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Abstract
Non-invasive crop phenotyping is essential for crop modeling, which relies on image processing techniques. This research 
presents a plant-scale vision system that can acquire multispectral plant data in agricultural fields. This paper proposes a 
sensory fusion method that uses three cameras, Two multispectral and a RGB depth camera. The sensory fusion method 
applies pattern recognition and statistical optimization to produce a single multispectral 3D image that combines thermal and 
near-infrared (NIR) images from crops. A multi-camera sensory fusion method incorporates five multispectral bands: three 
from the visible range and two from the non-visible range, namely NIR and mid-infrared. The object recognition method 
examines about 7000 features in each image and runs only once during calibration. The outcome of the sensory fusion pro-
cess is a homographic transformation model that integrates multispectral and RGB data into a coherent 3D representation. 
This approach can handle occlusions, allowing an accurate extraction of crop features. The result is a 3D point cloud that 
contains thermal and NIR multispectral data that were initially obtained separately in 2D.

Keywords  Multi-spectral imagery · Light-field plenoptic cameras · Phenotyping · Plant modeling · 3D plant morphology

Introduction

The world population and food demand are increasing, mak-
ing the development of sustainable agricultural technologies 
a vital task [1]. Rice is one of the most important foods 
worldwide. Experimental phenotyping of different rice vari-
eties enables genomic selection models and assessment of 
agronomic traits such as temperature and humidity tolerance, 

radiation levels, aluminum toxicity in soils, and biotic stress 
[2–6]. Phenotypic quantification requires accurate morpho-
logical modeling, which offers useful information to validate 
new agricultural varieties for higher productivity and food 
security [7, 8]. Plant morphological traits are key variables 
in estimating grain yield and crop health. Traditional meth-
ods are often invasive [9] or destructive [10], depending on 
biological samples [11–14]. To overcome the drawbacks 
of traditional methods, image processing techniques have 
emerged as a non-destructive alternative. These techniques 
allow qualitative and quantitative analysis of light absorption 
and reflection at different bands, enabling the characteriza-
tion of crop conditions. This, for instance, permits the detec-
tion of nitrogen-deficient plants [15–17].

Abiotic stress in plants causes changes in fluorescence 
due to the absorption and reflection of light at different 
bands. These variations occur within the 650 to 800 nm 
range of the electromagnetic spectrum, corresponding to 
the chlorophyll fluorescence [18, 19]. Traditional methods 
usually involve direct point measurements, using two main 
components: (i) image data captured by RGB or multispec-
tral cameras, such as near-infrared, mid-infrared, or ther-
mal cameras, and (ii) three-dimensional sensors, such as 
LiDAR, stereo cameras, or plenoptic cameras. The fusion 
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of data from these components allows the generation of a 
four-dimensional (4D) model [20].

To the best of the authors’ knowledge, few works in the 
literature have used light-field cameras to reconstruct 4D 
plant models. In this arena, the PhenoBot research is one 
of the few studies that address plant phenotyping through 
4D models using a plenoptic camera [21]. Progress in this 
area has been restricted to using a single frame or a single 
camera to extract plant features, despite the informative data 
of the plants being available in different multispectral cam-
eras. This requires a multi-camera fusion method. To tackle 
this challenge, our research aimed to develop a method 
for extracting non-invasive multispectral data of the plant 
through a multi-camera fusion method, enabling the acqui-
sition of infrared and thermal images in 3D space that were 
initially in 2D.

