
Vol.:(0123456789)

SN Computer Science (2024) 5:708
https://doi.org/10.1007/s42979-024-03036-4

SN Computer Science

ORIGINAL RESEARCH

An Efficient Approach to Reduce Energy Consumption in a Fog
Computing Environment Using a Moth Flame Optimization Algorithm

Razieh Asgarnezhad1

Received: 27 May 2023 / Accepted: 4 June 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
After decades of growth in the computer computing field, cyber-physical systems (CPS), a combination of physical and
tangible hardware and virtual and supernatural tools and concepts, distributed. Today, fog and cloud computing are the most
complex cyber-physical systems available. Theretofore, the cloud data centers developed to provide the resources needed
by users, home, and industrial businesses. Cloud computing has provided the possibility of providing services near the
occurrence of requests with processing in proximity (PP). However, edge or fog computing will supply a possible solution
to improve the quality of service delivery compared to using cloud computing. Applications in cyber-physical fog systems
utilize different services provided by diverse resources in fog colonies based on criteria and restriction rules. Since internet
of things (IoT) applications executed in real-time and sensitive to time, the problem of delay in providing service to appli-
cation requests in cloud computing distributed resources is very challenging. Fog computing supply an ideal platform for
CPSs with fully geographically distributed features. At first, by placing services on resources are located in the edge layer,
the cloud decrease the volume of requests sent to the cloud. Moreover, the response and the average delay time be solved in
the proposed method. As a result, it makes the problem of placing services in cloud computing more complicated than in
other areas like cloud computing and standard distributed systems. In addition, to balance the load and ensure the quality
of services, requested services in the fog system can be freely processed by any of the resources (nodes) available in the fog
computing. According to the characteristics of the geographic distribution of fog nodes, the complexity of placing services to
provide services to reduce energy consumption will be very high. In this study, we offer a solution based on the meta-heuristic
algorithm of moth flame optimization (MFO) to place efficient energy and efficient delay of IoT services. The simulation
results with iFogSim have revealed that the performance of the suggested solution has enhanced by 21% compared to the
basic solutions in terms of energy consumption and service delivery delay by 15%.

Keywords  Fog computing · Service placement · MFO algorithm · Node · Physical cyber · IoT

Introduction

After decades of development in the computer computing
world, cyber-physical systems (CPSs) are more than ever
distributed, which is a combination of both physical and
discernible hardware and virtual and intangible tools and
concepts. Cloud computing is known as one of the most
complex physical cyber-sociability. The cloud and cloud
data centers have already been widely welcomed to supply
resources required by users and household and industrial

jobs. Cloud computing presents services near the need for
requests by proximity processing (PP). Regardless, on the
edge or in fog, computing will provide a possible solution
to enhance the quality of service compared to the use of
cloud computing. Applications in physical cyber-socia-
bility employ different resources provided by different
sources in fog colonies based on criteria and constraints.
Since Internet applications are most immediately executed
and sensitive to time (time deadline), the delay issue is
challenging in offering services to the request of fog com-
puting holding containing. Fog can provide an ideal plat-
form for the CPS with all distributed features in geography.
First, the placement of services on the resources located
on the edge layer near a place where the data is produced,
fog reduces the number of requests sent to the cloud. By

 *	 Razieh Asgarnezhad
	 razyehan@gmail.com

1	 Department of Computer Engineering, Aghigh Institute
of Higher Education, Shahinshahr, Isfahan 8314678755, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03036-4&domain=pdf

	 SN Computer Science (2024) 5:708 708   Page 2 of 24

SN Computer Science

using this method, the question of the response time and
the delay mean in service delivery will be resolved in fog.

As a result, the issue of service placement in cloud
computing makes it more challenging to place more than
other areas such as cloud computing, cloud computing,
and standard distributed systems. in addition, to bal-
ance workload and guarantee the service quality, demand
services in fog be system processed freely by any of the
resources (nodes) degree of. Because of the geographic
distribution characteristics of the nodes, the complexity
of service placement to provide services to reduce energy
consumption is very high. Here, we present a strategy
based on the moth flame optimization (MFO) algorithm to
locate the efficient energy and efficient delay of the inter-
net services. simulation results with ifogsim have shown
improvement progress of the proposed strategies compared
to basic strategies in energy consumption by 21% and ser-
vice delivery delay of 15%.

Cloud computing has made it possible to process
requests and provide cloud services to customers through
centralized cloud data centers. But the long distance and
the bottleneck of Internet are two major problems of using
cloud services because millions of IoT devices will antici-
pate to receive services from cloud data centers, which led
to the overall disruption of the network infrastructure and
ineffectiveness. Cloud computing will be in this matter.

The concept of fog computing was presented as an
unavoidable infrastructure for managing the requests and
workload of the IoT [1]. Today, fog and cloud computing
is known as one of the most complex cyber-physical sys-
tems available. Before this, the cloud and cloud data centers
have been widely welcomed in order to supply the resources
needed by users and home and industrial businesses. But the
cloud alone will not be able to support the future require-
ments of IoT devices [2].

In order to evaluate the efficiency and performance of
the proposed method in this research and compare it with
previous works, the following scenarios have been selected
for testing and evaluation, which will be examined further.
The compared methods In this research, we show a method
called relax, which uses an energy-efficient service place-
ment solution that takes into account the fog rate, load bal-
ancing, and service duplication [3].

The main motivations and contributions for conducting
research on the problem of placing services in the fog with
the aim of reducing energy consumption are as follows:

•	 Considering energy consumption and power consump-
tion distribution in CPS environment and fog computing.

•	 Modeling the problem of energy consumption in fog
computing in CPS infrastructure using MFO algorithm.

•	 Optimizing power consumption by considering place-
ment issues under the conditions of guaranteeing service
quality requirements.

•	 Providing algorithms with a light computational load in
order to solve the complex problem of service placement
in order to reduce energy consumption.

The rest of this paper is organized as follow. The author
describes background and related work, respectively. And
the author describes proposed framework and results and
discussion. Finally, describes conclusion.

Background

Basic Concepts in Cloud Computing

In this section, we explain and describe the basic concepts
used to place services in the cloud platform. Cloud comput-
ing is a highly virtualized platform that is capable of supply-
ing services such as processing, storage space, and network
services between end devices and traditional cloud comput-
ing data centers. According to Cisco's definition, fog com-
puting is regarded as a form of cloud computing paradigm
that has moved from the network core to the network edge.
But in practice, the definition of fog computing is a scenario
in which a large number of heterogeneous devices (wireless
and sometimes independent), common (ubiquitous), and
decentralized with the potential to collaborate within the
network. In order to carry out storage and processing tasks
without the intervention of third parties, they are connected
with each other. These tasks can be to support general net-
work operations or new services and applications that run
in a secure environment. Users rent a part of their devices to
host this service in exchange for receiving incentives.

Fog Computing and Related Components

Fog computing has many advantages over cloud comput-
ing by providing the capacity of local computing resources.
Among the most important features of fog computing are
low latency, spatial awareness, wide geographical distribu-
tion, mobility and portability, a very high number of nodes,
an important role in wireless access, a strong presence in the
field of content streaming and real-time application software.
and heterogeneity pointed out [4]. Figure 1 shows a view of
the structure and location of a fog computing system.

The place of cloud computing is somewhere between the
cloud and the end user of the service. In fact, fog acts as a
bridge and communication tool between the cloud and the
end user, which can handle many computing and storage
tasks (see Fig. 2).

SN Computer Science (2024) 5:708 	 Page 3 of 24  708

SN Computer Science

As described in Fig. 2, in the Cloud-Fog-End structure,
the more users move towards the cloud, the far-end of this
structure increases the processing power and storage space.
We are getting more and more and it becomes possible to
process huge processing processes such as big data manage-
ment and data mining and machine learning. But instead,
we will face problems such as more delay, lack of aware-
ness of the location and lack of mobility. But the more we
move towards the fog, the speed of response in operations
increases and the delay decreases, on the other hand, we will
have more mobility. Also, application components such as
real-time processing of data, caching them, and processing
in the fog are possible.

Fog computing has been proposed to cover some of the
limitations of cloud computing. For cloud computing, there
are problems such as unreliable delay time, lack of mobility
and lack of location awareness, and IoT programs, as one

of the main users of cloud services, always support device
mobility, geographical distribution. They require location
awareness and low latency; which cloud computing does not
offer. Fog computing has emerged to solve these problems
[5].

Cyber‑Physical Systems

Cyber-physical systems are online networks of common
parts, equipment and machines that are connected to each
other in the form of a virtual network. This communica-
tion can be established through physical interfaces such as
copper cable and optical fiber or wirelessly. By connecting
information technology to mechanical and electronic com-
ponents, these systems provide the possibility of connect-
ing components and machines with each other through the
provided network [7].

Therefore, at this stage of industrialization, we are facing
phenomena such as smart factory, smart power grid, smart
house and building as important and central elements of the
fourth industrial revolution. In practice, physical systems
in the IoT platform communicate with each other as well as
with humans in real time, share efforts and cooperate, and
through the Internet platform, the information and services
needed within the organization and outside the organiza-
tion are sent to the systems. Mechanized management and
employees inside and outside the factory send and make
available to use for decisions [8].

CPSs are intelligent systems that include engineered net-
works with the ability to interact with physical and com-
putational components (based on algorithms) [2]. These
systems are highly interconnected and integrated, provide
new functions to improve and improve the quality of life and
lead to the advancement of technology in critical areas such
as individual health care, emergency response, traffic flow
management, smart manufacturing and national security. and
defense and energy production and consumption.

