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Abstract
In the biomedical imaging domain, large preprocessed samples of training annotated images are required in techniques 
employing neural networks for effective training, which makes the method challenging and costly. Data augmentation is 
widely used to widen the pool of training samples by providing augmented data, enabling the learning method to capture 
the essential features of regularity and flexibility. However, conventional methods of data augmentation severely limit the 
capabilities of most training system instances and have an unfavorable influence on reliability. In this study, we addressed the 
issue of insufficient pre-processed datasets for producing high-quality images of liver tumors. We developed an automatic 
data augmentation strategy using generative adversarial network (GAN) architectures. We aimed to improve the training 
efficiency of conventional systems by adding GANs. The automated data augmentation approach made it easier to provide 
more training samples with higher quality, giving the training process access to a larger and more varied dataset. The proposed 
approach has been used for the automatic region of interest selection on computed tomography images, which facilitated the 
training procedure in the subsequent steps. Additionally, the images generated by the generative adversarial network (GAN) 
are leveraged in the pre-segmentation stage. Finally, we presented an efficient liver tumor segmentation technique with a 
geometric active contour model, achieving improvements in computational time and Dice score of 0.908, 0.872, and 0.605 
on MIDAS, 3Dircadb, and LiTS datasets respectively.
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Introduction

The use of digital images has seen a tremendous increase 
in recent times in medical diagnosis by physicians. Picture 
archiving and communications system (PACS) are being 
used widely in healthcare services as they offer several 
advantages such as low cost, improved quality, accurate 
dimensions, and flexibility in sharing patient data among 
healthcare professionals. It also opens up the possibility of 

using computers to speed up the diagnosis and reduce sub-
jectiveness. The computer-aided diagnosis (CAD) system is 
already being used in many countries and is expected to be 
extended for the diagnosis of many kinds of diseases. It will 
be useful in countries such as India and China where there 
is a huge population and diagnosis is often delayed due to 
acute shortage of specialist doctors. CAD has become one of 
the main research subjects for medical imagery and radiol-
ogy diagnostics. CAD system provides a “second opinion” 
for radiologists to use computer analysis to make the final 
decisions. As a matter of fact, it is quickly inflowing the 
radiology mainstream. Over the years various medical image 
processing and analysis tools have been used extensively in 
CAD and Machine Learning (ML) technique has become 
a new edition to the CAD system [1, 2]. The diagnosis of 
liver tumors using magnetic resonance imaging (MRI) or 
computed tomography (CT) has now been a part of the rou-
tine clinical system. The initial stage in image analysis is 
segmentation which is an integral component of CAD sys-
tems. Tumor segmentation is a key enabling technology for 
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the evaluation, scheduling, and guidance of medical appli-
cations. The segmentation of the liver tumor also enables 
structural analyses such as tumor volume estimation, which 
is a crucial aspect in image-driven surgery, follow-up diag-
nosis, and therapy [3]. CT images are one of the most widely 
employed imaging tools to identify and analyze tumors. This 
is an effective tool to investigate the variations in the struc-
ture and the shape of a liver, and noticeable lesions. These 
are to be used as biomarkers for preliminary clinical diagno-
sis and progression in primary and secondary hepatocellular 
tumor disorders. The better spatial resolution, higher imag-
ing speeds, and comparably low cost over MRI have made 
it a popular tool for medical diagnosis.

Liver tumor segmentation (LTS) can be done in two 
forms: two dimensions and three dimensions (also called 
volumetric segmentation). The volumetric approach accom-
plishes the task of tumor segmentation in three dimensions 
(3D). It is established that the volumetric measurement pro-
vides a more accurate representation of the tumor response 
than the tumor size which is usually obtained through two-
dimensional segmentation [4]. The volumetric segmentation 
facilitates medical specialists to determine the growth of 
tumor cells over time and the success of treating cancer. The 
data gathered can be used to analyze the patient’s reaction 
to treatment and, if appropriate, settle into the therapy. The 
segmentation of liver tumors is a challenging task due to the 
considerable diversity in their location, shape, intensity, and 
texture. This makes it challenging to create a generalized 
framework to be applicable to the images irrespective of 
the acquisition modalities [5]. Several deep learning (DL) 
approaches are being explored in the automatic segmenta-
tion of tumors to achieve high degree accuracies. DL allows 
for the learning and retrieval of latent and hidden patterns 
from data (image) in order to model and predict some out-
comes in real-life problems. The DL-based systems in some 
cases perform even better than a human in terms of accuracy. 
Using DL, pattern, and statistical analysis, latent relation-
ships between the symptoms and the disease can be easily 
discovered. These approaches can be really helpful in pro-
viding preventive healthcare as well as a second opinion to 
a patient suffering from some diseases. However, the present 
DL framework faces several constraints and every parameter 
necessitates large data of annotated samples for learning to 
escape the over-fitting to the training set. Developing such 
large datasets in the medical image domain is still a chal-
lenge since most of the Electronic Medical Records (EMR) 
are under the Health Insurance Portability and Accountabil-
ity Act. (HIPAA) compliance, so they are still not released 
publicly, including for scientific purposes. The data-gather-
ing process requires the cooperation of researchers as well as 
radiologists, which makes it expensive and time-consuming. 

