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Abstract
Information technology plays an increasingly important role in the provision of essential services. For these systems and 
networks to be reliable and trustworthy, we must defend them from those who would seek to compromise their confidential-
ity, integrity and availability. Security intelligence tells us about the tactics, techniques and procedures used by threat actors 
for these very purposes. In this paper, we introduce a novel method for learning malicious behaviours and then estimating 
how likely it is that a system has been compromised. One of the difficulties encountered when applying machine learning to 
cyber security, is the lack of ground truth on which to train supervised techniques. This is often compounded by the volume, 
variety and velocity of data which is far greater than can be processed using only human analyses. The technique known as 
LeWiS, created and described by the authors, includes data preparation and processing phases that learn and later predict 
the presence of threat actors using a model of their behaviours. The method addresses the problems of scale and veracity, 
by learning indicators of attack via feature extraction from security intelligence that has been obtained through empirical 
methods. This approach shows promising classification performance for detecting learned malicious behaviours, within 
synthesised systems’ event data.

Keywords Cyber security · Machine learning · Threat intelligence · Estimation methods · STIX · TTPs

Introduction

Information security is an enduring challenge and one whose 
importance is underscored simply by reading the popular 
media [3]. The infection of the UK’s National Health Ser-
vice (NHS) by the WannaCry ransomware in 2017 highlights 
the widespread, real-world impact of sophisticated cyber 
attacks. It also suggests lessons we can learn about prepar-
edness and the need for continuous evolution of our response 

efforts [29]. Today’s information systems are complex—they 
combine legacy with emerging technologies, are made-up 
of heterogeneous systems and provide more varied services 
than ever before. In parallel, we can see an upward trend in 
the frequency of cyber attacks as well as a diversification of 
the actors to whom they are attributed [9]. As identified by 
Kumar [16], these factors demonstrate the need for creativ-
ity and novel approaches to how we construct and apply 
defensive measures. Machine learning for advanced threat 
detection is one example of innovation in the field.

There are many ways in which to apply machine learn-
ing to cyber security and a similar range of reasons as to 
why one may wish to do so. Generally, machine learning 
offers ways to supplement, augment and enhance human 
efforts within this field. Given the scale and complexity 
of cyber security, it is simply impractical to scale human 
endeavour to address comprehensively the problems that 
it raises. The volume, variety and velocity of attacks, 
attack techniques and hostile actors exceeds that which 
can be countered using human expertise and skills, alone. 
An important motivation for applying machine learning 
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to cyber security, then, is to build systems that combine 
human expertise with the scalability of machines.

Whilst often portrayed as a single domain, security 
actually contains a far greater number of nested topics 
and important challenges. These are as diverse as soft-
ware reverse engineering, Security Information and Event 
Management (SIEM), generative signature techniques and 
policy-based management—all of which require different 
methods, algorithms and processing techniques [28]. In 
this paper we are concerned with the predictive power of 
machine learning and the use of Cyber Threat Intelligence 
(CTI) as a framework for knowledge representation. The 
literature highlights the increasing importance of CTI [12], 
but research into intelligence-specific learning methods 
remains limited. Techniques such as those described by 
Alghamdi [1] and Amit et al. [2] demonstrate applications 
using host- and network-sourced telemetry. However, they 
also highlight the risks of over-fitting and the failure to 
generalise beyond a small number systems. In-line with 
Shaukat et al. [28], they illustrate the impact that the lack 
of labelled data has on broadening the utility (and appeal) 
of learning schemes within this domain. These are critical 
issues and form the principal motivation for this work.

Herein, we introduce a novel new technique named 
“Learning With the Structured Threat Information 
Expression language” (LeWiS). It is a method for esti-
mating target variables within structured security event 
data, based on supervised machine learning. It trains on 
intelligence material to learn the semantics for indicators 
of attack (IoAs), then a behavioural model is constructed 
and applied to predict whether systems’ event data indi-
cates a compromise and if so, by whom. To represent CTI 
information during training and prediction, the Struc-
tured Threat Information Expression (STIX) language is 
used. STIX is an open-source standard maintained by the 
Organization for the Advancement of Structured Infor-
mation Standards [23]. The LeWiS method is designed 
to address the problems associated with (an absence of) 
labelled data and the tendency to over-fit. Experimentation 
using the MITRE ATT &CK framework [17] (for train-
ing) and synthetic system events as estimation targets, 
indicates LeWiS achieves promising classification perfor-
mance when provided with sufficient information about an 
attacker’s tactics, techniques and procedures (TTPs). The 
LeWiS method is novel because it operates purely on the 
semantics of data modelled using STIX. Using IoAs as 
the supervision data to predict indicators of compromise 
(IoCs) is a new approach, as is the way in which system 
events (telemetry) and the IoAs are mapped into a common 
information space. This means it can be applied between 
different systems and is both learning and classifying in a 
fashion that generalises insofar that STIX can model the 
behaviours of threat actors and the systems they target.

“Related Work” section of this paper discusses related 
work. “Proposed Approach” section describes the LeWiS 
technique in detail and includes some worked-examples 
using real CTI. This section also provides some background 
on STIX, insofar that it is relevant to the main discussion. 
“Results of Experimentation” section provides the results of 
experiments conducted to validate and verify the technique 
during development. The final “Conclusion and Further 
Work” section includes conclusions and a short discussion 
on further work.

Related Work

Specialised research into learning the semantics of hostile 
actor TTPs remains limited. Much of the prior art focuses 
on the application of probabilistic, or more recently “deep 
learning” methods to problems such as anomaly detection, 
network event classification and behavioural analysis. These 
efforts include a very broad range of disciplines—examples 
include two-level Bayesian networks and Markov models for 
use in unbalanced reporting environments [35], clustering 
and classification within Internet protocol (IP) packet analy-
sis [8] and the use of random forests in generalised network 
anomaly detection use-cases [10]. Within the wider litera-
ture we see the various parallels between general machine 
learning challenges [27] and those more specific to cyber 
security [28]. Outside of academic research, techniques 
are being used within commercial products by technology 
providers—such as Darktrace [7], Vectra [30] and Expanse 
[24]. Commercial implementations tend to focus more on 
methods that prioritise data for human analysts, underpinned 
by attempts to find similar and dissimilar behaviours within 
computer networks. More targeted examples consider the 
role of machine learning within specialised sub-domains, 
such as software defined networking [34]. Contemporary 
research also includes an attacker’s perspective on artificial 
intelligence (AI)— such as the potential for its misuse [15] 
and the evasion of defensive measures based upon it Xu 
et al. [32].

The importance of both using and sharing CTI is reflected 
in government thinking. This is evidenced by special pub-
lication 800–150 from the National Institute for Standards 
and Technology, which identifies shared situational aware-
ness, improved security posture, knowledge maturation and 
greater defensive agility as the principal benefits of sharing 
[13]. The UK’s Cyber Security Information Sharing Part-
nership established by the National Cyber Security Centre, 
actively promotes government-industry sharing of threat 
intelligence materials for mutual benefit [21]. Fransen et al. 
[11] discusses the advantaged of using CTI when attempt-
ing to improve our understanding of malicious TTPs in 
enterprise environments. Riesco et al. [25] notes some of 
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the difficulties associated with CTI-sharing communities—
viz. the tendency to consume more than one provides- and 
introduces an innovative sharing mechanism using a smart 
contract-type structure, underpinned by blockchain technol-
ogy. The Authors do not explicitly cover machine learning, 
but the topics on modelling tactics and the need for ontology 
are familiar to this work. Prior art by two of the same authors 
introduces the idea of semantic inference using CTI— mak-
ing explicit reference to the STIX standard, as well as to 
the Web Ontology Language [26]. Authors in Jungsoo et al. 
[14] outline a technique to automatically generate Mal-
ware Attribute Enumeration and Characterisation (MAEC) 
records using STIX-formatted CTI. This idea focuses more 
on automation and parsing within an intelligence ‘workflow’, 
but has clear parallels with the supervised estimation tech-
niques introduced herein.

