
Vol.:(0123456789)

SN Computer Science (2024) 5:654
https://doi.org/10.1007/s42979-024-02917-y

SN Computer Science

ORIGINAL RESEARCH

An Illustration of Extending Hedgehog to Multi‑Node GPU
Architectures Using GEMM

Nitish Shingde1,2 · Timothy Blattner3 · Alexandre Bardakoff3 · Walid Keyrouz3 · Martin Berzins1,2

Received: 12 December 2023 / Accepted: 19 April 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Asynchronous task-based systems offer the possibility of making it easier to take advantage of scalable heterogeneous architectures.
This paper extends the previous work, demonstrating how Hedgehog, a dataflow graph-based model developed at the National
Institute of Standards and Technology, can be used to obtain high performance for numerical linear algebraic operations as a starting
point for complex algorithms. While the results were promising, it was unclear how to scale them to larger matrices and compute node
counts. The aim here is to show how the new, improved algorithm inspired by DPLASMA performs equally well using Hedgehog.
The results are compared against the leading library DPLASMA to illustrate the performance of different asynchronous dataflow
models. The work demonstrates that using general-purpose, high-level abstractions, such as Hedgehog’s dataflow graphs, makes it
possible to achieve similar performance to the specialized linear algebra codes such as DPLASMA.

Keywords Hedgehog · MPI · Multi-node GPU

Introduction

Continuing innovations in hardware pose challenges to
developing portable software, particularly for new hetero-
geneous architectures. These challenges may be addressed

by the adoption of new programming models for efficient
compute node use that should represent parallel constructs
and make it easier to instrument and reason about an appli-
cation’s performance, thereby allowing developers to gain
deeper insight. Two examples of such models are the Hedge-
hog software [2], and the Uintah Computational Framework
[6, 14]. Hedgehog specializes in a single compute node level
performance based on C++ threads and NVIDIA CUDA.
Uintah specializes in large-scale simulations and uses an
MPI+X hybrid parallelism model. This paper is an extended
form of the conference paper [1] and shows how it uses
Hedgehog mixed with the general philosophy of Uintah to
obtain performance on the well-studied problem of dense
matrix-matrix multiplication (GEMM) in a distributed envi-
ronment. The whole Section “Existing Approaches”, first
three parts of Section “Extending Hedgehog to Multiple
Compute Nodes”, and Section “Previous Version: HHDG1”
are taken from the conference paper [1] while the last two
Subsections from Section “Extending Hedgehog to Multi-
ple Compute Nodes” and from Section “Current version:
HHDG2” onwards are the extensions of that work.

The central idea is to use GEMM to demonstrate how Hedge-
hog provides a way for rapidly prototyping high-performance
code based on dataflow graphs. In the conference paper [1], we
demonstrated the efficacy of the Hedgehog system with a simple
matrix multiplication algorithm (HHDG1). The HHDG1 version

This article is part of the topical collection “Applications and
Frameworks using the Asynchronous Many Task Paradigm” guest
edited by Patrick Diehl, Hartmut Kaiser, Peter Thoman, Steven R.
Brandt and “Ram” Ramanujam.

 * Nitish Shingde
 nitish@sci.utah.edu

 Timothy Blattner
 timothy.blattner@nist.gov

 Alexandre Bardakoff
 a.bardakoff@prometheuscomputing.com

 Walid Keyrouz
 walid.keyrouz@nist.gov

 Martin Berzins
 mb@sci.utah.com

1 SCI Institute, University of Utah, 201 Presidents Circle,
Salt Lake City, UT 84112, USA

2 Kahlert School of Computing, University of Utah, 201
Presidents Circle, Salt Lake City, UT 84112, USA

3 NIST, 100 Bureau Drive, Gaithersburg, MD 20899, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02917-y&domain=pdf
http://orcid.org/0000-0002-2616-7971

 SN Computer Science (2024) 5:654 654 Page 2 of 15

SN Computer Science

showed how well Hedgehog could give comparable results
against DPLASMA and SLATE but only for moderately large
enough matrices and a small number of compute nodes. For this
reason, the next version (HHDG2) of the GEMM algorithm is
modeled on DPLASMA using Hedgehog. The HHDG2 version
presented here uses a 2D block cyclic data distribution for all the
matrices, the same as DPLASMA. This paper also introduces
the concepts of Jobs and computation windows, which are used
to break down the workload distribution, similar to DPLAS-
MA’s computation blocks. The Sender and Receiver tasks are
used in HHDG1 to establish a communication line between the
local graphs on each compute node. Similarly, a new task, Data-
Warehouse, is introduced and used in HHDG2 and explains how
it serves a different use case than the one before.

The rest of the paper is organized as follows. Sec-
tion “Existing Approaches” discusses the various frame-
works that deal with multi-GPU distributed-memory
platforms. This section also talks about existing state-of-
the-art techniques used for tackling GEMM operations.
Section “Extending Hedgehog to Multiple Compute Nodes”
presents the design principles used to implement GEMM
for a multi-GPU accelerated distributed-memory platform
in Hedgehog. Section “Matrix Multiplication U

sing Hedgehog” discusses and compares the GEMM
algorithm implemented in Hedgehog for both the
versions, HHDG1 and HHDG2. Section “Results”
compares Hedgehog’s results against those of DPLASMA.
Section “Conclusions and Future Work” ends the paper with
a conclusion and future plans (Table 1).

Existing Approaches

HPX

HPX [20] (for High Performance ParallelX) is a C++
library for exascale computation. Exascale computing
is an architecture dealing with the parallelism and
communication between nodes achieving 1018 Tflops. HPX

AMT (Asynchronous Many-Task) runtime system presents
an API conforming to the C++ standard for local or remote
computation, and implements an asynchronous execution
model that semi-automatically parallelizes user code.

HPX uses C++ futures to transform sequential algorithms
into asynchronous executions with a wait-free property;
computation and communication can be overlapped with
the usage of C++ 20 co_await operator. They have
created "local control objects" (LCO) for synchronization
mechanisms. One of them, the data-flow, allows the
execution of a piece of code on a separate thread when the
values that it depends on become available. The thread usage
allows to get a minimal overhead for synchronization and
context switching.

The HPX scheduler comes with a work stealing algorithm
and an automatic load balancer. HPX has its own C++
implementation of the C++ 17 algorithms and C++ 20
concurrency facilities. Their work served the design for the
C++ parallelism technical specification 1

Legion

Legion [21] is a task graph library for heterogeneous
nodes. The library defines "logical regions" in memory as
collections of objects. When creating a task, the end-user
defines explicitly the task’s input data plus the attached
properties. The properties include the logical regions
privileges (read, write, or both), the region organization
(if it is an array of structures or a structure of arrays), the
partitioning and the coherence (the types of treatments that
a task can do in another task’s logical region). The runtime
system will use these different logical regions’ properties to
define the scheduling between these tasks and handle tasks
reordering. It can also duplicate shared read-only logical
regions to improve parallelism between multiple tasks.

StarPU

StarPU [22] is a C library to execute parallel tasks over
heterogeneous hardware on a single node with a task graph
representation. It proposes a unified approach (a codelet)
to implement a task. End-users can use additional libraries
like Nvidia CUDA [23] or BLAS routines to implement
the kernel inside the same codelet. The codelet will be then
offloaded to the execution unit used, CPU or accelerators.
In addition to the unified execution model, StarPU proposes
a generic scheduling framework. It enables users to
customize low-level scheduling decisions, such as work

Table 1 Key notations

Notation Explanantion

M, K, N Matrix size A(M, K), B(K, N), C(M, N)
T Tile size
MT , KT , NT Matrix sizes expressed in tiles
p × q MPI grid dimension
gp × gq GPU grid dimension
G GPUs per compute node
d Depth of chunck
l Look ahead parameter
WW ,WH Window dimensions

1 https:// stell ar- group. org/ 2016/ 03/ hpx- and- cpp17/. Compared to
other AMT systems, HPX brings a "future-proof C++ conforming
API" and an exposed asynchronous programming model.

https://stellar-group.org/2016/03/hpx-and-cpp17/

SN Computer Science (2024) 5:654 Page 3 of 15 654

SN Computer Science

stealing or work balancing, with high-level calls or per-task
performance models.

