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Abstract
Parallel programming remains a daunting challenge, from struggling to express a parallel algorithm without cluttering the
underlying synchronous logic to describing which tools to employ to ensure a calculation is performed correctly. Over the
years, numerous solutions have arisen, requiring new programming languages, extensions to programming languages, or
adding pragmas. Support for these various tools and extensions is available to varying degrees. In recent years, the C++
standards committee has worked to refine the language features and libraries needed to support parallel programming on a
single computational node. Eventually, all major vendors and compilers will provide robust and performant implementations
of these standards. Until then, the HPX library and runtime provide cutting-edge implementations of the standards and
proposed standards and extensions. Because of these advances, it is now possible to write high performance parallel code
without custom extensions to C++. We provide an overview of modern parallel programming in C++, describing the language
and library features and providing brief examples of how to use them.

Keywords C++ · HPX · AMT · Parallelism

Introduction

Parallel programming is essential to modern software devel-
opment and is supported in recent programming languages
like Julia or Rust. However, in older languages such as C++,
parallel programming features were not originally included
as language or library features.

To address this omission, POSIX threads [1], so-called
pthreads, a C library, was created for the Unix operating
system. The application program interface (API) for pthreads
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was defined by the POSIX.1C thread extension (IEEE Std
1003.1c-1995). Likewise, with the C++ 11 standard [2],std
::thread was added in C++ as a low level interface. At a
higher abstraction layer,std::async andstd::future
for asynchronous programming were added.

In addition, the standard added utilities to make parallel
programming easier (e.g. smart pointers and lambda func-
tions). With the C++ 14 standard [3], these utilities were
further augmented with generic lambda functions and shared
mutexes.

To make parallel programming more accessible and less
error-prone, the C++ 17 standard [4] introduced parallel
algorithms, allowing programmers to execute most of the
algorithms from the C++ 98 standard in parallel (e.g. std
::sort or std::reduce).

Coroutines were added with the C++ 23 standard to sup-
port asynchronousprogramming.Thekeywordsco_return
, co_yield, and co_await added the ability to suspend
and resume functions. Also, in the C++ 23 standard, the
ranges library was added, which can be seen as the gen-
eralization and extension of the algorithm library. Finally,
utilities such as semaphores, latches, andbarrierswere added.
Soon, it is expected that std::async will become dep-
recated to be succeeded by the sender and receiver library
(which has yet to be accepted). Figure1 shows the timeline
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Fig. 1 Timeline of the parallel features added to the C++ standard from
C++ 11 to C++ 20

of parallel features added to the C++ standard from C++ 11
to C++ 20.

The C++ Standard Library for Parallelism and Concur-
rency (HPX) implements all the latest parallel programming
features, both proposed and accepted in the C++ standard. In
addition, HPX provides extensions to the functionality of the
standard, providing mechanisms for distributed parallel pro-
gramming, alternative ways to create asynchrony, and more.

What is HPX? HPX is an asynchronous many-task run-
time system. HPX employs light-weight (user-level) threads
that are cooperatively scheduled on top of operating sys-
tem threads and performs context switches to enable blocked
threads to get back to work.

For more details about HPX, we refer to Section“HPX”.
Because HPX conforms to the C++ standard, any conform-
ing C++ code can be easily converted to HPX by changing
some headers and namespaces. To conclude, while single
node parallelism is included in the C++ standard and no
external libraries or language extensions are needed, HPX
provides a reliable way to stay on the cutting edge of the
standard.

In this paper, we will introduce asynchronous pro-
gramming, parallel algorithms, and coroutines, senders and
receivers (see P2300), and compare the performance between
(standard) C++ using operating system threads and HPX
using light-weight threads. Finally, we will discuss the ben-
efits of each approach.

The paper is structured as follows: Section“Related
Work” gives a brief overview of relatedwork. Section“HPX”
introduces HPX and the features described in this paper. In
Section“Approaches”, four approaches to implementing the
Taylor series of the natural logarithm are provided. Sec-
tion“Comparison” compares the programming paradigms
used in these approaches. Section“performance” compares
the performance of the approaches on Intel, AMD, and A64
FXCPUs. Finally, Section“Conclusion” concludes thework.

RelatedWork

In the past, parallelism in C++was usually achieved by using
OpenMP [5] and Cilk [6] as language extensions. Alter-
natively, Intel Thread Building Blocks (TBB), Microsoft
Parallel Patterns Library (PPL) provided access to paral-
lelism through libraries. More recently, Kokkos [7] has

Table 1 Availability of the approaches studied in other run time sys-
tems. However, HPX alone is studied in this paper. Therefore, HPX is
the basis for the comparison of the features. With ~ we indicated that
the features are only partially supported

Approach Futurization Coroutines Parallel
Algorithms

Sender and
Receivers

HPX � � � �
Charm++ � ~ X X

Chapel � X ~ X

UPC++ � X X X

provided a library interface for parallel and heterogeneous
computing. While all these approaches have different advan-
tages, they also have different interfaces, and none are part of
C++ standard. Conforming to the standard might mean that
future versions of a conforming code compile and run more
reliably, and this is a critical consideration among many in
constructing a new parallel program or adding parallelism to
an existing code.

