
Vol.:(0123456789)

SN Computer Science (2024) 5:445
https://doi.org/10.1007/s42979-024-02744-1

SN Computer Science

ORIGINAL RESEARCH

The LeWiS Method: Target Variable Estimation Using Cyber Security
Intelligence

Leigh Chase1 · Alaa Mohasseb1 · Benjamin Aziz1

Received: 15 June 2022 / Accepted: 22 February 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Information technology plays an increasingly important role in the provision of essential services. For these systems and
networks to be reliable and trustworthy, we must defend them from those who would seek to compromise their confidential-
ity, integrity and availability. Security intelligence tells us about the tactics, techniques and procedures used by threat actors
for these very purposes. In this paper, we introduce a novel method for learning malicious behaviours and then estimating
how likely it is that a system has been compromised. One of the difficulties encountered when applying machine learning to
cyber security, is the lack of ground truth on which to train supervised techniques. This is often compounded by the volume,
variety and velocity of data which is far greater than can be processed using only human analyses. The technique known as
LeWiS, created and described by the authors, includes data preparation and processing phases that learn and later predict
the presence of threat actors using a model of their behaviours. The method addresses the problems of scale and veracity,
by learning indicators of attack via feature extraction from security intelligence that has been obtained through empirical
methods. This approach shows promising classification performance for detecting learned malicious behaviours, within
synthesised systems’ event data.

Keywords Cyber security · Machine learning · Threat intelligence · Estimation methods · STIX · TTPs

Introduction

Information security is an enduring challenge and one whose
importance is underscored simply by reading the popular
media [3]. The infection of the UK’s National Health Ser-
vice (NHS) by the WannaCry ransomware in 2017 highlights
the widespread, real-world impact of sophisticated cyber
attacks. It also suggests lessons we can learn about prepar-
edness and the need for continuous evolution of our response

efforts [29]. Today’s information systems are complex—they
combine legacy with emerging technologies, are made-up
of heterogeneous systems and provide more varied services
than ever before. In parallel, we can see an upward trend in
the frequency of cyber attacks as well as a diversification of
the actors to whom they are attributed [9]. As identified by
Kumar [16], these factors demonstrate the need for creativ-
ity and novel approaches to how we construct and apply
defensive measures. Machine learning for advanced threat
detection is one example of innovation in the field.

There are many ways in which to apply machine learn-
ing to cyber security and a similar range of reasons as to
why one may wish to do so. Generally, machine learning
offers ways to supplement, augment and enhance human
efforts within this field. Given the scale and complexity
of cyber security, it is simply impractical to scale human
endeavour to address comprehensively the problems that
it raises. The volume, variety and velocity of attacks,
attack techniques and hostile actors exceeds that which
can be countered using human expertise and skills, alone.
An important motivation for applying machine learning

This article is part of the topical collection “Advances on Web
Information Systems and Technologies” guest edited by Joaquim
Filipe, Francisco José Domínguez Mayo and Massimo Marchiori.

 * Leigh Chase
 up348663@myport.ac.uk

 Alaa Mohasseb
 alaa.mohasseb@port.ac.uk

 Benjamin Aziz
 benjamin.aziz@port.ac.uk

1 School of Computing, University of Portsmouth,
Portsmouth, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02744-1&domain=pdf
http://orcid.org/0000-0002-1066-9125
http://orcid.org/0000-0003-2671-2199
http://orcid.org/0000-0002-9964-4134

 SN Computer Science (2024) 5:445 445 Page 2 of 18

SN Computer Science

to cyber security, then, is to build systems that combine
human expertise with the scalability of machines.

Whilst often portrayed as a single domain, security
actually contains a far greater number of nested topics
and important challenges. These are as diverse as soft-
ware reverse engineering, Security Information and Event
Management (SIEM), generative signature techniques and
policy-based management—all of which require different
methods, algorithms and processing techniques [28]. In
this paper we are concerned with the predictive power of
machine learning and the use of Cyber Threat Intelligence
(CTI) as a framework for knowledge representation. The
literature highlights the increasing importance of CTI [12],
but research into intelligence-specific learning methods
remains limited. Techniques such as those described by
Alghamdi [1] and Amit et al. [2] demonstrate applications
using host- and network-sourced telemetry. However, they
also highlight the risks of over-fitting and the failure to
generalise beyond a small number systems. In-line with
Shaukat et al. [28], they illustrate the impact that the lack
of labelled data has on broadening the utility (and appeal)
of learning schemes within this domain. These are critical
issues and form the principal motivation for this work.

Herein, we introduce a novel new technique named
“Learning With the Structured Threat Information
Expression language” (LeWiS). It is a method for esti-
mating target variables within structured security event
data, based on supervised machine learning. It trains on
intelligence material to learn the semantics for indicators
of attack (IoAs), then a behavioural model is constructed
and applied to predict whether systems’ event data indi-
cates a compromise and if so, by whom. To represent CTI
information during training and prediction, the Struc-
tured Threat Information Expression (STIX) language is
used. STIX is an open-source standard maintained by the
Organization for the Advancement of Structured Infor-
mation Standards [23]. The LeWiS method is designed
to address the problems associated with (an absence of)
labelled data and the tendency to over-fit. Experimentation
using the MITRE ATT &CK framework [17] (for train-
ing) and synthetic system events as estimation targets,
indicates LeWiS achieves promising classification perfor-
mance when provided with sufficient information about an
attacker’s tactics, techniques and procedures (TTPs). The
LeWiS method is novel because it operates purely on the
semantics of data modelled using STIX. Using IoAs as
the supervision data to predict indicators of compromise
(IoCs) is a new approach, as is the way in which system
events (telemetry) and the IoAs are mapped into a common
information space. This means it can be applied between
different systems and is both learning and classifying in a
fashion that generalises insofar that STIX can model the
behaviours of threat actors and the systems they target.

“Related Work” section of this paper discusses related
work. “Proposed Approach” section describes the LeWiS
technique in detail and includes some worked-examples
using real CTI. This section also provides some background
on STIX, insofar that it is relevant to the main discussion.
“Results of Experimentation” section provides the results of
experiments conducted to validate and verify the technique
during development. The final “Conclusion and Further
Work” section includes conclusions and a short discussion
on further work.

Related Work

Specialised research into learning the semantics of hostile
actor TTPs remains limited. Much of the prior art focuses
on the application of probabilistic, or more recently “deep
learning” methods to problems such as anomaly detection,
network event classification and behavioural analysis. These
efforts include a very broad range of disciplines—examples
include two-level Bayesian networks and Markov models for
use in unbalanced reporting environments [35], clustering
and classification within Internet protocol (IP) packet analy-
sis [8] and the use of random forests in generalised network
anomaly detection use-cases [10]. Within the wider litera-
ture we see the various parallels between general machine
learning challenges [27] and those more specific to cyber
security [28]. Outside of academic research, techniques
are being used within commercial products by technology
providers—such as Darktrace [7], Vectra [30] and Expanse
[24]. Commercial implementations tend to focus more on
methods that prioritise data for human analysts, underpinned
by attempts to find similar and dissimilar behaviours within
computer networks. More targeted examples consider the
role of machine learning within specialised sub-domains,
such as software defined networking [34]. Contemporary
research also includes an attacker’s perspective on artificial
intelligence (AI)— such as the potential for its misuse [15]
and the evasion of defensive measures based upon it Xu
et al. [32].

The importance of both using and sharing CTI is reflected
in government thinking. This is evidenced by special pub-
lication 800–150 from the National Institute for Standards
and Technology, which identifies shared situational aware-
ness, improved security posture, knowledge maturation and
greater defensive agility as the principal benefits of sharing
[13]. The UK’s Cyber Security Information Sharing Part-
nership established by the National Cyber Security Centre,
actively promotes government-industry sharing of threat
intelligence materials for mutual benefit [21]. Fransen et al.
[11] discusses the advantaged of using CTI when attempt-
ing to improve our understanding of malicious TTPs in
enterprise environments. Riesco et al. [25] notes some of

SN Computer Science (2024) 5:445 Page 3 of 18 445

SN Computer Science

the difficulties associated with CTI-sharing communities—
viz. the tendency to consume more than one provides- and
introduces an innovative sharing mechanism using a smart
contract-type structure, underpinned by blockchain technol-
ogy. The Authors do not explicitly cover machine learning,
but the topics on modelling tactics and the need for ontology
are familiar to this work. Prior art by two of the same authors
introduces the idea of semantic inference using CTI— mak-
ing explicit reference to the STIX standard, as well as to
the Web Ontology Language [26]. Authors in Jungsoo et al.
[14] outline a technique to automatically generate Mal-
ware Attribute Enumeration and Characterisation (MAEC)
records using STIX-formatted CTI. This idea focuses more
on automation and parsing within an intelligence ‘workflow’,
but has clear parallels with the supervised estimation tech-
niques introduced herein.