Charm++

Charm++ [24] is an object-oriented parallel message
passing programming system based on C++ . It follows
an asynchronous many-task model where an application is
decomposed into transferable units of work with their inputs.
These units are called chares. They start their execution
upon reception of a message. These chares are presented
under the form of C++ objects with all the particularities
brought by the language; they present encapsulation of data
and inheritance capabilities. A chare will do its computation
based on the data it embeds and transferred input data. Data
safety is guaranteed by only running one chare on a piece
of data. The execution system will associate each chare to
a different execution unit thanks to a dynamic scheduler
to maximize the performance. The overall workflow is
described in a "charm interface" cross-compiled into C++
code [25]. They claim portability without changes on all
MIMD (multiple instruction, multiple data) computers.

Uintah

Part of the original motivation for the extension of the
Hedgehog system to multiple compute nodes is the
scalability of asynchronous many-task (AMT) runtime
systems and their use in helping manage the increased
concurrency, deep memory hierarchies, and heterogeneity.
Such runtime systems are advantageous for their ability to
handle increasing compute node level parallelism through
the task overdecomposition of an application while also
managing low-level system details necessary for efficient
resource utilization behind-the-scenes. Examples include
Charm++ [12], HPX [11], Legion [5], PaRSEC [7], and
Uintah [6].

While Uintah has demonstrated large scale scalability
on heterogeneous architectures [14], it started as a fixed
task-graph execution code and was extended to dynamic
task execution [13]. Uintah’s runtime system manages
the asynchronous and out-of-order (where appropriate)
execution of these tasks and addresses the complexities
of (global) MPI and (per compute node) thread-based
communication. Execution is managed by the task
scheduler, which interacts with per-MPI process task
queues to select and execute ready tasks (e.g., tasks with
satisfied data dependencies). In extending Uintah to
heterogeneous architectures, Kokkos [8], was used to meet

the challenges posed by diverse heterogeneous systems.
Uintah application code then is decomposed into individual
tasks that are executed on either the host or device and that
make use of Uintah’s intermediate portability layer [10],
with options to use Kokkos. The resulting tasks are then
compiled into a task graph and dynamically executed by
the heterogeneous runtime system in an asynchronous out-
of-order manner. Scaling capabilities have been shown for
two benchmarks using Uintah’s MPI+Kokkos scheduler [9]
and the accompanying portable abstractions [10] to execute
workloads representative of typical Uintah applications.
The recent results [14] show good, strong-scaling to
24,576 NVIDIA V100 GPUs and 8,192 IBM POWER9
processors and demonstrate Uintah’s preparedness for the
diverse heterogeneous systems accompanying Exascale
computing. The key lessons from Uintah for this work
are to use separate task graphs per MPI process and use
the global dependency map stored in Data Warehouse to
prioritize external communication while hiding its impact
using overdecomposition.

DPLASMA

DPLASMA is a distributed parallel linear algebra software
targeted toward multicore architectures. The matrix
multiplication algorithm uses the Parameterized Task Graph
(PTG), a type of Domain Specific Language (DSL), and
exposes it in a compact and problem-size independent format
that is queried on-demand to discover data dependencies in
a distributed fashion. It depicts algorithms using data flow
principles as pure data dependencies between BLAS kernels.
The resulting dataflow depiction uses PaRSEC, a state-of-
the-art runtime system, to run it in a distributed environment.
The algorithm uses several control dependencies like b and
c (block sizes for matrix C), d (depth), and l (look-ahead)
to increase the data reuses and optimize the communication
flow from/to accelerators within each compute node. It uses
cuBLAS’s General Matrix Multiplication (GEMM) kernel
for computation and MPI for nodal communication.

SLATE

Software for Linear Algebra Targeting Exascale, also known
as SLATE, aims to provide newer linear algebra packages
targeting modern many-node HPC clusters. It uses a
newer matrix storage format where tiles are the first-class
objects, thus leaving the traditional dense linear algebra
software like ScaLAPACK, Elemental, and DPLASMA
to use contiguous memory to represent the local matrix in

 SN Computer Science (2024) 5:654 654 Page 4 of 15

SN Computer Science

each process. SLATE uses a collection of individual tiles
to represent the matrices, with no correlation between the
tile’s position in the matrix versus in memory. SLATE
uses MPI for distributed node parallelism, OpenMP for
explicit thread parallelism within nodes, implicit thread
parallelism within the vendor’s node-level BLAS, and SIMD
vector instructions for vector parallelism. SLATE relies on
explicit dataflow information for communication, where it
will broadcast the required tiles to the processes where it
is needed. This approach yields a multicore performance
of 170 TFLOP/s on 16 nodes and a peak accelerator
performance of 339.2 TFLOP/s when processing double-
precision matrices [4].

Hedgehog

Hedgehog [17] is a C++ header-only library without any
dependencies for developing general purpose coarse-grained
parallel algorithms. It targets a heterogeneous single-node
compute units with one or multiple CPUs and one or
multiple GPUs. Its execution model works without any
added scheduler; the inner threads, attached to Hedgehog
nodes, are managed only by the operating systems, and
execute based on the presence of data.

The multiple inputs need to be expressed in some way
with C++. The language feature that hedgehog uses is
variadic templates.

The Hedgehog nodes are attached with edges representing
the flow of data using queues that store unprocessed data. A
node can have multiple input and output edges. Hedgehog
uses the C++ variadic template feature to explicitly define
and manage separate input queues. The user needs to explic-
itly connect the input type of one node to the output type of
another node to define a dependency between the two nodes
for that particular data type. If no type is specified, a depend-
ency is created for all common types. Also, if the type speci-
fied by the user is invalid or there is no common type, then
an error is raised at compile time. The nodes and edges are
structured in the form of a dataflow graph. These nodes are
independent persistent entities that accept and produce data.
A node starts its execution as soon as input data values are
available. Because a node can be linked to another node and
each of them are living on different threads, they form an
inherent parallel asynchronous data pipeline. This pipeline
is used to get performance: it simplifies parallelizing I/O,
data motion, and computation, and it maximizes system uti-
lization by leveraging data streaming. This implementation

aims to design portable performing graphs for heterogeneous
nodes (e.g., featuring multiple GPUs).

Hedgehog operates with a variety of nodes. Multi-
threaded tasks are responsible for doing heavy computation.
These tasks form a group, and share the same input and
output edges consisting of queues and synchronization
contexts. State manager tasks use a localized state, which
is thread-safe shareable environments, used for data
synchronization. A graph is also a node, allowing graph
composition and code sharing. This separation of concerns
is considered as a first-class citizen as it facilitates the
programmability of the library.

Diverse metaprogramming techniques secure the graph
by checking its consistency and validity at compile-time.
It is also possible to build a compile-time representation
of the graph allowing user-defined tests execution on this
representation while compiling and consequently modifying
the outcome of the compilation.

Bardakoff et al. have demonstrated the performance
of this approach with single compute node computations
in [2]. The Hedgehog LU decomposition with partial
pivoting performed on par with the Linear Algebra Package
(LAPACK) dgetrf routine compiled with OpenBLAS
in multi-threaded mode. For the matrix-multiplication
(BLAS-like GEMM routine), running specific matrix sizes,
Hedgehog achieves > 95 % of theoretical peak across 4
NVIDIA V100 GPUs, outperforming cuBLASMg and
cuBLAS-XT baseline libraries.

