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Abstract
Asynchronous task-based systems offer the possibility of making it easier to take advantage of scalable heterogeneous architectures. 
This paper extends the previous work, demonstrating how Hedgehog, a dataflow graph-based model developed at the National 
Institute of Standards and Technology, can be used to obtain high performance for numerical linear algebraic operations as a starting 
point for complex algorithms. While the results were promising, it was unclear how to scale them to larger matrices and compute node 
counts. The aim here is to show how the new, improved algorithm inspired by DPLASMA performs equally well using Hedgehog. 
The results are compared against the leading library DPLASMA to illustrate the performance of different asynchronous dataflow 
models. The work demonstrates that using general-purpose, high-level abstractions, such as Hedgehog’s dataflow graphs, makes it 
possible to achieve similar performance to the specialized linear algebra codes such as DPLASMA.
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Introduction

Continuing innovations in hardware pose challenges to 
developing portable software, particularly for new hetero-
geneous architectures. These challenges may be addressed 

by the adoption of new programming models for efficient 
compute node use that should represent parallel constructs 
and make it easier to instrument and reason about an appli-
cation’s performance, thereby allowing developers to gain 
deeper insight. Two examples of such models are the Hedge-
hog software [2], and the Uintah Computational Framework 
[6, 14]. Hedgehog specializes in a single compute node level 
performance based on C++ threads and NVIDIA CUDA. 
Uintah specializes in large-scale simulations and uses an 
MPI+X hybrid parallelism model. This paper is an extended 
form of the conference paper [1] and shows how it uses 
Hedgehog mixed with the general philosophy of Uintah to 
obtain performance on the well-studied problem of dense 
matrix-matrix multiplication (GEMM) in a distributed envi-
ronment. The whole Section “Existing Approaches”, first 
three parts of Section “Extending Hedgehog to Multiple 
Compute Nodes”, and Section “Previous Version: HHDG1” 
are taken from the conference paper [1] while the last two 
Subsections from Section “Extending Hedgehog to Multi-
ple Compute Nodes” and from Section “Current version: 
HHDG2” onwards are the extensions of that work.

The central idea is to use GEMM to demonstrate how Hedge-
hog provides a way for rapidly prototyping high-performance 
code based on dataflow graphs. In the conference paper [1], we 
demonstrated the efficacy of the Hedgehog system with a simple 
matrix multiplication algorithm (HHDG1). The HHDG1 version 
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showed how well Hedgehog could give comparable results 
against DPLASMA and SLATE but only for moderately large 
enough matrices and a small number of compute nodes. For this 
reason, the next version (HHDG2) of the GEMM algorithm is 
modeled on DPLASMA using Hedgehog. The HHDG2 version 
presented here uses a 2D block cyclic data distribution for all the 
matrices, the same as DPLASMA. This paper also introduces 
the concepts of Jobs and computation windows, which are used 
to break down the workload distribution, similar to DPLAS-
MA’s computation blocks. The Sender and Receiver tasks are 
used in HHDG1 to establish a communication line between the 
local graphs on each compute node. Similarly, a new task, Data-
Warehouse, is introduced and used in HHDG2 and explains how 
it serves a different use case than the one before.

The rest of the paper is organized as follows. Sec-
tion “Existing Approaches” discusses the various frame-
works that deal with multi-GPU distributed-memory 
platforms. This section also talks about existing state-of-
the-art techniques used for tackling GEMM operations. 
Section “Extending Hedgehog to Multiple Compute Nodes” 
presents the design principles used to implement GEMM 
for a multi-GPU accelerated distributed-memory platform 
in Hedgehog. Section “Matrix Multiplication U

sing Hedgehog” discusses and compares the GEMM 
algorithm implemented in Hedgehog for both the 
versions, HHDG1 and HHDG2. Section  “Results” 
compares Hedgehog’s results against those of DPLASMA. 
Section “Conclusions and Future Work” ends the paper with 
a conclusion and future plans (Table 1).

Existing Approaches

HPX

HPX [20] (for High Performance ParallelX) is a C++ 
library for exascale computation. Exascale computing 
is an architecture dealing with the parallelism and 
communication between nodes achieving 1018 Tflops. HPX 

AMT (Asynchronous Many-Task) runtime system presents 
an API conforming to the C++ standard for local or remote 
computation, and implements an asynchronous execution 
model that semi-automatically parallelizes user code.

HPX uses C++ futures to transform sequential algorithms 
into asynchronous executions with a wait-free property; 
computation and communication can be overlapped with 
the usage of C++ 20 co_await operator. They have 
created "local control objects" (LCO) for synchronization 
mechanisms. One of them, the data-flow, allows the 
execution of a piece of code on a separate thread when the 
values that it depends on become available. The thread usage 
allows to get a minimal overhead for synchronization and 
context switching.

The HPX scheduler comes with a work stealing algorithm 
and an automatic load balancer. HPX has its own C++ 
implementation of the C++ 17 algorithms and C++ 20 
concurrency facilities. Their work served the design for the 
C++ parallelism technical specification 1

Legion

Legion [21] is a task graph library for heterogeneous 
nodes. The library defines "logical regions" in memory as 
collections of objects. When creating a task, the end-user 
defines explicitly the task’s input data plus the attached 
properties. The properties include the logical regions 
privileges (read, write, or both), the region organization 
(if it is an array of structures or a structure of arrays), the 
partitioning and the coherence (the types of treatments that 
a task can do in another task’s logical region). The runtime 
system will use these different logical regions’ properties to 
define the scheduling between these tasks and handle tasks 
reordering. It can also duplicate shared read-only logical 
regions to improve parallelism between multiple tasks.