The real value of the IoT is determined when it is pos-
sible to receive the data generated by the sensors, devices,
machines and terminals of the IoT through the predicted
systems. interpreted and processed and finally gave the
necessary commands to the appropriate operators [1, 9]. In
other words, the real value of the IoT for manufacturers is
in the analysis that results from the cyber-physical models
of machines and systems. In the fourth generation industry,
the systems that can add this added value to the IoTs are the
CPSs.

The cyber-physical system usually refers to the systems
consisting of computing components that work together and
cooperatively to use the feedback that they usually receive
from the monitored sensors or the feedback that is given as
a command to operators send to control the physical world.

Fig. 1   Multi-layer framework of service delivery with the help of fog
infrastructure [5]

Fig. 2   Schematic of cloud, fog, and users [6]

	 SN Computer Science (2024) 5:708 708   Page 4 of 24

SN Computer Science

The MFO Algorithm

The MFO algorithm is a new optimization algorithm
inspired by nature, which was first proposed by Seyed Ali
Mirjalili in 2015 at the University of Australia [10]. The
main inspiration of this optimizer is the method of avia-
tion (flight) of moths in nature called transverse orientation.
Moths fly at night keeping a constant angle to the moon,
which is a very effective mechanism for moving in a straight
line for long distances. However, these extraordinary insects
are trapped in a useless and deadly spiral around artificial
light. The MFO algorithm is compared with known nature-
inspired algorithms in 29 benchmarks and 7 real engineer-
ing problems. The statistical results in benchmark functions
show that this algorithm is capable of providing very prom-
ising and competitive results. In addition, the results of real
problems show the advantages of this algorithm in solving
challenging problems with limited and unknown search
spaces. Figure 3 shows the rotational movement of moths
around a flame.

At the end, if the exit condition of the algorithm is satis-
fied, the best result that is available to the insect or the flame
with the best performance in terms of the efficiency function
will be selected and returned as the answer. Then, based on
the placement of the desired node on the selected computing
node, the insect matrices and flames are updated so that it
can work accurately for other nodes in the remaining net-
work without a resource.

The moth flies around the flame at a fixed angle at night.
If the moths see the flame, they continue their flight in a
straight path towards the flame. When the moth gets too
close to the flame source, it flies around the flame source.
Figure 4 shows the movement of the moth in search of flame.

Another interesting point of this solution is the ability of
the algorithm to focus over time on the best solutions found,

in such a way that the number of propellers decreases in
each sequence and the speed of moving to the optimal path
increases. Also, with this technique, in the last interval of
the algorithm execution sequence, we will have only one
moth, which actually includes the optimal solution. Figure 5
shows how to change the number of active blades in the
overall cycle of the MFO algorithm. In this example, which
has a cycle with 100 rounds of different sequences, it is
shown that in the first round of the algorithm, it starts work-
ing with 20 moths and over time the number of searching

Fig. 3   Schematic of the rotational movement of moths around a flame
[11]

Fig. 4   The position of a moth in the first and last intervals of the
MFO algorithm cycle [12]

Fig. 5   How to change the number of active blades in the overall cycle
of the MFO algorithm [11]

SN Computer Science (2024) 5:708 	 Page 5 of 24  708

SN Computer Science

moths decreases, and finally in the last round. There is only
one search engine that has an optimal solution.

Moths are search agents and flames are the best position
obtained so far, so all the population consider this position
as the answer. The MFO algorithm has a set of moths that
can be displayed in a matrix as follows.

In Eq. (1), n shows the number of moths and d shows the
number of variables of the problem. Another matrix for stor-
ing the fit values of answers, this matrix shows the level of
service quality. OM matrix is expressed in Eq. (2).

On the other hand, flames are also other components in
this algorithm. They can be displayed using the matrix pre-
sented in Eq. (3).

In Eq. (3), n is the number of moths and d is the dimen-
sions of the problem or the number of variables of the prob-
lem. It should be noted that the dimensions of the matrices
M and F are equal to each other. The OF matrix is also used
as the fitting values for the propellers mentioned in Eq. (4).

The overall structure of the MFO algorithm is determined
using an approximation function with three parameters:

In Eq. (6), I is a function that initializes the initial popula-
tion of moths.

In Eq. (7), P is also a function that moves the propellers
based on the relation presented in Eq. (5).

The last function used in Eq. (5) which T is function.
This function returns True value if the end condition of the
algorithm is satisfied. Equation (8) shows the T function.

Moths and flames are the main parts of the MFO algo-
rithm. The moths move around the search space, while the
flames show the best position obtained by the moths. Moths

(1)M =

⎡
⎢⎢⎣

M1,1 … M1,d

⋮ ⋮ ⋮

Mn,1 … Mn.d

⎤
⎥⎥⎦

(2)OM = [OM1OM2...OMn]
T

(3)F =

⎡⎢⎢⎣

F1,1 … F1,d

⋮ ⋮ ⋮

Fn,1 … Fn.d

⎤⎥⎥⎦

(4)OF = [OF1OF2...OFn]
T

(5)MFO = (I, P, T)

(6)I ∶ �− → {M, OM}

(7)P ∶ M → M

(8)T ∶ M− → {true, false}

fly around the flames and update their position by finding
better answers.

Related Work

In the field of distributed computing, fog infrastructure is
considered as a new concept for providing processing ser-
vices, so far, many researches have been done on the archi-
tecture and framework of fog infrastructure, some of the
recent researches are stated in this section.

The cloud is closer to the user to perform computing,
communication and storage tasks on network edge devices.
The capabilities of its services are close to the end users.
This is the most basic feature of fog computing and its most
important advantage compared to other traditional comput-
ing models [3].

The main ideas and theoretical foundations about com-
puting in the fog, such as dealing with the basic fog archi-
tecture, application and data communication, have already
been established, but there is a need for strong solutions to
provide resources and virtualize these resources and how to
distribute the service. IoT is based on available resources in
fog computing [13].

Bonomi et al. [14] placed computing resources at the
edge of Internet networks instead of transferring requests
to remote cloud resources. By moving cloud services to
the edge of the network, it is possible to use local infra-
structure and equipment to share the workload in the cloud.
The authors in 2018 concentrated on optimal selection of
devices. This work showed a non-cooperative comprehen-
sive model to devaluation of response time. Additionally,
they produce a model to improve the battery life of the com-
putational task receivers. The proposed model performed
backward induction technique. They estimated the perfor-
mance of the suggested model upon response time, end-users
utility and memory utilizations [15]. Zhou et al. [16] have
presented a solution for using fog and cloud computing to
provide a management and health care system for the elderly.
By using cloud computing and fog computing for health care
and elderly care using a The practical scenario implemented
in the OpSIT-Project in Germany has been presented.

Vaquero et al. [17], by examining the compatibility
conditions of users, made it possible to improve website
performance by using the edge instead of central cloud
servers. For this purpose, by examining and using the cur-
rent network, the situation, the workload, the authors have
provided this possibility in an adaptable way according
to the users' conditions. Do et al. [18] presented a new
solution to minimize the production of greenhouse gases
by solving the common problem of resource allocation
in fog computing. A proposed solution showed that by

	 SN Computer Science (2024) 5:708 708   Page 6 of 24

SN Computer Science

transferring the requests to the fog sources, it is possible
to prevent the excessive production of greenhouse gases.

Wang et al. [19] propose a solution for moving dynamic
services at the edge by migrating dynamic services among
edge nodes in order to design optimal service moving poli-
cies to reduce cost. Deng et al. [20] mathematically for-
mulated the workload allocation problem and created an
approximate solution to maintain telecommunications and
reduce propagation delay. Vaquero et al. [17] paid attention
to different concepts for distinguishing fog architectures,
including centralized and decentralized and peer-to-peer
approaches. In particular, these authors introduced the con-
cept of edge cloud, which includes private fog and, like the
concept of fog colony that we have presented, covers IoT
equipment.

Colistra et al. [21] used consensus algorithms to allow
devices to cooperate in the problem of distributed resource
allocation so that they can adequately share resources. Yang
et al. [22] proposed a method based on three phases: crite-
rion specification, evaluation, and testing presented using
DEBTS algorithm. The results of the research showed that
the authors' solution helps the developers to do their work
based on the application requirements and optimize the per-
formance and the amount of use of the available resources.
Scarlett et al. [23] presented the concept of fog colonies
for the optimization process of order series. GA algorithm
is used. Each colony uses a GA to make decisions regard-
ing the services that are placed in the colony and deter-
mine which of these services are transferred to the adjacent
colonies.

Tanizha and Davi et al. [24] attempted to present the ser-
vice placement algorithm for efficient use of the network and
power consumption, using the OWN algorithm. This algo-
rithm sequentially allocated the application modules with
the highest needs to the nodes with the highest capacities,
which examined the amount of network consumption and
the amount of power consumption and delay in the network.
Brogi and his colleagues [25] presented a model for using
QoS systems in multi-part IoT applications in fog architec-
ture. The results of the authors' research showed that the pre-
sented solutions compared to the previous solutions in order
to allocate resources and the amount of resource consump-
tion have led to the improvement of energy consumption.

Azam et al. [26] proposed a more complex resource pro-
visioning mechanism based on forecasting resource needs. In
this work, the dynamic allocation of resources is done dur-
ing the system design time. This approach is based on cost
optimization and the allocation of resources depends on pos-
sible fluctuations in demand by users, types of services and
pricing models. Han et al. [27] have mentioned an approach
that affects the conceptual architecture of the fog computing
environment and the modeling of IoT applications.

Wagler et al. [28] presented a policy-based approach to
optimize topologies running on edge devices. This approach
offers a flexible application implementation by defining a
“hot pool” of resources for each on-demand application ser-
vice to enable incremental scaling. Hong et al. [29] present a
scheduling model including a simple resource provisioning
strategy that focuses on the workload threshold; That is, if
the usage of a particular fog cell exceeds a certain value,
another fog cell will be used.