On the subject of ontology, Blackwell [6] describes an 
original approach to the formulation and expression of secu-
rity incident data. This is paired to a three-level architecture 
for planning and preparing defensive measures. This work is 
especially notable because it predates what are now common 
standards in CTI data management. In Ben-Asher et al. [5] 
the authors introduce semantics as a useful abstraction built 
upon base data elements— such as the direction of flow, 
distribution of protocols, packets per hour and related met-
rics within IP networks. This includes a specific example on 
command and control channels that is especially relevant to 
the detection of malware. Importantly, the authors also intro-
duce the idea of granularity and the resolution with which 
observations are made—showing some accordance with how 
transferable the resulting ontology is. Many works identify 
the problems associated with constructing a meaningful 
abstraction to model the behaviours of cyber actors—Wali 
et al. [31] sets out the problems and proposes a novel boot-
strapping approach, that aims to reduce the burden placed 
on designers and engineers. This technique combines an 
existing ontology with a literal text book, demonstrating an 
approach that seeks to maintain the currency and relevance 
of the knowledge that has been modelled. Interestingly, this 
work is a contemporary of the very early release of STIX 
in 2012–2013.

Most closely related to this paper is Zheng et al. [33], 
within which the authors explicitly make the link between 
STIX and machine learning. Crucially, Zheng et al. [33] 
highlights the constrained nature of how machine learning 
has been applied in the prior art— namely that it uses lim-
ited, very specific data for similarly bounded purposes. The 
authors’ experimentation combined multi-layer perceptron 
networks with gradient boosting decision trees, to address 
different facets of the problem domain. Verification found 
very good classification performance for certain types of 
attack against web services—as high as 96.2% under some 
conditions. Finally, Mittal [19] describes the relevance of 

combining vector and graph-based representations to good 
effect. The authors introduce a structure they call the Vector 
Knowledge Graphs that seeks to blend the expressive qual-
ity of knowledge graphs with the crispness and functional 
nature of vectors.

The LeWiS method introduced in this paper offers an 
alternative to previous approaches. This centres on a new 
semantic model that combines subjects and object-predi-
cates, with a supervised classification scheme to detect and 
attribute known-malicious TTPs. This is discussed in “Pro-
posed Approach” section.

Proposed Approach

Modelling causation within cyber security data is difficult 
for a great many reasons, principal among them is the twin 
problem of data consistency and completeness [20]. LeWiS 
attempts to learn the semantics of how malicious actors 
compromise their targets. This information is articulated 
using STIX intrusion sets and the relationships they have 
to attack-pattern, malware and tool objects. Machine learn-
ing is applied via supervised techniques and trained using 
TTP information provided by ground-truth data. Predictions 
classify the behaviours within system telemetry using the 
pre-trained model—this data is also represented as STIX. 
The method is inherently repeatable and designed with 
automation in mind—similarly, it can be retrained when-
ever new or revised TTP data becomes available. LeWiS 
comprises three internal steps: pre-processing, processing 
and learning, which are combined into a single ‘pipeline’ 
of operations. The purpose of the three steps is to compart-
mentalise the activities taking place within each step. This 
follows the standard software engineering practices related 
to coupling and cohesion, but also adopts a style familiar 
to most machine learning engineers. Specifically, each step 
combines a series of related actions, the aggregated output 
of which is passed to the next step until processing is com-
plete. The three steps are as follows:

• Pre-processing—concerned with data acquisition, nor-
malization, feature extraction and constructing the sub-
ject-(object-predicate) data structure

• Processing—concerned with the constructing the vector 
representations using the subject-(object-predicate) data

• Learning—performs the fitting functions and predictions 
by applying the models to observable event data

The three steps follow standard conventions for machine 
learning ‘pipelines’. The pre-processing and processing steps 
acquire and format the source intelligence data such that 
they can be used for learning. These are required because 
the ‘raw’ STIX objects must be parsed into a format that 
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is suitable as input to the learning algorithms. The LeWiS 
method uses ‘shallow’ learning (rather than deep techniques/
artificial neural networks) and so a numerical representation 
of the TTP data within the intelligence is required. The pre-
processing and processing steps perform the work required 
to construct and populate a feature space in which the shal-
low learning techniques can be applied. These are elements 
discussed in Pre-processing, Processing and Learning sec-
tions. They are also summarised in Fig. 1.

Description of the Dataset

All input data (for training and prediction) are formatted as 
STIX [23]. Formally, this is a “schema that defines a taxon-
omy of cyber threat intelligence” [23] and employs a linked-
data structure whose information architecture describes four 
main entities:

• STIX domain objects (SDOs)1;
• STIX cyber observable objects (SCOs)2;
• STIX relationship objects (SROs)3; and
• STIX meta objects (SMOs).4

The STIX standard includes a data model for each type, 
which extends the common data types also defined in the 

standard. The common data types include binary, boolean, 
dictionary, enumeration, external reference (effectively 
pointers, that may be strings or hash values), floating point 
numbers, hashes, hexadecimal numbers, identifiers (which 
are themselves integers), kill chain phase, list (array-like), 
open vocabulary (string representation of a customisable 
language), string and timestamp. The data model for each 
object type is quite large, so references are added as foot-
notes in the list above. To work with STIX entities, software 
development kits (SDKs) typically model them as objects 
within a program—following standard Object Oriented 
Programming (OOP) conventions. Each object implements 
class structures consistent with the STIX standard, with 
member variables that contain the object’s data stored in 
standard data types. The LeWiS technique, in common with 
other STIX-processing programs, serialises all STIX objects 
using Java Script Object Notation (JSON). Such objects are 
then transferable between programs, systems and networks. 
Actor behaviours (TTPs) are articulated using the intrusion-
set SDO, which in turn has relationships with other domain 
objects modelled using the SRO entity. Each relationship 
has a dedicated SRO whose source, target and type attributes 

Fig. 1  Steps of the LeWiS method—shown as a simple flow diagram

Fig. 2  Summary of intelligence relationships

1 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_ 
nrhq5 e9nyl ke.
2 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_ 
mlbmu dhl16 lr.
3 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_ 
cqhkq vhnlg fh.
4 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_ 
mq8oo 9k9rb2.

https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_nrhq5e9nylke
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_nrhq5e9nylke
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mlbmudhl16lr
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mlbmudhl16lr
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_cqhkqvhnlgfh
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_cqhkqvhnlgfh
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mq8oo9k9rb2
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mq8oo9k9rb2


SN Computer Science           (2024) 5:445  Page 5 of 18   445 

SN Computer Science

describe the required association. This is shown in Fig. 2. 
SROs can be used to link any of the other three STIX enti-
ties together. This paper focuses only on the relationships 
from intrusion sets to attack-pattern, malware and tool types.

SDOs and SROs are used for training and SCOs / SDOs 
for variable estimation. Training was completed using the 
MITRE Enterprise ATT &CK dataset, which was acquired 
from the organization’s official TAXII (Trusted Automated 
Exchange of Intelligence Information) server [17]. It was 
chosen for its rich, real-world (not synthetic) intelligence 
on threat actors’ TTPs. Given the MITRE Corporation’s 
standing within the field, it is considered a trusted source 
of ground-truth. The data used in this paper is a ‘snapshot’ 
whose contents reflect the latest information available at the 
time it was downloaded (May 2021). The ATT &CK data is 
packaged as a single STIX Bundle [22], within which each 
SDO has a unique identifier contained within its id attribute. 
ATT &CK contains 10,990 SROs that model relationships 
between 1594 SDOs. The domain objects are distributed 
thus: 692 attack-patterns, 125 intrusion-sets, 424 malware 
types, 70 tools, 266 course-of-action records, 14 x-mitre-
tactics, 1 x-mitre-matrix, 1 identity; and 1 marking defini-
tion. This is shown in Table 1.