Comparing Task‑Based Runtime Systems

The number of task-based codes is growing quickly and so
there have been multiple examples of comparisons of these
approaches with the aim of explaining their advantages and
disadvantages. An early and detailed comparison of Legion,
Charm++ and Uintah was made by a DOE team [29]. The
OpenMP, HPX and Legion runtime Regent are compared in
[26] with a suggestion that on CPU architectures HPX and
OpenMP are perhaps more efficient. One issue in all task
based systems is that system overhead may be an issue. Wu
et al. [31] compare the overheads of Charm++ and HPX.
The study shows that there is room for improvement in both
systems. There are fewer comparisons of these systems on
GPUs, however Gu and Becci compare MPI, open Shmem,
Charm++ and Legion on dense matrix multiplication
(DGEMM) with matrices of rank 2400 or 4800, among other
things. They note that "delegating memory management,
synchronization handling and load balancing hurts
Charm++ and Legion performance and scalability". These

SN Computer Science (2024) 5:654 Page 5 of 15 654

SN Computer Science

automated capabilities are, however, part of the attraction of
these systems. There are comparisons of more specialized
linear algebra approaches on both CPUs [28] and on GPUs
[29], in the latter case achieving about 90% of peak. There
is a discussion of the design of Hedgehog and a discussion
of some alternative approaches in the thesis of Bardakoff
[17]. One of the main contrasting features of Hedgehog from
some other approaches is that it uses a very light and fast
threading approach that has the potential to achieve high
node performance. Traditional task-based runtime systems
schedule worker threads given a queue of tasks. Hedgehog,
on the other hand, operates using a scheduler-free dataflow
approach where persistent tasks are bound to threads. These
threads awaken and execute only when data is sent to them.
The lightweight nature of Hedgehog was demonstrated
on a single node, achieving >95% of the theoretical peak
across 4 GPUs in matrix multiplication [2]. Hedgehog
maintains a static graph during compilation, execution,
and profiling. Data flows through this graph dynamically
based on demands, and metadata about execution per
element is captured. This style of execution makes profiling
much simpler as it keeps the task graph from blowing up,
in contrast to Legion, where the graph size could get out
of hand at times. This work is an attempt to exploit these
capabilities and to see if a more general runtime system
can achieve the same levels of performance on multi-node
DGEMM compared to more specialized linear algebra
approaches.

Extending Hedgehog to Multiple Compute
Nodes

Hedgehog executes the dataflow graph entirely scheduler-
free based on the flow of data. The order in which this
execution model passes data to tasks is non-deterministic,
relying entirely on the order in which the operating system
context switches threads. This out-of-order design is a staple
in how Hedgehog obtains performance but poses some
design challenges for getting performance on distributed
systems. For example, typical MPI programs expect a
structured approach that embeds a specific ordering of
messages between nodes. Additionally, Hedgehog nodes are
designed in its model for non-overlapping usage to achieve
a separation of concerns. For instance, the state manager
in Hedgehog is a specialized task that manages the state
between two or more tasks. We follow the same separation
of concerns design and maintain Hedgehog’s execution

model when augmenting Hedgehog’s abstractions to support
multiple compute node scaling with three new specialty
tasks: (1) Sender, (2) Receiver and (3) DataWarehouse
tasks. Similarly to Uintah [6], each compute node has its
own local task graph instead of having one global task graph
to manage work across the compute nodes for scalability.
Each of these local graphs contains these two new specialty
tasks to establish a form of communication. While the intra-
node communication has been automated out by Hedgehog
based on [2], the inter-node communication is an active
area of research for extending Hedgehog to multiple nodes.
In Section “Extending Hedgehog to Multiple Compute
Nodes” the Sender, Receiver and DataWarehouse tasks
are implemented specifically for matrix multiplication and
deal with point-to-point communication. This inter-node
communication is established via these special tasks instead
of making it part of the Hedgehog to prevent prematurely
getting tied to any one particular approach, albeit at the
cost of inconvenience. The design adopted here attempts
to extend Hedgehog to multiple nodes with the aim of
preserving the high performance of Hedgehog on nodes.
This requirement requires an approach that leaves almost all
of the nodal architecture intact while having the flexibility
to potentially scale across multiple nodes. Other systems
like Uintah [13], Legion [21], HPX [20], PaRSEC [21]
have automatic inter-nodal data movement, whereas here it
is more explicit since this is in the early stages of extending
Hedgehog to Multiple Compute nodes. Although these tasks
use MPI underneath as their communication framework,
they are designed to be agnostic of such communication
models.

The DataWarehouse task and the Sender, Receiver tasks
both serve different use cases. The DataWarehouse task does
not have the dependency map, which makes it suitable for
applications that make undetermined data transfers. The
drawback of this approach is that it can be slow since it
is a 2 step process, first exchanging the metadata and then
communicating the messages. This cost can be hidden by
prefetching the tiles from matrices A and B as much as
possible. The Sender, Receiver tasks are suitable where the
user already knows when and where the data is needed, i.e.,
it has the dependency map. This tactic was beneficial in
the previous version [1] since we knew where to send and
reduce the partial results for matrix C.

Hedgehog also supports another special task, the execu-
tion pipeline, which duplicates a graph for multi-GPU com-
putations within a single compute node. The task functions
as a way to execute across multiple GPUs within the same

 SN Computer Science (2024) 5:654 654 Page 6 of 15

SN Computer Science

process, reducing the inter-process communication that is
often used when utilizing multi-GPU machines. The imple-
mentation abstracts the complexity of sending work to each
GPU by automatically duplicating a graph into sub-graphs
and binding each sub-graph to a GPU. The user then just
needs to implement a decomposition strategy to describe
how data is sent to each sub-graph. This paper builds on
this concept by expanding the capabilities of Hedgehog to
bind a graph per node in a cluster of nodes and defines a new
Job abstraction that is used to define different decomposi-
tion strategies for multi-node execution, as described in the
section below.

DataPacket

Serialization/deserialization of data converts complex data
structures into a byte stream and vice versa. DataPacket
has a buffer to help store these byte streams. We define a
MatrixTile class that composes and uses the DataPacket
class to store the tile’s metadata and the two dimensional
matrix-tile data for matrix multiplication. By making
DataPacket part of the MatrixTile, we use the DataPacket’s
buffer to store and use the metadata and data directly.
This helps circumvent the overhead of allocating a new
DataPacket object and copying the serialized bytes from the
tile to the DataPacket.

Sender Task

A Sender task processes data from within the graph and
sends them to Receiver tasks across processes/compute
nodes. The incoming data to the sender task specify the
destination compute node; the sender does not implement
any logic to decide where the message should go. In
addition to sending the message, it also sends a context ID
as metadata. In MPI, this is possible in the form of tags.
The context ID helps the receiver task to deduce the type of
message. In the case of matrix multiplication, the "output
state" feeds the accumulated tile along with the destination
compute node for the Sender task to pack the data into a
DataPacket and send it across to the Receiver task of the
receiving compute node.

Receiver Task

Similar to the Sender task, the Receiver task registers all
possible data types involved in inter-node communication
in the form of template parameters. As discussed in
section “Hedgehog”, this is how Hedgehog establishes

Fig. 1 Data warehouse task

SN Computer Science (2024) 5:654 Page 7 of 15 654

SN Computer Science

an edge or a dependency between two nodes for intra-
node communication, and the same construct is used for
extending the inter-node communication as well. The
Receiver task is a daemon thread, which polls for any
incoming messages without actually receiving the message.
The Receiver task obtains the context ID from the polling
(tags in MPI), deduces the appropriate data type and buffer
size, and enqueues an asynchronous receive call for the
incoming message. The receiver task periodically checks
this queue for any completed received messages, and based
on the data type, it deserializes and pushes the data out
through the appropriate outgoing edge. These connections
are established when adding edges in the graph between
the receiver tasks and their endpoints. The data flows
automatically to the correct endpoint using its data type,
which is instrumental in how Hedgehog operates its edges.
The Receiver task is defined in this way in order to handle
the out-of-order execution and handle spurious sends
based on the flow of data within other processes. There
is room for improvement in this approach as the daemon
becomes a thread that periodically sleeps. One potential
optimization will be if a communicator uses a monitor-
based implementation when sending/receiving messages,
which would allow for the receiving thread to enter into a
wait state until a message is incoming.