In 2019 [30], Lin et al. presented an energy-efficient task
placement algorithm with the help of nodes on the edge
of fog computing in order to provide green fog computing.
In this research, the authors have addressed the problem of
minimizing energy consumption costs in order to model
the problem and solve it. Also, the authors simultaneously
addressed the issues of resource allocation, service migra-
tion, and energy consumption scheduling, and the presented
solution has led to the improvement of electricity consump-
tion costs. In 2019, Manoz et al. [31] addressed the issue
of placing sensitive services in cyber-physical applications.
The authors tried to use and present an effective plugin for
the Android operating system for the optimal use of energy
consumed by cyber-physical applications on mobile devices,
which led to a reduction in power consumption.

Zeng et al. [3] formulated workload allocation problems
and developed an accurate resource allocation algorithm.
The solution provided by the authors leads to less bandwidth
consumption and thus reduces the request execution delay.
In 2018, Mahmoud et al. [32] reviewed the best practices in
the field of cyber-physical fog computing and an efficient
energy heuristic algorithm for placing services and tasks of
cyber-physical applications on fog resources before use from
cloud sources. The proposed solution to the implementation
of all requested tasks of applications on the cloud led to a
reduction in energy consumption.

In 2019 [33], Demai et al. presented an energy-efficient
algorithm for placing IoT services on the cloud platform
using the distributed PSO algorithm. The proposed solution
compared to the standard PSO algorithm led to the improve-
ment of energy consumption of fog resources in the fog
infrastructure. Mehran et al. [34] attempted multi-objective
modeling of the problem of placing IoT services in the cloud
platform in such a way that an infinite number of active fog
resources are available, objectives such as work completion
time, costs Considered financial, energy consumption, and
other communication criteria. Then the authors presented a
multi-objective algorithm with the priority of reducing oper-
ational costs, which has led to a greater reduction of opera-
tional costs compared to other single-objective algorithms.

Since the proposed model will be secure and sustain-
able for applying in distributed environments.

Digital twin (DT) authorized IoT develops a huge
amount of data sent to the edge servers. But, unpredictable

SN Computer Science (2024) 5:708 	 Page 7 of 24  708

SN Computer Science

public communication channels and lack of trust among
participating entities yields diverse types of attacks on the
continuous communication [35]. The authors presented a
blockchain and Deep learning (DL) combined framework
for providing decentralized data processing and learning
in IoT network. Their framework offered a new DT model
to emulate and replicate security-critical processes of
IoT. Then, they suggested a blockchain-based data trans-
mission scheme that utilizes smart contracts to guaran-
tee integrity and authenticity of data. Ultimately, the DL
scheme designed to apply the intrusion detection system
(IDS) against valid data recovered from blockchain. In
this scheme, a long short term memory-sparse autoencoder
(LSTMSAE) technique offered to learn the spatial–tempo-
ral representation. The extracted characteristics are fur-
ther employed by the suggested multi-head self-attention
(MHSA)-based bidirectional gated recurrent unit (BiGRU)
algorithm to learn long-distance features. The empirical
implementation of their suggested framework establishes
significant enhancement of communication security and
data privacy in DT empowered IoT network [36].

The smart villages can promote real-time data analytic
and automate decision making for local villagers. Neverthe-
less, all wireless sensing devices exchange information uti-
lizing public network and may not be able to resist all forms
of attacks [37]. To address this problem, authors proposed
a new network architecture called distributed fog comput-
ing (DFC) be designed and integrated with IoT-based smart
villages deployment. Also, they designed and evaluated the
performance of an intrusion detection system (IDS) in DFC-
based smart village environment (Table 1). Eventually, they
discussed several open security issues and challenges regard-
ing fog-to-things enabled smart villages [37].

Proposed Framework

In this research, an energy-efficient method is presented
for the placement of fog services. The suggested method
in this research uses the Moth-Flame meta-heuristic algo-
rithm. The purpose of this research is to optimize energy
consumption in the problem of placing customer services. In
the following, we will state the problem and its formulation,
and then present the features of Moth-Flame meta-heuristic
and population-based algorithm. After that, we will present
and express the proposed solution. All the symbols used to
express the problem and solve it are collected in Table 2.

Formulation and Model of the Problem System

In this section, the mathematical expression and model of
the problem system are discussed. For this purpose, the

system model of the problem will be expressed first, then
the mathematical expression of the problem, inputs, outputs,
constraints and the optimization function of the problem will
be presented.

A fog colony F connected to cloud computing environ-
ment C is assumed. One of the most important and basic
elements in the assumed system is the fog colony. Each fog
colony contains a subset of IoT devices, which include two
different categories:

(A)	 "thin" devices of the IoT that lack any computing power
and are only sensors or actuators.

(B)	 "Fat" IoT equipment, i.e. fog cells and fog coordination
control nodes that have the computing power and can
be virtualized.

It controls the functional fog cells known as Res(F)
sets, which also include IoT devices capable of executing
requests.

The assumed fog environment has n fog colonies in such a
way that we denote the ith fog colony by Fi. Each fog colony
Fi has a head cell denoted by fi,H and a set of fog computing
cells that fi,j ∈ Res(Fi), 1 ≤ j ≤ Cfi is All communication in
the fog colony is done through fog coordination control cells
(fog cells). The communication links between the fog coor-
dination control cell and a computing cell in the fog colony
have been provided with a delay.

The head fog cell in each colony is responsible for manag-
ing, optimizing, and controlling other fog computing nodes
and scalability of fog computing resources, communications
between fog colonies, and placement of IoT devices services.

In this research, the issue of placing services of IoT
devices in colonies is considered the main issue. However,
for this purpose, the placement and use of cloud computing
resources and communication between fog colonies are also
considered to increase the optimality of the proposed solu-
tion in such a way that the connection delay between each
computing cell and the head cell in the colony is determined
by di,j has been Also, the delay rate of both fog cells fi,j are
equipped with sensors and actuators that bring the ability to
be programmed. In the assumed network, all fog cells in a
colony have network connections, a complete mesh (which
means direct communication between all cells is possible).
The efficiency of the processor, main memory, and second-
ary memory of the fog cell fi,j in the current time interval
with the vectors Ufi,j(Δt) , Mfi,j(Δt) and Sfi,j(Δt) we show.
The average productivity of the processor, main memory
and secondary memory of each fog colony is determined by
Ufi(Δt) , Mfi(Δt) and Sfi(Δt) , respectively. The communica-
tion delay between two fog colonies i1 and i2 is equal to the
amount of data transmission delay between the head cells of
two fog colonies, which is represented by di1(i2) . Therefore,
the amount of data transmission delay from computing cell

	 SN Computer Science (2024) 5:708 708   Page 8 of 24

SN Computer Science

j1 in the colony Fog i1 and calculation cell j2 in fog colony
i2 is calculated as follows:

Also, the communication cost between Fog and Cloud is
shown by the symbol dC . In each time interval Δt , the ith
fog colony receives m(Δt) IoT cyber-physical applications:

where Ak shows the IoT program number k, which has a
deadline of w(Ak) and has a set of requests (services) to
execute:

(9)di1,j1(i2, j2) = di1,j1 + di1(i2) + di2,j2

(10)A =
{
A1,A2,A3,… ,Am(Δt)

}

(11)Ak =
{
ak,1, ak,2, ak,3,… , ak,mr(Δt)

}

So that mr(Δt) is the number of requests (services) of
Ak in the time interval ∆t. The amount of processor, main
memory, and storage of request ak,s is specified by U(ak,s) ,
M(ak,s) and S(ak,s) , respectively. Also, the sum of the total
processor, main memory and disk requested by the kth
application services are specified by U(ak) , M(ak) and S(ak) .
Every request service is assumed that the type of service
can be one of three: (a) read and write service, (b) startup
service, (c) processing service. The service type of request
ak,s is specified by T(ak,s).

Based on the specifications of requested services, an Ak
program can be placed only on a subset of fog computing
cells. In order to display the appropriate subset for placing
the service ak,s of the vector including binary variables

Table 1   The comparison of the reviewed works in this context

Ref./Year/Authors Approach

[13]/Ali and Ghazal/2017 Proposing a strong solutions to provide resources and virtualize these resources and how to distribute the service in
fog computing

[15]/Tiwary et al./2018 Providing a non-cooperative comprehensive model to devaluation of response time and improve the battery life of
the computational task receivers

[16]/Zhu et al./2013 Presenting a solution for using fog and cloud computing to provide a management and health care system
[17]/Vaquero and Rodero-

Merino/2014
Improving website performance by using the edge instead of central cloud servers

[19]/Wang et al./2015 Proposing a solution for moving dynamic services at the edge by migrating dynamic services among edge nodes in
order to design optimal service moving policies to reduce cost

[20]/Deng et al./2015 Formulation the workload allocation problem and created an approximate solution to maintain telecommunications
and reduce propagation delay

[22]/Yang et al./2018 Proposing a method based on three phases: criterion specification, evaluation, and testing presented using DEBTS
algorithm

[23]/Skarlat et al./2017 Presenting the concept of fog colonies for the optimization process of order series using GA algorithm
[25]/Brogi et al./2017 Presenting a model for using QoS systems in multi-part IoT applications in fog architecture to the improvement of

energy consumption
[30]/Gu et al./2019 Presenting an energy-efficient task placement algorithm with the help of nodes on the edge of fog computing in

order to provide green fog computing. The authors have addressed the problem of minimizing energy consumption
costs in order to model the problem, resource allocation, service migration, and energy consumption scheduling

