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Abstract
The Storage Location Assignment Problem (SLAP) is of central importance in warehouse operations. An important research 
challenge lies in generalizing the SLAP such that it is not tied to certain order-picking methodologies, constraints, or ware-
house layouts. We propose the OBP-based SLAP, where the quality of a location assignment is obtained by optimizing an 
Order Batching Problem (OBP). For the optimization of the OBP-based SLAP, we propose a nested Metropolis algorithm. 
The algorithm includes an OBP-optimizer to obtain the cost of an assignment, as well as a filter which approximates OBP 
costs using a model based on the Quadratic Assignment Problem (QAP). In experiments, we tune two key parameters in the 
QAP model, and test whether its predictive quality warrants its use within the SLAP optimizer. Results show that the QAP 
model’s per-sample accuracy is only marginally better than a random baseline, but that it delivers predictions much faster 
than the OBP optimizer, implying that it can be used as an effective filter. We then run the SLAP optimizer with and without 
using the QAP model on industrial data. We observe a cost improvement of around 23% over 1 h with the QAP model, and 
17% without it. We share results for public instances on the TSPLIB format.

Keywords Storage location assignment problem · Order batching problem · Quadratic assignment problem · Metropolis 
algorithm · Warehousing

Introduction

Charris et al. [7] gives the following definition of a Stor-
age Location Assignment Problem (SLAP): The “allo-
cation of products into a storage space and optimization 
of the material handling (…) or storage space utilization 
[costs]”. The relationship between material handling costs, 
on the one hand, and storage assignment, on the other, can 
be showcased in an example: If a vehicle needs to pick a 

set of products, its travel cost clearly depends on where the 
products are stored in the warehouse. At the same time, the 
development of an effective storage strategy needs to con-
sider various features in material handling, such as vehicle 
constraints, traffic conventions and picking methodologies.

In this paper, we work with a version of the SLAP which 
is particularly generalizable. Kübler et al. [18], name this 
version the “joint storage location assignment, order batch-
ing and picker routing problem”. The main characteristic of 
this version is the inclusion of two optimization problems 
in the SLAP:

1. The Order Batching Problem (OBP), where vehicles 
are assigned to carry sets of orders (an order is a set of 
products) [17].

2. The Picker Routing Problem, where a short picking path 
of a vehicle is found for the products that the vehicle is 
assigned to pick. The Picker Routing Problem is a Trave-
ling Salesman Problem (TSP) applied in a warehouse 
environment [25].

This article is part of the topical collection “Innovative Intelligent 
Industrial Production and Logistics 2022” guest edited by Alexander 
Smirnov, Kurosh Madani, Hervé Panetto and Georg Weichhart.

 * Johan Oxenstierna 
 johan.oxenstierna@cs.lth.se

 Jacek Malec 
 jacek.malec@cs.lth.se

 Volker Krueger 
 volker.krueger@cs.lth.se

1 Dept. of Computer Science, Lund University, Lund, Sweden
2 Kairos Logic AB, Lund, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02711-w&domain=pdf
http://orcid.org/0000-0002-6608-9621
http://orcid.org/0000-0002-2121-1937
http://orcid.org/0000-0002-8836-8816


 SN Computer Science           (2024) 5:477   477  Page 2 of 17

SN Computer Science

Henceforth, we refer to this version as the OBP-based 
SLAP. A key advantage of using the OBP within the SLAP 
is the added flexibility and generality of the order on a con-
ceptual level: For example, optimizing the OBP-based SLAP 
gives opportunity to also optimize the TSP-based SLAP 
[23]. When it comes to product locations, the sole differ-
ence between the OBP and the OBP-based SLAP is that 
locations for all products are assumed fixed in the former 
while, in the latter, they are assumed mutable (for a subset 
of locations in our case).

It is of scientific importance to be able to compare opti-
mization approaches and solutions. For the SLAP, this is 
made difficult by the many versions of the problem. As the 
extensive literature review by Charris et al. [7] shows, there 
is little consensus regarding which versions are more impor-
tant, or specifically, which features would represent a stand-
ardized version. Examples of such features are dynamicity, 
warehouse layout, vehicle types, cost functions, reassign-
ment scenarios and picking methodologies. There is also a 
shortage of benchmark datasets for any version of the SLAP, 
which prevents the reproducibility of experiments [2, 16]. 
As part of our contribution for a standardized version, we 
suggest a modified TSPLIB format [26] (section “Datasets”). 
There are several ways in which to balance between simplic-
ity, reproducibility and industrial applicability when devel-
oping SLAP versions and corresponding instances, however. 
From the generalization perspective, our model is advanta-
geous in two main areas: Order-picking methodology and 
warehouse layout. But it is weak in two other areas: dyna-
micity and reassignment scenarios. We describe the meaning 
of these choices further in the light of prior work (section 
“Related Work”) and in our problem formulation (section 
“Problem Formulation”). We invite the community to debate 
which features are more or less important for a standardized 
version.