Manual delineation also endures from the extensive intra-
rater and inter-rater inconsistencies. In practice, training data 
created for one study cannot be simply transferred to the 
other. The absence of sufficient data in the medical imag-
ing databases prompted researchers to look for a method 
for expanding existing datasets with synthetic data [6, 7]. 
Therefore, the capability of creating medical images arti-
ficially is desperately needed. A solution to this problem 
that allows for more variety and enhances the dataset for the 
system's training phase is synthetic data augmentation using 
a generative model.

Generative Adversarial Networks (GANs) are a known 
efficient method to train an image-creating system [8]. In 
several different applications, including real-time object 
identification [9], picture segmentation, extraction of mam-
mogram masses [10], histopathological image synthesis 
[11], etc., GANs have attained extraordinary recognition 
and success. Image-to-image transformation, which cre-
ates pictures from one modality into another modality, is 
an attractive use of GAN [12]. The GAN network is made 
up of two networks that act antagonistically, with the first 
network producing pictures (either genuine or false) and the 
second network distinguishing between real and fake images 
is also a popular framework in biomedical imaging [13–15]. 
Development of a robust and accurate technique for the seg-
mentation of liver tumors using DL on CT Images becomes 
challenging yet promising in healthcare support and is the 
research issue of this work. The objective is to explore data 
augmentation techniques for enhancing training data fol-
lowed by the development of automatic segmentation using 
a 3D volumetric approach on CT images.

The remainder of the manuscript is structured as follows: 
"Literature Review: Limitations, Scope and Contributions" 
section makes a brief literature review of related works while 
"Mathematical Preliminaries" section introduces the math-
ematical preliminaries for the proposed method. "Methodol-
ogy" section describes the proposed method. "Results and 
Discussion" section presents the experimental results with 
evaluation and discussion. "Conclusion and Future Scope" 
section concludes the article.

Literature Review: Limitations, Scope 
and Contributions

To detect the tumor, lesions or other irregularities in the liver 
using CT images, several semi-automatic and automated 
segmentations have been reported [16]. This section makes a 
literature review on two main research issues, namely image 
(data) augmentation and liver tumor segmentation on CT 
images.
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Data Augmentation

Data augmentation is one approach that enhances the num-
ber of required datasets to achieve better results that reduce 
the impact of overfitting due to the limited training data-
sets. This also improves the generalization of the trained 
network. This plays a crucial part in training the model about 
the features of preferred regularity and robustness when 
the accessibility of the samples for the training is limited. 
In medical image segmentation, various arrangements of 
transformations are generally exploited for augmentation 
on CT. Flipping, rotation and scaling are commonly used 
techniques for data augmentation-based tumor segmentation 
in brain and liver images [17]. Several variants of convolu-
tional neural network (CNN) were used to achieve online 
data augmentation leading to an improvement in the results 
[18]. Shift, rotation and elastic deformations are applied by 
Ronneberger et al. [19] in microscopical images for training, 
whilst Milletari et al. [20] implemented random deformation 
using a dense deformation field in MRI on prostate images 
with B-spline interpolation. In most of the approaches of 
data augmentation for tumor segmentation, the diversity 
of the training data in terms of size, shape, location, and 
appearance is not changed to a great extent. GAN is another 
approach that has received traction, especially in the medi-
cal imaging domain for various tasks. It is a well-known 
approach for training a system that creates an image and 
achieves significantly improved recognition and success. 
Without any clearly defined goal function, GANs are capa-
ble of producing highly realistic pictures, and the genera-
tor may learn with very little variability. It is recommended 
over other deep generative models that don't necessitate an 
objective probability function for optimization, including 
Variational Autoencoders (VAEs), but produce blurry pic-
tures mostly because of insufficient reconstruction and noise 
contamination. As a result, scientists working in the field of 
medical imaging have begun to investigate GANs for picture 
super-resolution in the study of retinal images, unsupervised 
outlier detection systems to aid in marker identification, as 
well as CAD-based image synthesizing [21–23]. As GAN 
networks enable the application of ‘conditions’ on both the 
class label and the image, conditional GANs are increasingly 
used to produce the necessary pictures. In recent years, a 
variety of GAN frameworks have been proposed to generate 
images of high-quality 1024X1024 resolution. This inspired 
us to utilize GANs to generate augmented CT Region of 
Interest (ROI) images for liver tumor segmentation.