[31]/Munoz et al./2019 Considering the issue of placing sensitive services in cyber-physical applications and having reduction in power
consumption

[3]/Zeng et al./2020 Formulation workload allocation problems, Developing an accurate resource allocation algorithm, Providing less
bandwidth consumption and reducing the request execution delay

[32]/Mahmoud et al./2018 Providing an efficient energy heuristic algorithm for placing services and tasks of cyber-physical applications in the
field of cyber-physical fog computing and reduction in energy consumption

[33]/Djemai et al./2019 Presenting an energy-efficient algorithm for placing IoT services on the cloud platform using the distributed PSO
algorithm to the improvement of energy consumption of fog resources in the fog infrastructure

[34]/Mehran et al./2019 Proposing multi-objective modeling of the problem of placing IoT services in the cloud platform in conjunction with
work completion time, costs considered financial, energy consumption, and other communication criteria

[35]/Kumar et al./2022 Developing a huge amount of data sent to the edge servers. Unpredictable public communication channels and lack
of trust among participating entities yields diverse types of attacks on the continuous communication

[36]/Kumar et al./2022 Presenting a blockchain and DL combined framework for providing decentralized data processing and learning in
IoT network

[37]/Aljuhani et al./2022 Promoting real-time data analytic and automate decision making for local villagers. Proposing a new network archi-
tecture and integrated with IoT-based smart villages deployment

SN Computer Science (2024) 5:708 	 Page 9 of 24  708

SN Computer Science

Xak,s
=
{
X

Fi,1
ak,s

, X
Fi,2
ak,s

, X
Fi,3
ak,s

,… , X
Fi,Cfi
ak,s

}
 we use. The binary

value of each member of the vector XFi,j

ak,s
 is equal to:

Now, if the value of XFi,j

ak,s
 for ak,s is equal to 1, it is possible

to place the desired service on fog cell Fi,j . Therefore, if the
service ak,s is located on the fog cell Fi,j , the element XFi,j

ak,s

will be equal to 1, otherwise, it will be equal to 0.
The amount of energy consumed by a fog cell is divided

into two parts: static energy consumption and dynamic
energy consumption, in such a way that when the fog cell is
active, static energy consumption will be used. In addition,
dynamic energy will be consumed based on the number of
requests assigned to the fog cell and the efficiency of the
processor and other resources of the fog cell. The amount
of energy consumption of fog cell j on the ith colony is cal-
culated as follows:

(12)X
Fi,j
ak,s

=

{
1 if U

(
ak,s

)
≤ Ufi,j(Δt) and M

(
ak,s

)
≤ Mfi,j(Δt) and S(ak,s) ≤ Sfi,j(Δt)

0 otherwise

(13)Ei,j(Δt) = ESi,j(Δt) + EDi,j(Δt)

(14)ESi,j(Δt) =

{

StaticEnergy
(

Fi,j
)

if Fi,j(Δt) is available
0 otherwise

The amount of dynamic energy consumption of each
fog cell is calculated based on the efficiency of its proces-
sor in the form of a linear equation based on the ceiling
of dynamic energy consumption of the desired cell. Equa-
tion (15) shows the dynamic energy consumption of the
jth fog cell in the ith fog colony.

Equation (15), MDE(fi,j) shows the maximum dynamic
energy consumption of the jth fog cell in colony i, if the
processor efficiency of this fog cell is 100%, the energy
consumption will be the maximum. Otherwise, it will be
calculated based on the productivity of Uf i,j(Δt) in the cur-
rent period.

(15)EDi,j(Δt) = Uf i,j(Δt).MDE(fi,j)

Table 2   The used symbols

Symbol Explain

C Cloud computing environment
F Fog environment
Res(F) All fog cells
N All colony cells
Fi The ith colony of the fog
Cf i The number of fog computing cells in the ith colony
fi,j The jth of fog computing cells in the ith colony
Uf i,j(Δt) CPU efficiency of the jth computing cell in the ith colony
Mf i,j(Δt) The efficiency of the main memory of the jth computing cell in the ith colony
Sf i,j(Δt) The efficiency of the disk of the jth computing cell in the ith colony
Uf i(Δt) The average processor efficiency of fog computing cells in the ith colony
Mf i(Δt) The average efficiency of the main memory of fog computing cells in the ith colony
Sf i(Δt) The average disk efficiency of fog computing cells in the ith colony
di1(i2) Delay between two colonies i1 and i2
di1,j1 The communication delay between the head cell and the fog computing cell j1 in colony i1
di1,j1(i2, j2) Delay between two computing cells j1 in colony i1 and computing cell j2 in colony i2
Ak kth cyber-physical application in the ith fog Colony
m(Δt) The number of cyber-physical applications in the ith fog colony in the time interval ∆t
ak,mr(Δt) The last requested service in the kth cyber-physical applications in the ith colony in the time interval ∆t
U(ak,s) The requested processor of the sth service in the kth application in the ith colony
M(ak,s) The main memory of the requested service type of the sth service in the kth application in the ith colony
S(ak,s) The requested disk of the sth service in the kth application in the ith colony
T(ak,s) The requested service type of the sth service in the kth application in the ith colony
ExAk

The running time of the kth application

	 SN Computer Science (2024) 5:708 708   Page 10 of 24

SN Computer Science

In addition to the energy consumption cost of the fog
cells, based on the placements and communication cost
between the fog cells and cyber-physical applications, we
calculate the communication cost:

As shown in Eq. (16), if the sth IoT service belonging to
the kth application is placed on the jth cell in the ith colony
in the time interval ∆t, the value of the variable XFi,j

ak,s
 will be

equal to 1 and otherwise will be equal to 0. Therefore, if the
placement has been done, with the help of the delay of the
transmission of the sth Internet of Things service belong-
ing to the kth application to the jth cell in the colony i, the
time interval ∆t is calculated and by multiplying it by the
basic unit of energy consumption from Exchanges in the ith
colony network CEi will be calculated for the communica-
tion cost of placement and transmission of the service in
question.

Based on the amount of energy of each colony in the
time interval ∆t, it is possible to calculate the total energy
consumption of each fog cell as well as the total energy con-
sumption of all fog cells and finally the total cost of the fog
infrastructure, taking into account the cost of communica-
tion in the entire interval calculated as follows:

Equation (17) shows the total energy consumption of
the jth cell in the ith colony in all the time intervals of its
activity.

Equation (18) calculates the total energy consumption of
all fog cells in all fog colonies for all time intervals of fog
cell activity.

Equation (19) calculates the total energy consumption of
communications resulting from the placement and transmis-
sion of IoT services on fog cells for all time intervals of fog
cell activity.

Finally, the total amount of energy consumed by the
implementation of fog cells and communications within the
fog infrastructure is calculated based on Eq. (20):

(16)EC(Δt) =

ak,mr(Δt)∑
ak,s=ak,1

X
Fi,j

ak,s
.CD

Fi,j

ak,s
.CEi

(17)Ei,j =
∑
Δt

Ei,j(Δt)

(18)TEF =
∑
i

∑
j

Ei,j

(19)TEC =
∑
Δt

EC(Δt)

(20)E = TEF + TEC

Based on what was stated above, the objective function
of the stated problem is to minimize the amount of energy
consumed while maximizing the number of services placed
on the fog computing cells in a way that satisfies the applica-
tion deadline. Do:

System Model and Framework Used

In this section, the framework used to place services in the
cloud infrastructure is presented. The framework of the pro-
posed method is based on the ring of two management cores
to check the status of the fog colony and the fog resource
allocation table for IoT services. This section will first exam-
ine the architecture of the fog and cloud surface and the
arrangement and tasks of fog cells and IoT devices, and then
examine the presented framework.

Figure 6 shows the framework of the desired problem.
As it has been determined, our assumed system includes
N different fog colonies that will be connected in the fog
layer. Each fog colony has a management cell (head) that
is responsible for managing, monitoring, and controlling

(21)MIN(E)andMAX

⎛
⎜⎜⎝

x�
Δt=1

am(Δt)�
Ak=a1

ak,mr(Δt)�
ak,s=ak,1

n�
Fi=1

Cf i�
j=1

X
Fi,j

ak,s

⎞
⎟⎟⎠

(22)ExAk
≤ w

(
Ak

)
∀A1 ≤ Ak ≤ Am(Δt) and Δt ≥ 1

(23)

ak,mr(Δt)∑
ak,s=ak,1

X
Fi,j

ak,s
∗ U(ak,s) < CpuCapacity

(
Fi,j

)
,∀i, j,Δt

(24)

ak,mr(Δt)∑
ak,s=ak,1

X
Fi,j

ak,s
∗ M

(
ak,s

)
< RamCapacity

(
Fi,j

)
,∀i, j,Δt

(25)

ak,mr(Δt)∑
ak,s=ak,1

X
Fi,j

ak,s
∗ D(ak,s) < DiskCapacity

(
Fi,j

)
,∀i, j,Δt

(26)1 ≤ i ≤ n

(27)1 ≤ j ≤ Cf i

(28)a1 ≤ Ak ≤ am(Δt)

(29)ak,1 ≤ a
k,s

≤ ak,mr(Δt)

SN Computer Science (2024) 5:708 	 Page 11 of 24  708

SN Computer Science

requested services and active cells in the colony. Each head
cell contains two main sections, check status and alloca-
tion map, which are shown in detail in Fig. 7. As it is clear
in the figure, every cyber-physical application will be able
to receive services from various fog cells, and the task of
managing and coordinating the use of fog cells will be deter-
mined by the head fog node.