Related Work

Multi-spectral sensory fusion enhances robustness and reli-
ability across a broader range of applications compared to 
using only single-wavelength information. Convolutional 
Neural Network (CNN) is a popular deep network archi-
tecture widely employed for analyzing visual imagery [22]. 
Some studies have introduced CNNs for multispectral 
remote sensing image analysis to enhance the performance 
of detection algorithms. These CNN-based detectors are 
trained on large-scale satellite image datasets [23–25]. While 
these studies focus on object detection applications, they do 
not encompass homographic transformation to unify images 
from different sensors into a single image, they lack a multi-
camera fusion approach. Furthermore, they typically require 
a large number of images for training, often exceeding 1200 
images. Although these studies introduce object detection 
applications utilizing multispectral information, they do not 
employ a multisensory fusion approach [26]. Other research 
integrates 3D information with multispectral remote sens-
ing images to model 3D tree canopies [27, 28], achieving 
sensory fusion through public libraries and free software. 
However, these approaches do not utilize sensory fusion via 
homographic transformations. This is because the distance 
from the sensor to the canopy is often significant, making 
such transformations unnecessary. Conversely, our research 
focuses on sensors positioned close to the plants, neces-
sitating homographic transformations. Another approach 
involves multi-sensory fusion applications over different 
point clouds using 3D spatial join techniques [13, 29, 30]. 
While promising, this approach is not suitable when the mul-
tispectral information is obtained from 2D sensors. Lastly, 
Multi-Camera Sensor Fusion is commonly utilized for visual 
odometry using artificial neural networks [31], or tracking 
interesting objects, but it typically does not integrate multi-
spectral information [32, 33].

This research presents a multisensory fusion at plant 
scale. The challenge in this proposal is to adapt techniques 
traditionally associated with other contexts [34–36]. By uti-
lizing both 2D and 3D cameras, this study proposes a mul-
tisensory data approach. Accordingly, our research devel-
ops a strategy based on pattern recognition and statistical 
optimization to model projective transformations through 
a complex object recognition application [37]. The visible 
light spectrum (VIS) wavelengths are captured using the Ple-
noptic Raytrix R42 camera and the Kinect One V02 sensor. 
The non-visible near-infrared spectrum (NIR) is captured 
using the Parrot Sequoia camera, while the mid-infrared 
spectral band (MIR) is captured using the Fluke Ti400 ther-
mal camera.

Section “Materials and Setup” presents the materials, 
which encompass the mechanical configuration and cali-
bration of the cameras. Section “Methodology” introduces 
the methodology, covering (i) feature detection, (ii) feature 
matching with statistical optimization, (iii) homographic 
model transformation, and the integration with multispectral 
cameras. Finally, the results and conclusions are presented 
in Chapters 4 and 5, respectively.

Materials and Setup

Images Acquisition

The sensory fusion approach is implemented using three 
cameras: (i) a 3D camera operating in the visible spectrum 
(VIS), (ii) a near-infrared (NIR) multispectral camera, and 
(iii) a mid-infrared thermal multispectral camera. This 
approach requires the setup of the mechanical assembly and 
the configuration of acquisition software.

Camera Assembly and Mounting Structure

In Fig. 1, two different configurations are observed. These 
camera setups share the characteristic of integrating a 3D 
camera with three VIS channels, a multispectral camera 
with an infrared channel, and a thermal camera with only 
one channel. The entire assembly is mounted on a tripod 
to ensure stability and maintain the integrity of the homo-
graphic alignment.

Plenoptic Camera Calibration

Light field cameras have garnered attention for their innova-
tive capabilities. This technology captures both the intensity 
and direction of light rays as they propagate through space.

MLA Micro-Lens Array calibration Figure  2a illustrates 
the structure of the plenoptic sensor developed by Raytrix. 
This image highlights the need for camera calibration due to 
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the micro-lens architecture. In Fig.  2b, the general projec-
tive model of a Plenoptic camera, based on literature [38, 
39], is presented. In this model, point P represents the real 
spatial information of the scene ( Px , Py , Pz ), and the light 
rays from point P are captured by the main lens, resulting 
in corresponding points Q forming the image captured by 
the camera. The set of micro-lenses, denoted as l, forms 
the basis of plenoptic technology and directly influences the 
generation of pixels p. When Pz > 0, Eq. 1 describes the 
relationship, where d is the distance between the camera sen-
sor and the micro-lens array, D is the distance between the 
micro-lens array and the main lens, and F is the focal length 
of the main lens and the object in the scene [38].