Liver Tumor Segmentation on CT images

Several research contributions intended to establish CAD 
applications to reduce the physicians' workload are avail-
able on liver tumor segmentation in CT images. A robust 

multi-threshold liver segmentation framework based on 
the “Slope Difference Distribution” (SDD) of image histo-
gram is also available [24]. A 3D dual path multiscale CNN 
(TDPCNN) model for liver and liver tumor segmentation 
shows a DSC value of 0.689 [25]. To improve the accuracy, 
the approach based on conditional random fields (CRF) is 
used to remove all erroneous points from the segmentation 
results. An implementation of two cascaded deep encoder-
decoder CNN (EDCNN) obtained a high DSC of 95.22%. 
The model is trained to accomplish segmentation in cascade 
for both the liver and lesions in CT images with a limited 
number of images [26]. A hybrid implementation of fuzzy 
c-means with random walker algorithms integrated with 
cuckoo optimization is reported that shows results in a dice 
similarity coefficient (DSC) of 0.75 in 3Dircadb and 0.81 
in MIDAS datasets. [27] A novel arrangement of the sup-
port vector machine (SVM), watershed, and scattered data 
approximation algorithms are employed on noisy CT and 
low-contrast MRI. It was applied to heterogeneous or hyper-/
hypo-intense abnormalities in the liver and achieved a DSC 
of 0.83 [28]. An efficient semiautomatic method was pro-
posed for LTS in CT volumes based on the improved fuzzy 
C-means (FCM) and graph cuts. In this work, the volume 
of interest on tumors in the 3Dircadb dataset is partitioned 
using confidence confidence-connected region growing 
algorithm to decrease computational cost. The obtained DSC 
value is 0.83 [29].

ML models using CNN on the LiTS challenge dataset 
achieved a DSC of 0.72. The model is developed by combin-
ing two models that worked at the voxel- and object level, 
which resulted in an 85% decrease in false positives when 
compared to the output from a neural network [30]. Another 
ML approach using RA-UNet extracted the liver volume of 
interest and successfully segmented the tumors. The model 
utilized the basic architecture of 3D U-Net that extorts the 
relevant data by merging high-level and low-level feature 
maps [31]. An implementation of the DL model in PET/
MRI to automatically detect liver and liver tumors shows a 
DSC value of 0.88 and 0.53 respectively [32]. Lu et al. [33] 
combined 3D CNNs with graph-cut methods for an effective 
liver region location classification on CT images. The pre-
cise segmentation was achieved by the graph-cut approach 
after the probability map was obtained by 3D CNNs. Li 
et al. [34] proposed liver and tumor segmentation using the 
hybrid-dense-connected-UNet model in CT images. End-to-
end training was done in the model which led to an improved 
result.

Scope and Contributions of the Work

A literature review on liver tumor segmentation reveals that 
data augmentation by both the classical approach and GAN 
improves the training process to a great extent. Although, 
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GAN-based systems have shown a significant gain in 
enhancing semi-supervised segmentation [35], however, the 
final segmentation results obtained from GAN suffer from 
resolution problems and are difficult to interpret as far as 
liver tumors are concerned [36]. Nonetheless, their use in 
the segmentation of 3D medical images in several different 
modalities highlights several promises and potential [37, 38]. 
The methods suggest the use of GAN-based synthetically 
generated images for automatic ROI extraction followed 
by their use in the pre-segmentation stage. From the litera-
ture, it is also seen that the Active Contour model (ACM) 
is found to be an effective tool for obtaining a volumetric 
segmentation in multi-modality medical images [39]. The 
present work integrates a GAN system with ACM to obtain 
the final volumetric segmentation to offer an improved inter-
pretation in 3D. The integrated system offers an improve-
ment in results than the individual ACM implementation 
and visualization. In brief, this work proposes an automatic 
technique of GAN-based data augmentation for the selection 
of ROI to facilitate the geodesic active contour-based LTS. 
We suggest and evaluate a technique for augmentation on LT 
on CT images where segmentation is done on the available 
datasets more competently. GAN-based data augmentation 
enhances the learning and speeds up the pre-segmentation 
classification step with a random forest algorithm. ACM 
using level set is applied then on 3D demarcations of the 
tumors in the liver. Simulation results exhibit that the pro-
posed methodology offers improved segmentation over the 
traditional segmentation approach with or without synthetic 
data by (0.22–1.22) %. The method shows an improvement 
in dice coefficient and computational time on different data-
sets, especially on 3Dircadb and MIDAS. The following is a 
summary of the contributions made by this work:

•	 A framework of automatic ROI extraction with the help 
of GAN-based augmentation that leads to an improve-
ment in accuracy on segmentation by (0.22–1.22) % 
through data augmentation.

•	 An improvement in visualization of the tumor in 3D that 
would lead to better image analysis and consequent diag-
nosis over existing 2D methods.