Figure 7 shows the framework used to place fog services
in the fog infrastructure using the Moth-Flame algorithm.
In Fig. 7, one of the colonies of head fog assumed in Fig. 3
is depicted. As it has been determined, the head fog node
places the services using the moth flame algorithm. For this
purpose, at first, requests are received in the form of service
from cyber-physical applications through the gateway. Then,
the system status and active services are checked (check sta-
tus). After checking the situation with the energy efficient
MFO technique, services are placed on fog resources using
allocation MAP.

For this purpose, at first, the head cell receives input data
from cyber-physical applications including requested services.
It will also receive the state of fog cells in its colony and the
state of other neighboring colonies in the observation phase.

Analysis of the current state of the current colony and
other nearby colonies will be done based on the received
data. A set of fog cells are selected to serve the requests
received from the IoT based on the analysis of the exist-
ing fog situation. After performing several generations of

Moth Flame population-based algorithm implementation
and changing the location of insects and creating and updat-
ing luminous points, the best insects will be selected as the
chosen solution for placing services.

The Presented Solution of Energy‑Efficient
Placement of Fog Service with MFO Algorithm

In this section, the presented algorithms are compiled based
on the presented framework. In this way, Algorithm 1 shows
the general framework of managing and placing fog services
with the MFO algorithm. As it is known, the desired algo-
rithm checks the status of fog cells, cyber-physical applica-
tions, and requested services in check status and is expressed
as the inputs of the problem.

Then the energy-efficient MFO algorithm, to minimize
the energy consumption of fog cells and the energy con-
sumption of communication, determines the placement des-
tination of IoT services based on the inputs and the state
of the infrastructure, and the output and service placement
map. IoT is returned as the output of the solution in line 4.

In the end, in line 5, the operation of placing the IoT ser-
vices based on the allocation MAP obtained with the MFO
algorithm is done, and each of the IoT services is placed on
one of its colony fog cells or clone fog cells. Neighboring
fogs or on the cloud bed will be executed.

Fig. 6   Fog and cloud architec-
ture in the problem of place-
ment of cyber-physical applica-
tion services

	 SN Computer Science (2024) 5:708 708   Page 12 of 24

SN Computer Science

Algorithm 1   Energy-efficient MFO service placement

1:Begin
2: for each (Time interval ∆t in execu�on �me) do
3: inputs=check Status()
4: alloca�on Map=MFO(inputs)
5: Allocate services to fog nodes based on alloca�on Map
7: end for each
8:End

In this section, the algorithm used for use in the obser-
vation phase is described. Based on what was stated in the
formulation section, two important elements are the observa-
tion of requested fog services by cyber-physical applications
and the observation of the status of fog cells and head fog
cells.

Algorithm 2 receives the input and the current state of
the infrastructure. In lines 4 and 5 of the pseudo-code, the
status and productivity of all cyber-physical applications

in the fog colony Fi are checked and observed in the time
interval ∆t. In lines 7 and 8, the status of all the fog cells
in fog colony Fi is observed in the current time frame,
and also the resource efficiency of all fog cells, including
the processor, main memory, and secondary memory, is
observed. In the ninth line, all the received inputs and
states of cyber-physical applications and fog cells are
returned as the output of the observation phase algorithm.

Fig. 7   The framework used
to place fog services in fog
infrastructure using the MFO
algorithm

SN Computer Science (2024) 5:708 	 Page 13 of 24  708

SN Computer Science

Algorithm 2   Check Status()

Input: Fog colony
Output: monitored Inputs
1:Begin
2: for each (Fog colony at interval ∆t) do
3: for each (CPS Applica�on Ak at interval ∆t) do
4: Monitor (all fog services for CPS applica�on Ak) /* Applica�on Monitoring*/
5: Monitor () ، (و (() /*Performance Monitoring of IoT applica�ons*/
6: end for each
7: for each (Fog cell , in fog colony at �me interval ∆t) do
8: Monitor (, status at interval ∆t) /* Fog cell monitoring */
9: Monitor , (∆), , (∆) , and , (∆) /*Performance Monitoring of fog cells*/
10: end for each
11:end for each
12: return monitored Inputs
13:End

After receiving the state of the cloud and fog infrastruc-
ture and the requested services from the cyber-physical
applications side, the implementation of the proposed
placement algorithm based on the meta-heuristic algo-
rithm of MFO should be performed to reach the destina-
tion of each IoT service. To be determined, Algorithm 3 is
a community-based meta-heuristic solution that simulates
the behavior of a moth in nature. This algorithm simu-
lates the behavior of the moth around the flame at night.
Moths are search agents and flames are the best position
obtained so far, so the population considers this position
as the answer. The MFO algorithm has a set of moths that
can be displayed in a matrix as follows.

In Eq. (30), n shows the number of butterflies and d
shows the number of variables of the problem. Another
matrix is for storing the fit values of the answers, this
matrix shows the quality level of the services. OM matrix
is expressed in Eq. (31).

On the other hand, flames are also other components
in this algorithm. They can be displayed using the matrix
presented in Eq. (32).

(30)M =

⎡⎢⎢⎣

M1,1 … M1,d

⋮ ⋮ ⋮

Mn,1 … Mn.d

⎤⎥⎥⎦

(31)OM = [OM1OM2...OMn]
T

In Eq. (32), n is the number of moths, and d is the dimen-
sions of the problem or the number of variables of the prob-
lem. It should be noted that the dimensions of the matrices
M and F are equal to each other. The OF matrix is also used
as the fitting values for propellers mentioned in Eq. (33).

The overall structure of the MFO algorithm is determined
using an approximation function with three parameters:

In Eq. (34), I is a function that initializes the initial popu-
lation of moths.

In Eq. (34), P is also a function that moves the propellers
based on the relation presented in the quasi-code.

The last function used in Eq. (34) is T function, this func-
tion returns True value if the end condition of the algorithm
is satisfied. Equation (37) shows the T function.

(32)F =

⎡⎢⎢⎣

F1,1 … F1,d

⋮ ⋮ ⋮

Fn,1 … Fn.d

⎤⎥⎥⎦

(33)OF = [OF1OF2...OFn]
T

(34)MFO = (I, P, T)

(35)I ∶ �− → {M, OM}

(36)P ∶ M → M

(37)T ∶ M− → {true, false}

	 SN Computer Science (2024) 5:708 708   Page 14 of 24

SN Computer Science

Moths and flames are the main parts of the MFO algo-
rithm. The moths move around the search space, while the
flames show the best position obtained by the moths. Moths
fly around the flames and update their position by finding
better answers.

In this section, the presented algorithm will be discussed
in order to allocate the fog computing cell to the fog services
with the moth optimization algorithm. For this purpose,
based on the concepts expressed about the basic algorithm,
it acts as follows:

1-	 At first, the number of variables (d) is considered as
the migrant fog services (the fog services that require
resources).

2-	 The number of dimensions (n) is considered equal to the
number of fog computing cells available.

3-	 In order to solve the problem with the moth optimization
algorithm, the OM matrix will generally show how good
or bad the found solution is, while OMi is equal to the fit
function of the ith solution (Moth i).) is in the problem
space.

Based on the above explanations, our problem solving
matrices will be as follows:

It is shown in Eq. (38) that in the Mi matrix, each row will
be a solution in such a way that Mi, 1 represents the selected
fog computing cell for the first (no source) fog service. In
this way, the number of fog services is equal to d.

In this way, the best solutions found for each element
of the population are stored as a flag (or flame dot) in the
matrix F, which can be obtained based on Eq. (39):

Although the two matrices belonging to moths and flames
are used in completely different ways and are updated differ-
ently; both contain solutions for deploying cloud services.
Insects search for the most appropriate destination in the
state space that contains all the available resources, while
the mutual flames of that moth store the best solution found
by it.

(38)M =

⎡⎢⎢⎢⎣

M1,1 … M1,d

⋮ ⋮ ⋮

Mn,1 … Mn.d

⎤⎥⎥⎥⎦

(39)F =

⎡⎢⎢⎣

F1,1 … F1,d

⋮ ⋮ ⋮

Fn,1 … Fn.d

⎤⎥⎥⎦

Therefore, moths search around the found flames (which
are flags placed by moths). Thus, if a set of cloud services
that require cloud computing cells for allocation are given
to the cloud manager system; all of them are considered as
a set of requests at once as input to the algorithm. Based on
the set of received fog services, the initial population of the
algorithm can be created randomly.

Then the position of the moths is determined randomly
(each position is actually a physical host or server). Moths
regularly move in the space of the problem state (hosts). This
movement continues until the end condition of the algorithm
is not satisfied. The main condition for the exit is that, in
the first place, the number of each insect has been able to

Fig. 8   Flowchart of the proposed solution for allocating fog comput-
ing cells to fog services with moth optimization algorithm

SN Computer Science (2024) 5:708 	 Page 15 of 24  708

SN Computer Science

move and move in the problem space at least the number of
iterations determined for the algorithm. The second condi-
tion is that there is at least one possible OMi solution. One
of the challenges of using the moth algorithm is to find a
possible solution. For example, it is possible that a fog cell
is selected as the destination of several fog services, and
as a result, the resource is used by fog services beyond its
capacity, which will lead to the creation of an "impossible"
solution. In the presented algorithm, a possibility is provided
in order to reduce the number of cases of creating an impos-
sible solution.

At the end, after updating and moving the insects, the
OM matrix, which contains the fitting function of the found
solutions, will also be updated based on the new findings.

Function I, as shown in relation 3–11, produces the initial
population, which is actually the selection of computing
cells for fog services. At the same time as the initial popula-
tion is created, the fitness function of each of the generated
insects (set of answers) is also calculated and stored in the
OM matrix. In order to create the initial population, first,
each set of fog services xi should have a selection set
SSi = {Slbi , …,Subi }. Thus, in order to allocate fog computing
cells, we will have (Subi − S

lbi
) + 1 selection. Therefore, the

initialization function will randomly select a resource for
each moth:

In Eq. (40), Subi and Slbi indicate the lower and upper
limits of the calculation cells suitable for the desired fog
services.