On the subject of ontology, Blackwell [6] describes an
original approach to the formulation and expression of secu-
rity incident data. This is paired to a three-level architecture
for planning and preparing defensive measures. This work is
especially notable because it predates what are now common
standards in CTI data management. In Ben-Asher et al. [5]
the authors introduce semantics as a useful abstraction built
upon base data elements— such as the direction of flow,
distribution of protocols, packets per hour and related met-
rics within IP networks. This includes a specific example on
command and control channels that is especially relevant to
the detection of malware. Importantly, the authors also intro-
duce the idea of granularity and the resolution with which
observations are made—showing some accordance with how
transferable the resulting ontology is. Many works identify
the problems associated with constructing a meaningful
abstraction to model the behaviours of cyber actors—Wali
et al. [31] sets out the problems and proposes a novel boot-
strapping approach, that aims to reduce the burden placed
on designers and engineers. This technique combines an
existing ontology with a literal text book, demonstrating an
approach that seeks to maintain the currency and relevance
of the knowledge that has been modelled. Interestingly, this
work is a contemporary of the very early release of STIX
in 2012–2013.

Most closely related to this paper is Zheng et al. [33],
within which the authors explicitly make the link between
STIX and machine learning. Crucially, Zheng et al. [33]
highlights the constrained nature of how machine learning
has been applied in the prior art— namely that it uses lim-
ited, very specific data for similarly bounded purposes. The
authors’ experimentation combined multi-layer perceptron
networks with gradient boosting decision trees, to address
different facets of the problem domain. Verification found
very good classification performance for certain types of
attack against web services—as high as 96.2% under some
conditions. Finally, Mittal [19] describes the relevance of

combining vector and graph-based representations to good
effect. The authors introduce a structure they call the Vector
Knowledge Graphs that seeks to blend the expressive qual-
ity of knowledge graphs with the crispness and functional
nature of vectors.

The LeWiS method introduced in this paper offers an
alternative to previous approaches. This centres on a new
semantic model that combines subjects and object-predi-
cates, with a supervised classification scheme to detect and
attribute known-malicious TTPs. This is discussed in “Pro-
posed Approach” section.

Proposed Approach

Modelling causation within cyber security data is difficult
for a great many reasons, principal among them is the twin
problem of data consistency and completeness [20]. LeWiS
attempts to learn the semantics of how malicious actors
compromise their targets. This information is articulated
using STIX intrusion sets and the relationships they have
to attack-pattern, malware and tool objects. Machine learn-
ing is applied via supervised techniques and trained using
TTP information provided by ground-truth data. Predictions
classify the behaviours within system telemetry using the
pre-trained model—this data is also represented as STIX.
The method is inherently repeatable and designed with
automation in mind—similarly, it can be retrained when-
ever new or revised TTP data becomes available. LeWiS
comprises three internal steps: pre-processing, processing
and learning, which are combined into a single ‘pipeline’
of operations. The purpose of the three steps is to compart-
mentalise the activities taking place within each step. This
follows the standard software engineering practices related
to coupling and cohesion, but also adopts a style familiar
to most machine learning engineers. Specifically, each step
combines a series of related actions, the aggregated output
of which is passed to the next step until processing is com-
plete. The three steps are as follows:

• Pre-processing—concerned with data acquisition, nor-
malization, feature extraction and constructing the sub-
ject-(object-predicate) data structure

• Processing—concerned with the constructing the vector
representations using the subject-(object-predicate) data

• Learning—performs the fitting functions and predictions
by applying the models to observable event data

The three steps follow standard conventions for machine
learning ‘pipelines’. The pre-processing and processing steps
acquire and format the source intelligence data such that
they can be used for learning. These are required because
the ‘raw’ STIX objects must be parsed into a format that

 SN Computer Science (2024) 5:445 445 Page 4 of 18

SN Computer Science

is suitable as input to the learning algorithms. The LeWiS
method uses ‘shallow’ learning (rather than deep techniques/
artificial neural networks) and so a numerical representation
of the TTP data within the intelligence is required. The pre-
processing and processing steps perform the work required
to construct and populate a feature space in which the shal-
low learning techniques can be applied. These are elements
discussed in Pre-processing, Processing and Learning sec-
tions. They are also summarised in Fig. 1.

Description of the Dataset

All input data (for training and prediction) are formatted as
STIX [23]. Formally, this is a “schema that defines a taxon-
omy of cyber threat intelligence” [23] and employs a linked-
data structure whose information architecture describes four
main entities:

• STIX domain objects (SDOs)1;
• STIX cyber observable objects (SCOs)2;
• STIX relationship objects (SROs)3; and
• STIX meta objects (SMOs).4

The STIX standard includes a data model for each type,
which extends the common data types also defined in the

standard. The common data types include binary, boolean,
dictionary, enumeration, external reference (effectively
pointers, that may be strings or hash values), floating point
numbers, hashes, hexadecimal numbers, identifiers (which
are themselves integers), kill chain phase, list (array-like),
open vocabulary (string representation of a customisable
language), string and timestamp. The data model for each
object type is quite large, so references are added as foot-
notes in the list above. To work with STIX entities, software
development kits (SDKs) typically model them as objects
within a program—following standard Object Oriented
Programming (OOP) conventions. Each object implements
class structures consistent with the STIX standard, with
member variables that contain the object’s data stored in
standard data types. The LeWiS technique, in common with
other STIX-processing programs, serialises all STIX objects
using Java Script Object Notation (JSON). Such objects are
then transferable between programs, systems and networks.
Actor behaviours (TTPs) are articulated using the intrusion-
set SDO, which in turn has relationships with other domain
objects modelled using the SRO entity. Each relationship
has a dedicated SRO whose source, target and type attributes

Fig. 1 Steps of the LeWiS method—shown as a simple flow diagram

Fig. 2 Summary of intelligence relationships

1 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_
nrhq5 e9nyl ke.
2 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_
mlbmu dhl16 lr.
3 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_
cqhkq vhnlg fh.
4 https:// docs. oasis- open. org/ cti/ stix/ v2.1/ os/ stix- v2.1- os. html#_
mq8oo 9k9rb2.

https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_nrhq5e9nylke
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_nrhq5e9nylke
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mlbmudhl16lr
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mlbmudhl16lr
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_cqhkqvhnlgfh
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_cqhkqvhnlgfh
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mq8oo9k9rb2
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html#_mq8oo9k9rb2

SN Computer Science (2024) 5:445 Page 5 of 18 445

SN Computer Science

describe the required association. This is shown in Fig. 2.
SROs can be used to link any of the other three STIX enti-
ties together. This paper focuses only on the relationships
from intrusion sets to attack-pattern, malware and tool types.

SDOs and SROs are used for training and SCOs / SDOs
for variable estimation. Training was completed using the
MITRE Enterprise ATT &CK dataset, which was acquired
from the organization’s official TAXII (Trusted Automated
Exchange of Intelligence Information) server [17]. It was
chosen for its rich, real-world (not synthetic) intelligence
on threat actors’ TTPs. Given the MITRE Corporation’s
standing within the field, it is considered a trusted source
of ground-truth. The data used in this paper is a ‘snapshot’
whose contents reflect the latest information available at the
time it was downloaded (May 2021). The ATT &CK data is
packaged as a single STIX Bundle [22], within which each
SDO has a unique identifier contained within its id attribute.
ATT &CK contains 10,990 SROs that model relationships
between 1594 SDOs. The domain objects are distributed
thus: 692 attack-patterns, 125 intrusion-sets, 424 malware
types, 70 tools, 266 course-of-action records, 14 x-mitre-
tactics, 1 x-mitre-matrix, 1 identity; and 1 marking defini-
tion. This is shown in Table 1.

Pre‑processing

Pre-processing is used to transform STIX data into a for-
mat suitable for the Processing functions. This step selects
only the features that are required by the subsequent process
step, which are modelled as STIX object types within the
scheme. The extracted object types are given in Table 1. At
the time of writing, the pre-processing step does not extract
the ‘Marking-Definition‘ object type as it contains only

metadata about the intelligence and is not used by LeWiS.5
Similarly, whilst the X-MITRE-Tactic and X-MITRE-
Matrix pre-processed and parsed into STIX objects, they
are not used within subsequent steps (processing or learn-
ing). This is because they are part of MITRE’s internal infor-
mation model rather than part of the STIX base standard.
The base standard is applied to offer greater generalisation
and at the time of writing, the additional MITRE objects do
not extend the LeWiS method in a meaningful way. All data
follow the same preparation techniques and the approach
can be applied to any valid STIX-formatted CTI. This allows
generalisation beyond single (or a small number of) sys-
tems. The source STIX datasets are parsed into a map of
subject-(object-predicate) (SOP) data structures, the design
for which is original to LeWiS. The SOP map’s keys are
the intrusion-set descriptors extracted from the SDOs. Their
corresponding values are a nested map that contains the rela-
tionship data. This is shown in Fig. 3.

This structure offers a way to efficiently serialize the data
used to train the supervised learning model. It is advanta-
geous because it is simple yet enforces a formal structure.
In turn, this ensures TTP data are expressed consistently
and in a platform-agnostic fashion. The SOP map is stored
and processed in JavaScript Object Notation (JSON) format:

“target-var”: {“object-predicates”: [{“predicate”:
string, “object”: “name”: string, “index”: int, “type”:
string}], “vectors”: {“attack-pattern-vector”: [int], “mal-
ware-vector”: [int], “tool-vector”: [int], “raw-ap-vector”:
[bool], “raw-m-vector”: [bool], “raw-t-vector”: [bool],
“raw-sample-vector”: [bool] }, “label-value”: int }

We can consider a simple example using the “APT29”
intrusion-set.