Pre‑processing

Pre-processing is used to transform STIX data into a for-
mat suitable for the Processing functions. This step selects 
only the features that are required by the subsequent process 
step, which are modelled as STIX object types within the 
scheme. The extracted object types are given in Table 1. At 
the time of writing, the pre-processing step does not extract 
the ‘Marking-Definition‘ object type as it contains only 

metadata about the intelligence and is not used by LeWiS.5 
Similarly, whilst the X-MITRE-Tactic and X-MITRE-
Matrix pre-processed and parsed into STIX objects, they 
are not used within subsequent steps (processing or learn-
ing). This is because they are part of MITRE’s internal infor-
mation model rather than part of the STIX base standard. 
The base standard is applied to offer greater generalisation 
and at the time of writing, the additional MITRE objects do 
not extend the LeWiS method in a meaningful way. All data 
follow the same preparation techniques and the approach 
can be applied to any valid STIX-formatted CTI. This allows 
generalisation beyond single (or a small number of) sys-
tems. The source STIX datasets are parsed into a map of 
subject-(object-predicate) (SOP) data structures, the design 
for which is original to LeWiS. The SOP map’s keys are 
the intrusion-set descriptors extracted from the SDOs. Their 
corresponding values are a nested map that contains the rela-
tionship data. This is shown in Fig. 3.

This structure offers a way to efficiently serialize the data 
used to train the supervised learning model. It is advanta-
geous because it is simple yet enforces a formal structure. 
In turn, this ensures TTP data are expressed consistently 
and in a platform-agnostic fashion. The SOP map is stored 
and processed in JavaScript Object Notation (JSON) format:

“target-var”: {“object-predicates”: [{“predicate”: 
string, “object”: “name”: string, “index”: int, “type”: 
string}], “vectors”: {“attack-pattern-vector”: [int], “mal-
ware-vector”: [int], “tool-vector”: [int], “raw-ap-vector”: 
[bool], “raw-m-vector”: [bool], “raw-t-vector”: [bool], 
“raw-sample-vector”: [bool] }, “label-value”: int } 

We can consider a simple example using the “APT29” 
intrusion-set.

Table 1  STIX object type counts

 Type Number

ATT &CK STIX objects
Relationship 10990
Attack-pattern 692
Tool 70
Malware 424
Intrusion-set 125
Course-of-action 266
X-MITRE-tactic 14
X-MITRE-matrix 1
Marking 1
Identity 1

Fig. 3  Example of the SOP map structure

5 This metadata would likely be used to define information handling 
controls for use in an enterprise IT environment. This could include 
privacy markings, data classifications or use of the ‘Traffic Light Pro-
tocol’ method.



 SN Computer Science           (2024) 5:445   445  Page 6 of 18

SN Computer Science

{“predicate”: “uses”, “object”: {“name”: “Malicious 
Link”, “index”: 189}, “type”: “attack-pattern” }

This indicates that this actor “uses” the “Malicious Link” 
attack-pattern and that this pattern can be found at offset 189 
in the set of all attack-patterns included in the STIX bundle. 
For APT29, the training set contains 109 Object-Predicate 
structures like this. These records act as qualifiers for the 
behavioural associations of the target intrusion-set—they are 
extracted during Pre-processing and parsed into this format. 
The Object-Predicates represent the qualities by which we 
can distinguish the classification targets—viz. they define 
the separability criteria that give the entire process meaning. 
Ultimately, this is a ‘template’ for learning features extracted 
from STIX data sets and provides a scaffold for preparing 
and fitting samples for classification. For later reference, the 
Subject (root key of the map) is what the learning algorithms 
are attempting to classify—this is discussed in "Learning" 
section.

Processing

Processing generates vector representations for use in the 
Learning phase. Vectors are required because classifi-
ers expect array-like input with consistent types—neither 
‘native’ STIX nor the SOP structure conform to this. Pro-
cessing has two inputs: SOP data for training and SCO data 
for prediction. Outputs are n-dimension vectors which are 
then passed to the Learning phase. These are stored under 
the vectors key in the SOP map data structure—meaning that 
eventually both the semantic relations and the vectors used 
to train the model are contained within a single data struc-
ture—extending the principles outlined by Mittal [19]. The 
intrusion-set relationship attributes are stored in the Vectors 
key of the SOP data structure. It contains another nested map 
within which are the vector representations of the object-
predicates. LeWiS defines two types of vector: index vec-
tors and raw vectors. The former contains the unique indices 
(integers) of all SDOs with which the target variable has 
an outbound relationship. For example, the APT29 has the 
following relationships with tool SDOs (non-exhaustive):

{“predicate”: “uses”, “object”: {“name”: “AdFind”, 
“index”: 5}, “type”: “tool”},

{“predicate”: “uses”, “object”: {“name”: “Tor”, 
“index”: 39}, “type”: “tool”},

{“predicate”: “uses”, “object”: {“name”: “Mimikatz”, 
“index”: 69}, “type”: “tool”}

For each intrusion-set, index vectors for the associated 
attack-pattern [Eq. (1)], malware [Eq. (2)] and tool [Eq. (3)] 
objects are created. Note that the index vector contents are 
not ordered. As the volume of underlying CTI increases, 
these allow for fast reading of the attack-pattern, malware 
and tool data for a given intrusion-set. For APT29 the com-
plete tool vector is [Eq. (4)].

Note [Eq. (5)] is the set of object-predicates in the SOP map 
for this intrusion-set.

Modelling Relationship Occurrence

The raw vectors are a boolean representation of each intru-
sion set’s relationships, based on a simple “has” or “has not” 
evaluation. The total length of each vector is equal to the car-
dinality of the corresponding set of SDOs within the STIX 
bundle and is initialised with 0 values. Because the ID of 
each SDO is unique, if a target variable has an association 
with an SDO a 1 is stored in the vector at the location defined 
by the index. Therefore, each intrusion-set entry in the SOP 
map contains a Boolean vector named “raw_< xxx >_vec-
tor”, where xxx is the short name for the SDO type. Con-
tinuing the example started above, there are 70 tool SDOs 
in the ATT &CK data and “APT29” has an association with 
10 of them. The apt29raw_t_vector for this intrusion-set has 70 
components of which only 10 take the value 1 (at the indices 
specified in apt29tool−vector)—all other values are 0. The same 
approach is taken to populate the apt29raw_ap_vector (attack-
patterns) and apt29raw_m_vector (malware).

Alpha–Beta Re‑sampling

In reality, threat actors are not characterised by the sum of 
all of their behaviours. Figure 2 shows APT29 is linked to 
the “Steganography” attack-pattern, the “CozyCar” malware 
and the “ipconfig” tool. The ATT &CK data contains 109 
SROs for which the source reference is the ID of the APT29 
intrusion-set. STIX-formatted intelligence does not include 
occurrence information for TTPs (only for observations). 
That is to say, it does not specify how frequently a given 
intrusion-set uses any given attack-pattern, malware or tool. 
If only the entire feature vector for each intrusion-set was 
used to train the supervised model, then the learning algo-
rithm could only make classification decisions when all of 
the attack-pattern, malware and tool relationships were pre-
sented. In plain terms, when all of the target threat actor’s 
TTPs were contained in a single piece of telemetry! To 
address this, LeWiS includes a technique referred to as “ �
-� re-sampling” (designed for LeWiS by the authors), which 

(1)apt29attack−pattern−vector =⟨ap0, ap1, ..., apn⟩

(2)apt29malware−vector =⟨m0,m1, ...,mn⟩

(3)apt29tool−vector =⟨t0, t1, ..., tn⟩

(4)apt29tool−vector =⟨5, 56, 59, 64, 62, 27, 37, 39, 69, 65⟩

(5)|apt29x−vector| = |opx|
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creates additional vectors [Eq. (6)] whose components are 
subsets of the original ‘full’ feature vector [Eq. (7)].

where

• f is the re-sampling function,
• vx is the intrusion-set vector
• x is the class label
• � is the re-sampling rate
• � is the re-sampling mask
• v is the set containing the original vector components

The processing phase summarises all of this information in 
a single array-like structure. It contains the attack-pattern, 
malware and tool vectors [Eq. (8)].