StarPU

StarPU [22] is a C library to execute parallel tasks over 
heterogeneous hardware on a single node with a task graph 
representation. It proposes a unified approach (a codelet) 
to implement a task. End-users can use additional libraries 
like Nvidia CUDA [23] or BLAS routines to implement 
the kernel inside the same codelet. The codelet will be then 
offloaded to the execution unit used, CPU or accelerators. 
In addition to the unified execution model, StarPU proposes 
a generic scheduling framework. It enables users to 
customize low-level scheduling decisions, such as work 

Table 1  Key notations

Notation Explanantion

M, K, N Matrix size A(M, K), B(K, N), C(M, N)
T Tile size
MT , KT , NT Matrix sizes expressed in tiles
p × q MPI grid dimension
gp × gq GPU grid dimension
G GPUs per compute node
d Depth of chunck
l Look ahead parameter
WW ,WH Window dimensions

1 https:// stell ar- group. org/ 2016/ 03/ hpx- and- cpp17/. Compared to 
other AMT systems, HPX brings a "future-proof C++ conforming 
API" and an exposed asynchronous programming model.

https://stellar-group.org/2016/03/hpx-and-cpp17/
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stealing or work balancing, with high-level calls or per-task 
performance models.

Charm++

Charm++ [24] is an object-oriented parallel message 
passing programming system based on C++ . It follows 
an asynchronous many-task model where an application is 
decomposed into transferable units of work with their inputs. 
These units are called chares. They start their execution 
upon reception of a message. These chares are presented 
under the form of C++ objects with all the particularities 
brought by the language; they present encapsulation of data 
and inheritance capabilities. A chare will do its computation 
based on the data it embeds and transferred input data. Data 
safety is guaranteed by only running one chare on a piece 
of data. The execution system will associate each chare to 
a different execution unit thanks to a dynamic scheduler 
to maximize the performance. The overall workflow is 
described in a "charm interface" cross-compiled into C++ 
code [25]. They claim portability without changes on all 
MIMD (multiple instruction, multiple data) computers.

Uintah

Part of the original motivation for the extension of the 
Hedgehog system to multiple compute nodes is the 
scalability of asynchronous many-task (AMT) runtime 
systems and their use in helping manage the increased 
concurrency, deep memory hierarchies, and heterogeneity. 
Such runtime systems are advantageous for their ability to 
handle increasing compute node level parallelism through 
the task overdecomposition of an application while also 
managing low-level system details necessary for efficient 
resource utilization behind-the-scenes. Examples include 
Charm++ [12], HPX [11], Legion [5], PaRSEC [7], and 
Uintah [6].

While Uintah has demonstrated large scale scalability 
on heterogeneous architectures [14], it started as a fixed 
task-graph execution code and was extended to dynamic 
task execution [13]. Uintah’s runtime system manages 
the asynchronous and out-of-order (where appropriate) 
execution of these tasks and addresses the complexities 
of (global) MPI and (per compute node) thread-based 
communication. Execution is managed by the task 
scheduler, which interacts with per-MPI process task 
queues to select and execute ready tasks (e.g., tasks with 
satisfied data dependencies). In extending Uintah to 
heterogeneous architectures, Kokkos [8], was used to meet 

the challenges posed by diverse heterogeneous systems. 
Uintah application code then is decomposed into individual 
tasks that are executed on either the host or device and that 
make use of Uintah’s intermediate portability layer [10], 
with options to use Kokkos. The resulting tasks are then 
compiled into a task graph and dynamically executed by 
the heterogeneous runtime system in an asynchronous out-
of-order manner. Scaling capabilities have been shown for 
two benchmarks using Uintah’s MPI+Kokkos scheduler [9] 
and the accompanying portable abstractions [10] to execute 
workloads representative of typical Uintah applications. 
The recent results [14] show good, strong-scaling to 
24,576 NVIDIA V100 GPUs and 8,192 IBM POWER9 
processors and demonstrate Uintah’s preparedness for the 
diverse heterogeneous systems accompanying Exascale 
computing. The key lessons from Uintah for this work 
are to use separate task graphs per MPI process and use 
the global dependency map stored in Data Warehouse to 
prioritize external communication while hiding its impact 
using overdecomposition.

DPLASMA

DPLASMA is a distributed parallel linear algebra software 
targeted toward multicore architectures. The matrix 
multiplication algorithm uses the Parameterized Task Graph 
(PTG), a type of Domain Specific Language (DSL), and 
exposes it in a compact and problem-size independent format 
that is queried on-demand to discover data dependencies in 
a distributed fashion. It depicts algorithms using data flow 
principles as pure data dependencies between BLAS kernels. 
The resulting dataflow depiction uses PaRSEC, a state-of-
the-art runtime system, to run it in a distributed environment. 
The algorithm uses several control dependencies like b and 
c (block sizes for matrix C), d (depth), and l (look-ahead) 
to increase the data reuses and optimize the communication 
flow from/to accelerators within each compute node. It uses 
cuBLAS’s General Matrix Multiplication (GEMM) kernel 
for computation and MPI for nodal communication.

SLATE

Software for Linear Algebra Targeting Exascale, also known 
as SLATE, aims to provide newer linear algebra packages 
targeting modern many-node HPC clusters. It uses a 
newer matrix storage format where tiles are the first-class 
objects, thus leaving the traditional dense linear algebra 
software like ScaLAPACK, Elemental, and DPLASMA 
to use contiguous memory to represent the local matrix in 
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each process. SLATE uses a collection of individual tiles 
to represent the matrices, with no correlation between the 
tile’s position in the matrix versus in memory. SLATE 
uses MPI for distributed node parallelism, OpenMP for 
explicit thread parallelism within nodes, implicit thread 
parallelism within the vendor’s node-level BLAS, and SIMD 
vector instructions for vector parallelism. SLATE relies on 
explicit dataflow information for communication, where it 
will broadcast the required tiles to the processes where it 
is needed. This approach yields a multicore performance 
of 170  TFLOP/s on 16 nodes and a peak accelerator 
performance of 339.2 TFLOP/s when processing double-
precision matrices [4].

Hedgehog

Hedgehog [17] is a C++ header-only library without any 
dependencies for developing general purpose coarse-grained 
parallel algorithms. It targets a heterogeneous single-node 
compute units with one or multiple CPUs and one or 
multiple GPUs. Its execution model works without any 
added scheduler; the inner threads, attached to Hedgehog 
nodes, are managed only by the operating systems, and 
execute based on the presence of data.

The multiple inputs need to be expressed in some way 
with C++. The language feature that hedgehog uses is 
variadic templates.