Table 1 STIX object type counts

 Type Number

ATT &CK STIX objects
Relationship 10990
Attack-pattern 692
Tool 70
Malware 424
Intrusion-set 125
Course-of-action 266
X-MITRE-tactic 14
X-MITRE-matrix 1
Marking 1
Identity 1

Fig. 3 Example of the SOP map structure

5 This metadata would likely be used to define information handling
controls for use in an enterprise IT environment. This could include
privacy markings, data classifications or use of the ‘Traffic Light Pro-
tocol’ method.

 SN Computer Science (2024) 5:445 445 Page 6 of 18

SN Computer Science

{“predicate”: “uses”, “object”: {“name”: “Malicious
Link”, “index”: 189}, “type”: “attack-pattern” }

This indicates that this actor “uses” the “Malicious Link”
attack-pattern and that this pattern can be found at offset 189
in the set of all attack-patterns included in the STIX bundle.
For APT29, the training set contains 109 Object-Predicate
structures like this. These records act as qualifiers for the
behavioural associations of the target intrusion-set—they are
extracted during Pre-processing and parsed into this format.
The Object-Predicates represent the qualities by which we
can distinguish the classification targets—viz. they define
the separability criteria that give the entire process meaning.
Ultimately, this is a ‘template’ for learning features extracted
from STIX data sets and provides a scaffold for preparing
and fitting samples for classification. For later reference, the
Subject (root key of the map) is what the learning algorithms
are attempting to classify—this is discussed in "Learning"
section.

Processing

Processing generates vector representations for use in the
Learning phase. Vectors are required because classifi-
ers expect array-like input with consistent types—neither
‘native’ STIX nor the SOP structure conform to this. Pro-
cessing has two inputs: SOP data for training and SCO data
for prediction. Outputs are n-dimension vectors which are
then passed to the Learning phase. These are stored under
the vectors key in the SOP map data structure—meaning that
eventually both the semantic relations and the vectors used
to train the model are contained within a single data struc-
ture—extending the principles outlined by Mittal [19]. The
intrusion-set relationship attributes are stored in the Vectors
key of the SOP data structure. It contains another nested map
within which are the vector representations of the object-
predicates. LeWiS defines two types of vector: index vec-
tors and raw vectors. The former contains the unique indices
(integers) of all SDOs with which the target variable has
an outbound relationship. For example, the APT29 has the
following relationships with tool SDOs (non-exhaustive):

{“predicate”: “uses”, “object”: {“name”: “AdFind”,
“index”: 5}, “type”: “tool”},

{“predicate”: “uses”, “object”: {“name”: “Tor”,
“index”: 39}, “type”: “tool”},

{“predicate”: “uses”, “object”: {“name”: “Mimikatz”,
“index”: 69}, “type”: “tool”}

For each intrusion-set, index vectors for the associated
attack-pattern [Eq. (1)], malware [Eq. (2)] and tool [Eq. (3)]
objects are created. Note that the index vector contents are
not ordered. As the volume of underlying CTI increases,
these allow for fast reading of the attack-pattern, malware
and tool data for a given intrusion-set. For APT29 the com-
plete tool vector is [Eq. (4)].

Note [Eq. (5)] is the set of object-predicates in the SOP map
for this intrusion-set.

Modelling Relationship Occurrence

The raw vectors are a boolean representation of each intru-
sion set’s relationships, based on a simple “has” or “has not”
evaluation. The total length of each vector is equal to the car-
dinality of the corresponding set of SDOs within the STIX
bundle and is initialised with 0 values. Because the ID of
each SDO is unique, if a target variable has an association
with an SDO a 1 is stored in the vector at the location defined
by the index. Therefore, each intrusion-set entry in the SOP
map contains a Boolean vector named “raw_< xxx >_vec-
tor”, where xxx is the short name for the SDO type. Con-
tinuing the example started above, there are 70 tool SDOs
in the ATT &CK data and “APT29” has an association with
10 of them. The apt29raw_t_vector for this intrusion-set has 70
components of which only 10 take the value 1 (at the indices
specified in apt29tool−vector)—all other values are 0. The same
approach is taken to populate the apt29raw_ap_vector (attack-
patterns) and apt29raw_m_vector (malware).

Alpha–Beta Re‑sampling

In reality, threat actors are not characterised by the sum of
all of their behaviours. Figure 2 shows APT29 is linked to
the “Steganography” attack-pattern, the “CozyCar” malware
and the “ipconfig” tool. The ATT &CK data contains 109
SROs for which the source reference is the ID of the APT29
intrusion-set. STIX-formatted intelligence does not include
occurrence information for TTPs (only for observations).
That is to say, it does not specify how frequently a given
intrusion-set uses any given attack-pattern, malware or tool.
If only the entire feature vector for each intrusion-set was
used to train the supervised model, then the learning algo-
rithm could only make classification decisions when all of
the attack-pattern, malware and tool relationships were pre-
sented. In plain terms, when all of the target threat actor’s
TTPs were contained in a single piece of telemetry! To
address this, LeWiS includes a technique referred to as “ �
-� re-sampling” (designed for LeWiS by the authors), which

(1)apt29attack−pattern−vector =⟨ap0, ap1, ..., apn⟩

(2)apt29malware−vector =⟨m0,m1, ...,mn⟩

(3)apt29tool−vector =⟨t0, t1, ..., tn⟩

(4)apt29tool−vector =⟨5, 56, 59, 64, 62, 27, 37, 39, 69, 65⟩

(5)|apt29x−vector| = |opx|

SN Computer Science (2024) 5:445 Page 7 of 18 445

SN Computer Science

creates additional vectors [Eq. (6)] whose components are
subsets of the original ‘full’ feature vector [Eq. (7)].

where

• f is the re-sampling function,
• vx is the intrusion-set vector
• x is the class label
• � is the re-sampling rate
• � is the re-sampling mask
• v is the set containing the original vector components

The processing phase summarises all of this information in
a single array-like structure. It contains the attack-pattern,
malware and tool vectors [Eq. (8)].

A naïve way to approach re-sampling is to simply create
sets from the feature vectors, then to calculate the Power Set
P(vx) in order to create component vectors representing each
combination of elements. This resolves to Eq. 9, which does
not scale well if the size of the feature vectors (the value of
n) becomes very large.

Selecting Values for alpha and beta

In CTI it is practical to assume that the size of the attack-pat-
tern, malware and tool vectors will increase over time. The �
and � terms are also used to avoid the “curse of dimensional-
ity” [4]. The � value is array-like and contains integers used
to define the maximum number of samples to be taken from
each sub-vector [example, Eq. (10)]. The sampling values
for each sampled vector are user-defined but must be in the
interval [0, |v|], where v is the feature vector for which the
sample rate is defined (attack-pattern, malware or tool). Set-
ting a value is a matter of context and for most cases where
the CTI input data are of a manageable size, each vector can
be used in its entirety. The � sampling approach is useful
when the size of these vectors becomes large, or when the
user wishes to target only a specific subset of attack-patterns,
malware or tools.

The � value is also array-like and contains three vectors of
integers [example, Eq. (11)]. It is used to mask values that

(6)|f (vx, �, �)|

(7)f (vx, 𝛼, 𝛽) ⊂ v ∶ v = {x0, x1, ..., xn}

(8)vx = ⟨⟨ap0, ap1, ..., apn⟩, ⟨m0,m1, ...,mn⟩, ⟨t0, t1, ..., tn⟩⟩

(9)nCk =
n!

r!(n − r)!
=

(
N

k

)

(10)� = ⟨maxap,maxm,maxt⟩

are not of interest to the re-sampler. The three component
vectors represent the attack-pattern, malware and tool SDOs
thus allow users to be selective over what is not used during
re-sampling. This is of particular use to those building mod-
els to learn TTP patterns used against specific systems. For
instance, to ignore all malware and tool SDOs relating only
to Microsoft Windows operating systems where the user is
only concerned with Linux targets.

Learning

LeWiS functions in a de-coupled fashion and does not pre-
scribe any particular learning methods. What LeWiS is
really providing is a semantic approach to learning actor
TTPs, using the SOP data structure. This avoids the need
to develop highly specialized logic that applies only on a
system-by-system basis. The bulk of the work done by this
technique is representational—viz. building a domain model
that is consistent, platform-agnostic and can be used for both
training and prediction. LeWiS has been tested using sup-
port vector machine (SVM), decision tree classifier (DTC)
and logistic regression (Logit) algorithms. The normalized
confusion matrix was used to measure classification perfor-
mance. The results are discussed in “Results of Experimen-
tation” section.