Another longtimeplayer in the asynchronousmany-thread
library arena is Charm++ [8]. Like HPX, Charm++ also
provides facilities for distributed programming (for which,
at present, the C++ provides no standard). For a compar-
ison of Charm++ and HPX with OpenMP and MPI (a
widely accepted standard for distributed parallel program-
ming) using Task Bench, we refer to [9]. Other notable
AsynchronousManyTaskSystems (AMTs) are: Chapel [10],
X10 [11], and UPC++ [12]. For a more detailed compar-
ison of AMTs, we refer to [13]. Table 1 lists the support
of approaches, namely, futures (SectionFutures and Futur-
ization), coroutines (SectionCoroutines), parallel algorithms
(SectionParallel algorithms), and senders & receivers (Sec-
tionSenders and Receivers) by other asynchronous many-
task runtime systems (AMTs). Charm++ provides futures
but not coroutines. It also provides functionality similar to
senders and receivers. A Chare can be used somewhat like
a scheduler, and a Charm++ callback can provide similar
functionality to then().

Chapel provides futures. Parallel algorithms are partially
supported, e.g. parallel for loops. Coroutines and sender &
receivers are not supported. UPC++ has futures but does not
support the other features.

HPX

HPX [14] is an Asynchronous Many-task Runtime System
(AMT) that exposes an ISO C++ standards conforming API
for shared memory parallel programming, and extensions to
that API library that enable distributed computing. This API
enables asynchronous parallel programming through futures,
senders and receivers, channels, and other synchronization
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primitives. This API also eases the burden on a new pro-
grammer while learning to use HPX. It also makes it much
easier to port code. HPX employs a user-level threading sys-
tem that can fully exploit available parallel resources through
fine-grain parallelism on various contemporary and emerg-
ing high-performance computing architectures. HPX makes
it possible to create scalable parallel applications that expose
excellent parallel efficiency and high resource utilization.
HPX’s asynchronous programming model enables intrin-
sic overlapping of computation and communication, prefers
moving work to data over moving data to work, and does so
while exposing minimal overheads.

In the context of this paper, we focus on assessing the
performance ofHPX’s implementation of futures andparallel
algorithms as mandated by the C++ 17, 20, and 23 standards.

HPX’s Distributed Features

Looking at Figure1, we see the parallel features recently
added to the C++ standard. As of the latest C++ standard,
no standard C++ primitives or features are available for dis-
tributed programming. Also, as far as the authors are aware,
there is currently no discussion in the C++ standard commit-
tee to add distributed features. HPX is a pioneer in adding
features for distribute programming. To do so, HPX pro-
vides the capability to launch remote functions and await
their results with regular futures.

For internode communication, HPX uses a modular layer
which can use either the Message Passing Interface (MPI),
libabric [15], or LCI [16]. Recently, experimental support has
been added for GASNet [17] and OpenSHMEM. However,
this work is focused on the C++ primitives and features in
the C++ standard for parallel programming. For distributed
programming with HPX, we refer to [18]. Octo-Tiger [19],
an astrophysics application for stellar mergers, is one exam-
ple application using HPX’s distributed features. Distributed
runs have been studied on RISC-V single board computers
[20] and supercomputers, e.g. Supercomputer Fugaku [21],
Piz Daint [15], and Summit [22]. Since distributed program-
ming is not in the C++ standard yet, this work focuses on
the shared memory features which are in the current C++ 20
standard. Not that senders and receivers have not yet made it
in the C++ standard, but are actively discussed.

Approaches

To showcase the various approaches to shared memory par-
allelism, we will first implement the Taylor series for the
natural logarithm in parallel. The Maclaurin series for the
natural logarithm ln with the basis e reads as

ln(1 + x)

=
∞∑

n=1

(−1)n+1 x
n

n
= x − x2

2
+ x3

3
− . . . ,with |x | < 1.

(1)

Secondly, we will implement the Mandelbrot set [23],
which is a set of complex values of c ∈ C. The set is deter-
mined by iteratively solving the quadratic map

zn+1 = z2n + c. (2)

From the computer science perspective, the first Mandelbrot
setwas computed and visualized in 1978 [24]. Figure2 shows
a visualization of the Mandelbrot set using the code in the
paper. The compute kernel of the Mandelbrot set is shown
in Listing 1. The compute kernel has as its argument the
complex number c which can be seen as the initial value of
the Mandelbrot set. The Equation (2) is evaluated iteratively
in the for loop for max_iterations. Is the absolute
value of the complex number z is larger than two the pixel
is marked by one which indicates that z is in the complex
set. Is the absolute values is less than two the pixel is marked
by zero which means that z is not in the complex set. All
complex numbers not in the set are colored by black and
all complex numbers in the set are transformed to red green
blue values and colored accordingly. For simplicity, we use
the Portable Bitmap (PBM)1 file format to store the images.

Listing 1 Computer kernel for the Mandelbrot set.

1 size_t compute_pixel(complex c) {
2 std::complex <double > z(0, 0);
3

4 for (size_t i = 0; i <
max_iterations; i++) {

5 z = z * z + c;
6 if (abs(z) > 2.0) {
7 return 1;
8 }
9 }

10 return 0;
11 }

For simplicity, wewill omit themainmethod and all head-
ers from the code examples. However, we will mention the
specific headers in the text, andwe provide the complete code
for all examples on GitHub®. The source for the Mandelbrot
examples are in the appendix of the paper.