A naïve way to approach re-sampling is to simply create 
sets from the feature vectors, then to calculate the Power Set 
P(vx) in order to create component vectors representing each 
combination of elements. This resolves to Eq. 9, which does 
not scale well if the size of the feature vectors (the value of 
n) becomes very large.

Selecting Values for alpha and beta

In CTI it is practical to assume that the size of the attack-pat-
tern, malware and tool vectors will increase over time. The � 
and � terms are also used to avoid the “curse of dimensional-
ity” [4]. The � value is array-like and contains integers used 
to define the maximum number of samples to be taken from 
each sub-vector [example, Eq. (10)]. The sampling values 
for each sampled vector are user-defined but must be in the 
interval [0, |v|], where v is the feature vector for which the 
sample rate is defined (attack-pattern, malware or tool). Set-
ting a value is a matter of context and for most cases where 
the CTI input data are of a manageable size, each vector can 
be used in its entirety. The � sampling approach is useful 
when the size of these vectors becomes large, or when the 
user wishes to target only a specific subset of attack-patterns, 
malware or tools.

The � value is also array-like and contains three vectors of 
integers [example, Eq. (11)]. It is used to mask values that 

(6)|f (vx, �, �)|

(7)f (vx, 𝛼, 𝛽) ⊂ v ∶ v = {x0, x1, ..., xn}

(8)vx = ⟨⟨ap0, ap1, ..., apn⟩, ⟨m0,m1, ...,mn⟩, ⟨t0, t1, ..., tn⟩⟩

(9)nCk =
n!

r!(n − r)!
=

(
N

k

)

(10)� = ⟨maxap,maxm,maxt⟩

are not of interest to the re-sampler. The three component 
vectors represent the attack-pattern, malware and tool SDOs 
thus allow users to be selective over what is not used during 
re-sampling. This is of particular use to those building mod-
els to learn TTP patterns used against specific systems. For 
instance, to ignore all malware and tool SDOs relating only 
to Microsoft Windows operating systems where the user is 
only concerned with Linux targets.

Learning

LeWiS functions in a de-coupled fashion and does not pre-
scribe any particular learning methods. What LeWiS is 
really providing is a semantic approach to learning actor 
TTPs, using the SOP data structure. This avoids the need 
to develop highly specialized logic that applies only on a 
system-by-system basis. The bulk of the work done by this 
technique is representational—viz. building a domain model 
that is consistent, platform-agnostic and can be used for both 
training and prediction. LeWiS has been tested using sup-
port vector machine (SVM), decision tree classifier (DTC) 
and logistic regression (Logit) algorithms. The normalized 
confusion matrix was used to measure classification perfor-
mance. The results are discussed in “Results of Experimen-
tation” section.

These techniques were chosen because they all support 
large class registries, handle multiple data types and are 
interpretable. We avoid the deep learning methods used by 
Zheng et al. [33] and Wali et al. [31], to preserve transpar-
ency and ‘explainability’ within the Learning phase. Fur-
thermore each represents a different approach to classifica-
tion and offers a high-degree of configuration potential. As 
with other aspects of the technique, the process for choosing 
the ‘best’ classifier is domain-specific and not something 
that can specified without particular uses in mind. All devel-
opment, training, testing and configuration activities were 
completed using the Python “sklearn” (Sci-kit Learn) mod-
ule—these techniques were not implemented from scratch. 
Currently, the approach affords limited options for re-train-
ing and does not include reinforcement techniques. The ATT 
&CK data used to train with LeWiS was imported into the 
local work space—it was not ‘online’ in any sense and so 
the models reflect the “as-was” view of the data, according 
to when it was acquired.

System telemetry is noisy and the detection methods for 
actor TTPs must combine events that happen over time. 
These events are parsed into SCOs containing the cor-
responding instance data (one per event), which are then 
aggregated to populate an Observed Data SDO.

(11)� = ⟨⟨12, 34⟩, ⟨7⟩, ⟨28⟩⟩
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Constraints and Drawbacks

Generally, any attempt to detect threat actors using struc-
tured CTI will introduce limitations and compromises. 
Consequently, there are practical considerations to be made 
when seeking to apply LeWiS at scale. Whilst STIX pro-
vides a useful system- and technology-agnostic language, 
basing LeWiS upon it in the ways described does introduce 
some constraints. These are summarised as follows: 

1. Intelligence-oriented design: LeWiS operates exclu-
sively on CTI rather than other types of cyber security 
data. The use of STIX objects (SDOs, SROs and SCOs) 
was an intentional design decision and whilst this allows 
it to be applied across different systems, this flexibility 
comes at the expense of working with other types of 
security data.

2. Representational completeness: in parallel with it being 
intelligence-oriented, LeWiS can only be applied to CTI 
expressed using STIX and objects that are fully compli-
ant with its conventions. Data that cannot be (or simply 
are not) modelled using the STIX language cannot be 
processed using LeWiS.

3. Learning power: the learning potential of the technique 
is bounded by how successfully SDOs and SROs can be 
used to train a model. Then, it has a further dependency 
on how well system event data can be mapped as SCOs 
that are used as input to the learning process.

4. Specificity: STIX is a standard and is therefore prescrip-
tive. The properties that any SDO, SRO and SCO may 
have are defined in the standard ( [23])—as are the data 
types those properties can take. LeWiS, therefore, can 
only ever be as specific as the standard allows.

5. SCO parsing overheads: to perform estimation, LeWiS 
requires all input data to be parsed in to the Observable 
(SCO-formatted) objects described above. In enterprise 
networks this is not a trivial task and requires an explicit 
mapping to be defined for each data source type. Further 
work is required to identify which sources yield the most 
effective classification performance when modelled as 
SCOs.

6. Operational readiness: LeWiS is probabilistic and so 
estimating the presence of an attacker within a network 
is not a discrete-valued process. Instead it is a way of 
suggesting where specialists (analysts, engineers, etc.) 
should focus their attention based on the presence of 
behaviours that appear consistent with a trained model 
of suspicious activity.

7. Distinguishable events: some legitimate (non-mali-
cious) actions are difficult (or very difficult) to distin-
guish from illegitimate (malicious) actions and LeWiS 
does not introduce any additional measures to improve 
this. Whilst this is by no means a LeWiS-specific prob-

lem, the technique will struggle to be accurate when 
a threat actor’s TTPs are closely related (or are mim-
icking) ‘proper’ administrative practices—examples 
include webshells and potentially unwanted applications 
(PUAs).

8. Inheritance of the STIX language: LeWiS is construct-
ing an intermediate representation (IR) of the under-
lying STIX data—which are themselves an IR of the 
‘raw’ CTI. Equally, LeWiS is not in itself, a language. 
This means LeWiS inherits the constraints of the STIX 
language, which relates to the comments about repre-
sentational completeness (above) and the limits of what 
LeWiS can model. However, this approach further limits 
the technique by offering no way to model the organisa-
tion of a system to which LeWiS is being applied. That 
is to say it operates purely on intelligence, because that 
is how STIX is designed. This constrains the perfor-
mance and ultimate effectiveness of the technique.