These techniques were chosen because they all support
large class registries, handle multiple data types and are
interpretable. We avoid the deep learning methods used by
Zheng et al. [33] and Wali et al. [31], to preserve transpar-
ency and ‘explainability’ within the Learning phase. Fur-
thermore each represents a different approach to classifica-
tion and offers a high-degree of configuration potential. As
with other aspects of the technique, the process for choosing
the ‘best’ classifier is domain-specific and not something
that can specified without particular uses in mind. All devel-
opment, training, testing and configuration activities were
completed using the Python “sklearn” (Sci-kit Learn) mod-
ule—these techniques were not implemented from scratch.
Currently, the approach affords limited options for re-train-
ing and does not include reinforcement techniques. The ATT
&CK data used to train with LeWiS was imported into the
local work space—it was not ‘online’ in any sense and so
the models reflect the “as-was” view of the data, according
to when it was acquired.

System telemetry is noisy and the detection methods for
actor TTPs must combine events that happen over time.
These events are parsed into SCOs containing the cor-
responding instance data (one per event), which are then
aggregated to populate an Observed Data SDO.

(11)� = ⟨⟨12, 34⟩, ⟨7⟩, ⟨28⟩⟩

 SN Computer Science (2024) 5:445 445 Page 8 of 18

SN Computer Science

Constraints and Drawbacks

Generally, any attempt to detect threat actors using struc-
tured CTI will introduce limitations and compromises.
Consequently, there are practical considerations to be made
when seeking to apply LeWiS at scale. Whilst STIX pro-
vides a useful system- and technology-agnostic language,
basing LeWiS upon it in the ways described does introduce
some constraints. These are summarised as follows:

1. Intelligence-oriented design: LeWiS operates exclu-
sively on CTI rather than other types of cyber security
data. The use of STIX objects (SDOs, SROs and SCOs)
was an intentional design decision and whilst this allows
it to be applied across different systems, this flexibility
comes at the expense of working with other types of
security data.

2. Representational completeness: in parallel with it being
intelligence-oriented, LeWiS can only be applied to CTI
expressed using STIX and objects that are fully compli-
ant with its conventions. Data that cannot be (or simply
are not) modelled using the STIX language cannot be
processed using LeWiS.

3. Learning power: the learning potential of the technique
is bounded by how successfully SDOs and SROs can be
used to train a model. Then, it has a further dependency
on how well system event data can be mapped as SCOs
that are used as input to the learning process.

4. Specificity: STIX is a standard and is therefore prescrip-
tive. The properties that any SDO, SRO and SCO may
have are defined in the standard ([23])—as are the data
types those properties can take. LeWiS, therefore, can
only ever be as specific as the standard allows.

5. SCO parsing overheads: to perform estimation, LeWiS
requires all input data to be parsed in to the Observable
(SCO-formatted) objects described above. In enterprise
networks this is not a trivial task and requires an explicit
mapping to be defined for each data source type. Further
work is required to identify which sources yield the most
effective classification performance when modelled as
SCOs.

6. Operational readiness: LeWiS is probabilistic and so
estimating the presence of an attacker within a network
is not a discrete-valued process. Instead it is a way of
suggesting where specialists (analysts, engineers, etc.)
should focus their attention based on the presence of
behaviours that appear consistent with a trained model
of suspicious activity.

7. Distinguishable events: some legitimate (non-mali-
cious) actions are difficult (or very difficult) to distin-
guish from illegitimate (malicious) actions and LeWiS
does not introduce any additional measures to improve
this. Whilst this is by no means a LeWiS-specific prob-

lem, the technique will struggle to be accurate when
a threat actor’s TTPs are closely related (or are mim-
icking) ‘proper’ administrative practices—examples
include webshells and potentially unwanted applications
(PUAs).

8. Inheritance of the STIX language: LeWiS is construct-
ing an intermediate representation (IR) of the under-
lying STIX data—which are themselves an IR of the
‘raw’ CTI. Equally, LeWiS is not in itself, a language.
This means LeWiS inherits the constraints of the STIX
language, which relates to the comments about repre-
sentational completeness (above) and the limits of what
LeWiS can model. However, this approach further limits
the technique by offering no way to model the organisa-
tion of a system to which LeWiS is being applied. That
is to say it operates purely on intelligence, because that
is how STIX is designed. This constrains the perfor-
mance and ultimate effectiveness of the technique.

The impact of these constraints depends on how one
might wish to apply the LeWiS method. Generally, the
overall result is that they add computational overheads
and complexity to already challenging intelligence pro-
cessing workloads. Similarly, effective use of LeWiS
requires domain-specific knowledge and a detailed under-
standing of both STIX and the construction of ensembles
of shallow machine learning techniques. Further consid-
eration of these topics, including potential enhancements
and mitigations, are discussed in “Conclusion and Further
Work” section.

Results of Experimentation

Whilst this is an exploratory technique, the approach has
shown promising results when classifying intrusion-set
objects. Applying LeWiS to the latest ATT &CK data (ver-
sion 9, at the time of writing) yields 125 unique class labels,
which includes the null-actor. The ATT &CK training data
includes intelligence on 124 intrusion sets and 1186 objects
of types attack-pattern, malware and tool. Sparse matrices
within SOP structures were common simply because ATT
&CK contains intelligence on a broad range of TTPs. This
variety means intrusion-sets or attack-patterns can make
good discriminators. The SOP generation counts are show
in Fig. 4.

The component feature vectors and resulting ‘full’ feature
vector are defined in Table 2. Re-sampled vectors each have
the same dimensions. When applying LeWiS to the ATT
&CK data, it generates 3138 SOP structures within the map
that span all intrusion-set SDOs.

The data within MITRE ATT &CK is different for each
intrusion set. This is because more information is known

SN Computer Science (2024) 5:445 Page 9 of 18 445

SN Computer Science

about the TTPs of some actors than it is for others. Conse-
quently, this yields different representations when LeWiS
is applied. For instance, a comparatively large amount is
known about group APT29 and their activities. LeWiS gen-
erates 152 SOP records, an attack pattern vector of length
106, a tool vector of length 14 and a Malware vector of
length 32. We can use the shorthand APT29{SOP:152,
AP:106, T:14, M:32} to express this. Similarly, the
ATT &CK data contains a good amount of information
on Kimsuky—specifically Kimsuky{SOP: 99, AP:
89, T: 4, M: 6}. For actors about which far less
TTP information is known, we see a proportional reduc-
tion in the number of SOP objects and the length of their
vectors. The groups Elderwood and BlackOasis are good
examples: Elderwood{SOP:18, AP:9, T:0, M:9}
and BlackOasis{SOP:1, AP:1, T:0, M:0}. A
full listing of the SOP objects and vector sizes for each actor

is provided in Table 7, within the Additional Tabular Data
in “Appendix” section.

Testing was completed using SVM, DTC and Logit learn-
ing algorithms. These were evaluated and the best models
chosen according to their average classification accuracy.
Specimen vectors were synthesised to test the classifiers,
however as these are not created from live telemetry the
output is considered advisory. Initial exploration suggests
the SVM, DTC and Logit techniques produce similar perfor-
mance—maximum average accuracy was 59.1%, minimum
was 43.7% using a common set of synthesized vectors. Rep-
resentative classification performance is provided in Table 8,
which was calculated and averaged over multiple runs/con-
figurations of the technique.

A logical extension to this research is greater evalua-
tion of how the re-sampling techniques can improve overall
performance. The technique proved predictably sensitive to
‘hedging’ its classification decisions where intrusion-sets
exhibit common features from across the attack-pattern,
malware and tool objects. This offers some insight into the
practical separability of actor TTPs using these SDOs, but it
also suggests further analysis is required to understand these
sensitivities more fully. The �-� re-sampling technique pro-
vides some mitigation by compensating the ‘reporting bias’
within the training data (where the distribution of TTP infor-
mation is unbalanced). Using the ATT &CK data, the depth

Fig. 4 SOP object counts by intrusion-set

Table 2 Vector definitions Type Size

Vectors
Attack Pattern 692
Malware 424
Tools 70
Full feature 1186

 SN Computer Science (2024) 5:445 445 Page 10 of 18

SN Computer Science

of information on attack-pattern and malware SDOs mean
the classification logic is typically biased towards these
types. As stated in the “Introduction” and Related Work
sections, the abstraction and knowledge representation layers
built atop STIX are a vital part of the technique’s portability
and generalisation. Performance across the three algorithms
varied by small degrees and the general trend confirms that
actors with more ranging TTP information yield the high-
est classification performance. The training set contained
a notable imbalance in the number the attack-pattern, mal-
ware and tool SDOs. The first two are far more populous
than the last, however the combination of attack-pattern and
malware relationships appears to be more indicative of spe-
cific actors when all three SDOs are present. Where tool
types were dominant these proved a positive discriminator.
Interestingly, this suggests the technique might be effective
in detecting actors involved in ‘living off the land’ attacks.
Generally, in the case of actors for whom the training data
was sparse, training performance was far lower than is desir-
able. The performance scores are shown in Fig. 5, which
graphs the mean accuracy of the classifiers with respect to
each Intrusion Set. The horizontal lines show confidence
thresholds weighted by these scores for each classifier. For
each classifier there are two lines representing the ‘raw’ and
‘re-sampled’ results. The first range (beginning y = 0 to the
first line) is effectively zero-to-low confidence, whilst the
middle range is low-to-medium. The upper range represents

the highest confidence—i.e., where the classification results
indicate human analysis / intervention is required. These
ranges are included for illustrative purposes and to frame
the classification results in a realistic context—viz. one in
which decisions need to be made based upon the confidence
inspired by a classifier’s accuracy.