The Hedgehog nodes are attached with edges representing 
the flow of data using queues that store unprocessed data. A 
node can have multiple input and output edges. Hedgehog 
uses the C++ variadic template feature to explicitly define 
and manage separate input queues. The user needs to explic-
itly connect the input type of one node to the output type of 
another node to define a dependency between the two nodes 
for that particular data type. If no type is specified, a depend-
ency is created for all common types. Also, if the type speci-
fied by the user is invalid or there is no common type, then 
an error is raised at compile time. The nodes and edges are 
structured in the form of a dataflow graph. These nodes are 
independent persistent entities that accept and produce data. 
A node starts its execution as soon as input data values are 
available. Because a node can be linked to another node and 
each of them are living on different threads, they form an 
inherent parallel asynchronous data pipeline. This pipeline 
is used to get performance: it simplifies parallelizing I/O, 
data motion, and computation, and it maximizes system uti-
lization by leveraging data streaming. This implementation 

aims to design portable performing graphs for heterogeneous 
nodes (e.g., featuring multiple GPUs).

Hedgehog operates with a variety of nodes. Multi-
threaded tasks are responsible for doing heavy computation. 
These tasks form a group, and share the same input and 
output edges consisting of queues and synchronization 
contexts. State manager tasks use a localized state, which 
is thread-safe shareable environments, used for data 
synchronization. A graph is also a node, allowing graph 
composition and code sharing. This separation of concerns 
is considered as a first-class citizen as it facilitates the 
programmability of the library.

Diverse metaprogramming techniques secure the graph 
by checking its consistency and validity at compile-time. 
It is also possible to build a compile-time representation 
of the graph allowing user-defined tests execution on this 
representation while compiling and consequently modifying 
the outcome of the compilation.

Bardakoff et  al. have demonstrated the performance 
of this approach with single compute node computations 
in [2]. The Hedgehog LU decomposition with partial 
pivoting performed on par with the Linear Algebra Package 
(LAPACK) dgetrf routine compiled with OpenBLAS 
in multi-threaded mode. For the matrix-multiplication 
(BLAS-like GEMM routine), running specific matrix sizes, 
Hedgehog achieves > 95 % of theoretical peak across 4 
NVIDIA V100 GPUs, outperforming cuBLASMg and 
cuBLAS-XT baseline libraries.

Comparing Task‑Based Runtime Systems

The number of task-based codes is growing quickly and so 
there have been multiple examples of comparisons of these 
approaches with the aim of explaining their advantages and 
disadvantages. An early and detailed comparison of Legion, 
Charm++ and Uintah was made by a DOE team [29]. The 
OpenMP, HPX and Legion runtime Regent are compared in 
[26] with a suggestion that on CPU architectures HPX and 
OpenMP are perhaps more efficient. One issue in all task 
based systems is that system overhead may be an issue. Wu 
et al. [31] compare the overheads of Charm++ and HPX. 
The study shows that there is room for improvement in both 
systems. There are fewer comparisons of these systems on 
GPUs, however Gu and Becci compare MPI, open Shmem, 
Charm++ and Legion on dense matrix multiplication 
(DGEMM) with matrices of rank 2400 or 4800, among other 
things. They note that "delegating memory management, 
synchronization handling and load balancing hurts 
Charm++ and Legion performance and scalability". These 
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automated capabilities are, however, part of the attraction of 
these systems. There are comparisons of more specialized 
linear algebra approaches on both CPUs [28] and on GPUs 
[29], in the latter case achieving about 90% of peak. There 
is a discussion of the design of Hedgehog and a discussion 
of some alternative approaches in the thesis of Bardakoff 
[17]. One of the main contrasting features of Hedgehog from 
some other approaches is that it uses a very light and fast 
threading approach that has the potential to achieve high 
node performance. Traditional task-based runtime systems 
schedule worker threads given a queue of tasks. Hedgehog, 
on the other hand, operates using a scheduler-free dataflow 
approach where persistent tasks are bound to threads. These 
threads awaken and execute only when data is sent to them. 
The lightweight nature of Hedgehog was demonstrated 
on a single node, achieving >95% of the theoretical peak 
across 4 GPUs in matrix multiplication [2]. Hedgehog 
maintains a static graph during compilation, execution, 
and profiling. Data flows through this graph dynamically 
based on demands, and metadata about execution per 
element is captured. This style of execution makes profiling 
much simpler as it keeps the task graph from blowing up, 
in contrast to Legion, where the graph size could get out 
of hand at times. This work is an attempt to exploit these 
capabilities and to see if a more general runtime system 
can achieve the same levels of performance on multi-node 
DGEMM compared to more specialized linear algebra 
approaches.

Extending Hedgehog to Multiple Compute 
Nodes

Hedgehog executes the dataflow graph entirely scheduler-
free based on the flow of data. The order in which this 
execution model passes data to tasks is non-deterministic, 
relying entirely on the order in which the operating system 
context switches threads. This out-of-order design is a staple 
in how Hedgehog obtains performance but poses some 
design challenges for getting performance on distributed 
systems. For example, typical MPI programs expect a 
structured approach that embeds a specific ordering of 
messages between nodes. Additionally, Hedgehog nodes are 
designed in its model for non-overlapping usage to achieve 
a separation of concerns. For instance, the state manager 
in Hedgehog is a specialized task that manages the state 
between two or more tasks. We follow the same separation 
of concerns design and maintain Hedgehog’s execution 

model when augmenting Hedgehog’s abstractions to support 
multiple compute node scaling with three new specialty 
tasks: (1) Sender, (2) Receiver and (3) DataWarehouse 
tasks. Similarly to Uintah [6], each compute node has its 
own local task graph instead of having one global task graph 
to manage work across the compute nodes for scalability. 
Each of these local graphs contains these two new specialty 
tasks to establish a form of communication. While the intra-
node communication has been automated out by Hedgehog 
based on [2], the inter-node communication is an active 
area of research for extending Hedgehog to multiple nodes. 
In Section  “Extending Hedgehog to Multiple Compute 
Nodes” the Sender, Receiver and DataWarehouse tasks 
are implemented specifically for matrix multiplication and 
deal with point-to-point communication. This inter-node 
communication is established via these special tasks instead 
of making it part of the Hedgehog to prevent prematurely 
getting tied to any one particular approach, albeit at the 
cost of inconvenience. The design adopted here attempts 
to extend Hedgehog to multiple nodes with the aim of 
preserving the high performance of Hedgehog on nodes. 
This requirement requires an approach that leaves almost all 
of the nodal architecture intact while having the flexibility 
to potentially scale across multiple nodes. Other systems 
like Uintah [13], Legion [21], HPX [20], PaRSEC [21] 
have automatic inter-nodal data movement, whereas here it 
is more explicit since this is in the early stages of extending 
Hedgehog to Multiple Compute nodes. Although these tasks 
use MPI underneath as their communication framework, 
they are designed to be agnostic of such communication 
models.