Figure 8 shows the flowchart presented for placing fog
services in fog computing cells using the Moth-flame algo-
rithm. According to the flowchart, at the beginning of each
time period, it is checked whether there are still cloud ser-
vices without computing resources (due to start or reloca-
tion) or not. If there is a cloud computing service without
a computing resource, in the second step, suitable active
resources for the desired cloud service are identified in the
cloud data center. Then, based on the active resources, the
Moth-flame algorithm setup function is executed, whereby
an initial population of moths is generated.

Then, at the beginning of the execution cycle of Moth-
flame algorithm generations, it is checked whether the exit
condition of the algorithm is satisfied or not. The condition
of leaving the execution of the algorithm generations will be
satisfied either due to the completion of the limitation of the
execution of the generations (Iterations) or by reaching the
optimal solution (Optimum). If this condition is not satisfied,
the moth matrix and the flame point matrix will be updated
as well. Also, in the updating function, the moths will move
first towards the flames and then around the flames in a cir-
cular manner (as in Fig. 8).

Now, in this section, based on the concepts expressed for
the Moth-flame algorithm, as well as based on the stated
problem and the flowchart presented to solve the problem of
placing fog services with the algorithm of moths and flames,
the variables and parameters of the Moth-algorithm Flame
is set and considered based on the desired problem as fol-
lows, and based on the following concepts, the presented
algorithm will be checked (Table 3).

Therefore, based on the above assumptions and the flow-
chart presented in Fig. 8, we will examine step by step the
solution presented in Algorithm 3.

(40)(Subi − S
lbi
) + 1Table 3   Moth-Flame algorithm parameter settings for Moth services

placement algorithm

Parameters Explain

Decision-making criteria Position of moths in each interval
solution Moths
Initial population Random positions in which moths are

placed
The previous solution Previous position of moths
The current solution current position of moths
The best solution Positions of flames
Fitness function Distance between moths and flames
The process of generating a

new solution
Rotational movements of moths around

flames

	 SN Computer Science (2024) 5:708 708   Page 16 of 24

SN Computer Science

Algorithm 3: The proposed MFO-based Fog service placement algorithm

Input: applica�ons
Output: Solu�on_map /*Fog services mapped to fog cells*/
1: for each (Moth Mj) do
2: for each (CPS applica�on Ak at interval ∆t) do
3: for each (Fog service Ak,s) do
4: (, ,) = [(

,
−

,
) () +

,
] /*Ini�alize M(j, ,)*/

5: end for
6: end for
7: end for
8: for each (Moth Mj) do
9: = ∑ () + () +

[∑ ∑ (,)] /*Based on energy */
10: end for
11: for each (Moth Mj) do
12: = / (()) /*Normalizing fitness values*/
13: end for

14: while (Itr<Max_Itera�on) do /* T(M)==false */

15: _ _ = − × /*Update D : number of flames*/

16: OM= Fitness(M) /*Based on equa�ons in Lines 10-15*/
17: if Itr ==1 then
18: F=Sort(M)
19: OF=Sort(OM)
20: else
21: F=Sort(MItr-1,MItr)
22: OF=Sort(OMItr-1,OMItr)
23: end if
24: for i=1 to n do
25: for j=1 to d do
26: = , /*Update mechanism: Update r and t*/
27: , = . . (2) + /* Spiral movement of moths*/
28: end for
29: end for
30: end while
31: for each (Fog colony) do
32: for each (CPS Applica�on Ak) do
33: for each (fog service Ak,s in Ak) do
34: Service Placement Ak,s into Fog resource i
35: end for each
38: end for each
39: Itr == Itr + 1
40: end for each
41: End

SN Computer Science (2024) 5:708 	 Page 17 of 24  708

SN Computer Science

The input of the proposed algorithm is fog services that
need to receive service from one of the active computing cells.
These fog services are from one of the two groups of fog ser-
vices from the IoT devices of the current fog colony or fog
services from the IoT devices of the neighboring fog colonies.
The output of the algorithm will also be a map of placing fog
services on one of the fog computing cells. At the beginning
of the startup phase, we will create moths and flames randomly
(lines 1–7). In these lines, each fog service is randomly placed
on one of the fog cells in the current colony.

After generating the initial population of moths, their fitting
function should be calculated. (lines 8–13). In this research,
the fitting function is considered based on the static and
dynamic energy consumption of fog cells and the communi-
cation energy consumption of all IoT services.

The selected fitting function is minimization or in other
words a negative fitting function. The positive fit function
means that the more the evaluated criterion is, the more
positive it is, and vice versa in the negative fit function, the
lower the evaluated criterion is, the more favorable it is.
The main loop of the proposed algorithm to find the best
solutions for placing services with the MFO algorithm is
presented in (lines 14–30). This block of pseudo-code shows
the Moth-flame algorithm execution and update loop. At the

beginning of the loop, the number of moths for the current
cycle of the algorithm is updated in such a way that in each
iteration the number of butterflies decreases based on a fixed
formula. Then the function of the insect matrix is calculated
and placed in the OM matrix.

In line 15, the number of flames is updated based on
the current cycle of the algorithm, which will decrease the
number of flames and moths in the time axis and execute
algorithm cycles as time passes by this equation. Line 16
calculates the quality of the propellers after their last move-
ment and displacement using the fit function.

In the first cycle of the MFO loop, the matrix F and its
fitting function, which is equal to OF, will be equal to the
first generation of propellers produced (lines 17–19) and oth-
erwise between the best performance of the propellers and
the last performance of the propeller. The best option will be
selected based on the fit function (lines 20–23).

Then, the mechanism of updating and the movement of
moths will be implemented. In this way, in line 26, the moth
matrix is updated, and in line 27, the insects will circularly
move around the flames. The sequence of execution of the
main loop of the MFO algorithm is repeated until the opti-
mal answers are found around the flames by the propellers.
In the end, the best propeller will survive until the last cycle
of the MFO loop execution, where its flag (its flame dot) will
be the best solution found by the algorithm.

After finding the best solution, we place the services
based on the found solution in lines 31–39.

Results and Discussion

In this section, you evaluate the proposed method by con-
sidering several parameters. The parameters that are dis-
cussed for evaluation are processing cost, response time and
deviation from deadlines compared to previous methods,

Table 4   Statistical knowledge of resources required for cyber-physi-
cal programs

Service Uai (MIPS) Mai (MB) Sai (MB) Dai (s)

Sensor 50 30 10 0.9
Process control 200 10 30 0.10
Smart grid 200 20 30 0.10
Communicator 100 30 30 0.25
Actuate 50 20 10 0.50

Table 5   Statistical details of
programs

CPS appli-
cation

DAk (s) WAk (s)

A1 120 60
A2 300 0
A3 300 60
A4 360 60
A5 240 0

Table 6   Details of possible
communication types in the
simulated infrastructure along
with communication speed and
energy consumption

Type of communication Energy consumption rate Transmission
speed range

The node of the head of the fog with the cloud 1 1
Head node with other neighboring head nodes 0.6–0.9 1
Fog cells with head nodes 0.6–0.8 0.6–0.9
IoT devices with fog cells 0.6–1 0.6–0.9

Table 7   Details of static and dynamic energy cost of fog cells

Type of communication Dynamic energy
consumption

Static energy
consumption

fog head node 0.3–0.6 0.4–0.7
fog cells 0.5–0.8 0.2–0.5

	 SN Computer Science (2024) 5:708 708   Page 18 of 24

SN Computer Science

implementation in cloud computing and also the most
important criterion is the amount of energy consumed.

Considering that the implementation and implementation
of the proposed method in operational frameworks in the real
world is not possible, tools for simulating real environments
have been provided, among which iFogSim tool can be men-
tioned. The iFogSim tool provides the possibility of mod-
eling and simulating the fog computing environment. Using
this tool, we can evaluate resource management and schedul-
ing policies at the edge and cloud computing under different
scenarios. This simulator is able to evaluate resource man-
agement policies focusing on their impact on latency, energy
consumption, network traffic and operational cost. This tool
supports edge devices, cloud computing, network links for
performance evaluation. The most important application
model supported in iFogSim is Sense-Process-Actuate. In
this model, the sensors monitor the data generated in the

IoT, follow and process the programs that are executed in
the fog tools, finally, the final decisions are transferred to the
environment through the arms is given [38].

Configuration

To simulate the Internet of Things computing environment
and evaluate the proposed method, we need a set of ser-
vices and basic configurations. Table 4 shows the details of
the required resources of the assumed simulation programs.
Table 5 shows the statistical details of the program.

In this research, each fog colony consists of ten fog
cells, and each cell is connected to a fog colony controller
node. We directed the observations in such a way that the
placement of the service in a fog colony is visible.

Fig. 9   Delay in responding to the service in the cloud layer of different solutions

Fig. 10   Service response delay in fog of different solutions

SN Computer Science (2024) 5:708 	 Page 19 of 24  708

SN Computer Science

Table 6 shows the energy consumption and communi-
cation cost in the simulation. As it is assumed, the cost
of communication between the head of the cloud and the
center of the cloud has the highest speed and the high-
est cost of energy consumption. Also, the cheapest type
of communication between the fog cells is with the fog
head node, and then the cost of communication between
the internet of things devices that request to run the ser-
vice with the fog cells has a variable speed and energy

consumption cost depending on the device. The internet
of things and the desired fog cell are available.

