… ,

n

2i+1k
− 1} ; each of these swaps results in 

|||q
i+1
x

, qi+1
y

⟩

qi
x
= q0

x−k mod n
, for x ∈ {(2i j + 1)k,… , 2i(j + 1)k − 1}, and

[0.2cm] qi
y
= q0

y−(1−2i)k mod n
, for y ∈ {2ijk,… , (2ij + 1)k − 1}.

{2i+1jk,… , (2i+1j + 1)k − 1 ∣ 0 ≤ j ≤
n

2i+1k
− 1}

= {2ijk,… , (2ij + 1)k − 1 ∣ 0 ≤ j ≤
n

2ik
− 2 such that j is even},

{(2i+1j + 2i)k,… , (2i+1j + 1 + 2i)k − 1 ∣ 0 ≤ j ≤
n

2i+1k
− 1}

= {2ijk,… , (2ij + 1)k − 1 ∣ 0 ≤ j ≤
n

2ik
− 1 such that j is odd}.

qi+1
x

= qi
y
= qi

x+2ik mod n
= q0

x−(1−2i)k+2ik mod n
= q0

x−(1−2i+1)k mod n
, and

qi+1
y

= qi+1
x+2ik mod n

= qi
x
= q0

x−(1−2i)k mod n
= q0

x+2ik−k mod n
= q0

y−k mod n
.
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To complete the proof it is enough to observe that

Indeed, the previous equality implies that

Finally, observe that for i = � , the variable j assumes only 
the value 0; furthermore, for x ∈ {0,… , k − 1} it holds

This completes our proof.   ◻

Proof of Theorem 1 By Lemma 2, after � iterations of Algo-
rithm 2 every qubit is correctly placed, that is, rightward 
cyclically shifted by k positions.   ◻

The Controlled Circular Shift Gate 
for Character Strings

In this section, we define a controlled cyclic shift gate that 
rotates a quantum register encoding a string of n characters 
by a certain number of characters depending on an input 
value k, which can range from 0 to n − 1 , so as to obtain 
any rotation of the (encoding of the) string. The algorithm 
constructing such a circuit takes as only input the length of 
the string and the cardinality of the alphabet to whom the 
characters belong. Before deepening into the construction of 
the circuit, let us set some encoding details.

Encoding and Initialization

Let q be a string of n characters over an alphabet Σ . We can 
make the length of q equaling power of 2, by picking p as 
min{z ∈ ℕ ∶ n ≤ 2p} , extend Σ with a fresh new symbol $ , 
and chaining the last character of q to 2p − n copies of $ . Abus-
ing the notation, we rename q the new string, Σ the extended 
alphabet, and let � be the cardinality of such a new Σ.

Each character of q is encoded by ⌈log �⌉ qubits. We denote 
��qi⟩ =

⨂⌈log �⌉−1
s=0

���q
s
i

�
 the quantum register encoding the ith 

character of q; in such a notation, |||q
s
i

⟩
 represents the sth digit 

of the binary encoding of the ith character of q. The overall 
string q is then encoded by the quantum register

{(2ij + 1)k,… , 2
i(j + 1)k − 1 ∣ 0 ≤ j ≤

n

2ik
− 1}

∪{(2i+1j + 2
i)k,… , (2i+1j + 1 + 2

i)k − 1 ∣ 0 ≤ j ≤
n

2i+1k
− 1}

={(2i+1j + 1)k,… , 2
i+1(j + 1)k − 1 ∣ 0 ≤ j ≤

n

2i+1k
− 1}.

qi+1
x

= q0
x−k mod n

, for x ∈ {(2i+1j + 1)k,

… , 2i+1(j + 1)k − 1}, and j ∈ {0,… ,
n

2i+1k
− 1}.

q�
x
= q0

x−(1−2� )k mod n
= q0

x−k mod n
.

Besides of the register �q⟩ , the algorithm constructing the 
quantum circuit, initializes the register �k⟩ which will encode 
the magnitude of the circular rotation. Specifically, we set 
�k⟩ = ⨂log(n)−1

j=0

���kj
�
 , and each qubit kj will store the value of 

the jth least significant digit of the binary encoding of k. The 
circuit also needs n log �

2
 ancillæqubits all of them to be initial-

ized on the state zero.