Peak performance (not averaged) was produced for the
APT29, Dragonfly 2.0 and BRONZE BUTLER intrusion
sets—reaching the 89th percentile under optimum condi-
tions. With little-or-no re-sampling the overall classification
performance was poor—giving a mean of 26.8%. This was
caused by the sparse data in evidence for certain intrusion
sets or where there was considerable duplication of TTPs
between actors. When suppressing sets that gave very poor
performance and performing basic re-sampling, the mean
performance rose to 59.1%, with 15 intrusion sets perform-
ing well above this. Performance was markedly worse for
intrusion sets about which little is known—this is as one
might expect for these actors the classifiers scored poorly
because the lack of TTP data meant there was little to dis-
criminate these actors from others. DragonOK and Taidoor
classification was especially poor—effectively yielding zero.
This could likely be addressed with weights that compen-
sate for these tendencies but this was not attempted by this
research. The lack of TTP data also meant �-� re-sampling
was impractical. The principle difficulty is that when re-sam-
pling is applied on actors for whom a large amounts of TTP

Fig. 5 SOP Classification Scores

SN Computer Science (2024) 5:445 Page 11 of 18 445

SN Computer Science

data was available, the re-sampled vectors may contain the
same information as the full (raw) feature vector for these
‘lesser known’ intrusion sets. This is problematic because if
a mask vector is provided for � when re-sampling vectors for
the ‘greater known’ sets, it is possible that this may inadvert-
ently remove relationships that are statistically significant
to the classification decision. In practice, there is no way to
know this without relying on input from expert users.

Extended Experimentation

The MITRE ATT &CK data are maintained by an open
source community of active contributors, meaning the CTI
contained within changes over time. This is helpful when
assessing techniques such as LeWiS because it is internally
consistent and allows one to meaningfully evaluate how well
an approach generalises. Table 6 is similar to Table 1 but
shows the distribution of STIX objects within ATT &CK data
obtained in April 2022 [18], rather than April 2021 [17]. By
way of context, MITRE have adopted a twice-yearly release
schedule for ATT &CK that features both an April and an
October release. Between these times additional CTI may be
added, but MITRE maintain this schedule to provide some
formality to the overall process. Of greatest note within the
newer data is the number of SROs: 15,262 in v11 (April
2022) versus 10,990 in v9 (April 2022). This indicates a
higher level of “connectedness” (38.9%) despite far more
modest increases in actual intelligence objects (attack-pat-
terns: 3.9%, intrusion-sets: 9.6%, malware: 19.58%, tools:
11.4%, courses-of-action: 0.38%). Thus, the v11 data pro-
vides a higher density of relationship modelling than the v9
data and this is significant, because analysis of experiments
run with LeWiS on v9 data suggests strong relationship mod-
elling (i.e., between SDOs) improves overall predictive per-
formance. To extend the experimentation described above,
LeWiS has also been applied to the v11 data and the addi-
tional SROs (and SDOs) that it contains (Fig. 6).

The v11 ATT &CK data yields a different profile of
LeWiS SOP objects by intrusion-set and this is illustrated
in Fig. 7. The contrasting measures of aggregated classifica-
tion performance are shown in Figs. 5 and 8. Broadly, the
results strengthen the hypothesis that a higher resolution of
relationship data improves classification performance for the
affected intrusion-sets. The caveat given here is important:
“certain intrusion-sets”, rather this than simply conferring a
more widely-observed benefit. Though overall performance
is improved, average classification is not (in practice) a use-
ful measure because the ability to repeatably classify certain
actors well (and not others) is surely of more use than a
technique that provides middling (and therefore indecisive)
performance across a range. Use of �-� re-sampling again
improved performance, where re-sampled vectors found
peak classification performance of 0.896 (SVM), 0.898
(DTC) and 0.894 (Logit). Interestingly, Fig. 8 illustrates the
slightly more eccentric performance of LeWiS using the v11
data—showing stronger separability between classes than in
the v9 set. The top ten classification performances for each
classifier are given in Tables 3, 4 and 5. Whilst overall per-
formance was mildly improved (averages by classifier), the
v11 data shows more distinctly where the technique works
well and where it does not (Table 6).

This eccentricity serves a useful purpose in that it informs
the decision: “Using the ATT &CK data, for which intru-
sions sets can I attempt a meaningful detection attempts
with LeWiS?”. Besides what can be achieved with tuning
and optimisation (such as �-� re-sampling) this examination
sheds light on the types of data needed to make effective
classifications. In turn, this is useful in the context of CTI
development and forensic readiness planning. Ultimately,
LeWiS is a parametric modelling technique and its perfor-
mance appears biased towards datasets that have a stronger
relational component—this is to be expected, given how the
SOP structures are constructed and then used for classifi-
cation. The telemetry processing techniques (Fig. 6) also

Fig. 6 Telemetry processing using SCOs and SDOs

 SN Computer Science (2024) 5:445 445 Page 12 of 18

SN Computer Science

influence how well represented the system under review is,
in the context of the classification space. Relational data
within the training/truth set, therefore, has a significant bear-
ing on the technique’s overall effectiveness. An interesting

extension for LeWiS would be to make more use of “prop-
erty data” in combination with the relational data that has
been described. Here, property data refer to information
about specific entities within the SDO space—such as

Fig. 7 SOP object counts by intrusion-set (v11 data)

Fig. 8 SOP classification scores (v11 data)

SN Computer Science (2024) 5:445 Page 13 of 18 445

SN Computer Science

descriptive information for attack-patterns, source code for
malware and execution paths for tools (for example). Intui-
tively, such information could be modelled as a Label-Prop-
erty Graph and these ideas are discussed as part of “further
work” in "Conclusion and Further Work" section, below.

Conclusion and Further Work

The overall classification performance is notable for intru-
sion-sets on whom the training corpus contains a suitable
volume of information. Specifically, it is the relational data
(modelled as SROs) within the training/truth set that have
the largest impact on the technique’s effectiveness. Perfor-
mance is improved using the re-sampling process applied
to the SOP map and so the more varied and voluminous the
training data are, the more re-sampling can be effectively
performed to ‘tune’ performance. The utility of this approach
is also demonstrated through the ability to create specimen
vectors for prediction against models trained on real CTI
data sets. This finds broader applications within intrusion
detection system and firewall testing, or when simulating
security incidents for the purposes of personnel develop-
ment. The results presented in “Results of Experimentation”
section and Tables 3, 4 and 5 provide a broad sense of the
method’s overall classification performance. However, it is
clear from the results that the volume and specificity of data
within the underlying CTI is a significant influencing fac-
tor. Where the SOP structures are plentiful and the STIX
objects well-connected, the performance is promising—with
the intrusion-sets APT29, Lazarus Group and menu-
Pass yielding strong accuracy and precision. The intrusion-
sets for which there is far less data reduced classification
performance for the entire MITRE data quite substantially.
This offers the basis for determining to what degree one
might trust the results of the LeWiS method, based on the
intrusion-set it is trying to detect. Similarly, where classi-
fication performance is consistently poor (such as FIN5,
Gorgon Group and Night Dragon) additional intelli-
gence is required to use the approach meaningfully. In these
cases one can see how the standard MITRE ATT &CK data
are insufficient in volume and STIX object connections to

Table 3 Top 10 classification performance, SVM

 Intrusion-set Accuracy Precision

SVM
APT29 0.896 0.697
Lazarus Group 0.810 0.700
menuPass 0.751 0.622
Chimera 0.740 0.583
Operation Wocao 0.723 0.666
UNC2452 0.713 0.519
MuddyWater 0.703 0.482
Dragonfly 0.697 0.511
APT39 0.687 0.596
Wizard Spider 0.643 0.631

Table 4 Top 10 classification performance, DTC

 Intrusion-set Accuracy Precision

DTC
APT29 0.898 0.714
Lazarus Group 0.808 0.748
menuPass 0.785 0.614
MuddyWater 0.772 0.610
UNC2452 0.719 0.667
Dragonfly 0.704 0.624
Wizard Spider 0.672 0.572
Operation Wocau 0.658 0.589
APT39 0.650 0.601
Chimera 0.646 0.504

Table 5 Top 10 classification performance, logit

 Intrusion-set Accuracy Precision

Logit
APT29 0.894 0.758
menuPass 0.858 0.711
Lazarus Group 0.784 0.590
Chimera 0.783 0.521
Operation Wocao 0.757 0.644
Wizard Spider 0.733 0.557
MuddyWater 0.721 0.489
APT39 0.718 0.526
UNC2452 0.703 0.601
Dragonfly 0.700 0.630

Table 6 STIX object type counts (v11)

 Type Number

ATT &CK STIX objects (v11)
Relationship 15262
Attack-pattern 719
Tool 78
Malware 507
Intrusion-set 137
Course-of-action 267
X-MITRE-data-component 109
X-MITRE-data-source 38
X-MITRE-tactic 14
X-MITRE-matrix 1
Marking 1
Identity 1

 SN Computer Science (2024) 5:445 445 Page 14 of 18

SN Computer Science

muster genuine human confidence. Conversely, for those
concerned about the presence of specific threat actors the
technique does offer a way to target and focus their intel-
ligence gathering operations. For the more ‘mainstream’
actors, the technique provides acceptable classification per-
formance and so could be considered reliable. Using only
the MITRE data, therefore, suggests for performance that is
’better than guessing’ one should focus on the intrusion-sets
for which a sufficiently large collection of SOP structures
can be created.