The DataWarehouse task and the Sender, Receiver tasks 
both serve different use cases. The DataWarehouse task does 
not have the dependency map, which makes it suitable for 
applications that make undetermined data transfers. The 
drawback of this approach is that it can be slow since it 
is a 2 step process, first exchanging the metadata and then 
communicating the messages. This cost can be hidden by 
prefetching the tiles from matrices A and B as much as 
possible. The Sender, Receiver tasks are suitable where the 
user already knows when and where the data is needed, i.e., 
it has the dependency map. This tactic was beneficial in 
the previous version [1] since we knew where to send and 
reduce the partial results for matrix C.

Hedgehog also supports another special task, the execu-
tion pipeline, which duplicates a graph for multi-GPU com-
putations within a single compute node. The task functions 
as a way to execute across multiple GPUs within the same 
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process, reducing the inter-process communication that is 
often used when utilizing multi-GPU machines. The imple-
mentation abstracts the complexity of sending work to each 
GPU by automatically duplicating a graph into sub-graphs 
and binding each sub-graph to a GPU. The user then just 
needs to implement a decomposition strategy to describe 
how data is sent to each sub-graph. This paper builds on 
this concept by expanding the capabilities of Hedgehog to 
bind a graph per node in a cluster of nodes and defines a new 
Job abstraction that is used to define different decomposi-
tion strategies for multi-node execution, as described in the 
section below.

DataPacket

Serialization/deserialization of data converts complex data 
structures into a byte stream and vice versa. DataPacket 
has a buffer to help store these byte streams. We define a 
MatrixTile class that composes and uses the DataPacket 
class to store the tile’s metadata and the two dimensional 
matrix-tile data for matrix multiplication. By making 
DataPacket part of the MatrixTile, we use the DataPacket’s 
buffer to store and use the metadata and data directly. 
This helps circumvent the overhead of allocating a new 
DataPacket object and copying the serialized bytes from the 
tile to the DataPacket.

Sender Task

A Sender task processes data from within the graph and 
sends them to Receiver tasks across processes/compute 
nodes. The incoming data to the sender task specify the 
destination compute node; the sender does not implement 
any logic to decide where the message should go. In 
addition to sending the message, it also sends a context ID 
as metadata. In MPI, this is possible in the form of tags. 
The context ID helps the receiver task to deduce the type of 
message. In the case of matrix multiplication, the "output 
state" feeds the accumulated tile along with the destination 
compute node for the Sender task to pack the data into a 
DataPacket and send it across to the Receiver task of the 
receiving compute node.

Receiver Task

Similar to the Sender task, the Receiver task registers all 
possible data types involved in inter-node communication 
in the form of template parameters. As discussed in 
section “Hedgehog”, this is how Hedgehog establishes 

Fig. 1  Data warehouse task
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an edge or a dependency between two nodes for intra-
node communication, and the same construct is used for 
extending the inter-node communication as well. The 
Receiver task is a daemon thread, which polls for any 
incoming messages without actually receiving the message. 
The Receiver task obtains the context ID from the polling 
(tags in MPI), deduces the appropriate data type and buffer 
size, and enqueues an asynchronous receive call for the 
incoming message. The receiver task periodically checks 
this queue for any completed received messages, and based 
on the data type, it deserializes and pushes the data out 
through the appropriate outgoing edge. These connections 
are established when adding edges in the graph between 
the receiver tasks and their endpoints. The data flows 
automatically to the correct endpoint using its data type, 
which is instrumental in how Hedgehog operates its edges. 
The Receiver task is defined in this way in order to handle 
the out-of-order execution and handle spurious sends 
based on the flow of data within other processes. There 
is room for improvement in this approach as the daemon 
becomes a thread that periodically sleeps. One potential 
optimization will be if a communicator uses a monitor-
based implementation when sending/receiving messages, 
which would allow for the receiving thread to enter into a 
wait state until a message is incoming.

DataWarehouse Task

Having a preexisting knowledge of data dependency makes 
the prefetching tasks like Sender and Receiver quite effi-
cient. However, it is unreasonable to have such expecta-
tions for every use case. As influenced by similar concepts 
and approach used in Uintah [6], the DataWarehouse task, 
a flexible server-client fashioned task, was implemented to 
fill this void. Each compute node has its own local Hedge-
hog graph. Figure 1 shows how the DataWarehouse task is 
added to each of those graphs to establish a communica-
tion line between different compute nodes. This task has a 
global map of where the data exists but does not have the 
dependency knowledge, i.e., when and where the applica-
tion needs the data at any given point. The DataWarehouse 
task processes two types of requests: intra-node and inter-
node requests. When the DataWarehouse task receives 
the intra-node requests, it checks the global map where 
the requested data resides. The task outputs the requested 
data if the data is available locally. If the data resides on 
another compute node, then the DataWarehouse task sends 
an inter-node request to that node to initiate the data trans-
fer. This inter-node request is relatively small in size, and 
sending too many such requests can blow up the queue and 
slow down the whole communication process. Hence, the 
task is designed to accept a batch of inter-node requests to 
lower the frequency.