The impact of these constraints depends on how one 
might wish to apply the LeWiS method. Generally, the 
overall result is that they add computational overheads 
and complexity to already challenging intelligence pro-
cessing workloads. Similarly, effective use of LeWiS 
requires domain-specific knowledge and a detailed under-
standing of both STIX and the construction of ensembles 
of shallow machine learning techniques. Further consid-
eration of these topics, including potential enhancements 
and mitigations, are discussed in “Conclusion and Further 
Work” section.

Results of Experimentation

Whilst this is an exploratory technique, the approach has 
shown promising results when classifying intrusion-set 
objects. Applying LeWiS to the latest ATT &CK data (ver-
sion 9, at the time of writing) yields 125 unique class labels, 
which includes the null-actor. The ATT &CK training data 
includes intelligence on 124 intrusion sets and 1186 objects 
of types attack-pattern, malware and tool. Sparse matrices 
within SOP structures were common simply because ATT 
&CK contains intelligence on a broad range of TTPs. This 
variety means intrusion-sets or attack-patterns can make 
good discriminators. The SOP generation counts are show 
in Fig. 4.

The component feature vectors and resulting ‘full’ feature 
vector are defined in Table 2. Re-sampled vectors each have 
the same dimensions. When applying LeWiS to the ATT 
&CK data, it generates 3138 SOP structures within the map 
that span all intrusion-set SDOs.

The data within MITRE ATT &CK is different for each 
intrusion set. This is because more information is known 
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about the TTPs of some actors than it is for others. Conse-
quently, this yields different representations when LeWiS 
is applied. For instance, a comparatively large amount is 
known about group APT29 and their activities. LeWiS gen-
erates 152 SOP records, an attack pattern vector of length 
106, a tool vector of length 14 and a Malware vector of 
length 32. We can use the shorthand APT29{SOP:152, 
AP:106, T:14, M:32} to express this. Similarly, the 
ATT &CK data contains a good amount of information 
on Kimsuky—specifically Kimsuky{SOP: 99, AP: 
89, T: 4, M: 6}. For actors about which far less 
TTP information is known, we see a proportional reduc-
tion in the number of SOP objects and the length of their 
vectors. The groups Elderwood and BlackOasis are good 
examples: Elderwood{SOP:18, AP:9, T:0, M:9} 
and BlackOasis{SOP:1, AP:1, T:0, M:0}. A 
full listing of the SOP objects and vector sizes for each actor 

is provided in Table 7, within the Additional Tabular Data 
in “Appendix” section.

Testing was completed using SVM, DTC and Logit learn-
ing algorithms. These were evaluated and the best models 
chosen according to their average classification accuracy. 
Specimen vectors were synthesised to test the classifiers, 
however as these are not created from live telemetry the 
output is considered advisory. Initial exploration suggests 
the SVM, DTC and Logit techniques produce similar perfor-
mance—maximum average accuracy was 59.1%, minimum 
was 43.7% using a common set of synthesized vectors. Rep-
resentative classification performance is provided in Table 8, 
which was calculated and averaged over multiple runs/con-
figurations of the technique.

A logical extension to this research is greater evalua-
tion of how the re-sampling techniques can improve overall 
performance. The technique proved predictably sensitive to 
‘hedging’ its classification decisions where intrusion-sets 
exhibit common features from across the attack-pattern, 
malware and tool objects. This offers some insight into the 
practical separability of actor TTPs using these SDOs, but it 
also suggests further analysis is required to understand these 
sensitivities more fully. The �-� re-sampling technique pro-
vides some mitigation by compensating the ‘reporting bias’ 
within the training data (where the distribution of TTP infor-
mation is unbalanced). Using the ATT &CK data, the depth 

Fig. 4  SOP object counts by intrusion-set

Table 2  Vector definitions  Type Size

Vectors
Attack Pattern 692
Malware 424
Tools 70
Full feature 1186



 SN Computer Science           (2024) 5:445   445  Page 10 of 18

SN Computer Science

of information on attack-pattern and malware SDOs mean 
the classification logic is typically biased towards these 
types. As stated in the  “Introduction” and Related Work 
sections, the abstraction and knowledge representation layers 
built atop STIX are a vital part of the technique’s portability 
and generalisation. Performance across the three algorithms 
varied by small degrees and the general trend confirms that 
actors with more ranging TTP information yield the high-
est classification performance. The training set contained 
a notable imbalance in the number the attack-pattern, mal-
ware and tool SDOs. The first two are far more populous 
than the last, however the combination of attack-pattern and 
malware relationships appears to be more indicative of spe-
cific actors when all three SDOs are present. Where tool 
types were dominant these proved a positive discriminator. 
Interestingly, this suggests the technique might be effective 
in detecting actors involved in ‘living off the land’ attacks. 
Generally, in the case of actors for whom the training data 
was sparse, training performance was far lower than is desir-
able. The performance scores are shown in Fig. 5, which 
graphs the mean accuracy of the classifiers with respect to 
each Intrusion Set. The horizontal lines show confidence 
thresholds weighted by these scores for each classifier. For 
each classifier there are two lines representing the ‘raw’ and 
‘re-sampled’ results. The first range (beginning y = 0 to the 
first line) is effectively zero-to-low confidence, whilst the 
middle range is low-to-medium. The upper range represents 

the highest confidence—i.e., where the classification results 
indicate human analysis / intervention is required. These 
ranges are included for illustrative purposes and to frame 
the classification results in a realistic context—viz. one in 
which decisions need to be made based upon the confidence 
inspired by a classifier’s accuracy.

Peak performance (not averaged) was produced for the 
APT29, Dragonfly 2.0 and BRONZE BUTLER intrusion 
sets—reaching the  89th percentile under optimum condi-
tions. With little-or-no re-sampling the overall classification 
performance was poor—giving a mean of  26.8%. This was 
caused by the sparse data in evidence for certain intrusion 
sets or where there was considerable duplication of TTPs 
between actors. When suppressing sets that gave very poor 
performance and performing basic re-sampling, the mean 
performance rose to 59.1%, with 15 intrusion sets perform-
ing well above this. Performance was markedly worse for 
intrusion sets about which little is known—this is as one 
might expect for these actors the classifiers scored poorly 
because the lack of TTP data meant there was little to dis-
criminate these actors from others. DragonOK and Taidoor 
classification was especially poor—effectively yielding zero. 
This could likely be addressed with weights that compen-
sate for these tendencies but this was not attempted by this 
research. The lack of TTP data also meant �-� re-sampling 
was impractical. The principle difficulty is that when re-sam-
pling is applied on actors for whom a large amounts of TTP 

Fig. 5  SOP Classification Scores
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data was available, the re-sampled vectors may contain the 
same information as the full (raw) feature vector for these 
‘lesser known’ intrusion sets. This is problematic because if 
a mask vector is provided for � when re-sampling vectors for 
the ‘greater known’ sets, it is possible that this may inadvert-
ently remove relationships that are statistically significant 
to the classification decision. In practice, there is no way to 
know this without relying on input from expert users.