The multi-class implementations for each of the classi-
fiers tested set the weights for each class to 1.0. This was
done to avoid introducing skew or bias that was not inferred
within the training data, but also because predictions were
made using only specimen vectors. Real-world scenarios
would introduce greater context given by the type of system
being monitored and business-level information about the
threats faced. Operators applying LeWiS to actual systems
may wish to bias the classification decision depending on
factors, such as:

• ‘Guilty knowledge’ held by a user that would inform
proper classification decisions, but cannot be (or is not)
encoded within the learning methods;

• Trustworthiness or known-accuracy of the intelligence
on which the LeWiS model was trained;

• To reflect the quality, or some other attribute, of the data
provided by the system under scrutiny that affects the
classification results; and

• To use the classification to scale, or become a coefficient
of, a value external to LeWiS process—such as a calcu-
lated risk score.

Whilst the Boolean vectors bring relatively large dimension-
ality, they are simple-valued and have comparatively low
storage complexity. A more elegant solution may be pref-
erable in future iterations however, since the vector sizes
scale linearly with the growth of intelligence material and
they will likely become unwieldy. Improvements can also
be made to the re-sampling function by applying masking
operations (such as exclusive-OR logic) to create the com-
binations required. It is interesting to consider whether addi-
tional semantics might improve overall performance—for
example, the introduction of second-order logic and condi-
tionals that do not treat all relationships as equal. The ideas
that underpin the SOP data structure could be extended to
include statefulness with respect to the actor. This might
further qualify their presence within a network/system and
may also give some insight into what further actions they
might perform. This may be especially useful in real-world
scenarios, where an actor has already compromised some
part of a system and those charged with its defence seek to
understand how the threat could move laterally or gain a

toehold in other systems. This initial, exploratory version
of LeWiS is attempting to simply determine the presence of
an actor—in reality this resolves to a binary classification of
the system under review being in one of two states: compro-
mised or not-compromised. Further development of LeWiS
could see it applied in a more differentiated fashion such that
it can work within the ‘degrees of compromise’ that exist
in the real world. In so doing, it might offer insights into
post-compromise defensive techniques to isolate, mitigate
and manage the effect of hostile actors already operating
within a network or system. “Extended Experimentation”
section introduces how a label-property graph could be
used to improve overall representation of the systems under
review. The relationship (SRO) data has proven vital in both
the v9- and v11-based experiments, but a logical extension
of the technique would be model the entire CTI data as a
graph whose vertices are SDOs and edges SROs. Properties
can then be applied (to both vertices and edges) to further
instrument LeWiS and increase the technique’s expressive
power. In many respects, this is a generalisation of the SOP
model introduced herein, but one in which all relationships
are mapped between each and every vertex in the graph. This
may also create opportunities to explore the application of
graph traversal algorithms to the classification process.

Perhaps the most compelling extension to the LeWiS
method is generalising it to predict other target variables.
This would entail training models whose classification
targets are not only intrusion sets, but broaden to include
Infrastructure, Malware and Vulnerability SDOS. Infrastruc-
ture estimation is an example of finding new TTPs through
generalisation of known data. Similarly for Malware SDOs,
telemetry would be used to estimate the presence of a par-
ticular implant within a system (rather than whom may be
responsible for it). This may offer opportunities for detection
outside of more more conventional means (such as intrusion
detection and endpoint security technologies). Estimating
Vulnerability SDOs could establish the presence of a spe-
cific vulnerability, or set of vulnerabilities within the moni-
tored infrastructure purely thought intelligence processing.

Finally, STIX does not include a mechanism to state how
common is any particular relationship between SDOs. This
could be of real significance in machine learning and be
used to improve the resolution of the models; avoiding the
need to train only on binary relationships (i.e. one exists, or
it does not) and allowing a more comprehensive scheme to
be defined that uses the degree to which a relationship is pre-
sent. The re-sampling technique described herein provides
a partial solution to the problem, but greater improvements
could likely be made by adding ‘strengths’ to the underlying
data model. This is of course, not a trivial undertaking and it
is necessary to remember that this additional attribute would
require greater empirical information that might otherwise
be used to construct attack sets. Furthermore, one has to

SN Computer Science (2024) 5:445 Page 15 of 18 445

SN Computer Science

assume imperfect knowledge of the TTPs for any threat actor
and because the ‘strength’ attribute is a function of other
observable data, it may be difficult to manage bias when
working in real-world settings.

Appendix: Additional Tabular Data

See Tables 7 and 8.

Table 7 SOP and vector sizes by MITRE ATT &CK group

Group SOP AP T M

APT29 152 106 14 32
WIRTE 14 11 1 2
Axiom 24 16 0 8
Aquatic Panda 17 15 0 2
Threat Group-3390 80 56 12 12
Gamaredon Group 51 47 1 3
APT28 113 87 9 17
Lazarus Group 138 112 4 22
Kimsuky 99 89 4 6
Ke3chang 56 45 8 3
Mustang Panda 48 43 1 4
Magic Hound 49 44 3 2
Confucius 20 19 0 1
LazyScripter 27 20 4 3
BlackTech 20 14 1 5
Indrik Spider 27 19 4 4
Sandworm Team 86 71 4 11
Volatile Cedar 7 5 0 2
TeamTNT 48 44 3 1
FIN7 57 40 4 13
APT38 49 43 2 4
Winnti Group 9 6 0 3
Dragonfly 67 57 8 2
Turla 91 65 13 13
Tonto Team 21 15 4 2
Cobalt Group 40 34 3 3
Transparent Tribe 19 14 0 5
CostaRicto 11 5 3 3
TA505 34 25 1 8
Nomadic Octopus 8 7 0 1
OilRig 79 58 11 10
Night Dragon 21 16 3 2
DarkVishnya 12 10 2 0
FIN5 17 11 4 2
Gorgon Group 21 17 2 2
Patchwork 47 39 2 6
Chimera 65 59 5 1

Table 7 (continued)

Group SOP AP T M

Blue Mockingbird 23 22 1 0
Whitefly 10 9 1 0

APT41 83 59 11 13
FIN6 52 40 4 8
TEMP.Veles 22 19 2 1
PittyTiger 7 2 2 3
Thrip 7 4 2 1
DarkHydrus 10 7 1 2
APT32 92 78 5 9
BRONZE BUTLER 54 40 7 7
Carbanak 13 9 3 1
Cleaver 9 5 2 2
Inception 25 22 1 2
Leafminer 21 17 4 0
Ferocious Kitten 8 6 1 1
IndigoZebra 10 7 0 3
BackdoorDiplomacy 20 15 3 2
FIN8 37 31 4 2
APT37 44 31 0 13
TA551 18 14 0 4
Andariel 14 12 0 2
Leviathan 61 44 7 10
Naikon 29 14 7 8
Wizard Spider 62 46 8 8
menuPass 71 47 12 12
APT-C-36 10 9 1 0
Frankenstein 27 26 1 0
Silence 31 28 3 0
APT33 47 32 9 6
APT19 23 21 1 1
FIN10 12 11 1 0
CopyKittens 11 7 1 3
APT39 63 52 7 4
APT1 40 23 11 6
APT3 51 45 2 4
MuddyWater 65 54 9 2
Darkhotel 25 25 0 0
Fox Kitten 44 40 1 3
ZIRCONIUM 25 25 0 0
Silent Librarian 13 13 0 0
HAFNIUM 24 21 1 2
Windshift 20 19 0 1
Ajax Security Team 8 6 2 0
Sidewinder 30 29 1 0
Higaisa 29 26 1 2
GALLIUM 46 31 11 4
Tropic Trooper 45 39 1 5

 SN Computer Science (2024) 5:445 445 Page 16 of 18

SN Computer Science

Table 7 (continued)

Group SOP AP T M

UNC2452 63 54 2 7
GOLD SOUTHFIELD 11 9 1 1
Machete 13 12 0 1
Windigo 8 7 0 1
Evilnum 14 11 1 2