Job Abstraction for Multiple Accelerators

// Static round robin filtering based on the col index of Tile A
bool sendToGraph(std::shared_ptr<Tile> tileA, int gpuId) override {

return tileA->colIdx()%gpuCount == gpuId;
}

// Static round robin filtering based on the row index of Tile B
bool sendToGraph(std::shared_ptr<Tile> tileB, int gpuId) override {

return tileB->rowIdx()%gpuCount == gpuId;
}

The HHDG1 implementation statically distributed the 
workload via round-robin based on the KT  index. This 
approach [1], as seen in the pseudo-code above, tightly 
coupled the workload distribution with the design of the 
dataflow graph itself. To adopt a different workload distri-
bution, we also need to change the dataflow graph. Hence, 
to make it more flexible, we introduced the abstraction 
of a Job where we can describe the workload distribu-
tion. The Job defines the computation domain that can be 
scheduled on any available device. The pseudo-code below 
depicts how a job is used like a filter, which can discard 

the incoming data irrelevant to that particular Job. The 
ability of the Job abstraction to dynamically schedule Jobs 
and filter data makes it useful for fast prototyping. In the 
HHDG2 implementation, the Job describes a set of tiles 
(computation window) from matrix C for work. Based on 
the indices of the matrix C tiles, the relevant tiles from 
matrices A and B are requested. The set of matrix C tiles 
defines the Job or the workload distribution, and it could 
be chosen in a round-robin, 2D block-cyclic, or some arbi-
trary method, and the filtering will still work accordingly.
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// Graph filter is set dynamically based on the submitted job}
bool sendToGraph(std::shared_ptr<Tile> tileA, int gpuId) override {

return job[gpuId].rowIndices.contains(tileA->rowIdx());
}

// Graph filter is set dynamically based on the submitted job
bool sendToGraph(std::shared_ptr<Tile> tileB, int gpuId) override {

return job[gpuId].colIndices.contains(tileB->colIdx());
}

Matrix Multiplication Using Hedgehog

Section “Previous Version: HHDG1” gives details about the 
version of the algorithm implemented from the conference 
paper [1]. The later subsections discuss the current version 
of the algorithm, the data and workload distribution used, 
the change in data movement complexity, and expected 
scalability.

Previous Version: HHDG1

The algorithm implemented here is an extension of the 
single compute node setup implemented in section 4.3 of 
Bardakoff’s thesis [17]. The thesis explores the algorithm’s 
evolution from CPU only to CPU + GPU to CPU+multiple 
GPUs using Hedgehog. We briefly revisit the single compute 
node setup and then its subsequent evolution to multiple 
compute nodes using the abstractions mentioned in Sec-
tion “Extending Hedgehog to Multiple Compute Nodes”. 
While the approach used here lays down the general 
approach to extend Hedgehog to multiple compute nodes, 
the communication model used here is hardwired to this 
case for matrix multiplication. While the peer-to-peer and 
one-sided communication requirement is more aligned with 

Hedgehog’s design principle, it makes scaling more chal-
lenging, which needs to be addressed in future work.

The terms M, N, and K represent the dimensions of the 
matrices. T represents the tile size, and MT ( ⌈M

T
⌉ ), NT ( ⌈N

T
⌉ ), 

and KT ( ⌈K

T
⌉ ) represent the number of tiles along the M, N, 

and K dimensions of the matrices, respectively.

Single Compute Node Setup

Figure 2 highlights the data and work distribution. Each 
matching pair of columns and rows from matrices A and B 
depicts a unit of work per GPU.

The workload is offloaded to each GPU in a round-
robin fashion to ensure equal distribution of work. Tiles 
from matrices A and B are copied to the respective GPUs, 
where all the tiled-GEMM kernel execution occurs. One 
thing to note here is that all the GPUs work independently. 
As we use the outer-product approach, each unit of work 
asynchronously outputs a partial result for the whole matrix 
C in the form of tiles. These tiles, called product tiles, are 
copied back to host memory from the GPU memory for 
accumulation with matrix C. The accumulation is done on 
the CPU. There are MT ∗ NT ∗ KT such tile accumulations, 
i.e., M ∗ N ∗

K

T
 addition operations in total. It is important 

to note that the factor K
T

 here keeps these CPU-side 

Fig. 2  a Represents the data dis-
tribution. For each GPU, only 
1 column of tiles from A and 
1 row of tiles from B are con-
sidered at a time. For matrix C, 
each GPU gets p partial product 
tiles (reusable), for storing the 
partial GEMM computations. b 
Represents the work distribution 
on the GPUs. It is quite similar 
to the data distribution, where 
each GPU calculate the partial 
result for all the elements in 
matrix C
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accumulation tasks from being the bottleneck. The GPU 
memory needs to be large enough to accommodate MT tiles 
from a column of matrix A, Nt tiles from a row of matrix 
B, and 4-8 tiles for storing the product tiles. For detailed 
information on the Hedgehog data flow graph and its 
working, refer to section 4.3.1 from Alexandre’s thesis [17].

In Hedgehog, the task graph is instantiated only once dur-
ing its creation. When a task receives new data, the data sim-
ply waits in a queue if all the threads concerning the tasks are 
busy. This differs from traditionally used task graphs in sys-
tems like StarPU [15], PLASMA, and CILK [16], where the 
directed acyclic graph (DAG) gets unrolled as it keeps receiv-
ing data. The actual performance in this approach comes from 
pipelining the memory copies and kernel execution tasks 
using NVIDIA’s streams and asynchronous API calls. The 
CUDA streams help synchronize the host-to-device memory 
copies of tiles from matrices A and B, cuBLAS GEMM ker-
nel execution using those tiles, and device-to-host memory 
copy of the product tiles outputted by the kernels.

Multiple Compute Node Setup

Figure 3 highlights the data distribution in a multi compute 
node setup. Matrices A and B are partitioned in a 1D column 
and row block-cyclic fashion, respectively. This nature of the 
data distribution allows us to treat these sub-matrices of A and 
B as matrices themselves and use the previous single compute 
node setup to independently compute partial results for every 
element in matrix C. In the current design, every compute 
node calculates a partial result for all the elements in matrix C. 
We need to reduce the matrix C present on each compute node 
to get the final result. There are two types of accumulations 
happening here, one within a compute node, which we will 
simply call accumulation, and the other is inter-node, which 
we will call reduction, to help distinguish between the two. 