DataWarehouse Task

Having a preexisting knowledge of data dependency makes
the prefetching tasks like Sender and Receiver quite effi-
cient. However, it is unreasonable to have such expecta-
tions for every use case. As influenced by similar concepts
and approach used in Uintah [6], the DataWarehouse task,
a flexible server-client fashioned task, was implemented to
fill this void. Each compute node has its own local Hedge-
hog graph. Figure 1 shows how the DataWarehouse task is
added to each of those graphs to establish a communica-
tion line between different compute nodes. This task has a
global map of where the data exists but does not have the
dependency knowledge, i.e., when and where the applica-
tion needs the data at any given point. The DataWarehouse
task processes two types of requests: intra-node and inter-
node requests. When the DataWarehouse task receives
the intra-node requests, it checks the global map where
the requested data resides. The task outputs the requested
data if the data is available locally. If the data resides on
another compute node, then the DataWarehouse task sends
an inter-node request to that node to initiate the data trans-
fer. This inter-node request is relatively small in size, and
sending too many such requests can blow up the queue and
slow down the whole communication process. Hence, the
task is designed to accept a batch of inter-node requests to
lower the frequency.

Job Abstraction for Multiple Accelerators

// Static round robin filtering based on the col index of Tile A
bool sendToGraph(std::shared_ptr<Tile> tileA, int gpuId) override {

return tileA->colIdx()%gpuCount == gpuId;
}

// Static round robin filtering based on the row index of Tile B
bool sendToGraph(std::shared_ptr<Tile> tileB, int gpuId) override {

return tileB->rowIdx()%gpuCount == gpuId;
}

The HHDG1 implementation statically distributed the
workload via round-robin based on the KT index. This
approach [1], as seen in the pseudo-code above, tightly
coupled the workload distribution with the design of the
dataflow graph itself. To adopt a different workload distri-
bution, we also need to change the dataflow graph. Hence,
to make it more flexible, we introduced the abstraction
of a Job where we can describe the workload distribu-
tion. The Job defines the computation domain that can be
scheduled on any available device. The pseudo-code below
depicts how a job is used like a filter, which can discard

the incoming data irrelevant to that particular Job. The
ability of the Job abstraction to dynamically schedule Jobs
and filter data makes it useful for fast prototyping. In the
HHDG2 implementation, the Job describes a set of tiles
(computation window) from matrix C for work. Based on
the indices of the matrix C tiles, the relevant tiles from
matrices A and B are requested. The set of matrix C tiles
defines the Job or the workload distribution, and it could
be chosen in a round-robin, 2D block-cyclic, or some arbi-
trary method, and the filtering will still work accordingly.

 SN Computer Science (2024) 5:654 654 Page 8 of 15

SN Computer Science

// Graph filter is set dynamically based on the submitted job}
bool sendToGraph(std::shared_ptr<Tile> tileA, int gpuId) override {

return job[gpuId].rowIndices.contains(tileA->rowIdx());
}

// Graph filter is set dynamically based on the submitted job
bool sendToGraph(std::shared_ptr<Tile> tileB, int gpuId) override {

return job[gpuId].colIndices.contains(tileB->colIdx());
}

Matrix Multiplication Using Hedgehog

Section “Previous Version: HHDG1” gives details about the
version of the algorithm implemented from the conference
paper [1]. The later subsections discuss the current version
of the algorithm, the data and workload distribution used,
the change in data movement complexity, and expected
scalability.

Previous Version: HHDG1

The algorithm implemented here is an extension of the
single compute node setup implemented in section 4.3 of
Bardakoff’s thesis [17]. The thesis explores the algorithm’s
evolution from CPU only to CPU + GPU to CPU+multiple
GPUs using Hedgehog. We briefly revisit the single compute
node setup and then its subsequent evolution to multiple
compute nodes using the abstractions mentioned in Sec-
tion “Extending Hedgehog to Multiple Compute Nodes”.
While the approach used here lays down the general
approach to extend Hedgehog to multiple compute nodes,
the communication model used here is hardwired to this
case for matrix multiplication. While the peer-to-peer and
one-sided communication requirement is more aligned with

Hedgehog’s design principle, it makes scaling more chal-
lenging, which needs to be addressed in future work.

The terms M, N, and K represent the dimensions of the
matrices. T represents the tile size, and MT (⌈M

T
⌉), NT (⌈N

T
⌉),

and KT (⌈K

T
⌉) represent the number of tiles along the M, N,

and K dimensions of the matrices, respectively.

Single Compute Node Setup

Figure 2 highlights the data and work distribution. Each
matching pair of columns and rows from matrices A and B
depicts a unit of work per GPU.

The workload is offloaded to each GPU in a round-
robin fashion to ensure equal distribution of work. Tiles
from matrices A and B are copied to the respective GPUs,
where all the tiled-GEMM kernel execution occurs. One
thing to note here is that all the GPUs work independently.
As we use the outer-product approach, each unit of work
asynchronously outputs a partial result for the whole matrix
C in the form of tiles. These tiles, called product tiles, are
copied back to host memory from the GPU memory for
accumulation with matrix C. The accumulation is done on
the CPU. There are MT ∗ NT ∗ KT such tile accumulations,
i.e., M ∗ N ∗

K

T
 addition operations in total. It is important

to note that the factor K
T

 here keeps these CPU-side

Fig. 2 a Represents the data dis-
tribution. For each GPU, only
1 column of tiles from A and
1 row of tiles from B are con-
sidered at a time. For matrix C,
each GPU gets p partial product
tiles (reusable), for storing the
partial GEMM computations. b
Represents the work distribution
on the GPUs. It is quite similar
to the data distribution, where
each GPU calculate the partial
result for all the elements in
matrix C

SN Computer Science (2024) 5:654 Page 9 of 15 654

SN Computer Science

accumulation tasks from being the bottleneck. The GPU
memory needs to be large enough to accommodate MT tiles
from a column of matrix A, Nt tiles from a row of matrix
B, and 4-8 tiles for storing the product tiles. For detailed
information on the Hedgehog data flow graph and its
working, refer to section 4.3.1 from Alexandre’s thesis [17].

In Hedgehog, the task graph is instantiated only once dur-
ing its creation. When a task receives new data, the data sim-
ply waits in a queue if all the threads concerning the tasks are
busy. This differs from traditionally used task graphs in sys-
tems like StarPU [15], PLASMA, and CILK [16], where the
directed acyclic graph (DAG) gets unrolled as it keeps receiv-
ing data. The actual performance in this approach comes from
pipelining the memory copies and kernel execution tasks
using NVIDIA’s streams and asynchronous API calls. The
CUDA streams help synchronize the host-to-device memory
copies of tiles from matrices A and B, cuBLAS GEMM ker-
nel execution using those tiles, and device-to-host memory
copy of the product tiles outputted by the kernels.

Multiple Compute Node Setup

Figure 3 highlights the data distribution in a multi compute
node setup. Matrices A and B are partitioned in a 1D column
and row block-cyclic fashion, respectively. This nature of the
data distribution allows us to treat these sub-matrices of A and
B as matrices themselves and use the previous single compute
node setup to independently compute partial results for every
element in matrix C. In the current design, every compute
node calculates a partial result for all the elements in matrix C.
We need to reduce the matrix C present on each compute node
to get the final result. There are two types of accumulations
happening here, one within a compute node, which we will
simply call accumulation, and the other is inter-node, which
we will call reduction, to help distinguish between the two.