Extended Experimentation

The MITRE ATT &CK data are maintained by an open 
source community of active contributors, meaning the CTI 
contained within changes over time. This is helpful when 
assessing techniques such as LeWiS because it is internally 
consistent and allows one to meaningfully evaluate how well 
an approach generalises. Table 6 is similar to Table 1 but 
shows the distribution of STIX objects within ATT &CK data 
obtained in April 2022 [18], rather than April 2021 [17]. By 
way of context, MITRE have adopted a twice-yearly release 
schedule for ATT &CK that features both an April and an 
October release. Between these times additional CTI may be 
added, but MITRE maintain this schedule to provide some 
formality to the overall process. Of greatest note within the 
newer data is the number of SROs: 15,262 in v11 (April 
2022) versus 10,990 in v9 (April 2022). This indicates a 
higher level of “connectedness” (38.9%) despite far more 
modest increases in actual intelligence objects (attack-pat-
terns: 3.9%, intrusion-sets: 9.6%, malware: 19.58%, tools: 
11.4%, courses-of-action: 0.38%). Thus, the v11 data pro-
vides a higher density of relationship modelling than the v9 
data and this is significant, because analysis of experiments 
run with LeWiS on v9 data suggests strong relationship mod-
elling (i.e., between SDOs) improves overall predictive per-
formance. To extend the experimentation described above, 
LeWiS has also been applied to the v11 data and the addi-
tional SROs (and SDOs) that it contains (Fig. 6).

The v11 ATT &CK data yields a different profile of 
LeWiS SOP objects by intrusion-set and this is illustrated 
in Fig. 7. The contrasting measures of aggregated classifica-
tion performance are shown in Figs. 5 and 8. Broadly, the 
results strengthen the hypothesis that a higher resolution of 
relationship data improves classification performance for the 
affected intrusion-sets. The caveat given here is important: 
“certain intrusion-sets”, rather this than simply conferring a 
more widely-observed benefit. Though overall performance 
is improved, average classification is not (in practice) a use-
ful measure because the ability to repeatably classify certain 
actors well (and not others) is surely of more use than a 
technique that provides middling (and therefore indecisive) 
performance across a range. Use of �-� re-sampling again 
improved performance, where re-sampled vectors found 
peak classification performance of 0.896 (SVM), 0.898 
(DTC) and 0.894 (Logit). Interestingly, Fig. 8 illustrates the 
slightly more eccentric performance of LeWiS using the v11 
data—showing stronger separability between classes than in 
the v9 set. The top ten classification performances for each 
classifier are given in Tables 3, 4 and 5. Whilst overall per-
formance was mildly improved (averages by classifier), the 
v11 data shows more distinctly where the technique works 
well and where it does not (Table 6).

This eccentricity serves a useful purpose in that it informs 
the decision: “Using the ATT &CK data, for which intru-
sions sets can I attempt a meaningful detection attempts 
with LeWiS?”. Besides what can be achieved with tuning 
and optimisation (such as �-� re-sampling) this examination 
sheds light on the types of data needed to make effective 
classifications. In turn, this is useful in the context of CTI 
development and forensic readiness planning. Ultimately, 
LeWiS is a parametric modelling technique and its perfor-
mance appears biased towards datasets that have a stronger 
relational component—this is to be expected, given how the 
SOP structures are constructed and then used for classifi-
cation. The telemetry processing techniques (Fig. 6) also 

Fig. 6  Telemetry processing using SCOs and SDOs
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influence how well represented the system under review is, 
in the context of the classification space. Relational data 
within the training/truth set, therefore, has a significant bear-
ing on the technique’s overall effectiveness. An interesting 

extension for LeWiS would be to make more use of “prop-
erty data” in combination with the relational data that has 
been described. Here, property data refer to information 
about specific entities within the SDO space—such as 

Fig. 7  SOP object counts by intrusion-set (v11 data)

Fig. 8  SOP classification scores (v11 data)
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descriptive information for attack-patterns, source code for 
malware and execution paths for tools (for example). Intui-
tively, such information could be modelled as a Label-Prop-
erty Graph and these ideas are discussed as part of “further 
work” in "Conclusion and Further Work" section, below.

Conclusion and Further Work

The overall classification performance is notable for intru-
sion-sets on whom the training corpus contains a suitable 
volume of information. Specifically, it is the relational data 
(modelled as SROs) within the training/truth set that have 
the largest impact on the technique’s effectiveness. Perfor-
mance is improved using the re-sampling process applied 
to the SOP map and so the more varied and voluminous the 
training data are, the more re-sampling can be effectively 
performed to ‘tune’ performance. The utility of this approach 
is also demonstrated through the ability to create specimen 
vectors for prediction against models trained on real CTI 
data sets. This finds broader applications within intrusion 
detection system and firewall testing, or when simulating 
security incidents for the purposes of personnel develop-
ment. The results presented in “Results of Experimentation” 
section and Tables 3, 4 and 5 provide a broad sense of the 
method’s overall classification performance. However, it is 
clear from the results that the volume and specificity of data 
within the underlying CTI is a significant influencing fac-
tor. Where the SOP structures are plentiful and the STIX 
objects well-connected, the performance is promising—with 
the intrusion-sets APT29, Lazarus Group and menu-
Pass yielding strong accuracy and precision. The intrusion-
sets for which there is far less data reduced classification 
performance for the entire MITRE data quite substantially. 
This offers the basis for determining to what degree one 
might trust the results of the LeWiS method, based on the 
intrusion-set it is trying to detect. Similarly, where classi-
fication performance is consistently poor (such as FIN5, 
Gorgon Group and Night Dragon) additional intelli-
gence is required to use the approach meaningfully. In these 
cases one can see how the standard MITRE ATT &CK data 
are insufficient in volume and STIX object connections to 

Table 3  Top 10 classification performance, SVM

 Intrusion-set Accuracy Precision

SVM
APT29 0.896 0.697
Lazarus Group 0.810 0.700
menuPass 0.751 0.622
Chimera 0.740 0.583
Operation Wocao 0.723 0.666
UNC2452 0.713 0.519
MuddyWater 0.703 0.482
Dragonfly 0.697 0.511
APT39 0.687 0.596
Wizard Spider 0.643 0.631

Table 4  Top 10 classification performance, DTC

 Intrusion-set Accuracy Precision

DTC
APT29 0.898 0.714
Lazarus Group 0.808 0.748
menuPass 0.785 0.614
MuddyWater 0.772 0.610
UNC2452 0.719 0.667
Dragonfly 0.704 0.624
Wizard Spider 0.672 0.572
Operation Wocau 0.658 0.589
APT39 0.650 0.601
Chimera 0.646 0.504

Table 5  Top 10 classification performance, logit

 Intrusion-set Accuracy Precision

Logit
APT29 0.894 0.758
menuPass 0.858 0.711
Lazarus Group 0.784 0.590
Chimera 0.783 0.521
Operation Wocao 0.757 0.644
Wizard Spider 0.733 0.557
MuddyWater 0.721 0.489
APT39 0.718 0.526
UNC2452 0.703 0.601
Dragonfly 0.700 0.630

Table 6  STIX object type counts (v11)

 Type Number

ATT &CK STIX objects (v11)
Relationship 15262
Attack-pattern 719
Tool 78
Malware 507
Intrusion-set 137
Course-of-action 267
X-MITRE-data-component 109
X-MITRE-data-source 38
X-MITRE-tactic 14
X-MITRE-matrix 1
Marking 1
Identity 1
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muster genuine human confidence. Conversely, for those 
concerned about the presence of specific threat actors the 
technique does offer a way to target and focus their intel-
ligence gathering operations. For the more ‘mainstream’ 
actors, the technique provides acceptable classification per-
formance and so could be considered reliable. Using only 
the MITRE data, therefore, suggests for performance that is 
’better than guessing’ one should focus on the intrusion-sets 
for which a sufficiently large collection of SOP structures 
can be created.