Mathematical Preliminaries

This section makes a brief introduction to the related math-
ematical tools and techniques.

Generative Adversarial Networks

A GAN network consists of two channels, a generator model 
‘ G ’ and a discriminator model ‘ D ’, which are arranged 
in a position against one another and further configured to 

compete. The ‘ G ’ channel learns to generate the data distri-
bution ‘ Pr ’ by making artificial pictures that seem similar to 
genuine photos and are challenging to distinguish in the ‘ D ’ 
channel. Alternatively, the ‘ D ’ network is learned to distin-
guish between genuine images and those created by ‘ G ’. As 
seen below, the system simulates a min–max game between 
two players for training purposes. It is represented as,

where ‘ z ’ stands for the noise vector from the data distribu-
tion ‘ Pz ’ and x corresponds to the sample of real photos from 
the target distribution of data ‘ Pr’.

The objective of the generative model is to create new pic-
tures that are strained from the learned distribution by per-
forming absolute learning from the distribution of data ‘ Pr ’ 
using image samples such as x(1), x(2) … x(n). The basic GAN 
architecture involves two networks: ‘ G ’, which stands for 
generator, and ‘ D ’, which stands for the discriminator. These 
networks are learned to counterpart each other in a manner 
similar to a min–max game involving two participants:

where �(D) and �(G) stand for the cost functions of the dis-
criminator and the generator respectively, whereas �Dand�G 
indicates the variables that should be tuned for the various 
networks. In the discriminator network, D: x → [0, 1] illus-
trates a mapping between a picture and the likelihood that 
the image is real, where ‘y’ represents noise in the generator 
network and ‘ x Pr ’ is a sample from the desired distribu-
tion. During training, the cost functions for �(G) and �(D) are 
minimized. The equilibrium is attained when D(G(z)) = ½, at 
which point the discriminator is incapable of determining the 
distinction between the genuine and fake produced images. 
Because the discriminator in the architecture receives input 
from instances of the generator in the actual world and sub-
sequently learns about its conclusion—whether it is real or 
fake—training is conducted in a semi-supervised manner. 
Real-time translation of images begins when the genera-
tor converts arbitrary tumor samples into objective images 
and is capable of producing pictures that superficially look 
like photos with tumors. The proposed GAN framework to 
synthesize tumor ROI for facilitating the subsequent pre-
segmentation classification is shown in Fig. 1.

Learning Wasserstein GAN (WGAN)

The divergence criterion that GANs reduce is discontinuous in 
terms of the generator parameter complexity that is frequently 

(1)min
G

. max
D

Ex Pr

[
logD(x)

]
+ Ez Pz

log[(1 − D(z))]

(2)
�(D)

(
�D, �G

)
= −

1

2
Ex Pr

logD(x) −
1

2
Ez log (1 − D(G(z)))

(3)�(G)
(
�D, �G

)
= −�D
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present during training. In order to change the probability dis-
tributions 'q' into 'p' the author of [40] proposed the distance 
W(q, p) utilizing Earth-Mover (EM) (also known as Wasser-
stein-1) to determine the distance between the two distribu-
tions. This method minimizes mode collapse while achieving 
sustained learning. Even though the two distributions in this 
scenario are not overlapping and are located on lower-dimen-
sional regions, W(q, p) is still thought of as continuous and 
provides a meaningful and even representation of the distance 
between them. Kantorovich-Rubinstein duality is used to gen-
erate the value function of WGAN [41] to achieve,

where L represents the 1-Lipschitz function set and ‘ Pg ’ 
being the distribution of the model. Minimizing the value 
function of the generator reduces W(Pr , Pg ) under an opti-
mum discriminator (referred to as critic which is not learned 
for classifications. By creating the critic function, whose gra-
dients about the input are executed superiorly apart from its 
GAN matching component, the WGAN value function facili-
tates the efficiency of the generator. The findings confirmed 
that, unlike GANs, the WGAN value function embodied 
sample quality correlation. To enforce the Lipschitz con-
straint on the critic, weights are bound to persist in narrow 
windows like [− 0.01, 0.01]. This compacts the space of the 
parameter [− c, c]. A subset of the k-Lipschitz functions for 
some k that depends on ‘c’ and the critic architecture are the 
functions that satisfy the lower and upper bounds necessary 
to uphold the Lipschitz continuity constraint. Utilizing EM 
distance, WGAN achieves steady learning (or Wasserstein-1 
metrics),

where 
∏

(Pg,Pr) joint distributions ‘p’ and marginal are 
‘ Pg ’ and ‘ Pr ’ correspondingly and ideally expressing the 
mass transfer from one distribution to another.