1 https://netpbm.sourceforge.net/doc/pbm.html.
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Fig. 2 Mandelbrot set computed with the code using 80 max iter-
ations, c = complex(0, 4)* complex(i, 0)/ complex
(3840, 0)- complex(0, 2) , and a size of 3840× 2160 pixels

Futures and Futurization

The current abstractions for parallel programming in C++
are low-level threads std::thread, std::async, and
std::future. However, in a future C++ standard, it is
expected that some of these facilities will become depre-
cated and will be replaced by sender and receivers. HPX,
however, will continue to support an extended version of
futures which share many of the capabilities of senders and
receivers, including a then() method, a when_all()
method, executors, and so on.

Futures represent a proxy for a result that may not yet be
computed and provide a relatively intuitive way to express
asynchronous computations. The C++ standard allows pro-
grammers to retrieve the value of futures using the .get()
method, but HPX allows programmers to attach a continua-
tion to the future using the then(std::function<T>)
method. This capability, combined with a when_all()
method for waiting for future groups, makes it possible to
write asynchronous subroutines and algorithms that never
block. This is an essential consideration for libraries that
rely on a pool of workers to carry out parallel computations.
Blocking one or more of them might lead not only to slower
code, but also blocked code. Routines that are rewritten in
this way to run in parallel but without calling .get() are
said to be futurized. As of this writing, futurized code is only
possible with HPX, and not with the C++ standard.

Listing 2 shows the implementation of the Taylor series.
The amount of work is divided equally among threads. In
Line 14, a lambda function is launched to act on each chunk
of work asynchronously and an hpx::future<double>
is returned. Note that we do not need to wait for the lambda
function to finish for the for loop to proceed. This happens
because the hpx::future is a placeholder for the result
of the lambda function, freeing us from the need to wait
for it to be computed. In Line 29 a barrier is introduced to
collect the partial results usinghpx::when_all. Here, the

HPX runtime waits until all futures are ready, which means
that the computation in the lambda function has finished.
In Line 30 we specify which lambda function is called. We
use the .get() function to collect all the partial results. If
the result is not ready, HPX would wait here for the result
to be ready. However, when the callback provided to hpx
::when_all is called, all results are ready. In Line 36,
we need to call .get() since hpx::when_all returns a
future for integration in the asynchronous dependency graph.

Listing 7 shows the implementation of the Mandelbrot
set using futures. Again, the code structure is similar and
we iterate over the rows of the image and asynchronously
launch a function to compute the pixel color for a column of
the image.

Coroutines

WithC++ 20 coroutines, functions that can be suspended and
resumed were added. The three following return types
are available for coroutines: co_return which is simi-
lar to return, but the function is suspended; co_yield
returns the expression to the caller and suspends the current
coroutine; andco_awaitwhich suspends the coroutine and
returns the control to the caller.

These new keywords can only be invoked inside rou-
tines that have special return types. The hpx::future
class is one such type. It supports the use of co_return
and co_await (but not co_yield, since co_yield is
designed for generators which return a sequence of values
and futures contain a single value).

When used with hpx::future, co_await is similar
to .get() from the programmer’s perspective. The differ-
ence is that co_await suspends a task rather than blocking.
This means that it can more safely be run inside a group of
worker threads. Note, however, that the HPX implementa-
tion of .get() can already suspend the task, so there is no
semantic difference.

A coroutine version of Listing 2 can be found in Listing 3.
In Line 5 of Listing 3, we define the function run as our
coroutine by having it return an hpx::future. Next, we
copy the code from Listing 2 for the evaluation of the Taylor
series, however, we changed three lines to use the new corou-
tine features. First, in Line 33, we use co_await while we
wait for all futures. Second, in Line 36, we use co_await
to collect the partial results of all futures. Note in Listing 2,
we had to call .get() here to wait for the futures. Third,
in Line 36, we call co_return at the end of our coroutine.
Note that internally HPX will call .get() where we use
co_await, so the code is easier to read but will not run
faster.

Listing 8 shows the implementation of the Mandelbrot
set using futures + coroutines. Again, the code structure is
similar and we iterate over the rows of the image and asyn-
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Listing 2 Parallel implementation of the natural logarithm using hpx::async and hpx::future.

1 double run(size_t n, size_t num_threads , double x) {
2 std::vector <double > parts(n);
3 std::iota(parts.begin(), parts.end(), 1);
4

5 size_t partition_size = n / num_threads;
6

7 std::vector <hpx::future <double >> futures;
8 for (size_t i = 0; i < num_threads; i++) {
9 size_t begin = i * partition_size;

10 size_t end = (i + 1) * partition_size;
11 if (i == num_threads - 1) end = n;
12

13 hpx::future <double > f = hpx:: async(
14 [begin , end , x, &parts ]() -> double {
15 std:: for_each(parts.begin() + begin ,
16 parts.begin() + end , [x]( double& e) {
17 e = std::pow(-1.0, e + 1) * std::pow(x, e) / (e);
18 });
19

20 return hpx:: reduce(parts.begin() + begin ,
21 parts.begin() + end , 0.);
22 });
23

24 futures.push_back(std::move(f));
25 }
26

27 double result = 0;
28

29 hpx:: when_all(futures)
30 .then ([&]( auto&& f) {
31 auto futures = f.get();
32

33 for (size_t i = 0; i < futures.size(); i++)
34 result += futures[i].get();
35 })
36 .get();
37

38 return result;
39 }

chronously launch a function to compute the pixel color for
a column of the image.