The Circuit

We denote the controlled cyclic shift gate by ���� , and its 
action on the register �q⟩ , controlled by the register �k⟩ is for-
malized by

The circuit operates by applying to the register �q⟩ the rota-
tion operator ��� 2j⋅log � controlled by the qubit |||kj

⟩
 , for any 

value of j, such that 0 ≤ j < log(n) . Since n is a power of 2, 
the quotient of n log � and 2j log � is a power of 2, for every 
0 ≤ j < log(n) ; therefore, by Remark 1, this can be obtained 
by a quantum gate for ��� 2j log � - as explained is Sect. An 
Algorithm for k = 2m—controlled by the qubit |||kj

⟩
 . Note that 

the rotation operator ��� 2j log � consists of a sequence of at 
most log(n) time-layers, each containing at most, n log �

2
 paral-

lel gates, controlled by the same qubit. Thus, to keep the 
parallelism of the cyclic shift operator in its controlled ver-
sion, we employ log(n) n log �

2
 ancillæ qubits for the applica-

tion of all parallel operators controlled by the same qubit, 
that is, for each 0 ≤ j < log(n) , the controlled circular shift 
by 2j positions we need n log �

2
 ancillæqubit. We use the same 

ancillæto fan-in the control in each controlled rotation 
��� 2j log � . In fact, the controlled rotation ��� 2j log � are 
applied one after the other, by making j range from 0 to 
log(n) − 1 ; therefore, after the application of the controlled 
��� 2j log � operator, we clean-up the ancillæ, setting them 
ready for the upcoming controlled ��� 2j+1 log � operator. The 
controlled cyclic shift by 2j  positions requires 
n log � = O (log(n)) time-steps to fan the information on the 
control qubit out to the ancillæplus O (log(n)) to perform the 
cyclic rotation. Therefore, the overall controlled circular 
shift operator ���� over a register of size n and dependent 
on the value of an input quantum register of size log(n) can 
be implemented by a quantum circuit with depth equal to 
O (log2(n)) . Figure  7 contains an illustration of such a 
circuit.

�q⟩ =
n−1�

i=0

��qi⟩ =
n−1�

i=0

⌈log �⌉−1�

s=0

��qsi
�
.

���� (�k⟩⊗ ��q0, q1,⋯ , qn−1⟩)
= �k⟩⊗ ��qn−k, qn−k+1 ⋯ , qn−k−1

�

= �k⟩⊗ ��� k⋅log 𝜎�q⟩.
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Discussion and Conclusions

We have presented a quantum algorithm that performs the 
rightward circular shift of a quantum register of size n = 2p 
by k positions. As we already discussed, the circular shift 
operator is a staple ingredient of many quantum recipes. For 
example, in the framework of quantum text processing, it is 
employed to get all possible portions of a certain fixed length 
of a text in the [13, 14]. Whereas it was already known that 
such a gate can be implemented in at most log(n) steps, a 
systematic way to build it was missed, and this motivated 
our work.

We have also presented an application of the quantum 
algorithm for obtaining the circular rotations of a quantum 
encoding of a character string by any number of characters. 
Such a quantum gate has several potential applications to 
string matching e text processing problems.

The following link, https:// colab. resea rch. google. com/ 
drive/ 1bbRj sYl7U CVT6P 4gNwJ ulARf d64L1 RCT? usp= 
shari ng# scrol lTo= be1xN HxtjF qp, leads to a public Google 
Colab tutorial on implementing the quantum algorithm for 
the cyclic string matching problem, as presented in [24]. The 
tutorial includes an implementation of the Controlled Cyclic 
Rotation Operator, which serves as a subroutine.

We assumed to work with registers of qubits, that is, 
the register is made of 2-dimensional quantum systems. In 
the quantum computation landscape, this is however not 
always the case. For example, qutrits are quantum systems 
of dimension 3 that have attracted some interest in quantum 
cryptography [25, 26].

We point out that the implementation of our circuits for 
cyclic rotations on current or near-future quantum hardware 
would significantly suffer from the effects of noise. The log-
arithmic depth of our circuits results in a computation time 
that, even for short instances, exceeds the coherence time 
of present and near-future quantum machines. Additionally, 
the linear size of these circuits amplifies the error due to the 
current and near-term low gate fidelity. Therefore, future 
research on quantum implementations of cyclic rotations 
should focus on designing uniform families of quantum cir-
cuits with depths smaller than logarithmic and sizes smaller 

than linear. Achieving such a result would not only have 
practical applications but also be theoretically interesting 
and expected.
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