(4)min
G

. max
D∈L

Ex Pr
[D(x)] − Ez Pg

[D(z)]

(5)W(Pg,Pr) =
inf

P∈
∏

(Pg,Pr)
Ex,z Pg

‖x − z‖

Active Contour Model

Active contour is a mathematical platform or model that 
utilizes the energy and forces present in the image to sepa-
rate the target object. It establishes an isolated borderline or 
curvature enclosing the ROI for segmentation. The two types 
of ACM level set implementation are edge-based ACM and 
region-based ACM. The developing curve is watched in the 
second category until it reaches the edge of the desired item 
in the picture, which is carried out using knowledge of the 
slope or spatial relation. Although these models are sensitive 
to noise, but achieve enhanced results for the segmentation 
of the objects with the presence of strong edges. Conversely, 
the execution of region-based techniques depends on the 
region’s statistical information in order to mature the curve 
intending to delineate the items present in the image and 
possessing the competence to delineate the image edges 
which are slightly weak. In ACM-based LTS, an initiatory 
confined curve is enhanced and abated utilizing the intensity 
or texture information of the image, till the tumor boundary 
is conformed. But complications arise while disbanding the 
curve if the structure comprises of collective in detached 
regions. The ACM formulation of the image, g(x) after the 
pre-segmentation phase, is a parametric contour ‘Γ’ reflect-
ing the tumor region's border that evolves over time 't' as 
given by

where the mean curvature of C denoted by KΓ with NΓ being 
the unit outward normal of Γ while ‘α’ is a scalar param-
eter. The initial seed points are necessary for the contour's 
initiation for the image-obsessed energies to further drive 
the contours in the direction of the tumor's borders. Two 
forces that are fascinating with images are internal forces, 
finternal that are sparked by the curve for retaining the con-
tour smooth during twisting or bending, and external forces, 
fexternal which are planned from the ROI's available data to 
evolve the contour toward the boundary of the tumor or other 
specific characteristics inside ROI. Active contour execution 
is made easier and faster by level-set formulation. The con-
tour evolution derivation method is provided by,

where Γ(t, s) is the contour at any point in time t, character-
ized by x, and f is the normal force that acts on the curve. 
The functional curve is provided by,

The given problem's optimal approach is resolved using 
the Euler Lagrange technique as,

(6)
�Γ

�t
= [g(Γ) + �KΓ]NΓ

(7)Γ(t, s) = finternal + fexternal

(8)∫Γ

Einternal(Γ(s)) + Eexternal(Γ(s))ds

Fig. 1   GAN framework for ROI image synthesis and pre-segmenta-
tion tumor classification



	 SN Computer Science           (2024) 5:652   652   Page 6 of 13

SN Computer Science

to determine the value of ‘Γ’ that justifies the usage of the 
energy function, E to determine the contour of the least 
value. The Euler–Lagrange hypothesis is intended to reduce,

Therefore, it must be resolved,

Equation (10), which must be solved, was transformed 
into a time differential system where the contour function Γ 
(s) is now a time-dependent function Γ (s, t),

Consequently, if we insert the following equation into the 
energy function ‘E’, it must be evaluated,

Dual forces are taken into account viz., RC and CF. While 
RC forces the contour inwards and outwardly, CF maintains 
a smoother contour boundary and stops contour leakage. For 
consistency and effectiveness in computing, ‘C’ is inher-
ently expressed as a function’s ‘ϕ’ zero level set specified 
on g(x), and the evolution Eq. (7) is represented as a ‘ϕ’ 
progression in the small area all over the 0-level set. The 
seed points in the tumor are initialised. The contour grows 
in areas for positive values g(x) i.e., when P(x ϵ T) > P(x ϵ Ω 
\ T), while contracts in areas for all negative values of g(x) 
throughout evolution. The scalar ‘α’ controls how smooth 
the contour 'C' is. The convergence criteria of contour evo-
lution could be provided manually, which provides a 3D 
depiction on-screen and allows the progression to be stopped 
and restarted whenever necessary. The contour evolution is 
also terminated using a specified value (max_iteration) as a 
convergence criterion. The extracted tumor is then acquired.

Methodology

In the proposed methodology, the dataset is initially pre-
processed using Contrast Limited Adaptive Histogram 
Equalization (CLAHE) [42] and normalizing local contrast 
with the goal of improving local contrast in the pictures and 
enhancing tumor local contrast. The comparison of origi-
nal and processed images is shown in Fig. 2. The method 

(9)Γoptimal = argmin
Γ∈F

E(Γ(s))

(10)∫Γ

E(s,Γ,Γ�,Γ��)ds.

(11)�E∕�Γ − � ∕�s �E∕ �Γ� + �2∕ �s2�E ∕�Γ�� = 0

(12)

�Γ

�t
(s, t) =

�E

�Γ
(s, t) − �∕�s ⋅ �E∕ �Γ�(s, t) + �2∕�s2 ⋅ �E �Γ��(s, t)

(13)

�Γ
�t

(s, t) = �
{

�2Γ∕�s2(s, t)
}

− �
{

�4Γ∕�s4(s, t)
}

+ �∇
(

‖

‖

‖

∇
(

Gnx I
)

‖

‖

‖

2
)

(Γ(s, t))

eases the synthetic data augmentation and further training 
process for ROI extraction which in turn alleviates the pre-
segmentation classification in the successive step.