The camera calibration process is performed using the 
RxLive tool and comprises two essential components: the 
calibration filter and a light source, as demonstrated in 
Fig.  3.

Three crucial components are essential to the calibra-
tion process, necessitating manual fine-tuning: the cam-
era’s primary lens (in this case, a 12 mm lens), the dia-
phragm aperture (controlling the light influx to the sensor), 

(1)
1

F
=

1

Pz

−
1

Qz

and the focus setting (establishing the camera-to-subject 
distance). Alterations to any of these parameters neces-
sitate a subsequent recalibration. As depicted in Fig.  3, 
the distance from the camera to the desktop is recorded 
at 360 mm, suggesting the need for corresponding adjust-
ments to the focal length.

Image illumination is controlled by adjusting the expo-
sure time while maintaining a constant aperture setting. 
For the given lighting conditions, the exposure time is 
established at 55 milliseconds. In Fig.  4a, an overexpo-
sure effect is evident, a common occurrence when the light 
source is positioned directly in front of the camera, as 
noted by Co et al. (2022). Figure  4b showcases an image 
with optimal exposure, whereas Fig. 4c illustrates the cali-
bration process for the micro-lens array. Images obtained 
using the calibrated camera setup are presented in Fig.  5a.

The metric Calibration is performed using the RxLive 5.0 
software calibration wizard. A 22 mm calibration target is 
utilized, and a total of 44 images are captured with varying 
positions, inclinations, and rotations. Figure 6a depicts the 
calibration interface, while Fig. 6b illustrates the 3D acquisi-
tion process.

Kinect: 3D sensor acquisition. The acquisition of 
data from this sensor is performed using the MATLAB 

Fig. 1   a Mechanical assembly 
of plenoptic camera, multi-
spectral camera, and thermal 
camera. b Mechanical assembly 
of Kinect V2, multi-spectral 
camera, and thermal camera

Fig. 2   Plenoptic camera. a 3D 
light field camera [9]. b Projec-
tive model of Plenoptic camera 
based on the micro-lenses array 
[40]
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programming tool. It is important to ensure that the Kinect 
SDK and Runtime drivers are installed.

Parrot Sequoia: Multi-spectral camera acquisition. 
The configuration of this sensor is carried out using the 
service provided by the camera via a WiFi connection.

Fluke ti400: Thermal image acquisition. The data cap-
tured by this camera is stored on a USB memory device, 
which is then read and processed using the SmartView 
software tool.

Methodology

The use of 2D and 3D cameras proposes a multisensory 
data approach. Thereby, this research work develops a 
strategy based on pattern recognition and statistical opti-
mization to model projective transformation through a 
complex object recognition application.

Fig. 3   Camera Ratrix R42 with 
filter calibration disk and light 
source [40]

Fig. 4   a Conditions of over-
exposure. b Good lighting 
conditions. c Micro Lens Array 
calibration [40]

Fig. 5   a Light field image 
captured with a R42 Raytrix 
plenoptic camera, at a focal 
length of 360 mm. b Calibrated 
Light field image captured with 
a R42 Raytrix plenoptic camera, 
at a focal length of 360 mm
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Complex Object Detection Approach

The methodology is elaborated in four stages, as depicted in 
Fig.  7. The first stage involves image acquisition with cali-
brated cameras, followed by feature detection using descrip-
tor vectors in the second stage. The third stage encompasses 
the matching of these features based on probabilistic optimi-
zation. Finally, the fourth stage involves estimating the spa-
tial transformation model and implementing homographic 
projection to validate the methodology.

Figure 8 shows the experiment structure. It consists of 
having the interest object on the right, a complex image in 
shape and color distribution, on the left, the scene desired 
to detect this object.