Parallel Algorithms

The algorithms within the C++ standard library introduced
with the C++ 98 standard were extended with parallel exe-
cution in the C++ 17 standard. Listing 4 shows the complete
code. In Line 15 we use the algorithm std::for_each to
iterate over each element of the std::vector to evaluate
the value x of the Taylor series. In Line 21 the algorithm std
::reduce is used to compute the sum of all evaluations.
Note that the only difference between the parallel version
and the original C++ 98 standard is the first argument of
both algorithms, the execution policy. The following exe-
cution policies in the header #include <execution>
[25] are currently available:

• std::execution::par: The algorithm is executed
in parallel using multiple operating system threads.

• std::execution::seq: The algorithm is executed
in parallel using one operating system thread.

• std::execution::par_unseq: The algorithm is
executed in parallel using multiple operating system
threads and vectorization for additional optimizations.

Note that this is still an experimental feature and, as of this
writing, only the GNU compiler collection (GCC) ≥ 9 and
Microsoft Visual C++ compiler ≥ 15.7 support this feature.
Intel’sOneAPI compiler usesThreadBuildingBlocks (TBB)
to implement this feature.

The same functionality for execution of parallel algo-
rithms is available within HPX.

Listing 9 shows the implementation of the Mandelbrot set
in Equation (2) using HPX’s parallel algorithms. Here, we
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Listing 3 Example for the computation of the Taylor series for the natural logarithm using HPX’s futures and coroutines.

1 #include <coroutine >
2

3 hpx::future <double > run(size_t n,
4 size_t num_threads ,
5 double x) {
6 std::vector <double > parts(n);
7 std::iota(parts.begin(), parts.end(), 1);
8

9 size_t partition_size = n / num_threads;
10

11 std::vector <hpx::future <double >> futures;
12 for (size_t i = 0; i < num_threads; i++) {
13 size_t begin = i * partition_size;
14 size_t end = (i + 1) * partition_size;
15 if (i == num_threads - 1) end = n;
16

17 hpx::future <double > f = hpx:: async(
18 [begin , end , x, &parts ]() -> double {
19 std:: for_each(parts.begin() + begin ,
20 parts.begin() + end , [x]( double& e) {
21 e = std::pow(-1.0, e + 1) * std::pow(x, e) / (e);
22 });
23

24 return hpx:: reduce(parts.begin() + begin ,
25 parts.begin() + end , 0.);
26 });
27

28 futures.push_back(std::move(f));
29 }
30

31 double result = 0;
32

33 auto futures2 = co_await hpx:: when_all(futures);
34

35 for (size_t i = 0; i < futures2.size(); i++)
36 result += co_await futures2[i];
37

38 co_return result;
39 }

use hpx::experimental::for_loop to iterate over
the range from 0 to pixel_x-1 like with a regular for
loop. However, this kind of parallel for loop is not yet in the
C++ standard.

Additional HPX Features

However, HPX extends the current features available in the
C++ 17 standard, allowing execution policies with chunk
sizes to specify the amount of work each thread is operating
on at once. The following chunk sizes are available:

• hpx::execution::static_chunk_size: The
container elements are divided into pieces of a given size
and then assigned to the threads.

• hpx::execution::auto_chunk_size: Chunk
size is determined after 1% of the total container ele-
ments were executed.

• hpx::execution::dynamic_chunk_size: Dy-
namically scheduled among the threads and if one thread
is done it gets dynamically assigned a new chunk.

For details about the effect of chunk sizes on perfor-
mance, we refer to [26]. A machine learning approach to
determining chunk size is presented here [27, 28]. With
respect to vectorization, HPX provides the execution pol-
icy hpx::execution::simd to execute the algorithm
using vectorization. In addition, HPX provides a com-
bined execution policy hpx::execution::par_simd
to combine parallelism and vectorization. Here, std::
experimental:simd [29], Vc [30], and Eve are possible
backends. Furthermore, HPX’s parallel algorithms can be
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Listing 4 Implementation of the Taylor series of the natural logarithm using C++ parallel algorithms.

1 #include <iostream >
2 #include <future >
3 #include <vector >
4 #include <algorithm >
5 #include <numeric >
6 #include <execution >
7 #include <cmath >
8

9 double run(size_t n, size_t num_threads , double x) {
10 std::vector <double > parts(n);
11 std::iota(parts.begin(), parts.end(), 1);
12

13 std:: for_each(std:: execution ::par ,
14 parts.begin(),
15 parts.end(), [x]( double& e) {
16 e = std::pow(-1.0, e+1) * std::pow(x, e) / e;
17 });
18

19 double result = std:: reduce(std:: execution ::par ,
20 parts.begin(),
21 parts.end(), 0.);
22 return result;
23 }

combined with asynchronous programming. Here, an hpx
::future is returned and can be integrated into HPX’s
asynchronous execution graph.

Listing 5 shows the usage of the chunk size feature. In
Line 4 a static chunk size of ten is defined and passed to
the hpx::for_each in Line 9 by using .with(). In
Line 12 the parallel algorithm hpx::reduce is wrapped
into a future, which can be integrated within HPX’s asyn-
chronous dependency graph.

Senders and Receivers

A new framework for writing parallel codes is currently
being debated by the C++ standards committee: senders and
receivers.One of the goals of this framework is tomake it eas-
ier to execute codes on heterogeneous devices. The various
devices are expressed as schedulers. In principle, these could
be GPUs, different NUMA domains, or arbitrary groups of
cores.