Figure 3 depicts the overall schematic interactive frame-
work with Data augmentation and ACM-based Segmen-
tation. The methodology in the proposed scheme for the 
extraction of tumors comprises three main stages:

Tumor ROI Extraction

To improve the computation time, the ROI region around the 
tumor should first be extracted from the image. This mini-
mizes the total number of pixels to be taken into account, 
which in turn speeds up processing. The main problem 
in automatic segmentation is the selection of ROI for the 
tumor, which varies in size, location and appearance. Train-
ing the system for ROI selection requires high-volume 
labelled training datasets. We enhanced the data in two ways 
to increase the training set and enhance the segmentation 
outcome:

1.	 Creation of new synthetic ROI pictures that are learned 
from existing datasets using generative models;

2.	 Classical augmentation employing various image editing 
techniques on the original pictures.

Classical Augmentation

Augmentation is usually employed to expand the training 
data so as to reduce the overfitting issue. Each tumor ROI 
was first rotated at arbitrary degrees, and then each rotated 
ROI was repeatedly flipped across all orientations. Each ROI 
was downscaled to a uniform pixel size of (64 × 64 × 64) by 
means of bicubic interpolation. GANs are also utilized for 
ROI Synthesis. Figure 4 shows the result of data augmenta-
tion and ROI image synthesis.

Pre‑segmentation Stage

In this stage, pre-segmented image, g(x) is obtained from the 
ROI image within the range of intensities [− 1, 1], given by,

where ‘Ptumor’ is the tumor (foreground) and ‘Ω’ is the 
image domain. To detect the foreground/ background prob-
abilities of the pre-segmentation result, the Random For-
est (RF) classification is used. For obtaining the result the 
system is trained on Liver Tumor Segmentation Challenge 
(LiTS) 2017 [43] datasets containing 200 3D abdominal CT 
scans data and augmented data generated and synthesized 
for ROI extraction. For each pixel in the tumor, a feature 

g(x) = f(x ϵ Ptumor) − f(x ϵ Ω ¥ Ptumor) (14)
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vector consisting of the intensity of the pixel in the image 
and intensities of the neighboring pixels is created allowing 
the inclusion of texture data in the classification algorithm. 

The positions of the pixel are also included in the feature 
vector, enabling the RF classifier to use spatial features. The 
classifier is then applied to each pixel in the picture domain 
after being trained on this feature information, yielding the 
probabilities Pn(x) for each pixel x and each n class. The 
foreground and background classes of pixels are used to train 
the classifier. Using the probability for the foreground and 
background pixels, f(x ϵ Ptumor) and f(x ϵ Ω | Ptumor), respec-
tively, are derived. Further trained model is tested and vali-
dated on test data from LiTS challenge, 3Dircadb [44] and 
MIDAS [45] dataset provided with ground-truth of liver and 
liver tumor segmentation as shown in Figs. 5 and 6. Addition 
of augmented data in the training process improves the final 
segmentation result.

Fig. 2   Result of pre-processing a original image, b CLAHE, c normalised local contrast enhanced image

Fig. 3   The overall framework for liver tumor segmentation

Fig. 4   Synthetic images using 
data augmentation and GAN 
from the original dataset
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Active Contour Evolution

The tumors cannot be created in three dimensions using ROI 
photos or images from the pre-segmentation stage. Active 
contour evolution is therefore crucial for improving tumor 
visibility. Algorithm 1 illustrates the active contour imple-
mentation in the proposed algorithm in a generic version.

Input: Liver image dataset
Output: 3D tumor segmentation in the liver images

1. Load the image

2. Apply classical data augmentation on the image.

3. Train a GAN system using the dataset to synthetically generate images.

4. Apply the trained GAN system to generate synthetic images for the given input.

5. Perform automatic ROI extraction using the dataset images and synthetically 

generated images obtained from the GAN system specifically targeting liver tumors.

6. Apply pre-segmentation techniques for liver tumor images to the extracted ROIs.

7. Initialize the ACM (Active Contour Model) for tumor segmentation in liver images.

For each image, perform the following:

a. Set the initial contour for the ACM model within the liver region.

b. Iterate until convergence:

c. Update the contour using the ACM algorithm, focusing on the tumor 

boundaries within the liver.

8. Obtain the tumor segmentation result using the final contour obtained from the 

ACM model.