Molerats 22 16 0 6
Operation Wocao 66 60 6 0
Stealth Falcon 16 16 0 0
PROMETHIUM 13 11 0 2
APT17 3 2 0 1
APT16 2 1 0 1
APT30 7 2 0 5
Strider 4 3 0 1
Equation 5 5 0 0
Rocke 36 36 0 0
SilverTerrier 8 3 0 5
Sharpshooter 9 8 0 1
Mofang 7 5 1 1
RTM 8 7 0 1
APT12 8 5 1 2
Honeybee 25 21 4 0
Poseidon Group 8 8 0 0
Rancor 12 8 2 2
GCMAN 2 2 0 0
FIN4 12 12 0 0
Elderwood 18 9 0 9
APT18 18 13 1 4
Deep Panda 17 10 3 4
admin@338 19 12 4 3
Stolen Pencil 11 9 2 0
Group5 7 5 0 2
The White Company 9 7 0 2
PLATINUM 15 12 0 3
Scarlet Mimic 5 1 0 4
Gallmaker 6 6 0 0
Dark Caracal 15 12 0 3
Orangeworm 10 2 7 1
TA459 9 5 0 4
BlackOasis 1 1 0 0
Sowbug 11 9 0 2
NEODYMIUM 1 0 0 1
Suckfly 6 5 0 1
Dust Storm 7 3 0 4
Threat Group-1314 6 4 2 0
Lotus Blossom 2 0 0 2
PutterPanda 8 4 0 4
DragonOK 2 0 0 2
Taidoor 1 1 0 0
Moafee 2 1 0 1

Table 8 Summarised classification performance by MITRE ATT
&CK group

Group SVM DTC Logit

APT29 0.879 0.865 0.858
WIRTE 0.065 0.049 0.036
Axiom 0.037 0.061 0.066
Aquatic Panda 0.045 0.035 0.063
Threat Group-3390 0.447 0.438 0.443
Gamaredon Group 0.529 0.589 0.636
APT28 0.601 0.619 0.610
Lazarus Group 0.796 0.794 0.796
Kimsuky 0.523 0.553 0.551
Ke3chang 0.625 0.662 0.561
Mustang Panda 0.546 0.534 0.582
Magic Hound 0.532 0.501 0.608
Confucius 0.034 0.020 0.038
LazyScripter 0.109 0.029 0.048
BlackTech 0.038 0.082 0.079
Indrik Spider 0.060 0.079 0.087
Sandworm Team 0.458 0.473 0.463
Volatile Cedar 0.026 0.024 0.009
TeamTNT 0.546 0.565 0.588
FIN7 0.610 0.621 0.708
APT38 0.547 0.574 0.608
Winnti Group 0.026 0.029 0.021
Dragonfly 0.751 0.737 0.792
Turla 0.481 0.507 0.491
Tonto Team 0.027 0.077 0.100
Cobalt Group 0.438 0.458 0.419
Transparent Tribe 0.078 0.014 0.072
CostaRicto 0.055 0.058 0.013
TA505 0.071 0.120 0.049
Nomadic Octopus 0.040 0.021 0.034
OilRig 0.426 0.435 0.417
Night Dragon 0.049 0.025 0.103
DarkVishnya 0.032 0.010 0.054
FIN5 0.050 0.083 0.013
Gorgon Group 0.070 0.081 0.109
Patchwork 0.466 0.491 0.473
Chimera 0.693 0.742 0.665
Blue Mockingbird 0.111 0.119 0.090
Whitefly 0.046 0.036 0.014
APT41 0.438 0.461 0.437
FIN6 0.516 0.553 0.600
TEMP.Veles 0.100 0.103 0.037
PittyTiger 0.023 0.030 0.036
Thrip 0.007 0.017 0.036
DarkHydrus 0.019 0.041 0.024
APT32 0.507 0.509 0.486
BRONZE BUTLER 0.566 0.643 0.597
Carbanak 0.055 0.059 0.038
Cleaver 0.024 0.032 0.037

SN Computer Science (2024) 5:445 Page 17 of 18 445

SN Computer Science

Acknowledgements This work is an extended version of a paper bear-
ing the same name by the same authors, originally presented at the
International Conference on Web Information Systems and Technolo-
gies (WEBIST) 2021. This longer-form presentation provides addi-
tional discussion of the LeWiS method, together with the results of
further experimentation and development efforts (including the tech-
niques being applied to a later version of the MITRE ATT &CK data,
as documented herein).

Funding The authors declare that this work was self-funded and did not
include any form of funding from an external party or body.

Data availability STIX versions of the MITRE ATT &CK data can be
generated, as can the SOP objects described in the technique (which
are themselves generated as a function of the MITRE data).

Table 8 (continued)

Group SVM DTC Logit

Inception 0.130 0.080 0.065
Leafminer 0.054 0.092 0.081
Ferocious Kitten 0.031 0.041 0.016
IndigoZebra 0.038 0.029 0.035
BackdoorDiplomacy 0.069 0.082 0.018
FIN8 0.167 0.054 0.110
APT37 0.457 0.487 0.474
TA551 0.054 0.049 0.058
Andariel 0.047 0.050 0.053
Leviathan 0.602 0.621 0.619
Naikon 0.123 0.028 0.080
Wizard Spider 0.686 0.707 0.616
menuPass 0.796 0.751 0.856
APT-C-36 0.045 0.025 0.021
Frankenstein 0.079 0.048 0.034
Silence 0.079 0.126 0.099
APT33 0.543 0.539 0.537
APT19 0.091 0.018 0.029
FIN10 0.032 0.019 0.044
CopyKittens 0.053 0.030 0.032
APT39 0.629 0.649 0.763
APT1 0.417 0.409 0.451
APT3 0.578 0.601 0.637
MuddyWater 0.645 0.771 0.658
Darkhotel 0.090 0.113 0.120
Fox Kitten 0.519 0.491 0.518
ZIRCONIUM 0.114 0.116 0.109
Silent Librarian 0.014 0.020 0.063
HAFNIUM 0.072 0.118 0.121
Windshift 0.035 0.082 0.083
Ajax Security Team 0.012 0.020 0.013
Sidewinder 0.053 0.068 0.103
Higaisa 0.143 0.065 0.072
GALLIUM 0.512 0.557 0.521
Tropic Trooper 0.503 0.448 0.519
UNC2452 0.681 0.750 0.652
GOLD SOUTHFIELD 0.010 0.035 0.011
Machete 0.013 0.010 0.056
Windigo 0.006 0.023 0.037
Evilnum 0.041 0.015 0.039
Molerats 0.040 0.057 0.079
Operation Wocao 0.713 0.751 0.788
Stealth Falcon 0.038 0.050 0.071
PROMETHIUM 0.036 0.055 0.059
APT17 0.011 0.006 0.005
APT16 0.007 0.004 0.006
APT30 0.035 0.007 0.019
Strider 0.009 0.009 0.021
Equation 0.018 0.023 0.013
Rocke 0.098 0.082 0.063

Table 8 (continued)

Group SVM DTC Logit

SilverTerrier 0.031 0.041 0.019
Sharpshooter 0.026 0.013 0.039
Mofang 0.024 0.036 0.027
RTM 0.035 0.007 0.036
APT12 0.011 0.036 0.010
Honeybee 0.083 0.027 0.039
Poseidon Group 0.030 0.027 0.015
Rancor 0.047 0.037 0.058
GCMAN 0.010 0.010 0.010
FIN4 0.047 0.030 0.052
Elderwood 0.045 0.059 0.082
APT18 0.066 0.063 0.058
Deep Panda 0.069 0.030 0.028
admin@338 0.090 0.027 0.090
Stolen Pencil 0.035 0.045 0.042
Group5 0.032 0.014 0.036
The White Company 0.033 0.008 0.047
PLATINUM 0.040 0.065 0.077
Scarlet Mimic 0.014 0.013 0.011
Gallmaker 0.008 0.014 0.019
Dark Caracal 0.020 0.057 0.023
Orangeworm 0.011 0.013 0.024
TA459 0.034 0.007 0.018
BlackOasis 0.001 0.004 0.002
Sowbug 0.038 0.040 0.033
NEODYMIUM 0.004 0.001 0.002
Suckfly 0.011 0.015 0.007
Dust Storm 0.015 0.017 0.028
Threat Group-1314 0.026 0.006 0.012
Lotus Blossom 0.009 0.006 0.006
Putter Panda 0.035 0.040 0.013
DragonOK 0.010 0.003 0.008
Taidoor 0.004 0.003 0.004
Moafee 0.002 0.004 0.008

 SN Computer Science (2024) 5:445 445 Page 18 of 18

SN Computer Science

Declarations

Conflict of Interest The authors declare that they have no conflicts of
interest.

References

 1. Alghamdi MI. Survey on applications of deep learning and
machine learning techniques for cyber security. Int J Interact Mob
Technol. 2020;14:210–24.

 2. Amit I, Matherly J, Hewlett W, Xu Z, Meshi Y, Weinberger Y.
Machine learning in cyber-security - problems, challenges and
data sets; 2018.

 3. BBC. Cyber attack ’most significant on irish state’; 2021. https://
www. bbc. co. uk/ news/ world- europe- 57111 615

 4. Bellman R. Dynamic programming. Princeton: Princeton Univer-
sity Press; 1957.

 5. Ben-Asher N, Hutchinson S, Oltramari A. Characterizing network
behavior features using a cyber-security ontology. In: MILCOM
2016—2016 IEEE military communications conference, military
communications conference; 2016. pp. 758 – 763.