Each step of a calculation is expressed as a sender. Senders
are typically chained together using the pipe operator in anal-
ogy to the bash shell. Values, error conditions (or exceptions),
as well as requests to stop a computation, can be carried
through the pipeline.

By default, building the pipeline does nothing. Execution
begins onlywhenensure_started(),sync_wait(),
or start_detached() is called.

Receivers are usually implicit, hidden in the call to
sync_wait() at the end.

We note that this proposal was not accepted into the C++
23 standard, partly because it was proposed too close to the
deadline. It may also need further development. In our exper-
iments writing short codes to use senders and receivers, we
attempted to write a recursive Fibonacci routine that took a
sender as input and produced a sender as output and did not
itself call sync_wait() to get the result. In order to write
it, we needed to make use of the any_sender<T> class
provided in the HPX implementation but not specified in the
standard yet. Whether additions of this kind turn out to be
necessary, or whether the proposal itself will ultimately be
accepted remains for the committee to decide.

Listing 10 shows the implementation of the Mandelbrot
set in Equation (2) using senders and receivers. The imple-
mentation is very similar. However, we do no need to use
.then in Line 28 of Listing 6.

Comparison of the approaches in shared
memory

In the previous section, the focus was on how to implement
the Taylor series for the natural logarithm, see Equation (1),
using the various approaches.

The fundamental difference in the approaches lies in
where the various codes block and how much overhead they
introduce. For the standard library, calls tofuture.get()
will potentially block. In our parallel future Listing 2 we use
when_all()which defers most of the calls toget() until
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Listing 5 Implementation of the Taylor series of the natural logarithm using parallel algorithms.

1 #include <hpx/execution/executors/static_chunk_size.hpp >
2

3 double run(size_t n, size_t num_threads , double x) {
4 hpx:: execution :: static_chunk_size scs (10);
5 std::vector <double > parts(n);
6 std::iota(parts.begin(), parts.end(), 1);
7 hpx:: for_each(
8 hpx:: execution ::par.with(scs),
9 parts.begin(), parts.end(),

10 [x]( double& e) { e = std::pow(-1.0, e+1) * std::pow(x, e) / e; });
11

12 hpx::future <double > f =
13 hpx:: reduce(hpx:: execution ::par(hpx:: execution ::task),
14 parts.begin(), parts.end(), 0.);
15 return f.get();
16 }
17

18 int main() {
19 int n = 1000;
20 double x = .1;
21 double result = run(n,10,x);
22 std::cout << "Result is: " << result << std::endl;
23 std::cout << "Difference of Taylor and C\texttt {++} result "
24 << result - std:: log1p(x) << " after "
25 << n << " iterations." << std::endl;
26 }

all futures are ready. Thus, only the final call to get() can
block.

For HPX, anything that would normally block will instead
be suspended and switched out, similar to what C++ Corou-
tines would do.

Which leads us to the explicit coroutine code. Perform-
ing the suspend and resume operations are sure to introduce
overheads, but they should not be as large as they seem to
be from our data. This was easily the slowest version of the
code. See Listing 3.

The parallel library approach does not attempt to suspend
or resume, it performs a simple fork-join on evenly divided
threads. This avoids the overheads of suspending and resum-
ing, but potentially causes threads to wait unnecessarily at
the joins. Listing 4 shows this approach.

Finally, senders and receivers, Listing 6 shows the most
recent proposed method of implementing asynchrony in
C++. This represents an effort to provide ways to express
asynchrony while avoiding the overheads of futures and
coroutines. Our data shows that it is fairly successful as, for
most core counts, this was the fastest.

Let us apply this example to the C++ programming
language. Figure3 shows the classification of the C++
approaches concerning task-based and data parallelism. For
parallelism, the C++ standard provides two approaches.
First, the parallel algorithms introduced with the C++
17 standard, see SectionParallel algorithms. And second,

Fig. 3 On the top: The two concepts, namely, task-based and data paral-
lelism. Where task-based parallelism enables arbitrary tasks to overlap,
data parallelism enables parallel computation on arrays. On the bot-
tom, the implementations for task-based and data parallelism inModern
C++: Futures + Async (Futures and Futurization); Parallel Algorithms
(SectionParallel algorithms); Senders and Receivers (SectionSenders
and Receivers); and Coroutines + Async (SectionCoroutines)

Senders and Receivers provides support for parallelism
through its bulk function.

Note that the parallel algorithms are restricted since these
algorithms can only operate on the elements of containers,
e.g. std::vector. Some algorithms like std::sort or
std::find_if are customizable by providing compare
operators like std::greater<double>() or providing
functions or lambda functions.

A more flexible option is to use C++’s support for con-
current programming, namely asynchronous programming
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Listing 6 Implementation of the Taylor series of the natural logarithm using sender and receivers.