The cost of reducing matrices is significant and grows as the
matrix size and/or the number of compute nodes increase. The
accumulation of matrix C tiles (within a compute node) hap-
pens in stages. So instead of waiting for the whole matrix C
to get accumulated, we asynchronously send the accumulated
tile as soon as it is ready. Figure 3 depicts the round-robin
target distribution of the tiles in matrix C. This distribution of
matrix C helps evenly distribute the sends and receives. Using
this approach helps spread the communication cost over the
execution of the hedgehog graph instead of dealing with a
costly singular reduction call. To achieve this asynchronicity,
we use the sender and receiver task approach, as detailed in
Sect. 3. For the receiver task we had first-hand knowledge
of the type of messages and their count from the beginning.
Since only 1 type of message was involved, namely, the tiles
from matrix C, we could skip the polling step and directly
initiate/enqueue an asynchronous receive call.

Current version: HHDG2

The HHDG1 algorithm attempt [1] using Hedgehog to apply
matrix multiplication on a distributed architecture gave
comparable results to existing software such as SLATE and
DPLASMA. Matrices A and B were distributed in a 1D col-
umn and row block-cyclic fashion, respectively, while matrix
C was distributed in a 2D block-cyclic fashion. The data
distribution of matrices A and B was such that each com-
pute node was self-sufficient in terms of getting the input
data; however, the algorithm computed partial results for
the entire matrix C on each compute node and reduced these
partial results to get the final solution. This inherent require-
ment of redundant matrix C on each compute node made it
harder to scale for larger matrices and more compute nodes.
Hence, a newer approach was adopted based on DPLAS-
MA’s philosophy. Instead of moving the data from matrix C
across multiple nodes while keeping matrices A and B local,

Fig. 3 Data distribution of
matrices across multiple com-
pute nodes. Matrices A and B
are distributed in a 1D Block
Column and 1D Block Row
fashion respectively. Matrix C,
as a whole, redundantly resides
on all the compute nodes with
the ownership marked in 2D
Block cyclic fashion

 SN Computer Science (2024) 5:654 654 Page 10 of 15

SN Computer Science

matrix C was kept local while moving the data from matrices
A and B as required. As depicted in Fig. 4, a 2D block-cyclic
data distribution of all the matrices is adopted. This version
also does not have the concept of product tiles since both the
partial product and the accumulation are done on the GPU.

Work Load Distribution

Workload distribution is done by partitioning the matrix
C, since that is where the computation takes place. The
computation window is just a set of tiles which has WW , WH
number of tiles along the width and height. Figure 5 shows
how the computation is divided across GPUs on a compute
node. This is partitioned further if the GPU memory capacity
is not big enough. The optimal window size is computed
based on three factors: the number of GPUs available on a
compute node, each GPU’s memory capacity, and the matrix
C’s size. Similar to the grid of compute nodes p × q used
in data distribution, we define a grid of GPUs gp × gq . For
example, if there are four GPUs, there are three possible
GPU grid configurations: (1, 4), (2, 2), (4, 1). The GPU grid

dimensions are accepted as a user parameter. The workload
is partitioned such that the number of windows is a multiple
of the GPU grid dimension to ensure equal distribution of
work as much as possible. An exhaustive/brute-force search
is conducted to find the largest possible window dimension,
such that all the tiles from matrix C (WH ×WW) within the
window plus the tiles required from matrix A (WH × d) and
B (WW × d) with certain depth d can fit inside the GPU
memor y WH ∗ WW + d × (WH +WW) ≤ GPUtile capacity .
DPLASMA computes the window size such that the tiles
from matrix C occupy at most 75% of the GPU memory
capacity and uses the rest of the memory to store tiles from
matrices A and B.

Algorithm

The computation is divided as per the distribution mentioned
in the above subsection. This version uses an outer product
approach for matrix multiplication. Each GPU is assigned
a job that needs to do the computation on the tiles from
matrix C within the assigned computation window. All the

Fig. 4 Multiple Compute Node Data Distribution

SN Computer Science (2024) 5:654 Page 11 of 15 654

SN Computer Science

jobs within a compute node need to be synchronized, as
the tiles from matrices A and B are batched and prefetched
such that it keeps the MPI communication volume to a
minimum. These batches are, however, prioritized based on
the number of tiles that are already available locally. Local
tiles are sent first to avoid idling the GPU while waiting for
the other tiles to be prefetched. All the tiles from matrix
C within the computation window (WH ×WW) are copied
to the GPU, along with a d ×WH and d ×WW number of
tiles from matrix A and B, where d represents the depth of
input tiles to be brought on to the GPU. The depth param-
eter is a nonzero integral parameter, ranging from 1 to KT ,
often depending on the GPU capacity and matrix sizes. As
this version uses the outer product approach, the algorithm
needs WH row tiles from matrix A and WW column tiles
from matrix B to compute. The depth parameter also deter-
mines the window computation size due to the following
constraint WH ∗ WW + d × (WH +WW) ≤ GPUtile capacity ,
and as the d parameter increases, the computation window

size (WH ×WW) decreases, leading to too many creation of
small jobs which can dampen the overall performance. The
parameter d is defaulted to two, where depth one is supposed
to do computation and depth two for prefetching the next
set of tiles. Like DPLASMA, we use the look-ahead param-
eter l to decide the level of prefetching. On each compute
node, l × d ×WH and l × d ×WD number of tiles are allo-
cated for prefetching tiles from matrix A and B, respectively.
Depending on the memory constraints, the user can choose
the parameters l and d, with one and two recommended val-
ues, respectively. Hedgehog’s memory manager is used in
enforcing these data decomposition limits. This is a mecha-
nism to keep the dataflow graph from oversubscribing sys-
tem resources while also keeping the graph busy to overlap
computation with IO. Charm++ [24] has a similar system
where they use the GPU manager, which uses user provided
buffers and CUDA kernels to execute and profile such tasks
on the GPUs. The GEMM operation and accumulation are
both then done on the GPU, unlike the previous HHDG1

Fig. 5 GPU Workload Distribution on Node 0

 SN Computer Science (2024) 5:654 654 Page 12 of 15

SN Computer Science

version, where the GEMM was done on the GPU and the
accumulation was done on the CPU. This approach adds the
complexity of carefully scheduling the GPU workload to
avoid race conditions but reduces the intra-node communica-
tion significantly compared to the previous one.

Data Movement Complexity

Data movement plays an important role in achieving
performance. In this section, we will compare both, the
inter-node communication volume using MPI and the intra-
node communication volume between host memory and
GPU memory.

Inter‑Node Complexity

In the previous version, no inter-node communication
occurred for matrices A and B. The only communication
that takes place is for matrix C. The communication
volume is equivalent to a collective reduction call, which is
M × N × (n − 1) , where n is the number of compute nodes.

For the current approach, matrix C is stationary,
whereas tiles from matrix A and B are communicated
redundantly based on the computation window. The
communication volume for matrices A and B depends on
how the matrix C is partitioned for computation. Similar
to the MPI grid dimension, we have grid dimensions for
GPU as well, gp and gq. Matrix C is partitioned as a
multiple of these GPU grid dimensions a and b, where the
ideal case is when a and b are both equal to 1. These a and
b are chosen such that the tiles from matrix C within the
window plus tiles from matrices A and B up to a certain
depth d can fit entirely inside the GPU. The communication
volume for matrix A is q ×M × K × b , and matrix B is
p × K × N × b , where 1 ≤ a ≤ ⌈ MT

p×gp
⌉, 1 ≤ b ≤ ⌈ NT

q×gq
⌉.