In section “Optimization Algorithm”, we introduce our 
SLAP optimizer. It is based on the Metropolis algorithm, 
a type of Markov Chain Monte Carlo (MCMC) method. A 
core feature of the optimizer is that the quality of a location 
assignment candidate is retrieved by optimizing an OBP. 
Due to the OBP’s NP-hardness, it must be optimized in a 
way that trades off solution quality with CPU-time. For this 
purpose, we use an OBP optimizer with a high degree of 
computational efficiency [22]. Within the SLAP optimizer, 
the OBP optimizer is still computationally expensive, and 
we show that it can be assisted by fast cost approxima-
tions from a Quadratic Assignment Problem (QAP) model. 
Finally, we test the performance of the SLAP optimizer 
with and without inclusion of the QAP approximations. 
Cost improvements are around 23% over 1 h with the QAP 
model, and 17% without. In summary, we make three con-
crete contributions:

1. Formulation of an OBP-based SLAP optimization model 
and a corresponding benchmark instance standard.

2. QAP approximation model to predict OBP travel costs 
and experiments on generated instances to test whether 
the use of QAP approximations within a SLAP opti-
mizer can be justified.

3. An OBP-based SLAP optimizer (QAP-OBP) and experi-
ments on industry instances to test its computational effi-
ciency. Comparison of results with and without usage of 
QAP approximations.

Related Work

This section goes through general strategies for conducting 
storage location assignment, as well as ways in which their 
quality can be evaluated. Various SLAP formulations and 
proposed optimization algorithms are covered. Our primary 
focus will be on the standard picker-to-parts arrangement. 
We specifically refer to the work of Kübler et al. [18], as 
their proposed model aligns with ours.

There exist numerous general strategies for conducting 
storage location assignment [7]. Three key strategies are 
Dedicated, Class-based and Random:

• Dedicated Each product is assigned to a specific location 
which never changes. This strategy is suitable if the prod-
uct collection changes rarely and simplicity is desired. 
Additionally, human pickers can leverage this strategy 
by familiarizing themselves with specific products and 
their corresponding locations, which might speed up 
their picking [35].

• Random Each product can be assigned any available 
location in the warehouse. This is suitable whenever the 
product collection changes frequently.

• Class-based (zoning) The warehouse is partitioned into 
sections, and the products are classified based on their 
demand. Each class is assigned a zone. The outline of 
the zone can be regarded as dedicated in that it does 
not change, whereas the placement of each product in a 
zone is assumed to be random [21]. Class-based storage 
assignment can therefore be regarded as a middle ground 
between dedicated and random.

The quality of a location assignment is commonly evalu-
ated based on some model of aggregate travel cost. For this 
purpose, a simplified simulation of order-picking in the 
warehouse can be used [7, 21]. Some proposals include the 
simulation of order-picking by the Cube per Order Index 
(COI) [15]. COI includes the volume of a product and the 
frequency with which it is picked (historically or future-
forecasted). Products with high pick frequency and relatively 
low volume are subsequently assigned to locations close to 
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the depot. Since orders may contain products which are not 
located close to each other, COI is only adequate for order-
picking scenarios where orders contain one product and 
vehicles carry one product at a time. This may be sufficient 
for pallet picking or when certain types of robots are used 
[3]. Mantel et al. [21], introduced Order Oriented Slotting 
(OOS) where the number of products in an order may be 
greater than one. A similar model to OOS is used by Fon-
tana and Nepomuceno [10], Lee et al. [20] and Žulj et al. 
[37]. The picking cost of an order in OOS can in some cases 
be modeled using a Quadratic Assignment Problem (QAP) 
[21]. The QAP computes the sum of element-wise products 
of weights and frequencies [1] and for an order this can be 
translated into distances between products and how often 
they are picked. Nevertheless, a QAP on its own is often 
not sufficient to model a SLAP without extensive use of 
heuristics and constraints for warehouse layouts and pick-
ing methodologies [21]. For a layout-agnostic OBP-based 
SLAP, graph-based QAP techniques could be attempted, but 
hitherto they have only been applied on related problems 
[31, 36].

There is only limited research on SLAPs where vehicles 
are expected to carry multiple orders and where an Order 
Batching Problem (OBP) is integrated into the SLAP opti-
mization process. One example is Xiang et al. (2018) and 
[33], who use this approach in a robotic warehouse where 
the vehicles are pods or mobile racks, which is not easily 
comparable to a picker-to-parts system. Another example is 
Kübler et al. [18], which we look closer at below.