The multi-class implementations for each of the classi-
fiers tested set the weights for each class to 1.0. This was 
done to avoid introducing skew or bias that was not inferred 
within the training data, but also because predictions were 
made using only specimen vectors. Real-world scenarios 
would introduce greater context given by the type of system 
being monitored and business-level information about the 
threats faced. Operators applying LeWiS to actual systems 
may wish to bias the classification decision depending on 
factors, such as:

• ‘Guilty knowledge’ held by a user that would inform 
proper classification decisions, but cannot be (or is not) 
encoded within the learning methods;

• Trustworthiness or known-accuracy of the intelligence 
on which the LeWiS model was trained;

• To reflect the quality, or some other attribute, of the data 
provided by the system under scrutiny that affects the 
classification results; and

• To use the classification to scale, or become a coefficient 
of, a value external to LeWiS process—such as a calcu-
lated risk score.

Whilst the Boolean vectors bring relatively large dimension-
ality, they are simple-valued and have comparatively low 
storage complexity. A more elegant solution may be pref-
erable in future iterations however, since the vector sizes 
scale linearly with the growth of intelligence material and 
they will likely become unwieldy. Improvements can also 
be made to the re-sampling function by applying masking 
operations (such as exclusive-OR logic) to create the com-
binations required. It is interesting to consider whether addi-
tional semantics might improve overall performance—for 
example, the introduction of second-order logic and condi-
tionals that do not treat all relationships as equal. The ideas 
that underpin the SOP data structure could be extended to 
include statefulness with respect to the actor. This might 
further qualify their presence within a network/system and 
may also give some insight into what further actions they 
might perform. This may be especially useful in real-world 
scenarios, where an actor has already compromised some 
part of a system and those charged with its defence seek to 
understand how the threat could move laterally or gain a 

toehold in other systems. This initial, exploratory version 
of LeWiS is attempting to simply determine the presence of 
an actor—in reality this resolves to a binary classification of 
the system under review being in one of two states: compro-
mised or not-compromised. Further development of LeWiS 
could see it applied in a more differentiated fashion such that 
it can work within the ‘degrees of compromise’ that exist 
in the real world. In so doing, it might offer insights into 
post-compromise defensive techniques to isolate, mitigate 
and manage the effect of hostile actors already operating 
within a network or system. “Extended Experimentation” 
section  introduces how a label-property graph could be 
used to improve overall representation of the systems under 
review. The relationship (SRO) data has proven vital in both 
the v9- and v11-based experiments, but a logical extension 
of the technique would be model the entire CTI data as a 
graph whose vertices are SDOs and edges SROs. Properties 
can then be applied (to both vertices and edges) to further 
instrument LeWiS and increase the technique’s expressive 
power. In many respects, this is a generalisation of the SOP 
model introduced herein, but one in which all relationships 
are mapped between each and every vertex in the graph. This 
may also create opportunities to explore the application of 
graph traversal algorithms to the classification process.

Perhaps the most compelling extension to the LeWiS 
method is generalising it to predict other target variables. 
This would entail training models whose classification 
targets are not only intrusion sets, but broaden to include 
Infrastructure, Malware and Vulnerability SDOS. Infrastruc-
ture estimation is an example of finding new TTPs through 
generalisation of known data. Similarly for Malware SDOs, 
telemetry would be used to estimate the presence of a par-
ticular implant within a system (rather than whom may be 
responsible for it). This may offer opportunities for detection 
outside of more more conventional means (such as intrusion 
detection and endpoint security technologies). Estimating 
Vulnerability SDOs could establish the presence of a spe-
cific vulnerability, or set of vulnerabilities within the moni-
tored infrastructure purely thought intelligence processing.

Finally, STIX does not include a mechanism to state how 
common is any particular relationship between SDOs. This 
could be of real significance in machine learning and be 
used to improve the resolution of the models; avoiding the 
need to train only on binary relationships (i.e. one exists, or 
it does not) and allowing a more comprehensive scheme to 
be defined that uses the degree to which a relationship is pre-
sent. The re-sampling technique described herein provides 
a partial solution to the problem, but greater improvements 
could likely be made by adding ‘strengths’ to the underlying 
data model. This is of course, not a trivial undertaking and it 
is necessary to remember that this additional attribute would 
require greater empirical information that might otherwise 
be used to construct attack sets. Furthermore, one has to 
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assume imperfect knowledge of the TTPs for any threat actor 
and because the ‘strength’ attribute is a function of other 
observable data, it may be difficult to manage bias when 
working in real-world settings.

Appendix: Additional Tabular Data

See Tables 7 and 8.

Table 7  SOP and vector sizes by MITRE ATT &CK group

Group SOP AP T M

APT29 152 106 14 32
WIRTE 14 11 1 2
Axiom 24 16 0 8
Aquatic Panda 17 15 0 2
Threat Group-3390 80 56 12 12
Gamaredon Group 51 47 1 3
APT28 113 87 9 17
Lazarus Group 138 112 4 22
Kimsuky 99 89 4 6
Ke3chang 56 45 8 3
Mustang Panda 48 43 1 4
Magic Hound 49 44 3 2
Confucius 20 19 0 1
LazyScripter 27 20 4 3
BlackTech 20 14 1 5
Indrik Spider 27 19 4 4
Sandworm Team 86 71 4 11
Volatile Cedar 7 5 0 2
TeamTNT 48 44 3 1
FIN7 57 40 4 13
APT38 49 43 2 4
Winnti Group 9 6 0 3
Dragonfly 67 57 8 2
Turla 91 65 13 13
Tonto Team 21 15 4 2
Cobalt Group 40 34 3 3
Transparent Tribe 19 14 0 5
CostaRicto 11 5 3 3
TA505 34 25 1 8
Nomadic Octopus 8 7 0 1
OilRig 79 58 11 10
Night Dragon 21 16 3 2
DarkVishnya 12 10 2 0
FIN5 17 11 4 2
Gorgon Group 21 17 2 2
Patchwork 47 39 2 6
Chimera 65 59 5 1

Table 7  (continued)

Group SOP AP T M

Blue Mockingbird 23 22 1 0
Whitefly 10 9 1 0

APT41 83 59 11 13
FIN6 52 40 4 8
TEMP.Veles 22 19 2 1
PittyTiger 7 2 2 3
Thrip 7 4 2 1
DarkHydrus 10 7 1 2
APT32 92 78 5 9
BRONZE BUTLER 54 40 7 7
Carbanak 13 9 3 1
Cleaver 9 5 2 2
Inception 25 22 1 2
Leafminer 21 17 4 0
Ferocious Kitten 8 6 1 1
IndigoZebra 10 7 0 3
BackdoorDiplomacy 20 15 3 2
FIN8 37 31 4 2
APT37 44 31 0 13
TA551 18 14 0 4
Andariel 14 12 0 2
Leviathan 61 44 7 10
Naikon 29 14 7 8
Wizard Spider 62 46 8 8
menuPass 71 47 12 12
APT-C-36 10 9 1 0
Frankenstein 27 26 1 0
Silence 31 28 3 0
APT33 47 32 9 6
APT19 23 21 1 1
FIN10 12 11 1 0
CopyKittens 11 7 1 3
APT39 63 52 7 4
APT1 40 23 11 6
APT3 51 45 2 4
MuddyWater 65 54 9 2
Darkhotel 25 25 0 0
Fox Kitten 44 40 1 3
ZIRCONIUM 25 25 0 0
Silent Librarian 13 13 0 0
HAFNIUM 24 21 1 2
Windshift 20 19 0 1
Ajax Security Team 8 6 2 0
Sidewinder 30 29 1 0
Higaisa 29 26 1 2
GALLIUM 46 31 11 4
Tropic Trooper 45 39 1 5
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Table 7  (continued)

Group SOP AP T M

UNC2452 63 54 2 7
GOLD SOUTHFIELD 11 9 1 1
Machete 13 12 0 1
Windigo 8 7 0 1
Evilnum 14 11 1 2