 6. Blackwell C. A security ontology for incident analysis. In: CSI-
IRW 10; 2010.

 7. Darktrace. Darktrace industrial uses machine learning to identify
cyber campaigns targeting critical infrastructure. https:// www.
darkt race. com/ en/ press/ 2017/ 204/ 2017

 8. Das R, Morris TH. Machine learning and cyber security. In: 2017
International conference on computer, electrical and communica-
tion engineering (ICCECE); 2017. pp. 1 – 7.

 9. DCMS. Cyber security breaches survey 2021. Technical report,
UK Government; 2021. https:// www. gov. uk/ gover nment/ stati
stics/ cyber- secur ity- breac hes- survey- 2021/ cyber- secur ity- breac
hes- survey- 2021

 10. Elmrabit N, Zhou F, Li F, Zhou H. Evaluation of machine learning
algorithms for anomaly detection. In: 2020 International Confer-
ence on Cyber Security and Protection of Digital Services (Cyber
Security); 2020. pp. 1– 8.

 11. Fransen F, Kerkdijk R, Smulders A. Cyber security informa-
tion exchange to gain insight into the effects of cyber threats
and incidents. Elektrotechnik und Informationstechnik.
2015;132(2):106–12.

 12. Gupta B, Sheng M. Machine learning for computer and cyber
security : principles, algorithms, and practices. Boca Raton: CRC
Press; 2019.

 13. Johnson C, B. L. W. D. S. J. S. C. NIST Special Publication 800-
150: Guide to Cyber Threat Information Sharing. National Insti-
tute for Standards and Technology; 2019.

 14. Jungsoo P, Long Nguyen V, Bencivengo G, Souhwan J. Auto-
matic generation of MAEC and STIX standards for android
malware threat intelligence. KSII Trans Internet Inf Syst.
2020;14(8):3420–36.

 15. Kaloudi N, Jingyue L. The AI-based cyber threat landscape: a
survey. ACM Comput Surv. 2020;53(1):1–34.

 16. Kumar SR, Yadav SA, Sharma S, Singh A. Recommendations for
effective cyber security execution. In: 2016 International confer-
ence on innovation and challenges in cyber security (ICICCS-
INBUSH), 2016; pp. 342–346.

 17. MITRE. Mitre att &ck; 2021. https:// cti- taxii. mitre. org/ stix/ colle
ctions/ 95ecc 380- afe9- 11e4- 9b6c- 751b6 6dd54 1e/ objec ts/

 18. MITRE. Mitre att &ck; 2022. https:// cti- taxii. mitre. org/ stix/ colle
ctions/ 95ecc 380- afe9- 11e4- 9b6c- 751b6 6dd54 1e/ objec ts/

 19. Mittal S, J. A. F. T. Thinking, fast and slow: Combining vec-
tor spaces and knowledge graphs. CoRR; 2017. arXiv: abs/ 1708.
03310

 20. Mugan J. A developmental approach to learning causal models
for cyber security. In: Proceedings of SPIE - The International
Society for Optical Engineering, 2013, pp. 87510A.

 21. NCSC. Cyber information sharing partnership; 2021. https:// www.
ncsc. gov. uk/ secti on/ keep- up- to- date/ cisp

 22. OASIS. Stix 2.1 bundle specification;2021a. https:// docs. oasis-
open. org/ cti/ stix/ v2.1/ cs02/ stix- v2.1- cs02. html#_ gms87 2kuzd mg

 23. OASIS. STIX Version 2.1;2021b. https:// docs. oasis- open. org/ cti/
stix/ v2.1/ cs02/ stix- v2.1- cs02. html

 24. PaloAlto. Expanse - attack surface reduction; 2021. https:// expan
se. co/ attack- surfa ce- reduc tion/

 25. Riesco R, Larriva-Novo X, Villagra VA. Cybersecurity threat
intelligence knowledge exchange based on blockchain: proposal
of a new incentive model based on blockchain and smart contracts
to foster the cyber threat and risk intelligence exchange of infor-
mation. Telecommun Syst. 2020;73(2):259–88.

 26. Riesco R, Villagrá VA. Leveraging cyber threat intelligence for a
dynamic risk framework: automation by using a semantic reasoner
and a new combination of standards (stix™, swrl and owl). Int J
Inf Secur. 2019;18(6):715–39.

 27. Scheau M, Arsene A-L, Popescu G. Artificial intelligence/machine
learning challenges and evolution. Int J Inf Secur Cybercrime.
2018;7:11–22.

 28. Shaukat K, Luo S, Varadharajan V, Hameed I, Xu M. A survey on
machine learning techniques for cyber security in the last decade.
IEEE Access. 2020;8:222310–54.

 29. Smart W. Lessons learned review of the wannacry ransomware
cyber attack. In: Technical report, department for health and
social care; 2018. https:// www. engla nd. nhs. uk/ wp- conte nt/ uploa
ds/ 2018/ 02/ lesso ns- learn ed- review- wanna cry- ranso mware- cyber-
attack- cio- review. pdf

 30. Vectra.ai. Vectra.ai - how we do it; 2021. https:// www. vectra. ai/
produ cts/ how- we- do- it

 31. Wali A, Soon Ae C, Geller J. A bootstrapping approach for devel-
oping a cyber-security ontology using textbook index terms. In:
2013 International conference on availability, reliability and secu-
rity, availability, reliability and security (ARES); 2013. pp. 569
– 576.

 32. Xu J, Wen Y, Yang C, Meng D. An approach for poisoning attacks
against rnn-based cyber anomaly detection. In: 2020 IEEE 19th
international conference on trust, security and privacy in comput-
ing and communications (TrustCom); 2020. pp. 1680 – 1687.

 33. Zheng H, Wang Y, Han C, Le F, He R, Lu J. Learning and apply-
ing ontology for machine learning in cyber attack detection. In:
2018 17th IEEE international conference on trust, security and
privacy in computing and communications/ 12th IEEE interna-
tional conference on big data science and engineering (TrustCom/
BigDataSE), trust, security and privacy in computing and com-
munications; 2018. pp. 1309 – 1315.

 34. Zhou L, Shu J, Jia X. Collaborative anomaly detection in distrib-
uted sdn. IN: GLOBECOM 2020 - 2020 IEEE Global Communi-
cations Conference; 2020. pp. 1 – 6.

 35. Zhou Y, Zhu C, Tang L, Zhang W, Wang P. Cyber security infer-
ence based on a two-level Bayesian network framework. In: 2018
IEEE international conference on systems, man, and cybernetics
(SMC); 2018. pp. 3932 – 3937.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://www.bbc.co.uk/news/world-europe-57111615
https://www.bbc.co.uk/news/world-europe-57111615
https://www.darktrace.com/en/press/2017/204/
https://www.darktrace.com/en/press/2017/204/
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2021/cyber-security-breaches-survey-2021
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2021/cyber-security-breaches-survey-2021
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2021/cyber-security-breaches-survey-2021
https://cti-taxii.mitre.org/stix/collections/95ecc380-afe9-11e4-9b6c-751b66dd541e/objects/
https://cti-taxii.mitre.org/stix/collections/95ecc380-afe9-11e4-9b6c-751b66dd541e/objects/
https://cti-taxii.mitre.org/stix/collections/95ecc380-afe9-11e4-9b6c-751b66dd541e/objects/
https://cti-taxii.mitre.org/stix/collections/95ecc380-afe9-11e4-9b6c-751b66dd541e/objects/
http://arxiv.org/1708.03310
http://arxiv.org/1708.03310
https://www.ncsc.gov.uk/section/keep-up-to-date/cisp
https://www.ncsc.gov.uk/section/keep-up-to-date/cisp
https://docs.oasis-open.org/cti/stix/v2.1/cs02/stix-v2.1-cs02.html#_gms872kuzdmg
https://docs.oasis-open.org/cti/stix/v2.1/cs02/stix-v2.1-cs02.html#_gms872kuzdmg
https://docs.oasis-open.org/cti/stix/v2.1/cs02/stix-v2.1-cs02.html
https://docs.oasis-open.org/cti/stix/v2.1/cs02/stix-v2.1-cs02.html
https://expanse.co/attack-surface-reduction/
https://expanse.co/attack-surface-reduction/
https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacry-ransomware-cyber-attack-cio-review.pdf
https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacry-ransomware-cyber-attack-cio-review.pdf
https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacry-ransomware-cyber-attack-cio-review.pdf
https://www.vectra.ai/products/how-we-do-it
https://www.vectra.ai/products/how-we-do-it

	The LeWiS Method: Target Variable Estimation Using Cyber Security Intelligence
	Abstract
	Introduction
	Related Work
	Proposed Approach
	Description of the Dataset
	Pre-processing
	Processing
	Modelling Relationship Occurrence
	Alpha–Beta Re-sampling
	Selecting Values for alpha and beta

	Learning
	Constraints and Drawbacks

	Results of Experimentation
	Extended Experimentation

	Conclusion and Further Work
	Appendix: Additional Tabular Data
	Acknowledgements
	References