The cost of reducing matrices is significant and grows as the 
matrix size and/or the number of compute nodes increase. The 
accumulation of matrix C tiles (within a compute node) hap-
pens in stages. So instead of waiting for the whole matrix C 
to get accumulated, we asynchronously send the accumulated 
tile as soon as it is ready. Figure 3 depicts the round-robin 
target distribution of the tiles in matrix C. This distribution of 
matrix C helps evenly distribute the sends and receives. Using 
this approach helps spread the communication cost over the 
execution of the hedgehog graph instead of dealing with a 
costly singular reduction call. To achieve this asynchronicity, 
we use the sender and receiver task approach, as detailed in 
Sect. 3. For the receiver task we had first-hand knowledge 
of the type of messages and their count from the beginning. 
Since only 1 type of message was involved, namely, the tiles 
from matrix C, we could skip the polling step and directly 
initiate/enqueue an asynchronous receive call.

Current version: HHDG2

The HHDG1 algorithm attempt [1] using Hedgehog to apply 
matrix multiplication on a distributed architecture gave 
comparable results to existing software such as SLATE and 
DPLASMA. Matrices A and B were distributed in a 1D col-
umn and row block-cyclic fashion, respectively, while matrix 
C was distributed in a 2D block-cyclic fashion. The data 
distribution of matrices A and B was such that each com-
pute node was self-sufficient in terms of getting the input 
data; however, the algorithm computed partial results for 
the entire matrix C on each compute node and reduced these 
partial results to get the final solution. This inherent require-
ment of redundant matrix C on each compute node made it 
harder to scale for larger matrices and more compute nodes. 
Hence, a newer approach was adopted based on DPLAS-
MA’s philosophy. Instead of moving the data from matrix C 
across multiple nodes while keeping matrices A and B local, 

Fig. 3  Data distribution of 
matrices across multiple com-
pute nodes. Matrices A and B 
are distributed in a 1D Block 
Column and 1D Block Row 
fashion respectively. Matrix C, 
as a whole, redundantly resides 
on all the compute nodes with 
the ownership marked in 2D 
Block cyclic fashion
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matrix C was kept local while moving the data from matrices 
A and B as required. As depicted in Fig. 4, a 2D block-cyclic 
data distribution of all the matrices is adopted. This version 
also does not have the concept of product tiles since both the 
partial product and the accumulation are done on the GPU.

Work Load Distribution

Workload distribution is done by partitioning the matrix 
C, since that is where the computation takes place. The 
computation window is just a set of tiles which has WW , WH 
number of tiles along the width and height. Figure 5 shows 
how the computation is divided across GPUs on a compute 
node. This is partitioned further if the GPU memory capacity 
is not big enough. The optimal window size is computed 
based on three factors: the number of GPUs available on a 
compute node, each GPU’s memory capacity, and the matrix 
C’s size. Similar to the grid of compute nodes p × q used 
in data distribution, we define a grid of GPUs gp × gq . For 
example, if there are four GPUs, there are three possible 
GPU grid configurations: (1, 4), (2, 2), (4, 1). The GPU grid 

dimensions are accepted as a user parameter. The workload 
is partitioned such that the number of windows is a multiple 
of the GPU grid dimension to ensure equal distribution of 
work as much as possible. An exhaustive/brute-force search 
is conducted to find the largest possible window dimension, 
such that all the tiles from matrix C ( WH ×WW ) within the 
window plus the tiles required from matrix A ( WH × d ) and 
B ( WW × d ) with certain depth d can fit inside the GPU 
memor y  WH ∗ WW + d × (WH +WW) ≤ GPUtile capacity  . 
DPLASMA computes the window size such that the tiles 
from matrix C occupy at most 75% of the GPU memory 
capacity and uses the rest of the memory to store tiles from 
matrices A and B.

Algorithm

The computation is divided as per the distribution mentioned 
in the above subsection. This version uses an outer product 
approach for matrix multiplication. Each GPU is assigned 
a job that needs to do the computation on the tiles from 
matrix C within the assigned computation window. All the 

Fig. 4  Multiple Compute Node Data Distribution
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jobs within a compute node need to be synchronized, as 
the tiles from matrices A and B are batched and prefetched 
such that it keeps the MPI communication volume to a 
minimum. These batches are, however, prioritized based on 
the number of tiles that are already available locally. Local 
tiles are sent first to avoid idling the GPU while waiting for 
the other tiles to be prefetched. All the tiles from matrix 
C within the computation window ( WH ×WW ) are copied 
to the GPU, along with a d ×WH and d ×WW number of 
tiles from matrix A and B, where d represents the depth of 
input tiles to be brought on to the GPU. The depth param-
eter is a nonzero integral parameter, ranging from 1 to KT , 
often depending on the GPU capacity and matrix sizes. As 
this version uses the outer product approach, the algorithm 
needs WH row tiles from matrix A and WW column tiles 
from matrix B to compute. The depth parameter also deter-
mines the window computation size due to the following 
constraint WH ∗ WW + d × (WH +WW) ≤ GPUtile capacity , 
and as the d parameter increases, the computation window 

size ( WH ×WW ) decreases, leading to too many creation of 
small jobs which can dampen the overall performance. The 
parameter d is defaulted to two, where depth one is supposed 
to do computation and depth two for prefetching the next 
set of tiles. Like DPLASMA, we use the look-ahead param-
eter l to decide the level of prefetching. On each compute 
node, l × d ×WH and l × d ×WD number of tiles are allo-
cated for prefetching tiles from matrix A and B, respectively. 
Depending on the memory constraints, the user can choose 
the parameters l and d, with one and two recommended val-
ues, respectively. Hedgehog’s memory manager is used in 
enforcing these data decomposition limits. This is a mecha-
nism to keep the dataflow graph from oversubscribing sys-
tem resources while also keeping the graph busy to overlap 
computation with IO. Charm++ [24] has a similar system 
where they use the GPU manager, which uses user provided 
buffers and CUDA kernels to execute and profile such tasks 
on the GPUs. The GEMM operation and accumulation are 
both then done on the GPU, unlike the previous HHDG1 

Fig. 5  GPU Workload Distribution on Node 0
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version, where the GEMM was done on the GPU and the 
accumulation was done on the CPU. This approach adds the 
complexity of carefully scheduling the GPU workload to 
avoid race conditions but reduces the intra-node communica-
tion significantly compared to the previous one.

Data Movement Complexity

Data movement plays an important role in achieving 
performance. In this section, we will compare both, the 
inter-node communication volume using MPI and the intra-
node communication volume between host memory and 
GPU memory.