1 #include <hpx/execution.hpp >
2

3 using namespace hpx:: execution :: experimental;
4

5 template <typename T> concept sender = is_sender_v <T>;
6

7 namespace tt = hpx:: this_thread :: experimental;
8

9 double run(size_t n, size_t num_threads , double x) {
10 thread_pool_scheduler sch{};
11

12 size_t partition_size = n/num_threads;
13 std::vector <double > partial_results(partition_size);
14

15 sender auto s = schedule(sch) |
16 bulk(num_threads , [&]( auto i) {
17 size_t begin = i * partition_size;
18 size_t end = (i + 1) * partition_size;
19 if (i == num_threads - 1) end = n;
20 double partial_sum = 0;
21 for(int i=begin; i <= end; i++) {
22 double e = i+1;
23 double term = std::pow(-1.0, e+1) * std::pow(x, e) / e;
24 partial_sum += term;
25 }
26 partial_results[i] = partial_sum;
27 }) |
28 then ([&]() {
29 double sum = 0;
30 for(int i=0;i<partition_size;i++)
31 sum += partial_results[i];
32 return sum;
33 });
34 auto [result] = *tt:: sync_wait(std::move(s));
35 return result;
36 }
37

38 int main() {
39 double x = .1;
40 double r = run (10000 ,10 ,x);
41 double a = log(1+x);
42 std::cout << "r=" << r << " " « a« " => " « fabs(r-a) « std::endl;

using futures (and the majority of Senders and Receivers
functionality). The interface std::async and std::
future and their counterparts hpx::async and hpx
::future provide higher-level alternatives to low-level
programming using std::threads and hpx::thread,
respectively.

Furthermore, HPX allows the programmer to combine
parallel algorithms and asynchronous programming by asyn-
chronously launching the algorithms that return a future. The
API for std::async and std::futurewas introduced
with the C++ 11 standard, but might be deprecated soon and
be replaced with its successor senders and receivers. The cur-
rent outline is to accept senders and receivers for the C++
26 standard. However, HPX implements the latest proposal.
See SectionSenders and Receivers.

Coroutines were added with the C++ 20 standard and also
support concurrent programming, see SectionCoroutines.
The co_return, co_yield, and co_await features
were added to suspend and resume coroutines. Note that
coroutines themselves do not provide parallelism per se and
can be used to create a generator on a single core. Senders
and receivers, curiously, provide features for task-based and
data parallelism.

Figure 3 applies to HPX, since it implements all the
above features of task-based and data parallelism in the stan-
dard. For a comparison of task-based and data parallelism
in Chapel, Charm++, C++, HPX, Go, Julia, Python, Rust,
Swift, and Java for a 1D heat equation solver, we refer to
[31].

SN Computer Science



  459 Page 10 of 17 SN Computer Science            (2024) 5:459 

Table 2 Summary of CPU architectures, compilers, and dependencies used for the performance measurements in Fig. 4

CPU CPUs gcc hpx boost hwloc jemalloc/tcmalloc

Intel Xeon Gold 6140 2 9.2/12.2 1.8.1/1.9.1 1.78/ 1.82 2.2.0/ 2.9.1 5.2.0/ 2.1

AMD EPYC 7543 2 9.2/12.2 1.8.1/ 1.9.1 1.78/ 1.82 2.2.0/ 2.9.1 5.2.0/ 2.1

A64FX 1 12.1/ 12.2 1.8.1/1.9.1 1.78/ 1.82 2.2.0/2.9.1 5.2.0/ 2.1

Fig. 4 The median out of ten
runs with variations for various
approaches for the Taylor series.
Futurization using
std::future and
hpx::future(a) and HPX’s
parallel algorithm using
hpx::for_each(b). On
Arm64FX coroutines and sender
& receiver were tested (c). To
create an artificially work load,
we computed the Taylor series
in Equation (1) for
n = 1000000000 and measured
100000028581 floating point
operations using perf on a
single Intel Core. Details on
compilers and software versions
are listed in Table 2

Performance Comparison

For performance measurements on different CPUs, we com-
piled all examples using gcc 12.1.0 for Arm, using gcc 9.2.0
forAMDand Intel. HPX1.8.1was compiledwith the follow-
ing dependencies: boost 1.78.0, hwloc 2.2.0, and jemalloc
5.2.0. We used different compilers on AMD and Intel, since
these were the default compilers on the compute nodes. From
our experience, the compiler version does not affect HPX’s
performance much. For the Mandelbrot set, we used the gcc
12.2.0 compiler on Arm A64FX. We installed the compiler
gcc 12.2.0 on the AMD and Intel nodes using Spack [32]. On
the Arm node the compiler was available as a Module file.
We had to use HPX 1.9.1 to accommodate the support of
a newer gcc versions. We used the following dependencies:
boost 1.82.0, hwloc 2.9.1, and tcmalloc 2.1. Table 2 sum-

marizes the versions of dependencies and CPU architectures
used for the performancemeasurements in Fig. 4. For all core
counts, the code was executed ten times and the median out
of these runs is plotted. The error bars show the variances
within these ten runs. For some approaches, we observe high
variance for HPX on larger core counts.

Taylor Series

Figure 4 shows the performance obtained for all four of the
programming mechanisms presented in this paper for the
Taylor series: for ARM A64FX, AMD EPYC™ 7543, and
Intel® Xeon® Gold 6140, respectively. To create an artificial
work load, we computed the Taylor series in Equation (1) for
n = 1000000000. We used perf on the Intel CPU to obtain
the floating point operations of 100000028581 on a single
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Fig. 5 Running the parallel algorithms in Fig. 4(b) using HPX’s
dynamic chunk size, see SectionAdditional HPX Features, to have a
linear scaling and some slightly better performance. However, this fea-
ture is not yet in the C++ standard and is solely provided by HPX

core. For futures usingstd::future andhpx::future
(a), we see that on Arm both implementations perform the
same. Similar behavior is obtained for Intel. However, on
AMD hpx::future performs better. Here, the overhead

of using HPX is negligible. For more details on the over-
heads of HPX and Charm++, we refer to [9]. For HPX’s
parallel algorithms using hpx::for_each(b), AMD per-
formed better than Intel and Arm is around one order of
magnitude slower. The results on Arm64FX are shown in(c).
The performance of the two more recent C++ features is one
order of magnitude slower on Arm than on the two other
architectures. Senders and receivers showed the best perfor-
mance on Arm. However, one should not conclude that this
paradigm is inherently faster based on this test. Note that we
experience some high variation on higher node counts. More
investigation is needed for this feature. Formore performance
measurements on Rikken’s Supercomputer Fugaku, we refer
to [33].