9. Visualize the segmented tumor in 3D.

Results and Discussion

The proposed framework has been implemented and vali-
dated on three datasets of liver CT sequences: LiTS, 3Dir-
cadb and MIDAS. In this section, the various parameters, 
and architecture used in the framework along with time 
requirements and validations are discussed. Figure 7 shows 

Fig. 5   The pre-segmentation of 
tumor from the original dataset 
of LiTS and 3Dircadb. a Pro-
cessed image, b–e tumor ROI
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the intermediary outcomes of the suggested methodology 
in three datasets, where (a) shows the pre-processed image, 
(b)–(d) are the liver tumor image cases in three planes, and 
(e) is the final extracted tumor in 3D. For each liver image in 
each plane, the goal was to accurately delineate the bounda-
ries of the tumor. The parameters used to obtain the tumor 
using active contour are tabulated in Table 1.

The GAN Training

The commonly used WGAN architecture is preferred using 
the neural network module of PyTorch. CuDNN is used to 
accelerate neural network operations: convolution, pooling, 
normalization, and activation functions. We used batch nor-
malization to make the model suitable for the GAN archi-
tecture. Leaky ReLUs with alpha 0.2 were chosen in order 
to provide a tiny slope for the negative values, as suggested 
in [46, 47]. The size of feature maps in both networks is 
64, the number of training epochs is 50, the learning rate 
for the generator is 0.0002 and discriminator is 0.0005, and 
the Beta1 hyperparameter for Adam optimizers is 0.5. Since 
maximum pooling results in a sparse gradient, average pool-
ing is used to simplify the GAN learning. In the last layer, 
a ‘Tanh’ activation is used to generate the output image. 

Binary Cross Entropy loss is used to train both the generator 
and the discriminator. Losses for both networks are noted 
during training for monitoring and visualization. The modi-
fications to the architecture made it easier to practice stead-
ily and perform better. The discriminator's architecture was 
kept similar to the U-Net architecture [48, 49]. The U-Net 
architecture, which consists of an encoder-decoder structure 
with skip links, is frequently used for semantic segmentation 
tasks. The patches of 64 × 64 × 64 are extracted from 3D CT 
images to train the model. The suggested network utilized 
Adam's optimizer with a batch size of 16.

Computational Time

The projected methodology was accomplished in the Win-
dows GPU platform with an Intel Core i7-4790 processor 
running at 3.6 GHz and 16 GB of RAM with the help of 
open-source platforms ImageJ (https://​imagej.​net) and ITK-
Snap (www.​itksn​ap.​org). Python TensorFlow was used to 
develop WGAN on a Windows GPU platform. For each 
64 × 64 × 64 picture that was shrunk from the entire data, 
the overall training time was around 2 h. After the training 
procedure is done, segmentation takes a total of 10–20 s, 
plus an additional 60 s for selecting the ROI. Thus, for a 

Fig. 6   The pre-segmentation of tumor from the original dataset of MIDAS dataset. a Original image, b–d tumor ROI

https://imagej.net
http://www.itksnap.org
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specific tumor on a CT picture, an overall time of fewer than 
90 s is required, which is much less time than the 30–40 min 
required for manual delineation.

Evaluation

To assess the grade of the segmentation, two performance 
evaluation criteria are used, DSC and JSC [50]. DSC dis-
plays the similarity between two supplied picture samples 
that yields numeric numbers between 0 and 1. A DSC score 
of 1 indicates that the segmentation result (image) is per-
fectly aligned with the ground truth. It is numerically rep-
resented as,

JSC, often referred to be Intersection over Union, is a 
number that is used to assess how similar and dissimilar 
images are. When the segmentation result (image) has a JSC 
score of 1, it means that it exactly fits the ground truth. It is 
numerically represented as,

dice
(
I1, I2

)
= 2X

|||intersection
(
I1, I2

)|||∕
(||I1|| + | I2|

)

(a)           (b)           (c)         (d)           (e)

Fig. 7   Findings of the suggested method (a CLAHE preprocessed images, b–d tumor demarcation employing active contour in three orthogonal 
viewpoints via the image, in the axial, coronal, and sagittal planes, e 3D view of tumor segmentation in its final form)

Table 1   The variables utilized to extract the tumor from the ROI 
image in 3 dimensions are shown in Fig. 5

Segmentation type Parameters Value

Pre-segmented tumor (random 
forest)

Tree numbers 200

Tumor (using active contour) Advection 2.20
Propagation 1.00
Curvature 1.00
Grayscale tolerance 30.00
Region competition function 1
Smoothing function 0.2
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where I1, I2 are two images.
Other metrics include False positive (FP), False negative 