Table 7 shows the details of the static and dynamic
energy consumption of the fog cells, such as the head
node and the used fog cells. As it has been determined,
in this research, a different range of static and dynamic
energy consumption has been used for different experi-
ments, which gives us the ability to test and evaluate the
proposed solution in different environmental and physical
conditions.

Fig. 11   Service response delay in cloud and fog layers of different solutions

Fig. 12   Average number of active sources in different layers of cloud bed and fog with different methods

	 SN Computer Science (2024) 5:708 708   Page 20 of 24

SN Computer Science

Evaluation Scenarios

To evaluate the efficiency and performance of the proposed
method in this research and compare it with previous work,
the following scenario have been chosen for testing and
evaluation, which will be examined in the following. The
compared methods in this research is the references [3, 15],
which uses a service placement solution in an energy-effi-
cient way, taking into account the fog rate, load balancing,
and service duplication.

Delay of Services

In this section, the current author will analyze the delay
performance of providing resources to IoT services by the
proposed solution and the compared basis. As it was said
before, the delay of providing the service after the cost of
the energy consumed by the resources in the infrastructure
is very important. Figure 9 shows the delay in responding
to the service in the cloud layer of different solutions in the
time axis. As it has been determined, the more time-critical
requests are sent to the cloud, which has unlimited capacity
but with a longer delay, the greater the delay situation result-
ing from the execution on the cloud resources. According
to what is shown in Fig. 9, the genetic algorithm has the
worst performance in providing service with average quality
and no standard deviation, and in different time periods, the
performance of this algorithm is very variable. Two recluse
algorithms and the presented MFO algorithm have shown
better performance. Although the difference between these
two algorithms in the average response time of services
implemented on the cloud is not so clear. As it has been

determined, in some time intervals the references [3, 15] and
in other time intervals the presented algorithm have shown
better performance. But the number of services performed
on the cloud by three algorithms can be seen by looking at
the next two graphs and distinguishes three algorithms from
each other.

Figure 10 shows the delay in responding to the service in
the fog layer of different solutions in the time axis. As it has
been determined, the more time-critical requests are sent to
the cloud, which has unlimited capacity but with more delay,
the greater the delay situation resulting from the execution
on fog resources.

Unlike Fig. 9, in Fig. 10 the difference between the three
algorithms is much more significant. The proposed algo-
rithm in [3, 15] has led to a non-negligible increase in the
delay in providing services in the fog layer due to the lack of
appropriate allocation of the appropriate part of IoT services
to the fog layer. On the other hand, due to the more inappro-
priate allocation of the proposed algorithm in [3] compared
to the proposed algorithm in the fog layer, it has led to a
very clear increase in the delay in providing the service in
contrast to the cloud layer. The main reason for this notice-
able difference is the large number of services allocated in
the fog layer.

Figure 10 shows the delay in responding to the service in
the fog and cloud layer together for different solutions in the
time axis. Based on what is seen in Figs. 9 and 10, it can be
concluded that the proposed algorithms in [3, 15] have the
worst performance in terms of service delivery delay to IoT
devices, which is also evident in Fig. 11. Also, although in
the cloud layer, there was not so much difference in terms
of delay between the three proposed algorithm, [3, 15],
considering all IoT services, it can be seen that in general,

[15] [3] Proposed
Sta�c energy = 0.5 33.4 35.4 31.2
Sta�c energy = 0.4 30.1 33.1 27.5
Sta�c energy = 0.3 26.3 28.4 24.3
Sta�c energy = 0.2 25.3 29.1 22.3

0
5

10
15
20
25
30
35
40

W
a�

Changes in sta�c and dynamic energy consump�on

Fig. 13   The effect of changing the static and dynamic energy of different sources on the amount of energy consumption of different solutions

SN Computer Science (2024) 5:708 	 Page 21 of 24  708

SN Computer Science

the proposed solution is significantly improved. in terms of
delay.

The Number of Fog and Cloud Sources Used

Figure 12 shows the efficiency of resources in the com-
pared algorithms. The proposed algorithm in [3] places all
the Sense services of the environment and the action in the
environment in different cells of the fog in the fog colony,
four processing services are also placed in the controller
node. The remaining 11 processes are also propagated to
the side colonies.

The proposed algorithms in [3, 15] also executes the
Sense services of programs A1, A3 and A5 in fog cells. It
places operating services in fog cells or cloud computing.

It also places processing services in the cloud computing
environment. This type of placement causes one fifth of the
placements to be done in cloud computing and cloud com-
puting resources are not used well. The number of place-
ments performed in cloud computing is very high because
in this algorithm, any solution that violates the deadline
must pay a large fine. On the other hand, there is no pen-
alty for using remote resources (cloud computing) or not
using cloud computing control nodes. The proposed method
in this research brings a better distribution for the use of
resources than other methods. In addition, exchanges with
cloud computing are less than other methods. Cloud method
only uses cloud computing resources, so the usage rate of
other resources for this method is zero.

Fig. 14   The effect of commu-
nication energy change on the
amount of energy consumption
of different solutions

Fig. 15   Overall average static
energy consumption in different
solutions for all tests

Fig. 16   Overall average
dynamic energy consumption in
different solutions for all tests

	 SN Computer Science (2024) 5:708 708   Page 22 of 24

SN Computer Science

Energy Consumption

In this section, the performance analysis of the proposed
solution and the basic solutions are discussed in terms of
the amount of energy consumption, which includes the
energy consumption of fog and cloud sources, as well as the
energy consumption of communication and data transmis-
sion costs. Figure 13 shows the effect of changing the static
and dynamic energy of different sources on the amount of
energy consumption of different solutions. As it has been
determined, 4 different tests have been performed as follows:

•	 Experiment 1: static energy 0.2 and dynamic energy 0.8.
•	 Experiment 2: static energy 0.3 and dynamic energy 0.7.
•	 Experiment 3: static energy 0.4 and dynamic energy 0.6.
•	 Experiment 4: static energy 0.5 and dynamic energy 0.5.

Based on the above tests, we were able to accurately
evaluate the conditions of different service placement solu-
tions in various conditions of static and dynamic energy
consumption. Based on the evaluations, the current author
obtained almost similar results in all the experiments, in a
way that the proposed algorithms in [3, 15] consumed more
energy than other solutions in almost all experiments, and
as a result, the genetic algorithm in [3] performed the worst
in terms of energy consumption compared to there have
been other solutions. After the proposed algorithm in [15],
the proposed algorithm in [3], which has performed worse
than that [3] in two tests, ranks second, and as a result, the
proposed MFO solution has achieved the best performance
statistically and overall in all tests.

After evaluating the effect of static and dynamic energy
change of different sources on the energy consumption of
different solutions, we will investigate the effect of com-
munication energy change on the energy consumption of
different solutions. Figure 14 shows the effect of communi-
cation energy change on the amount of energy consumption
of different solutions. As it has been determined, 4 different
tests have been performed as follows:

•	 Experiment 1: very low communication cost (minimum
according to the range set in the energy consumption
settings table).

•	 Experiment 2: low communication cost (according to the
table of energy consumption settings).

•	 Experiment 3: average communication cost (according
to the table of energy consumption settings).

•	 Experiment 4: Communication cost is too high (maxi-
mum according to the range set in the energy consump-
tion settings table).

Based on the above tests, we were able to accurately
evaluate the conditions of the placement solutions of differ-
ent services in various conditions of energy consumption in
the field of communication and data transmission. Based on
the evaluations, the current author obtained almost similar
results in all the experiments, in a way that the genetic algo-
rithm in [3] consumed more energy than other solutions in
almost all experiments, and as a result, the proposed algo-
rithm in [15] performed the worst in terms of energy con-
sumption compared to there have been other solutions. After
it, the proposed algorithm in [15], which has performed
worse than the genetic algorithm in two tests, ranks second,
and as a result, the proposed MFO solution has achieved the
best performance statistically and overall in all tests.

Based on the analysis done for the consumption cost of
resources and communication in Figs. 13 and 14, it can be
concluded that the proposed solutions in [3, 15] have the
worst performance in the overall cost of energy consump-
tion and the presented algorithm has the best performance.
Figures 15, 16 and 17 also show the average of all static,
dynamic and general tests for different solutions in all tests.
As it has been determined, the presented solution has the
best performance in all three states of static, dynamic, and
total energy consumption statistically in all scenarios and
thus proves this conclusion.

Fig. 17   Overall average total
energy consumption in different
solutions for all experiments

SN Computer Science (2024) 5:708 	 Page 23 of 24  708

SN Computer Science

Conclusion

Fog computing is assumed as a set of fog colonies in such a
way that each colony includes a set of fog computing cells
and IoT devices. For this purpose, it will be possible to use
the existing computing cells in a cloud colony to provide
computing and processing resources to services requested
by cyber-physical applications. In addition, it will be pos-
sible to use the resources of neighboring fog colonies to
provide services to neighboring IoT devices. In addition to
affecting the quality of the service provided with a direct
effect on the delay, the placement of the service directly
affects the energy consumption of IoT devices and fog cells
as well as cloud resources. In this research, a solution based
on the population-based MFO algorithm has been presented
for energy-aware placement of fog services. Meta-heuristic
Moth-Flame algorithm is used to place fog services on fog
computing cells. In the fourth chapter, we reviewed the con-
figurations made for conducting experiments. We also stated
the results obtained from the simulation on iFogSim. We
used different criteria to evaluate the effectiveness of the
proposed method in this research. Among these criteria, we
can mention the response time, meeting the deadline, and
the costs imposed on the infrastructure. The programs used
to evaluate the system include five programs that have dif-
ferent services. The obtained results show that the proposed
method in this research is able to obtain a shorter response
time than genetics and relaxation in most programs, and also
the energy consumption of the presented solution is signifi-
cantly better than the two basic algorithms called improve-
ment. (12% and 25% improvements have been obtained,
respectively). Advantages of the proposed model are inter-
national repository, unlimited extent, and quickness of local
repository. Data management is the limitation and disad-
vantage of the suggested model. Beneficial of the proposed
model in decentralized systems are the obtained reduced
latency and enhanced security.