Additional HPX Features

Forhpx::for_each, the performance in Fig. 4(b) on Intel
and AMD is not a straight line. Instead, we observe some
rolling hills. In this case, the default chunk size of one was
used. Note that in the C++ standard there is currently no
option to specify the chunk size yet. HPX, however, pro-
vides such an option, see Listing 5 in SectionAdditional
HPX Features. Figure5 shows the usage of the chunk sizes

Fig. 6 The median out of ten
runs with variations for methods
of parallelizing the Mandelbrot
set. Using std::future and
hpx::future (a), futures +
coroutines (b), HPX’s parallel
algorithm using
hpx::for_loop (c), and
senders and receivers (d). To
create an artificial work load, we
computed the Mandelbrot set in
Equation (2) for 20000 × 20000
pixels
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to make the scaling more linear by using a dynamic chunk
hpx::execution::dynamic_chunck_size size of
1e6. Figure5 shows the performance on Intel and AMD. For
both architectures, the scaling behavior looks linear and the
Flop\s are a little bit higher. The additional features provided
by HPX can affect the performance. However, these features
are not yet in the C++ standard.

Mandelbrot Set

Figure 6 shows the performance obtained for all four of
the programming mechanisms presented in this paper for
the Taylor series: for ARM A64FX, AMD EPYC™ 7543,
and Intel® Xeon® Gold 6140, respectively. To create an
artificialwork load,we computed theMandelbrot set inEqua-
tion (2) for 20000× 20000 pixels. Figure6a shows the pixel
updated per seconds (PUPS) using hpx::async and hpx
::future. Figure6b shows the pixels updated per seconds
(PUPS) using futurization + coroutines.Hare,AMDand Intel
are comparable and ARMA64FX is slower. Figure6c shows
the pixels updated per seconds (PUPS) using HPX’s paral-
lel algorithms. Here, we see again the effect on the default
chunk size of the parallel algorithm for Intel andAMD.Here,
using a static or dynamic chunk size which is provided by
HPX, but not yet in the C++ standard, could straighten the
lines, see SectionAdditional HPX Features. The Intel and
AMD results are close for this benchmark. Figure6d shows
the pixels updated per seconds (PUPS) using senders and
receivers. Here, AMD and Intel are comparable and ARM
A64FX is slower. For all approaches, we have seen that Arm
A64FX had the lowest performance. AMD was compara-
ble to Intel. This aligns with the results for the Taylor series
in SectionTaylor Series. However, for this benchmark with
more work in the computations, we observed less variance
in the measurements.

Conclusion

We have shown that Modern C++, through its standard
libraries and language features, provides a complete and
expressive shared memory parallel programming infrastruc-
ture for a single node. Therefore, no external libraries or
language extensions are necessary to write high-quality par-
allel C++ applications. We sketched an example of how to
use futures, coroutines, and parallel algorithms in the current
C++ standard based on a Taylor series code. Furthermore, we
provided an introduction to senders and receivers, a frame-
work that might be available in a future C++ standard. For
most of these programming mechanisms, we showcased the
implementation using the C++ Standard Library using sys-
tem threads and using the C++ Library for Concurrency and
Parallelism (HPX). We did this because HPX provides a

cutting-edge implementation of the parallel library proposals
being considered by the C++ standards committee.

Aperformance comparison on an Intel® CPU,AMDCPU,
and ARM® A64FX demonstrates that the proposed paral-
lel programming mechanisms do achieve portability without
code changes for the Taylor series and the Mandelbrot set.
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Additional Code Listing

The implementation of the Mandelbrot set is shown for
futures in Listing 7, coroutines in Listing 8, parallel algo-
rithms in Listing 9, and senders and receivers in Listing 10,
respectively.
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Listing 7 Parallel implementation of the Mandelbrot set using hpx::async and hpx::future.

1 typedef std::complex <double > complex;
2

3 void launch(size_t i, size_t pixel_x , size_t pixel_y , PBM* pbm) {
4 complex c =
5 complex(0, 4) * complex(i, 0) / complex(pixel_x , 0) - complex(0, 2);
6

7 for (size_t j = 0; j < pixel_y; j++) {
8 int value = compute_pixel(c + 4.0 * j / pixel_y - 2.0);
9 std::tuple <size_t , size_t , size_t > color = get_rgb(value);

10 pbm ->row(i)[j] =
11 make_color(std::get <0>(color), std::get <1>(color), std::get <2>(color

));
12 }
13 }
14

15 int pixel_x = std::stoi(argv [1]);
16 int pixel_y = std::stoi(argv [2]);
17

18 PBM pbm(pixel_x , pixel_y);
19

20 auto start = std:: chrono :: high_resolution_clock ::now();
21

22 std::vector <hpx::future <void >> futures;
23

24 for (size_t i = 0; i < pixel_x; i++) {
25 futures.push_back(std::move(hpx:: async(launch , i, pixel_x , pixel_y , &pbm

)));
26 }
27

28 hpx:: when_all(futures).get();
29

30 auto end = std:: chrono :: high_resolution_clock ::now();
31 std:: chrono::duration <double > diff = end - start;
32 std::cout << pixel_x * pixel_y << "," << diff.count() << std::endl;
33

34 pbm.save("image_future.pbm");
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Listing 8 Parallel implementation of the Mandelbrot set using futures + coroutines.