Feature Detection

To accurately characterize the scene, prominent and distinc-
tive areas of the image must be detected. The robustness of 

the object detector application relies on the descriptor used. 
Features should be invariant to illumination, 3D projective 
transforms, and common object variations. In this research, 
the Scale Invariant Feature Transform (SIFT) approach is 
employed.

SIFT transforms an image into an extensive collection 
of local feature vectors. The algorithm is inspired by the 
response of neurons in the inferior temporal cortex of pri-
mates to vision [41]. The resulting feature vector comprises 
128 dimensions, with each descriptor assigned a position in 
the image denoted by coordinates (X, Y). A more complex 
image, containing a greater number of details, will yield a 
larger number of descriptors.

Figure 9 illustrates the position (x, y) of each descriptor 
found in the image, marked with an asterisk.

Algorithm 1   Feature matching by force.

Fig. 6   a Metric calibration interface of RxLive 5.0. b 3D acquisition with Plenoptic Camera in RxLive 5.0 Software

Fig. 7   Object detection approach. a Image acquisition. b Pattern recognition stage. c Matching–Optimization. d Projective transformation
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Feature Matching

The matching stage establishes the relationship between the 
information generated in two images. This correspondence 
links each feature by calculating the distance metric between 
descriptors. In the scene, there are 7100 features, while the 
interest object image contains 1184 features. Consequently, 
Fig. 10 displays 7100 matches generated.

To optimize the pattern recognition application, it is 
desirable to process the least amount of information pos-
sible. Algorithm 1 presents the feature correspondence by 

brute force, achieved through the security metric distRatio 
to identify the most prominent matches. Figure 11 illus-
trates the result of the brute force matching filter applied 
to Fig. 10, yielding 251 matches.

Transform Model Estimation

The transformation model is a mapping function that 
establishes a relationship between the object of interest in 
the scene and the reference image, which solely features 
the object of interest in the foreground. This mapping is 
accomplished through the homography matrix, calculated 
using the positional information of the descriptors. To 
achieve this, the Random Sample Consensus (RANSAC) 
method is employed as a search strategy. RANSAC is an 
iterative technique used to estimate the parameters of a 
mathematical model from a set of observed data, which 
may include both inliers and outliers. The methodology 
for implementing RANSAC is outlined in Algorithm 2.
Algorithm 2   RANSAC Algorithm

Fig. 8   Topology of the experi-
ment design, on the right the 
object of interest, and on the 
left, a scene containing several 
objects with many similar char-
acteristics

Fig. 9   The composition of 
images, indicating with an 
asterisk marks the position of 
the descriptors generated with 
SIFT algorithm for each image
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This process involves estimating the optimal transfor-
mation statistically, based on a chi-square probability dis-
tribution. The probability that a point is an inlier is set to 
� = 0.95 , and to calculate the homography, �2 = 5.99 [42].

This approach ensures that the number of samples cho-
sen is representative, guaranteeing with a probability p 
that at least one of the random samples of points s is free 
of outliers, meaning the estimated transformation is free 
of outliers with a probability of p = 0.99.

To ensure this, the probability of any selected data 
being an inlier is defined as � , and 1 − � as the probability 
of selecting an outlier. At least N selections of s points are 
required to ensure (1 − �

s)N = 1 − p , resulting in the model 
represented by Eq. 2 with � in Eq. 3.

The consensus process concludes when the modeled prob-
ability exceeds the threshold set by the number of events. 
The spatial transformation is accomplished using the homo-
graphic matrix described in Eqs. 4 to 6. The first equation 
relates to a rotational transformation, the second incorpo-
rates linear transformations along the (x, y) axes, and the 
third represents a complete homography transformation in 
space. The latter transformation, expressed in Eq. 7, is uti-
lized in this work.