According to the results obtained from this thesis and
for further evaluation of the results and completion and
development of this research, using learning algorithms
to analyze the pattern of computing, data, and network
loads are suggested.

Data availability  The data that support the findings of this study are
available from the corresponding author upon reasonable request.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Wu C, Gunatilaka D, Sha M, Lu C. Real-time wireless routing
for industrial internet of things. In: 2018 IEEE/ACM 3rd inter-
national conference on internet-of-things design and implemen-
tation (IoTDI). 2018. p. 261–66.

	 2.	 Selonen P, Taivalsaari A. Kiuas–iot cloud environment for
enabling the programmable world. In: 2016 42th Euromicro
conference on software engineering and advanced applications
(SEAA). 2016. p. 250–57.

	 3.	 Zeng D, Gu L, Yao H. Towards energy efficient service com-
position in green energy powered cyber–physical fog systems.
Future Gener Comput Syst. 2020;105:757–65.

	 4.	 Raafat HM, Hossain MS, Essa E, Elmougy S, Tolba AS,
Muhammad G, et al. Fog intelligence for real-time IoT sensor
data analytics. IEEE Access. 2017;5:24062–9.

	 5.	 Mao Y, You C, Zhang J, Huang K, Letaief KB. A survey on
mobile edge computing: The communication perspective. IEEE
Commun Surv Tutor. 2017;19:2322–58.

	 6.	 Shi C, Ren Z, He X. Research on load balancing for software
defined cloud-fog network in real-time mobile face recognition.
In: International conference on communications and networking
in China. 2016. p. 121–31.

	 7.	 Xi S, Li C, Lu C, Gill CD, Xu M, Phan LT, et al. Rt-open stack:
Cpu resource management for real-time cloud computing. In:
2015 IEEE 8th international conference on cloud computing.
2015. p. 179–86.

	 8.	 Casoni M, Grazia CA, Klapez M. An sdn and cps based oppor-
tunistic upload splitting for mobile users. In: International inter-
net of things summit. 2015. p. 67–76.

	 9.	 Calvaresi D, Marinoni M, Sturm A, Schumacher M, Buttazzo
G. The challenge of real-time multi-agent systems for enabling
IoT and CPS. In: Proceedings of the international conference
on web intelligence. 2017. p. 356–64.

	10.	 Mirjalili S. Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl-Based Syst.
2015;89:228–49.

	11.	 Mohanty B, Acharyulu B, Hota P. Moth-flame optimization algo-
rithm optimized dual-mode controller for multiarea hybrid sources
AGC system. Optim Control Appl Methods. 2018;39:720–34.

	12.	 Wu Z, Shen D, Shang M, Qi S. Parameter identification of single-
phase inverter based on improved moth flame optimization algo-
rithm. Electric Power Compon Syst. 2019;47:456–69.

	13.	 Ali S, Ghazal M. Real-time heart attack mobile detection service
(RHAMDS): an IoT use case for software defined networks. In:
2017 IEEE 30th Canadian conference on electrical and computer
engineering (CCECE). 2017. p. 1–6.

	14.	 Bonomi F, Milito R, Natarajan P, Zhu J. Fog computing: a plat-
form for internet of things and analytics. In: Big data and internet
of things: a roadmap for smart environments. Springer; 2014. p.
169–86.

	15.	 Tiwary M, Puthal D, Sahoo KS, Sahoo B, Yang LT. Response time
optimization for cloudlets in mobile edge computing. J Parallel
Distrib Comput. 2018;119:81–91.

	16.	 Zhu J, Chan DS, Prabhu MS, Natarajan P, Hu H, Bonomi F.
Improving web sites performance using edge servers in fog com-
puting architecture. In: 2013 IEEE 7th international symposium
on service-oriented system engineering. 2013. p. 320–23.

	17.	 Vaquero LM, Rodero-Merino L. Finding your way in the fog:
towards a comprehensive definition of fog computing. ACM SIG-
COMM Comput Commun Rev. 2014;44:27–32.

	18.	 Do CT, Tran NH, Pham C, Alam MGR, Son JH, Hong CS. A
proximal algorithm for joint resource allocation and minimiz-
ing carbon footprint in geo-distributed fog computing. In: 2015

	 SN Computer Science (2024) 5:708 708   Page 24 of 24

SN Computer Science

international conference on information networking (ICOIN).
2015. p. 324–29.

	19.	 Wang S, Urgaonkar R, Zafer M, He T, Chan K, Leung KK.
Dynamic service migration in mobile edge-clouds. In: 2015 IFIP
networking conference (IFIP Networking). 2015. p. 1–9.

	20.	 Deng R, Lu R, Lai C, Luan TH. Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing. In:
2015 IEEE international conference on communications (ICC).
2015. p. 3909–14.

	21.	 Colistra G, Pilloni V, Atzori L. The problem of task allocation in
the internet of things and the consensus-based approach. Comput
Netw. 2014;73:98–111.

	22.	 Yang Y, Zhao S, Zhang W, Chen Y, Luo X, Wang J. DEBTS: delay
energy balanced task scheduling in homogeneous fog networks.
IEEE Internet Things J. 2018;5:2094–106.

	23.	 Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P. Opti-
mized IoT service placement in the fog. SOCA. 2017;11:427–43.

	24.	 Taneja M, Davy A. Resource aware placement of IoT application
modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE
symposium on integrated network and service management (IM).
2017. p. 1222–28.

	25.	 Brogi A, Forti S, Ibrahim A. How to best deploy your fog applica-
tions, probably. In: 2017 IEEE 1st international conference on fog
and edge computing (ICFEC). 2017. p. 105–14.

	26.	 Aazam M, Huh E-N. Dynamic resource provisioning through
fog micro datacenter. In: 2015 IEEE international conference on
pervasive computing and communication workshops (PerCom
workshops). 2015. p. 105–10.

	27.	 Han B, Gopalakrishnan V, Ji L, Lee S. Network function vir-
tualization: challenges and opportunities for innovations. IEEE
Commun Mag. 2015;53:90–7.

	28.	 Voegler M, Schleicher JM, Inzinger C, Dustdar S. Optimizing
elastic IoT application deployments. IEEE Trans Serv Comput.
2016;11:879–92.

	29.	 Hong K, Lillethun D, Ramachandran U, Ottenwälder B, Koldehofe
B. Mobile fog: a programming model for large-scale applications
on the internet of things. In: Proceedings of the second ACM SIG-
COMM workshop on mobile cloud computing. 2013. p. 15–20.

	30.	 Gu L, Cai J, Zeng D, Zhang Y, Jin H, Dai W. Energy efficient task
allocation and energy scheduling in green energy powered edge
computing. Future Gener Comput Syst. 2019;95:89–99.

	31.	 Munoz D-J, Montenegro JA, Pinto M, Fuentes L. Energy-aware
environments for the development of green applications for cyber–
physical systems. Future Gener Comput Syst. 2019;91:536–54.

	32.	 Mahmoud MM, Rodrigues JJ, Saleem K, Al-Muhtadi J, Kumar N,
Korotaev V. Towards energy-aware fog-enabled cloud of things
for healthcare. Comput Electr Eng. 2018;67:58–69.

	33.	 Djemai T, Stolf P, Monteil T, Pierson J-M. A discrete particle
swarm optimization approach for energy-efficient IoT services
placement over fog infrastructures. In: 2019 18th international
symposium on parallel and distributed computing (ISPDC). 2019.
p. 32–40.

	34.	 Mehran N, Kimovski D, Prodan R. MAPO: a multi-objective
model for IoT application placement in a fog environment. In:
Proceedings of the 9th international conference on the internet of
things. 2019. p. 1–8.

	35.	 Kumar P, Kumar R, Kumar A, Franklin AA, Garg S, Singh S.
Blockchain and deep learning for secure communication in digital
twin empowered industrial IoT network. IEEE Trans Netw Sci
Eng. 2022.

	36.	 Kumar P, Kumar R, Kumar A, Franklin AA, Jolfaei A. Blockchain
and deep learning empowered secure data sharing framework for
softwarized UAVs. In: 2022 IEEE international conference on
communications workshops (ICC Workshops). 2022. p. 770–75.

	37.	 Aljuhani A, Kumar P, Kumar R, Jolfaei A, Islam AN. Fog intel-
ligence for secure smart villages: Architecture, and future chal-
lenges. IEEE Consum Electron Mag. 2022.

	38.	 Gupta H, Vahid-Dastjerdi A, Ghosh SK, Buyya R. iFogSim: a
toolkit for modeling and simulation of resource management tech-
niques in the internet of things, edge and fog computing environ-
ments. Softw Pract Exp. 2017;47:1275–96.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	An Efficient Approach to Reduce Energy Consumption in a Fog Computing Environment Using a Moth Flame Optimization Algorithm
	Abstract
	Introduction
	Background
	Basic Concepts in Cloud Computing
	Fog Computing and Related Components
	Cyber-Physical Systems
	The MFO Algorithm

	Related Work
	Proposed Framework
	Formulation and Model of the Problem System
	System Model and Framework Used
	The Presented Solution of Energy-Efficient Placement of Fog Service with MFO Algorithm

	Results and Discussion
	Configuration
	Evaluation Scenarios
	Delay of Services
	The Number of Fog and Cloud Sources Used
	Energy Consumption

	Conclusion
	References