Molerats 22 16 0 6
Operation Wocao 66 60 6 0
Stealth Falcon 16 16 0 0
PROMETHIUM 13 11 0 2
APT17 3 2 0 1
APT16 2 1 0 1
APT30 7 2 0 5
Strider 4 3 0 1
Equation 5 5 0 0
Rocke 36 36 0 0
SilverTerrier 8 3 0 5
Sharpshooter 9 8 0 1
Mofang 7 5 1 1
RTM 8 7 0 1
APT12 8 5 1 2
Honeybee 25 21 4 0
Poseidon Group 8 8 0 0
Rancor 12 8 2 2
GCMAN 2 2 0 0
FIN4 12 12 0 0
Elderwood 18 9 0 9
APT18 18 13 1 4
Deep Panda 17 10 3 4
admin@338 19 12 4 3
Stolen Pencil 11 9 2 0
Group5 7 5 0 2
The White Company 9 7 0 2
PLATINUM 15 12 0 3
Scarlet Mimic 5 1 0 4
Gallmaker 6 6 0 0
Dark Caracal 15 12 0 3
Orangeworm 10 2 7 1
TA459 9 5 0 4
BlackOasis 1 1 0 0
Sowbug 11 9 0 2
NEODYMIUM 1 0 0 1
Suckfly 6 5 0 1
Dust Storm 7 3 0 4
Threat Group-1314 6 4 2 0
Lotus Blossom 2 0 0 2
PutterPanda 8 4 0 4
DragonOK 2 0 0 2
Taidoor 1 1 0 0
Moafee 2 1 0 1

Table 8  Summarised classification performance by MITRE ATT 
&CK group

Group SVM DTC Logit

APT29 0.879 0.865 0.858
WIRTE 0.065 0.049 0.036
Axiom 0.037 0.061 0.066
Aquatic Panda 0.045 0.035 0.063
Threat Group-3390 0.447 0.438 0.443
Gamaredon Group 0.529 0.589 0.636
APT28 0.601 0.619 0.610
Lazarus Group 0.796 0.794 0.796
Kimsuky 0.523 0.553 0.551
Ke3chang 0.625 0.662 0.561
Mustang Panda 0.546 0.534 0.582
Magic Hound 0.532 0.501 0.608
Confucius 0.034 0.020 0.038
LazyScripter 0.109 0.029 0.048
BlackTech 0.038 0.082 0.079
Indrik Spider 0.060 0.079 0.087
Sandworm Team 0.458 0.473 0.463
Volatile Cedar 0.026 0.024 0.009
TeamTNT 0.546 0.565 0.588
FIN7 0.610 0.621 0.708
APT38 0.547 0.574 0.608
Winnti Group 0.026 0.029 0.021
Dragonfly 0.751 0.737 0.792
Turla 0.481 0.507 0.491
Tonto Team 0.027 0.077 0.100
Cobalt Group 0.438 0.458 0.419
Transparent Tribe 0.078 0.014 0.072
CostaRicto 0.055 0.058 0.013
TA505 0.071 0.120 0.049
Nomadic Octopus 0.040 0.021 0.034
OilRig 0.426 0.435 0.417
Night Dragon 0.049 0.025 0.103
DarkVishnya 0.032 0.010 0.054
FIN5 0.050 0.083 0.013
Gorgon Group 0.070 0.081 0.109
Patchwork 0.466 0.491 0.473
Chimera 0.693 0.742 0.665
Blue Mockingbird 0.111 0.119 0.090
Whitefly 0.046 0.036 0.014
APT41 0.438 0.461 0.437
FIN6 0.516 0.553 0.600
TEMP.Veles 0.100 0.103 0.037
PittyTiger 0.023 0.030 0.036
Thrip 0.007 0.017 0.036
DarkHydrus 0.019 0.041 0.024
APT32 0.507 0.509 0.486
BRONZE BUTLER 0.566 0.643 0.597
Carbanak 0.055 0.059 0.038
Cleaver 0.024 0.032 0.037
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Table 8  (continued)

Group SVM DTC Logit

Inception 0.130 0.080 0.065
Leafminer 0.054 0.092 0.081
Ferocious Kitten 0.031 0.041 0.016
IndigoZebra 0.038 0.029 0.035
BackdoorDiplomacy 0.069 0.082 0.018
FIN8 0.167 0.054 0.110
APT37 0.457 0.487 0.474
TA551 0.054 0.049 0.058
Andariel 0.047 0.050 0.053
Leviathan 0.602 0.621 0.619
Naikon 0.123 0.028 0.080
Wizard Spider 0.686 0.707 0.616
menuPass 0.796 0.751 0.856
APT-C-36 0.045 0.025 0.021
Frankenstein 0.079 0.048 0.034
Silence 0.079 0.126 0.099
APT33 0.543 0.539 0.537
APT19 0.091 0.018 0.029
FIN10 0.032 0.019 0.044
CopyKittens 0.053 0.030 0.032
APT39 0.629 0.649 0.763
APT1 0.417 0.409 0.451
APT3 0.578 0.601 0.637
MuddyWater 0.645 0.771 0.658
Darkhotel 0.090 0.113 0.120
Fox Kitten 0.519 0.491 0.518
ZIRCONIUM 0.114 0.116 0.109
Silent Librarian 0.014 0.020 0.063
HAFNIUM 0.072 0.118 0.121
Windshift 0.035 0.082 0.083
Ajax Security Team 0.012 0.020 0.013
Sidewinder 0.053 0.068 0.103
Higaisa 0.143 0.065 0.072
GALLIUM 0.512 0.557 0.521
Tropic Trooper 0.503 0.448 0.519
UNC2452 0.681 0.750 0.652
GOLD SOUTHFIELD 0.010 0.035 0.011
Machete 0.013 0.010 0.056
Windigo 0.006 0.023 0.037
Evilnum 0.041 0.015 0.039
Molerats 0.040 0.057 0.079
Operation Wocao 0.713 0.751 0.788
Stealth Falcon 0.038 0.050 0.071
PROMETHIUM 0.036 0.055 0.059
APT17 0.011 0.006 0.005
APT16 0.007 0.004 0.006
APT30 0.035 0.007 0.019
Strider 0.009 0.009 0.021
Equation 0.018 0.023 0.013
Rocke 0.098 0.082 0.063

Table 8  (continued)

Group SVM DTC Logit

SilverTerrier 0.031 0.041 0.019
Sharpshooter 0.026 0.013 0.039
Mofang 0.024 0.036 0.027
RTM 0.035 0.007 0.036
APT12 0.011 0.036 0.010
Honeybee 0.083 0.027 0.039
Poseidon Group 0.030 0.027 0.015
Rancor 0.047 0.037 0.058
GCMAN 0.010 0.010 0.010
FIN4 0.047 0.030 0.052
Elderwood 0.045 0.059 0.082
APT18 0.066 0.063 0.058
Deep Panda 0.069 0.030 0.028
admin@338 0.090 0.027 0.090
Stolen Pencil 0.035 0.045 0.042
Group5 0.032 0.014 0.036
The White Company 0.033 0.008 0.047
PLATINUM 0.040 0.065 0.077
Scarlet Mimic 0.014 0.013 0.011
Gallmaker 0.008 0.014 0.019
Dark Caracal 0.020 0.057 0.023
Orangeworm 0.011 0.013 0.024
TA459 0.034 0.007 0.018
BlackOasis 0.001 0.004 0.002
Sowbug 0.038 0.040 0.033
NEODYMIUM 0.004 0.001 0.002
Suckfly 0.011 0.015 0.007
Dust Storm 0.015 0.017 0.028
Threat Group-1314 0.026 0.006 0.012
Lotus Blossom 0.009 0.006 0.006
Putter Panda 0.035 0.040 0.013
DragonOK 0.010 0.003 0.008
Taidoor 0.004 0.003 0.004
Moafee 0.002 0.004 0.008
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