Inter‑Node Complexity

In the previous version, no inter-node communication 
occurred for matrices A and B. The only communication 
that takes place is for matrix C. The communication 
volume is equivalent to a collective reduction call, which is 
M × N × (n − 1) , where n is the number of compute nodes.

For the current approach, matrix C is stationary, 
whereas tiles from matrix A and B are communicated 
redundantly based on the computation window. The 
communication volume for matrices A and B depends on 
how the matrix C is partitioned for computation. Similar 
to the MPI grid dimension, we have grid dimensions for 
GPU as well, gp and gq. Matrix C is partitioned as a 
multiple of these GPU grid dimensions a and b, where the 
ideal case is when a and b are both equal to 1. These a and 
b are chosen such that the tiles from matrix C within the 
window plus tiles from matrices A and B up to a certain 
depth d can fit entirely inside the GPU. The communication 
volume for matrix A is q ×M × K × b , and matrix B is 
p × K × N × b , where 1 ≤ a ≤ ⌈ MT

p×gp
⌉, 1 ≤ b ≤ ⌈ NT

q×gq
⌉.

It is hard to compare the communication volume for 
this version to the previous version, as the previous ver-
sion was not dependent on the capacity of the GPUs. For 
easy comparison, consider the case of square matrices. 
The inter-node complexity of the newer version HHDG2 
ranges from 2

√
n × N2 to (n + 1) × N2 while the previous 

version HHDG1 has (n − 1) × N2 . In the worst case, the 
HHDG2 version has 2 × N2 more. The worst case in the 

HHDG2 version implies the window size is of (1, 1), i.e. 
just one tile of matrix C, which is highly unlikely.

Intra‑Node Complexity

In the previous version, only tiles from matrices A and B are 
transferred to the GPU. In total, across all the compute nodes, 
MT × KT tiles from matrix A, and KT × NT tiles from matrix 
B are transferred from the host memory to the GPU memory. 
The partial computations are stored in an uninitialized 
memory in GPU, called product tiles. These product tiles 
are computed and copied from GPU memory to host for 
MT × NT × KT times. Therefore, the total communication 
volume, in terms of tiles, is KT × (MT + NT +MT × NT ) . 
For square matrices, this is equal to N3

T
+ 2 × N2.

For the current version, we copy the tiles from matrix 
C from host to GPU and vice versa once, MT × NT × 2 . 
Whereas for tiles from matrices A ( MT × KT × b ) and B 
( KT × NT × b ) are copied from host to GPU across all 
compute nodes, where 1 ≤ a ≤ ⌈ MT

p×gp
⌉, 1 ≤ b ≤ ⌈ NT

q×gq
⌉ . The 

t o t a l  i n t r a - n o d e  c o m p l e x i t y  c o m e s  o u t 
2 ×MT × NT + KT × (b ×MT + a × NT ) . For square matri-
ces this is equal to N3

T
× (

1

p×gp
+

1

q×gq
) + 2 × N2

T
 , where 

1 ≤ p, 1 ≤ q, 1 ≤ gp, 1 ≤ gq . By comparing the coefficient 
of the highest power term ( N3

T
 ), the current version 

(
1

p×gp
+

1

q×gq
) gets smaller compared to the older version 

(1) for larger p, q, gp and gq. This means that as the num-
ber of compute nodes and GPUs increases, the intra-node 
complexity of the HHDG2 version decreases, dropping 
below the HHDG1 version.

Expected Scalability

The HHDG2 implementation is quite similar to that of 
DPLASMA, as both of them use the same data distribu-
tion and computation strategy, with the most significant 
differentiating factor being DPLASMA using Parsec [7] 
and HHDG2 using Hedgehog [2]. Another key difference 
between the two is the workload distribution. As mentioned 
in Section “Work Load Distribution”, DPLASMA calcu-
lates the compute window size such that matrix C occupies 
75% of the GPU memory capacity at the most. DPLASMA 

Table 2  DGX compute node

Note: DGX compute node is equipped with8 V100 GPUs. The whole compute node has a peak 
performance of 125.6 TFLOP/s

M = N = K = 128K M = N = K = 160K M = N = K = 192K

 Algo Time (s) TFLOP/s Time (s) TFLOP/s Time (s) TFLOP/s

DPLASMA 44.4 ± 0.2 101.5 ± 0.4 88.1 ± 0.5 99.9 ± 0.6 – –
HHDG2 45.6 ± 0.8 98.9 ± 1.76 90.9 ± 1.7 96.8 ± 1.8 142.6 ± 0.9 106.6 ± 0.6
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does a round-robin column-wise distribution of tiles from 
matrix C on the GPU. The HHDG2 implementation, on the 
other hand, tries to find the window size which satisfies the 
condition WH ∗ WW + d × (WH +WW) ≤ GPUtile capacity and 
WH and WW divides the matrix C such that it is a multiple 
of the grid dimension gp × gq . The workload is distributed 
in a 2D block-cyclic fashion on the GPU. Both implemen-
tations try to synchronize the GPU workload to overlap the 
MPI communication and thus minimize the inter-node data 
movement complexity. DPLASMA has shown to scale [3] 
on the Summit with 432 GPUs for a matrix size of around 
1 million elements in each dimension. The close similari-
ties between DPLASMA and HHDG2 open the possibility 
of achieving similar scalability when such experiments 
can be conducted.

Results

The results in Sections “Single Compute Node” and “Multi-
ple Compute Nodes talk about different environment setups 
the experiments were run on. All the experiments depicted 
are evaluated for square matrices of varying sizes made of 
single precision floating point numbers. Every run is meas-
ured over ten times and presented as mean and standard 

deviations of the execution times (seconds) and perfor-
mances (TFLOP/s).

Single Compute Node

The single node setup consists of an Nvidia DGX Compute 
Node with 2 Intel Xeon E5-2698 v4 2.2 GHz 20 Core 
Processor with Hyper-Threading (80 Threads per Node), 512 
GB of RAM, and 8x Tesla V100 GPUs. The experiment 
was compiled using gcc/9.5.0 and cuda/11.7 The Tesla V100 
GPUs have a peak performance of 15.7 TFLOP/s per GPU 
and, therefore, a peak performance of 125.6 TFLOP/s for 
the entire DGX node. Table 2 shows performance for three 
single precision matrix sizes: 128K, 160K, and 192K, each 
achieving 78.7%, 77.1% and 84.9% of the peak performance, 
respectively. The DPLASMA could not run for matrix size 
192K as the experiments ran out of memory.