It is hard to compare the communication volume for
this version to the previous version, as the previous ver-
sion was not dependent on the capacity of the GPUs. For
easy comparison, consider the case of square matrices.
The inter-node complexity of the newer version HHDG2
ranges from 2

√
n × N2 to (n + 1) × N2 while the previous

version HHDG1 has (n − 1) × N2 . In the worst case, the
HHDG2 version has 2 × N2 more. The worst case in the

HHDG2 version implies the window size is of (1, 1), i.e.
just one tile of matrix C, which is highly unlikely.

Intra‑Node Complexity

In the previous version, only tiles from matrices A and B are
transferred to the GPU. In total, across all the compute nodes,
MT × KT tiles from matrix A, and KT × NT tiles from matrix
B are transferred from the host memory to the GPU memory.
The partial computations are stored in an uninitialized
memory in GPU, called product tiles. These product tiles
are computed and copied from GPU memory to host for
MT × NT × KT times. Therefore, the total communication
volume, in terms of tiles, is KT × (MT + NT +MT × NT) .
For square matrices, this is equal to N3

T
+ 2 × N2.

For the current version, we copy the tiles from matrix
C from host to GPU and vice versa once, MT × NT × 2 .
Whereas for tiles from matrices A (MT × KT × b) and B
(KT × NT × b) are copied from host to GPU across all
compute nodes, where 1 ≤ a ≤ ⌈ MT

p×gp
⌉, 1 ≤ b ≤ ⌈ NT

q×gq
⌉ . The

t o t a l i n t r a - n o d e c o m p l e x i t y c o m e s o u t
2 ×MT × NT + KT × (b ×MT + a × NT) . For square matri-
ces this is equal to N3

T
× (

1

p×gp
+

1

q×gq
) + 2 × N2

T
 , where

1 ≤ p, 1 ≤ q, 1 ≤ gp, 1 ≤ gq . By comparing the coefficient
of the highest power term (N3

T
), the current version

(
1

p×gp
+

1

q×gq
) gets smaller compared to the older version

(1) for larger p, q, gp and gq. This means that as the num-
ber of compute nodes and GPUs increases, the intra-node
complexity of the HHDG2 version decreases, dropping
below the HHDG1 version.

Expected Scalability

The HHDG2 implementation is quite similar to that of
DPLASMA, as both of them use the same data distribu-
tion and computation strategy, with the most significant
differentiating factor being DPLASMA using Parsec [7]
and HHDG2 using Hedgehog [2]. Another key difference
between the two is the workload distribution. As mentioned
in Section “Work Load Distribution”, DPLASMA calcu-
lates the compute window size such that matrix C occupies
75% of the GPU memory capacity at the most. DPLASMA

Table 2 DGX compute node

Note: DGX compute node is equipped with8 V100 GPUs. The whole compute node has a peak
performance of 125.6 TFLOP/s

M = N = K = 128K M = N = K = 160K M = N = K = 192K

 Algo Time (s) TFLOP/s Time (s) TFLOP/s Time (s) TFLOP/s

DPLASMA 44.4 ± 0.2 101.5 ± 0.4 88.1 ± 0.5 99.9 ± 0.6 – –
HHDG2 45.6 ± 0.8 98.9 ± 1.76 90.9 ± 1.7 96.8 ± 1.8 142.6 ± 0.9 106.6 ± 0.6

SN Computer Science (2024) 5:654 Page 13 of 15 654

SN Computer Science

does a round-robin column-wise distribution of tiles from
matrix C on the GPU. The HHDG2 implementation, on the
other hand, tries to find the window size which satisfies the
condition WH ∗ WW + d × (WH +WW) ≤ GPUtile capacity and
WH and WW divides the matrix C such that it is a multiple
of the grid dimension gp × gq . The workload is distributed
in a 2D block-cyclic fashion on the GPU. Both implemen-
tations try to synchronize the GPU workload to overlap the
MPI communication and thus minimize the inter-node data
movement complexity. DPLASMA has shown to scale [3]
on the Summit with 432 GPUs for a matrix size of around
1 million elements in each dimension. The close similari-
ties between DPLASMA and HHDG2 open the possibility
of achieving similar scalability when such experiments
can be conducted.

Results

The results in Sections “Single Compute Node” and “Multi-
ple Compute Nodes talk about different environment setups
the experiments were run on. All the experiments depicted
are evaluated for square matrices of varying sizes made of
single precision floating point numbers. Every run is meas-
ured over ten times and presented as mean and standard

deviations of the execution times (seconds) and perfor-
mances (TFLOP/s).

Single Compute Node

The single node setup consists of an Nvidia DGX Compute
Node with 2 Intel Xeon E5-2698 v4 2.2 GHz 20 Core
Processor with Hyper-Threading (80 Threads per Node), 512
GB of RAM, and 8x Tesla V100 GPUs. The experiment
was compiled using gcc/9.5.0 and cuda/11.7 The Tesla V100
GPUs have a peak performance of 15.7 TFLOP/s per GPU
and, therefore, a peak performance of 125.6 TFLOP/s for
the entire DGX node. Table 2 shows performance for three
single precision matrix sizes: 128K, 160K, and 192K, each
achieving 78.7%, 77.1% and 84.9% of the peak performance,
respectively. The DPLASMA could not run for matrix size
192K as the experiments ran out of memory.

Multiple Compute Nodes

The Kingspeak cluster [19] setup at the University of Utah
consists of four nodes. Each node has two 14-core Intel
Broadwell processors (E5-2680 v4 running @ 2.4 GHz),
256 GB of RAM and 2 Tesla P100-PCIe 16GB GPUs.
The cluster is configured with Mellanox FDR Infiniband
interconnect which has a bandwidth of 57 Gbit s −1 . Each

Table 3 Kingspeak

Note: Each compute node is equipped with 2 Tesla P100 GPUs. The four compute node setup has a peak
performance of 74.4 TFLOP/s

M = N = K = 128K M = N = K = 192K M = N = K = 256K

 Algo Time (s) TFLOP/s Time (s) TFLOP/s Time (s) TFLOP/s

DPLASMA 67.9 ± 0.2 66.3 ± 0.2 226.4 ± 1.3 67.2 ± 0.4 534.1 ± 1.0 67.5 ± 0.1
HHDG2 67.6 ± 0.5 66.6 ± 0.4 223.5 ± 0.2 68.0 ± 0.1 527.6 ± 0.4 68.3 ± 0.1

Table 4 Enki

Note: Each compute node is equipped with 4 Tesla V100 GPUs. The peak performance for four-node, six-
node and nine-node configurations is 251.2 TFLOP/s, 376.8 TFLOP/s and 565.2 TFLOP/s, respectively

4 Node (16 GPUs) 6 Nodes (24 GPUs) 9 Nodes (36 GPUs)

 N=M=K Time (s) TFLOP/s Time (s) TFLOP/s Time (s) TFLOP/s

100K 11.6 ± 0.1 185.1 ± 1.6 – – – –
128K 21.1 ± 0.6 213.4 ± 5.5 15.3 ± 0.4 294.2 ± 7.3 – –
150K 37.6 ± 0.8 192.7 ± 4.0 28.1 ± 0.8 257.9 ± 7.5 – –
200K 90.5 ± 0.3 189.8 ± 0.5 65.1 ± 1.3 264.1 ± 5.1 – –
250K 158.5 ± 0.7 211.7 ± 1.0 124.2 ± 1.1 270.2 ± 2.4 – –
256K 166.5 ± 1.2 216.3 ± 1.5 127.6 ± 1.8 282.4 ± 4.2 95.7 ± 1.0 378.7 ± 4.1
300K – – 208.9 ± 2.2 277.6 ± 3.0 – –
350K – – 311.5 ± 0.7 295.6 ± 0.7 – –
400K – – 488.2 ± 0.9 281.5 ± 0.5 – –
450K – – 656.0 ± 0.4 298.3 ± 0.2 – –
512K – – – – 647.6 ± 4.0 445.1 ± 2.7

 SN Computer Science (2024) 5:654 654 Page 14 of 15

SN Computer Science

GPU has a peak performance of 9.3 TFLOP/s, and hence
the total node configuration has a peak performance of 74.4
TFLOP/s. The code was compiled using gcc/10.2.0, Intel
MPI/2021.1.1 and cuda/11.6.2. Table 3 shows performance
results for 3 single precision square matrix sizes: 128K,
192K and 256K, each achieving 89.5% , 91.4% and 91.8% of
the peak performance, respectively.