(FN), Hausdorff Distance (HD), Standard Surface Distance 
(SSD), and Maximum Surface Distance (MSD). When a 
pixel is incorrectly identified as belonging to a target item 
or condition when it really does not, this is known as FP. 
A FP might occur, for instance, if a pixel was identified as 
belonging to a tumor when it was actually healthy tissue. 
On the other hand, a FN occurs when a pixel that is part of a 
target item or condition is mistakenly identified as not part 
of it. For example, it would constitute a FN if a damaged 
pixel was labeled as normal. The greatest distance between 
two groups of pixels is measured by the HD. It determines 
the separation between the farthest and closest pixels in two 
sets. The average distance between comparable pixels on two 
surfaces is determined using SSD. The average difference 
between pixels in a segmented tumor and pixels in a real 
tumor, for instance, is measured in medical imaging. And 
the maximum distance between any two matching pixels 
on two surfaces is determined using the MSD calculation. 
It determines the biggest discrepancy between segmented 
object pixels and reference or genuine object pixels. Table 2 

jaccard
(
I1, I2

)
=

|||intersection
(
I1, I2

)|||∕
|||union

(
I1, I2

)|||
compiles the quantitative analysis of segmentation outcomes 
attained utilizing the recommended plan.

On the MIDAS, LiTS, and 3Dircadb datasets, the pro-
posed approach achieved Dice scores of 0.908, 0.872, and 
0.605, respectively. The JSC score of 0.831, 0.773 and 0.434 
on three datasets are also competitive and the False posi-
tive (FP) and False negative (FN) values are within limits. 
It shows that the proposed technique produces acceptable 
liver tumor segmentation results. There were several submis-
sions about tumor segmentation on 3Dircadb dataset. We 
reached a DSC of 0.872, JSC of 0.773, False positive of 
0.063, False negative of 0.185, Hausdorff Distance (HD) of 
14.734, Standard Surface Distance (SSD) of 1.473, Maxi-
mum Surface Distance (MSD) of 8.062. In comparison with 
other methods, the proposed method outperformed all meth-
ods as listed in Table 3. 

Conclusion and Future Scope

In this study, we have developed a hybrid architecture that 
effectively and efficiently extracts liver tumors from CT 
volumes. Our novel approach uses generative adversarial 
networks (GANs) to extract three-dimensional (3D) struc-
tures pixel-by-pixel, increasing accuracy and reducing time 
complexity. The proposed method enables the professional 

Table 2   Evaluation of 
segmentation results

Dataset DSC JSC FP FN HD SSD MSD

MIDAS 0.908 0.831 0.140 0.039 2.492 0.274 1.414
3Dircadb 0.872 0.773 0.063 0.185 14.734 1.473 8.062
LiTs 0.605 0.434 0.521 0.178 37.424 0.506 1.732

Table 3   Comparison of the 
proposed method's quantitative 
segmentation results to those of 
other innovative algorithms on 
the 3Dircadb and MRI/PET

Previous methods Models Segmentation structure DSC

Moghbel et al. [26] EDCNN Liver tumors 0.750
Foruzan and Chen [27] Fuzzy c-means Liver tumors 0.820
Wu et al. [28] SVM Liver tumors 0.830
Chlebus et al. [29] FCM with graph cuts Liver tumors 0.840
Jin et al. [30] CNN Liver tumors 0.830
Zhuofu Deng et al. [31] 3D U-Net Liver tumors 0.850
Fallahpoor et al. [32] DL model Liver tumors on MRI 0.530
Su et al. [51] DV-Net Liver tumors 0.754
Shi et al. [52] Extended Res-UNet Liver tumors 0.792
Chen et al. [53] FRA-UNet Liver tumors 0.689
Li et al. [54] Improved U-Net Model Liver tumors on LiTs 0.690
Ozcan et al. [55] AIM-Unet Liver tumors 0.655
Hettihewa et al. [56] MANet Liver tumors 0.6400 ± 0.279
You et al. [57] Contour-induced parallel 

graph reasoning
Liver tumors 0.741

Proposed GAN and ACM Liver tumors 0.872
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use of three-dimensional region growth, which can be useful 
for managing medical treatment. The requirement for human 
labor is reduced by choosing seed points once and applying 
them to all future slices. In contrast to the traditional slice-
by-slice method, which is time-consuming and ineffective, 
the initial setup for active contour generation involves mini-
mal effort. On the MIDAS, LiTS, and 3Dircadb datasets, 
the proposed method obtained Dice similarity coefficients 
(DSC) of 0.908, 0.872, and 0.605, respectively. These results 
demonstrate the effectiveness of the proposed paradigm. The 
recommended approach also shows potential for use with 
other medical image modalities. It can help surgeons exam-
ine the tumor for prospective medical choices and therapy 
planning, leading to better patient care.

The given architecture has the potential to be easily 
extended to additional cutting-edge imaging modalities in 
addition to its relevance to liver tumor segmentation in CT 
volumes. Images of the brain, lungs, breast, and other ana-
tomical areas for malignancy delineation are included, as 
are PET, CT, and 4D ultrasound studies. Additionally, the 
proposed strategy may be used to identify bone fractures in 
cost-effective X-ray images.
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