Multiple Compute Nodes

The Kingspeak cluster [19] setup at the University of Utah 
consists of four nodes. Each node has two 14-core Intel 
Broadwell processors (E5-2680 v4 running @ 2.4 GHz), 
256 GB of RAM and 2 Tesla P100-PCIe 16GB GPUs. 
The cluster is configured with Mellanox FDR Infiniband 
interconnect which has a bandwidth of 57 Gbit s −1 . Each 

Table 3  Kingspeak

Note: Each compute node is equipped with 2 Tesla P100 GPUs. The four compute node setup has a peak 
performance of 74.4 TFLOP/s

M = N = K = 128K M = N = K = 192K M = N = K = 256K

 Algo Time (s) TFLOP/s Time (s) TFLOP/s Time (s) TFLOP/s

DPLASMA 67.9 ± 0.2 66.3 ± 0.2 226.4 ± 1.3 67.2 ± 0.4 534.1 ± 1.0 67.5 ± 0.1
HHDG2 67.6 ± 0.5 66.6 ± 0.4 223.5 ± 0.2 68.0 ± 0.1 527.6 ± 0.4 68.3 ± 0.1

Table 4  Enki

Note: Each compute node is equipped with 4 Tesla V100 GPUs. The peak performance for four-node, six-
node and nine-node configurations is 251.2 TFLOP/s, 376.8 TFLOP/s and 565.2 TFLOP/s, respectively

4 Node (16 GPUs) 6 Nodes (24 GPUs) 9 Nodes (36 GPUs)

 N=M=K Time (s) TFLOP/s Time (s) TFLOP/s Time (s) TFLOP/s

100K 11.6 ± 0.1 185.1 ± 1.6 – – – –
128K 21.1 ± 0.6 213.4 ± 5.5 15.3 ± 0.4 294.2 ± 7.3 – –
150K 37.6 ± 0.8 192.7 ± 4.0 28.1 ± 0.8 257.9 ± 7.5 – –
200K 90.5 ± 0.3 189.8 ± 0.5 65.1 ± 1.3 264.1 ± 5.1 – –
250K 158.5 ± 0.7 211.7 ± 1.0 124.2 ± 1.1 270.2 ± 2.4 – –
256K 166.5 ± 1.2 216.3 ± 1.5 127.6 ± 1.8 282.4 ± 4.2 95.7 ± 1.0 378.7 ± 4.1
300K – – 208.9 ± 2.2 277.6 ± 3.0 – –
350K – – 311.5 ± 0.7 295.6 ± 0.7 – –
400K – – 488.2 ± 0.9 281.5 ± 0.5 – –
450K – – 656.0 ± 0.4 298.3 ± 0.2 – –
512K – – – – 647.6 ± 4.0 445.1 ± 2.7
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GPU has a peak performance of 9.3 TFLOP/s, and hence 
the total node configuration has a peak performance of 74.4 
TFLOP/s. The code was compiled using gcc/10.2.0, Intel 
MPI/2021.1.1 and cuda/11.6.2. Table 3 shows performance 
results for 3 single precision square matrix sizes: 128K, 
192K and 256K, each achieving 89.5% , 91.4% and 91.8% of 
the peak performance, respectively.

The Enki cluster [18] at NIST has thirteen compute 
nodes. Each node consists of two IBM Power9 CPUs, 
supporting 20 cores and 40 threads each, and 512GB of 
RAM. Each node is equipped with 4 V100 Volta GPUs, 
each having a peak performance of 15.7 TFLOP/s for 
single precision. The code was compiled using gcc/11.2.1, 
OpenMPI/4.1.4 and cuda/11.7. Table  4 shows the 
performance results only for HHDG2 for four nodes, six 
nodes, and nine node configurations with varying matrix 
sizes. For different matrix sizes, the four-node configuration 
showed about 73.7% to 86% of peak performance, the six-
node configuration showed about 68.4% to 79.2% of peak 
performance, while lastly, the nine-node configuration 
showed about 67% to 78.7% of peak performance. For nine 
node configurations, the experiments were conducted for 
limited matrix sizes due to time constraints. Also, we did 
not include the DPLASMA results because we ran into 
some system errors while working with this code on the 
Enki cluster.

Conclusions and Future Work

This work aims to extend Hedgehog’s abstractions while 
maintaining its programming model to operate in a cluster 
environment. Using matrix multiplication application as 
the vehicle, we were able to show that Hedgehog, with the 
new abstractions, performs on par with DPLASMA. These 
results show the efficiency and speed of the Hedgehog 
software as an engine for heterogeneous GPU computations.

The extension of Hedgehog to multiple nodes has been 
accomplished in a relatively straightforward fashion. The 
specialized Sender and Receiver, DataWarehouse tasks help 
provide a communication model that aligns with Hedgehog’s 
out-of-order design while remaining agnostic of any par-
ticular communication framework like MPI. Also, the Job 
abstraction helps decouple the data distribution with the 
design of the data flow graph while providing a flexible way 
of defining workload distribution.

While the two GEMM implementations are very close, 
the key difference is that HHDG2 uses Hedgehog while 
DPLASMA uses ParSEC. The performance results of 
HHDG2 demonstrates that Hedgehog provides a suitable 
mechanism for achieving high performance on single and 
multiple compute nodes.

Finally while the importance of the new abstractions 
described here is to show that Hedgehog’s high performance 
may be achieved on a standard linear algebra benchmark, 
the next test will be to apply these ideas to a substantial 
engineering code and to show that the abstractions work 
equally well in this case. This is work that is ongoing.

Data availability The data for the matrices is generated using a random 
generator function, which is included as code in the repository linked 
in the Code Availability section.

Code Availability Our code is available here https:// github. com/ nitis 
hingde/ hh3- matmul- demo. The application v3_benchmark2 of the 
commit tagged as also v3_benchmark2 was used for benchmarking 
on all the systems.
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