(2)N =
log(1 − p)

log(1 − (1 − �s))

(3)� =
1 − number of inlier

Total number of points

Fig. 10   7100 matches between 
referenced image and scene 
image

Fig. 11   251 matches generated 
with the algorithm 1 over 7100 
matches from Fig. 10
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The goal is to find the transformation matrix H, defined as: 
h =

|
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 . The transforma-

tion XT = H ⋅ XR can be expressed as a linear system Ah = 0 
[43–45]. This system is solved using Gaussian elimination 
with a pseudo-inverse method, as shown in Eq. 8. The matrix 
resolution is implemented with matrices A and B , which are 
presented in Eqs. 9 and 10 respectively.
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Image Transformation

In Fig. 12, the reference image is depicted in red, while the 
same object is shown in blue in the scene image. The trans-
formation is performed using the homographic matrix ’h’, 
which is applied to each corner of the complex object.

The output of the complex object recognition stage is the 
homographic matrix [3×3]. This matrix models the projec-
tive transformation of the scenes, aligning two images from 
different cameras to create a single multispectral image. This 
relationship enables the development of a general applica-
tion of sensory fusion for multispectral images.

(10)
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Fig. 12   Object recognition 
with occlusion under controlled 
conditions
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Multi‑Sensory Image Making Up

Each of the cameras integrated into this research produces 
2D information. The first step towards achieving sensory 
fusion is to utilize this 2D information for pattern recogni-
tion. Subsequently, the resulting homography matrices are 
used to relate the 2D information to the referenced 3D sen-
sor. The research revolves around the acquisition process 
depicted in Fig. 13.

In Fig. 14, the images acquired by each sensor for the 
same scene are depicted: the plenoptic, multispectral, and 

thermal cameras, respectively. It is evident that each cam-
era has a different resolution and covers a distinct area of 
the crop. Furthermore, the topology of each image var-
ies, even though they were captured simultaneously from 
the same scene. Specifically, the thermal image appears 
smaller relative to the other two.

The challenge lies in developing an algorithm capable 
of generating a single composite image by transforming 
each available channel. These channels consist of (i) RGB 
- three channels from the 3D sensor, (ii) Near IR - one 
channel from the infrared image, and (iii) Medium IR - one 
channel from the thermal image.

The objective is to align the multispectral information 
captured by each camera with the reference frame of the 
3D sensor. This involves two steps: (i) establishing the 
relationship between the plenoptic and multispectral NIR 
camera, and (ii) determining the relationship between the 
plenoptic and multispectral MIR camera.

Matching between Plenoptica camera and NIR camera
Figure 15a illustrates the homographic relationship 

between the plenoptic camera and the multispectral NIR 
camera. The region of the image captured with the ple-
noptic camera is highlighted in red, while the region cap-
tured with the multispectral camera is indicated in cyan. 
The homographic transformation obtained using Eq. 8 is 
depicted in blue.

Fig. 13   Plant image acquisition, in filed conditions, whit plenoptic, 
multispectral and thermal cameras configuration

Fig. 14   a Plenoptic image with 
raytrix R42 camera. Resolu-
tion = [960×1381]. b Infrared 
IR image with parrot sequoia 
camera. Resolution = [960×
1280]. c Thermal IR image with 
t400 fluke camera. Resolution = 
[240×320]

Fig. 15   a Homographic projection between the plenoptic camera and 
the NIR multispectral camera. b Homographic transformation of the 
NIR multispectral image. c RGN Image. Composed of the RG chan-

nels of the plenoptic image and the NIR channel of the multispectral 
camera. Resolution = [960×1381]
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Figure 15b depicts the transformation of the entire NIR 
multispectral image. The blue box represents the overlap-
ping region of the multispectral camera with the frame of 
the plenoptic image, providing a new channel that can be 
related to the three-dimensional information. In Fig. 15c, 
an image composed of the RG channels of the plenoptic 
camera and the NIR multispectral channel is presented.

Matching between Plenoptic camera and thermal 
camera

Figure  16a illustrates the homographic relationship 
between the plenoptic camera and the thermal multispec-
tral camera MIR. The region of the image captured with 
the plenoptic camera is highlighted in red, while the region 
captured with the thermal multispectral camera is indicated 
in cyan. The homographic transformation obtained using 
Eq. 8 in the thermal image is depicted in blue.