The Enki cluster [18] at NIST has thirteen compute
nodes. Each node consists of two IBM Power9 CPUs,
supporting 20 cores and 40 threads each, and 512GB of
RAM. Each node is equipped with 4 V100 Volta GPUs,
each having a peak performance of 15.7 TFLOP/s for
single precision. The code was compiled using gcc/11.2.1,
OpenMPI/4.1.4 and cuda/11.7. Table 4 shows the
performance results only for HHDG2 for four nodes, six
nodes, and nine node configurations with varying matrix
sizes. For different matrix sizes, the four-node configuration
showed about 73.7% to 86% of peak performance, the six-
node configuration showed about 68.4% to 79.2% of peak
performance, while lastly, the nine-node configuration
showed about 67% to 78.7% of peak performance. For nine
node configurations, the experiments were conducted for
limited matrix sizes due to time constraints. Also, we did
not include the DPLASMA results because we ran into
some system errors while working with this code on the
Enki cluster.

Conclusions and Future Work

This work aims to extend Hedgehog’s abstractions while
maintaining its programming model to operate in a cluster
environment. Using matrix multiplication application as
the vehicle, we were able to show that Hedgehog, with the
new abstractions, performs on par with DPLASMA. These
results show the efficiency and speed of the Hedgehog
software as an engine for heterogeneous GPU computations.

The extension of Hedgehog to multiple nodes has been
accomplished in a relatively straightforward fashion. The
specialized Sender and Receiver, DataWarehouse tasks help
provide a communication model that aligns with Hedgehog’s
out-of-order design while remaining agnostic of any par-
ticular communication framework like MPI. Also, the Job
abstraction helps decouple the data distribution with the
design of the data flow graph while providing a flexible way
of defining workload distribution.

While the two GEMM implementations are very close,
the key difference is that HHDG2 uses Hedgehog while
DPLASMA uses ParSEC. The performance results of
HHDG2 demonstrates that Hedgehog provides a suitable
mechanism for achieving high performance on single and
multiple compute nodes.

Finally while the importance of the new abstractions
described here is to show that Hedgehog’s high performance
may be achieved on a standard linear algebra benchmark,
the next test will be to apply these ideas to a substantial
engineering code and to show that the abstractions work
equally well in this case. This is work that is ongoing.

Data availability The data for the matrices is generated using a random
generator function, which is included as code in the repository linked
in the Code Availability section.

Code Availability Our code is available here https:// github. com/ nitis
hingde/ hh3- matmul- demo. The application v3_benchmark2 of the
commit tagged as also v3_benchmark2 was used for benchmarking
on all the systems.

Declarations

Conflict of interest Certain equipment, instruments, software, or ma-
terials, commercial or non-commercial, are identified in this paper in
order to specify the experimental procedure adequately. Such identi-
fication is not intended to imply recommendation or endorsement of
any product or service by NIST, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for
the purpose.

References

 1. Shingde N, Berzins M, Blattner T, Keyrouz W, Bardakoff A.
Extending Hedgehog’s dataflow graphs to multi-node GPU archi-
tectures. In Lecture Notes in Computer Science 2023;(pp. 1-12).
https:// doi. org/ 10. 1007/ 978-3- 031- 32316-4_1

 2. Bardakoff A, Bachelet B, Blattner T, Keyrouz W, Kroiz GC, Yon
L. "Hedgehog: Understandable Scheduler-Free Heterogeneous
Asynchronous Multithreaded Data-Flow Graphs," 2020 IEEE/
ACM 3rd Annual Parallel Applications Workshop: Alternatives
To MPI+X (PAW-ATM), 2020, pp. 1-15., https:// doi. org/ 10. 1109/
PAWAT M51920. 2020. 00006.

 3. Herault T, Robert Y, Bosilca G, Dongarra J. "Generic Matrix
Multiplication for Multi-GPU Accelerated Distributed-Memory
Platforms over PaRSEC," 2019 IEEE/ACM 10th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA), 2019, pp. 33-41, https:// doi. org/ 10. 1109/ ScalA 49573.
2019. 00010.

 4. Gates M, Kurzak J, Charara A, YarKhan A, Dongarra J. SLATE:
design of a modern distributed and accelerated linear algebra
library. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC
’19). Association for Computing Machinery, New York, NY,
USA, Article 26, 2019;1-18. https:// doi. org/ 10. 1145/ 32955 00.
33562 23

 5. Bauer M, Treichler S, Slaughter E, Aiken A. Legion: Expressing
locality and independence with logical regions. In Proc. of the Int.
Conf. on High Perf. Comput., Networking, Storage and Analysis.
IEEE Computer Society Press, 2012;66.

 6. Berzins M, Beckvermit J, Harman T, Bezdjian A, Humphrey A,
Meng Q, Schmidt J, Wight C. Extending the Uintah Framework
through the Petascale Modeling of Detonation in Arrays of High
Explosive Devices. SIAM Journal on Scientific Computing.
2016;38(5):101–22.

https://github.com/nitishingde/hh3-matmul-demo
https://github.com/nitishingde/hh3-matmul-demo
https://doi.org/10.1007/978-3-031-32316-4_1
https://doi.org/10.1109/PAWATM51920.2020.00006
https://doi.org/10.1109/PAWATM51920.2020.00006
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1145/3295500.3356223

SN Computer Science (2024) 5:654 Page 15 of 15 654

SN Computer Science

 7. Bosilca G, Bouteiller A, Danalis A, Faverge M, Herault T, Don-
garra JJ. PaRSEC: Exploiting Heterogeneity to Enhance Scalabil-
ity. Computing in Science Engineering. 2013;15(6):36–45.

 8. Edwards HC, Trott CR, Sunderland D. Kokkos: Enabling many-
core performance portability through polymorphic memory access
patterns. J Parallel and Distrib Comput. 2014;74(12):3202–16.

 9. Holmen JK, Sahasrabudhe D, Berzins M. “A Heterogeneous
MPI+PPL Task Scheduling Approach for Asynchronous Many-
Task Runtime Systems,” In Proceedings of the Practice and Expe-
rience in Advanced Research Computing 2021 on Sustainability,
Success and Impact (PEARC21), ACM, (2021)

 10. Holmen JK, Peterson B, Berzins M. “An Approach for Indirectly
Adopting a Performance Portability Layer in Large Legacy
Codes,” In 2nd International Workshop on Performance, Port-
ability, and Productivity in HPC (P3HPC), SC19, 2019.

 11. Kaiser H, Heller T, Adelstein-Lelbach B, Serio A, Fey D. HPX:
A Task Based Programming Model in a Global Address Space.
In Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models (Eugene, OR, USA)
(PGAS ’14). ACM, New York, NY, USA, Article 6 2014.

 12. Kale LV, Krishnan S. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In Proceedings of the Eighth
Annual Conference on Object-oriented Programming Systems,
Languages, and Applications (Washington, D.C., USA) (OOPSLA
’93). ACM, New York, NY, USA, 1993;91-108.

 13. Meng Q, Humphrey A, Berzins M. “The Uintah Framework: A
Unified Heterogeneous Task Scheduling and Runtime System,” In
Digital Proceedings of The International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC’12,
WOLFHPC 2012 Worshop, 2012;pp. 2441–2448.