1 #include <coroutine >
2

3 typedef std::complex <double > complex;
4

5 hpx::future <void > run(size_t pixel_x , size_t pixel_y , PBM* pbm) {
6 std::vector <hpx::future <void >> futures;
7

8 for (size_t i = 0; i < pixel_x; i++) {
9 futures.push_back(std::move(hpx:: async([i, pixel_x , pixel_y , &pbm]() {

10 complex c =
11 complex(0, 4) * complex(i, 0) / complex(pixel_x , 0) - complex(0, 2);
12

13 for (size_t j = 0; j < pixel_y; j++) {
14 int value = compute_pixel(c + 4.0 * j / pixel_y - 2.0);
15 std::tuple <size_t , size_t , size_t > color = get_rgb(value);
16 pbm ->row(i)[j] = make_color(std::get <0>(color), std::get <1>(color),
17 std::get <2>(color));
18 }
19 })));
20 }
21

22 auto futures2 = co_await hpx:: when_all(futures);
23

24 co_return;
25 }
26

27

28 int pixel_x = std::stoi(argv [1]);
29 int pixel_y = std::stoi(argv [2]);
30

31 PBM pbm(pixel_x , pixel_y);
32

33 auto start = std:: chrono :: high_resolution_clock ::now();
34

35 run(pixel_x , pixel_y , &pbm).get();
36

37 auto end = std:: chrono:: high_resolution_clock ::now();
38 std:: chrono::duration <double > diff = end - start;
39 std::cout << pixel_x * pixel_y << "," << diff.count() << std::endl;
40

41 pbm.save("image_future_coroutine.pbm");
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Listing 9 Parallel implementation of the Mandelbrot set using HPX’s parallel algorithms.

1 #include <hpx/parallel/algorithm.hpp >
2

3 typedef std::complex <double > complex;
4

5

6 int pixel_x = std::stoi(argv [1]);
7 int pixel_y = std::stoi(argv [2]);
8

9 PBM pbm(pixel_x , pixel_y);
10

11 auto start = std:: chrono :: high_resolution_clock ::now();
12

13 hpx:: experimental :: for_loop(
14 hpx:: execution ::par , 0, pixel_x , [pixel_x , pixel_y , &pbm]( size_t i) {
15 complex c =
16 complex(0, 4) * complex(i, 0) / complex(pixel_x , 0) - complex(0,

2);
17

18 for (size_t j = 0; j < pixel_y; j++) {
19 int value = compute_pixel(c + 4.0 * j / pixel_y - 2.0);
20 std::tuple <size_t , size_t , size_t > color = get_rgb(value);
21 pbm.row(i)[j] = make_color(std::get <0>(color), std::get <1>(color),
22 std::get <2>(color));
23 }
24 });
25

26 auto end = std:: chrono :: high_resolution_clock ::now();
27 std:: chrono::duration <double > diff = end - start;
28 std::cout << pixel_x * pixel_y << "," << diff.count() << std::endl;
29

30 pbm.save("image_par.pbm");
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Listing 10 Parallel implementation of the Mandelbrot set using senders and receivers.

1 #include <hpx/execution/algorithms/sync_wait.hpp >
2 #include <hpx/execution_base/sender.hpp >
3

4 using namespace hpx:: execution :: experimental;
5 typedef std::complex <double > complex;
6

7 template <typename T>
8 concept sender = is_sender_v <T>;
9

10 namespace tt = hpx:: this_thread :: experimental;
11

12 void run(size_t pixel_x , size_t pixel_y , PBM* pbm) {
13 thread_pool_scheduler sch{};
14

15 sender auto s =
16 schedule(sch) | bulk(pixel_x , [pixel_x , pixel_y , &pbm](auto i) {
17 complex c =
18 complex(0, 4) * complex(i, 0) / complex(pixel -x, 0) - complex(0,

2);
19

20 for (size_t j = 0; j < pixel_y; j++) {
21 int value = compute_pixel(c + 4.0 * j / pixel_y - 2.0);
22 std::tuple <size_t , size_t , size_t > color = get_rgb(value);
23 pbm ->row(i)[j] = make_color(std::get <0>(color), std::get <1>(color)

,
24 std::get <2>(color));
25 }
26 });
27

28 *tt:: sync_wait(std::move(s));
29 }
30

31 int pixel_x = std::stoi(argv [1]);
32 int pixel_y = std::stoi(argv [2]);
33

34 PBM pbm(pixel_x , pixel_y);
35

36 auto start = std:: chrono :: high_resolution_clock ::now();
37

38 run(pixel_x , pixel_y , &pbm);
39

40 auto end = std:: chrono :: high_resolution_clock ::now();
41 std:: chrono::duration <double > diff = end - start;
42 std::cout << pixel_x * pixel_y << "," << diff.count() << std::endl;
43

44 pbm.save("image_sender_receiver.pbm");
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