Figure 16b illustrates the transformation of the complete 
thermal multispectral image. In contrast to Fig. 15b, the 

entire image is utilized in this case, and there is no need to 
crop a fraction.

In Fig. 16c, an image is composed using the RG channels 
of the plenoptic camera and the thermal MIR multispectral 
channel.

Figure 17a presents an image composition consisting of 
the R channel of the plenoptic camera, the IR channel of the 
NIR multispectral camera, and the IR channel of the MIR 
thermal multispectral camera. Finally, Fig. 17b displays the 
five channels available for generating different image com-
positions and calculating the vegetative index.

Figure 18 displays the homographic matrices that estab-
lish the correspondence between common features in each 
scene, such as the position of the known pattern. This infor-
mation facilitates the integration of images into a single 
frame, even when they are captured by different cameras. 
In this application, the target frame is the one associated 
with three-dimensional information, which in this research 
is linked to the plenoptic camera or Kinect sensor.

Fig. 16   a Homographic projection between the plenoptic camera and 
the thermal multispectral camera MIR. b Homographic transforma-
tion of the thermal multispectral MIR image. c RGN2 image. Com-

posed of the RG channels of the plenoptic image and the MIR chan-
nel of the thermal multispectral camera. Resolution = [716×915]

Fig. 17   a Five channels in the same frame, RGB from the plenoptic 
camera, NIR from the multispectral camera, and IR-Thermal from 
the thermal camera. Resolution = [960×1381].b RNN image. Com-

posed of the R channel of the plenoptic image, the IR channel of the 
NIR multispectral camera and the IR channel of the MIR thermal 
mulltiespectral camera. Resolution = [716×915]
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Fig. 18   Homographic relationship through complex pattern visualization changes in shape and color
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Proposed System Model

Figure  19 illustrates the diagram depicting the stages 
involved in implementing the multispectral sensory fusion 
approach. The diagram is structured into three modules: 
(a) The first module involves object recognition with a 
complex pattern within the same scene captured by three 
different sensors. (b) The second module focuses on 

setting up an image with various configurations of chan-
nels from the three introduced cameras, integrating them 
with 3D spatial information. (c) The final module aims to 
validate the model characterized by homographic projec-
tions in a new scene. This validation stage solely considers 
the homographic model with new images, without taking 
into account the complex pattern.

Fig. 19   Sensory Fusion, going from 2D to 3D. (a) Object detection approach (b) 3D integrating (c) Validation
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Results and Discussion

The validation of the proposed methodology involves 
reproducing matching results and integrating information 
from all sensors into the 3D reference frame. This results 
in a three-dimensional model composed of data from three 
cameras, representing a multi-sensory fusion approach 
over multispectral wavelengths.

In Fig. 19a, images captured in the laboratory with dif-
ferent sensors are displayed. These include three channels: 
the visible RGB spectrum (VIS), the multispectral near-
infrared channel (NIR), and the thermal middle-infrared 
channel (MIR).

Figure 20 illustrates the resulting channels within the 3D 
reference frame. Further, the 3D information is depicted in 
Fig. 21a, b, integrating spectral bands from the various cam-
eras: (i) a channel from the visible RGB spectrum of the 3D 
sensor, (ii) the multispectral NIR channel of the infrared 
camera, and (iii) the infrared channel of the thermal camera.

In Fig. 22, the homographic transformation relating the 
infrared image to the RGB image is depicted. The resulting 
image combines common regions, as shown in Fig. 23. This 
clipping represents a new channel available for generating 
an integrated image along with the RGB image.