 14. Holmen JK, Sahasrabudhe D, Berzins M. “Porting Uintah to
Heterogeneous Systems,” In Proceedings of the Platform for
Advanced Scientific Computing Conference (PASC22) Best Paper
Award, ACM, 2022.

 15. Augonnet C, Thibault S, Namyst R, Wacrenier P. StarPU: A Uni-
fied Platform for Task Scheduling on Heterogeneous Multicore
Architectures CCPE - Concurrency and Computation: Practice
and Experience. Special Issue: Euro-Par. 2011;2009(23):187–98.

 16. Blumofe RD, Leiserson CE. Space-Efficient Scheduling of
Multithreaded Computations. SIAM Journal on Computing.
1998;27(1):202–29.

 17. Bardakoff Alexandre. Analysis and Execution of a Data-Flow
Graph Explicit Model Using Static Metaprogramming. Université
Clermont Auvergne, 2021. https:// theses. hal. scien ce/ tel- 03813 645

 18. Computation Platform for AI/ML | NIST. (2019b, December 17).
NIST. https:// www. nist. gov/ progr ams- proje cts/ compu tation- platf
orm- aiml

 19. Center for High Performance Computing - the University of Utah.
(n.d.). https:// chpc. utah. edu/

 20. Kaiser et al. HPX - The C++ Standard Library for Parallelism
and Concurrency. Journal of Open Source Software, 2020;5(53),
2352, https:// doi. org/ 10. 21105/ joss. 02352

 21. Bauer M, Treichler S, Slaughter E, Aiken A. Legion: Expressing
locality and independence with logical regions. In Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012; 1-11. Supercomputing,
IEEE.

 22. Augonnet C, Thibault S, Namyst R, Wacrenier P-A. Starpu: a
unified platform for task scheduling on heterogeneous multicore
architectures. Concurrency and Computation: Practice and Expe-
rience. 2011;23(2):187–98.

 23. Garland M, et al "Parallel Computing Experiences with CUDA,"
in IEEE Micro, vol. 28, no. 4, pp. 13-27, July-Aug. 2008. key-
words: Parallel processing;Programming profession;Parallel
p r o g r a m m i n g ; C o n c u r r e n t c o m p u t i n g ; C o m p u t e r

architecture;Computer graphics;Kernel;Throughput;Central Pro-
cessing Unit,https:// doi. org/ 10. 1109/ MM. 2008. 57

 24. Kale LV, Krishnan S. Charm++: A portable concurrent
object oriented system based on c++. SIGPLAN Notices.
1993;28(10):91–108.

 25. Bennett J, Clay R, Baker G, Gamell M, Hollman D, Knight S,
Kolla H, Sjaardema G, Slattengren N, Teranishi K, et al. Asc atdm
level 2 milestone #5325: Asynchronous many-task runtime system
analysis and assessment for next generation platforms. Techni-
cal Report SAND2015-8312, US Department of Energy, Sandia
National Laboratories 2015

 26. Abdullah Alperen, Afibuzzaman Md, Rabbi Fazlay, Yusuf Ozkaya
M, Catalyurek Umit, Metin Aktulga Hasan. “An Evaluation of
Task-Parallel Frameworks for Sparse Solvers on Multicore and
Manycore CPU Architectures.” In 50th International Confer-
ence on Parallel Processing, 1-11. Lemont IL USA: ACM, 2021.
https:// doi. org/ 10. 1145/ 34724 56. 34724 76.

 27. Ruidong Gu, Becchi Michela. “A Comparative Study of Parallel
Programming Frameworks for Distributed GPU Applications.” In
Proceedings of the 16th ACM International Conference on Com-
puting Frontiers, 268-73. CF ’19. New York, NY, USA: Asso-
ciation for Computing Machinery, 2019. https:// doi. org/ 10. 1145/
33102 73. 33230 71.

 28. Emmanuel Agullo, Buttari Alfredo, Guermouche Abdou, Her-
rmann Julien, Jego Antoine. “Task-Based Parallel Programming
for Scalable Matrix Product Algorithms.” ACM Transactions on
Mathematical Software 49, no. 2 2023; 1-23. https:// doi. org/ 10.
1145/ 35835 60.

 29. David Rohr, Lindenstruth Volker. “A Flexible and Portable Large-
Scale DGEMM Library for Linpack on Next-Generation Multi-
GPU Systems.” In 2015 23rd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, 2015;
664-68, https:// doi. org/ 10. 1109/ PDP. 2015. 89.

 30. Baker Gavin Matthew, Bettencourt Matthew Tyler, Bova Steven
W, Franko Ken, Gamell Marc, Grant Ryan, Hammond Simon
David, Hollman David S, Knight Samuel, Kolla Hemanth, Lin
Paul, Olivier Stephen Lecler, Sjaardema Gregory D, Slattengren
Nicole Lemaster, Teranishi Keita, Wilke Jeremiah J, Bennett
Janine Camille, Clay Robert L, Kale Laxkimant, Jain Nikhil,
Mikida Eric, Aiken Alex, Bauer Michael, Lee Wonchan, Slaughter
Elliott, Treichler Sean, Berzins Martin, Harman Todd, Humphreys
Alan, Schmidt John, Sunderland Dan, Mccormick Pat, Gutier-
rez Samuel, Shulz Martin, Gamblin Todd, Bremer Peer, -Timo.
ASC ATDM Level 2 Milestone #5325: Asynchronous Many-Task
Runtime System Analysis and Assessment for Next Generation
Platforms. United States. 2015.

 31. Nanmiao Wu, Gonidelis Ioannis, Liu Simeng, Fink Zane, Gupta
Nikunj , Mohammadiporshokooh Karame, Diehl Patrick, Kai-
ser Hartmut, Kale Laxmikant V. “Quantifying Overheads in
Charm++ and HPX Using Task Bench.” In Euro-Par 2022:
Parallel Processing Workshops, edited by Jeremy Singer, Yehia
Elkhatib, Dora Blanco Heras, Patrick Diehl, Nick Brown, and
Aleksandar Ilic, 5-16. Lecture Notes in Computer Science. Cham:
Springer Nature Switzerland, 2023. https:// doi. org/ 10. 1007/
978-3- 031- 31209-0_1.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://theses.hal.science/tel-03813645
https://www.nist.gov/programs-projects/computation-platform-aiml
https://www.nist.gov/programs-projects/computation-platform-aiml
https://chpc.utah.edu/
https://doi.org/10.21105/joss.02352
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1145/3472456.3472476
https://doi.org/10.1145/3310273.3323071
https://doi.org/10.1145/3310273.3323071
https://doi.org/10.1145/3583560
https://doi.org/10.1145/3583560
https://doi.org/10.1109/PDP.2015.89
https://doi.org/10.1007/978-3-031-31209-0_1
https://doi.org/10.1007/978-3-031-31209-0_1

	An Illustration of Extending Hedgehog to Multi-Node GPU Architectures Using GEMM
	Abstract
	Introduction
	Existing Approaches
	HPX
	Legion
	StarPU
	Charm++
	Uintah
	DPLASMA
	SLATE
	Hedgehog
	Comparing Task-Based Runtime Systems

	Extending Hedgehog to Multiple Compute Nodes
	DataPacket
	Sender Task
	Receiver Task
	DataWarehouse Task
	Job Abstraction for Multiple Accelerators

	Matrix Multiplication Using Hedgehog
	Previous Version: HHDG1
	Single Compute Node Setup
	Multiple Compute Node Setup

	Current version: HHDG2
	Work Load Distribution

	Algorithm
	Data Movement Complexity
	Inter-Node Complexity
	Intra-Node Complexity

	Expected Scalability

	Results
	Single Compute Node
	Multiple Compute Nodes

	Conclusions and Future Work
	References