Finally, Fig. 24 presents an image composed of the RG 
channels of the Kinect sensor (depicted in the red box in 
Fig. 22), along with (a) the NIR channel of the Parrot sensor 

Fig. 20   Five channels in the 
same frame, RGB from the 3D 
camera, NIR from the multi-
spectral camera, and IR-Ther-
mal from the thermal camera. 
Resolution = [368×490]

Fig. 21   a RGB initial 3D model. Captured with the Kinect v02 sensor. b Resulting 3D model, composed of: (i) the G channel of the 3D sensor, 
(ii) the IR channel of the parrot camera and (iii) the infrared thermal channel of the Fluke thermal camera
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and (b) the MIR channel of the Fluke sensor (shown in the 
blue box in Fig. 23).

The images integrating multispectral information in 
Fig. 20, for instance, such as the one depicted in Fig. 24, 

which combines VIS and NIR-MIR information, are dis-
played in pseudo color in the RGB standard. This coloring 
is necessary because the human visual system cannot per-
ceive these wavelengths. In Fig. 24, we observe the result 

Fig. 22   Homographic projection between the Kinect camera and: (a) the NIR multispectral camera and (b) the NIR thermal multispectral cam-
era

Fig. 23   Homographic trans-
formation of the: (a) NIR mul-
tispectral image and (b) MIR 
multispectral image

Fig. 24   (a) RGN Image with 
Resolution = [757×740]. (b) 
RGT Image with Resolution = 
[368×490]
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of the investigation: an image composed of the green visible 
channel (G) along with two multispectral channels, MIR and 
NIR, referenced in 3D space.

The resulting image size varies based on the common 
regions captured by the cameras in the scene. The sensory 
fusion strategy, employing pattern recognition and statisti-
cal optimization, effectively models the capture of different 
images to generate a single, multisensory integrated image. 
This approach, crucial for plant-related applications, per-
forms object recognition once during calibration and is 
capable of overcoming occlusions. Furthermore, it offers 
the potential to propose new robust descriptors.

The success of the proposed sensory fusion, as depicted 
in Fig. 19, is evident. Initially, the projective model imple-
ments a complex pattern recognition approach, followed by 
validation using multi-camera scene acquisition. The result 
is a point cloud composed of multispectral information ini-
tially in 2D, demonstrating the efficacy of the strategy.

The effectiveness of the proposed sensory fusion, as 
depicted in Fig. 19, is appreciable. It begins with the imple-
mentation of a complex pattern recognition approach in the 
projective model, followed by validation through multi-cam-
era scene acquisition. This results in a point cloud initially 
containing 2D multispectral information, demonstrating the 
strategy’s success.

Conclusions

This paper proposes a novel multi-camera sensory fusion 
technique for complex object detection based on homogra-
phy model transformations. The proposed technique uses 
probabilistic optimization and pattern recognition methods 
that are widely used in pose estimation, odometry, and track-
ing tasks. The technique performs sensory fusion in a multi-
sensory setting, which is a novel contribution.

The technique produces homographic transformations for 
each camera, using images with rich patterns that do not 
require a large-scale dataset. This benefit allows for detailed 
morphological modeling of individual plants or crops, as 
the cameras are close to the target, where comprehensive 
datasets may not be available. The technique performs object 
recognition only once during the initial setup, and then 
applies sensory fusion to unknown scenes. The technique 
generates a 3D representation from initially 2D multispectral 
images, which include near or thermal infrared information. 
However, the technique is sensitive to distance changes, and 
needs re-calibration if altered.

Future work will be oriented towards implementing and 
comparing convolutional neural networks for object recogni-
tion to enhance the sensory fusion performance. This will 
involve integrating homographic transformations, with a 
main challenge being the creation of a large image database.

The resulting model combines 3D information, facilitat-
ing precise morphological plant measurements, and multi-
spectral data, enabling assessment of plant conditions such 
as weather stress or nitrogen deficiency. The sensory fusion 
approach generates valuable information for crop modeling  
applications, with the potential to extract morphological 
variables such as number and size of leaves, stems or plant 
height, in addition multispectral information at the plant 
scale, it is non-invasive that can be installed in agricultural 
production fields.
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