Travel distance or time are commonly used to evaluate 
SLAP solution quality in the above mentioned models, but 
there are several alternatives and extensions. Lee et al. [20], 
for example, study the effect of location assignment and traf-
fic congestion in the warehouse. Assigning too many prod-
ucts to locations close to the depot (the goal in common 
COI) may lead to traffic congestion, which should ideally 
be considered in an industrial model. Lee et al. [20], formu-
late Correlated and Traffic Balanced Storage Assignment 
(C&TBSA) as a multi-objective problem with travel cost on 
the one hand, and traffic congestion avoidance on the other. 
Larco et al. [19], include worker welfare in their evaluation 
of solution quality. If picking is conducted by humans who 
move products from shelves onto a vehicle, the weight and 
volume, as well as the height of the shelf the product is 
placed on, can have an impact on worker welfare. Parameters 
such as "ergonomic loading," "human energy expenditure," 
or "worker discomfort" [7] can be used to quantify worker 
welfare.

The SLAP can be categorized into two main groups based 
on the number of location assignments required. Either 
the assignment is a “re-warehousing” operation, which 
means that a large portion of the warehouse’s products are 
(re)assigned [16]. Often, however, only a small subset of 

products are (re)assigned a location and this is called “heal-
ing” [16]. Solution proposals involving healing often look 
closely at different types of scenarios for carrying out initial 
assignments for new products in the warehouse, or reassign-
ments for products already in the warehouse. Kübler et al. 
[18], propose four such scenarios.

1. Empty storage location A product is assigned to a previ-
ously unoccupied location.

2. Direct exchange A product changes location with 
another product.

3. Indirect exchange 1 A product is moved to another loca-
tion which is occupied by another product. The latter 
product is moved to a third, empty location.

4. Indirect exchange 2 A product is moved to a new loca-
tion which is occupied by a second product. The second 
product is moved to a new location which is occupied 
by a third product. The third product is moved to the 
original location of the first product.

The above scenarios are all associated with varying lev-
els of effort, ranging from the lightest in scenario I, to the 
heaviest in IV. Kübler et al. quantify these efforts by includ-
ing both physical and administrative times, which are trans-
formed to effort terms by proposed proportionalities.

Concerning SLAP optimizers, proposals include mod-
els capable of obtaining optimal solutions, such as Mixed 
Integer Linear Programming (MILP), dynamic program-
ming and branch and bound algorithms [7]. The warehouse 
environment is often simplified to a significant degree when 
optimal solutions are sought [7, 13, 16, 19]. The main sim-
plification relates to order-picking using COI or OOS. Other 
simplifications involve limiting the number of products 
[13], number of locations [30], or by requiring the conven-
tional warehouse rack layout [18]. The conventional layout 
assumes Manhattan style blocks of aisles and cross-aisles, 
and it is used almost exclusively in existing literature on the 
SLAP (we are only aware of two exception cases using the 
“fishbone” and “cascade” layouts [6, 7].

Most proposed SLAP optimizers provide non-exact solu-
tions using heuristics or meta-heuristics. One example is 
multi-phase optimization where the first phase proposes 
possible locations for products, and the second phase car-
ries out the assignments and evaluates them [32]. In Kübler 
et al. [18], a heuristic zoning optimizer is used to generate 
location assignments, and a Discrete Evolutionary Particle 
Swarm Optimizer (DEPSO) is used to optimize an OBP for 
the evaluation of the assignments. DEPSO is a modifica-
tion of a standard PSO algorithm that addresses the risk 
of convergence on local minima and allows for a discrete 
search space. Other heuristic or meta-heuristic approaches 
include Genetic and Evolutionary Algorithms [9, 20], Ant 
Colony Optimization [34] and Simulated Annealing [35]. 
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If TSP optimization is desired within a SLAP, S-shape or 
Largest Gap algorithms [28] are often utilized. For TSP-
optimization on unconventional layouts with a pre-computed 
distance matrix, Google OR-tools or Concorde have been 
proposed [22, 27].

Evaluating the quality of results in prior work is chal-
lenging due to the variability of SLAP models. Below are a 
few examples where result quality is judged based on a per-
centage saving in travel distance or time: For conventional 
warehouse layouts, reassignment costs and dynamic picking 
patterns, Kofler et al. [16], report best savings around 21%. 
Kubler et al. (2020), report best savings around 22% in a 
similar scenario. Zhang et al. [35] report best savings around 
18% on simulated data with thousands of product locations, 
but without reassignment costs. In a similar setting, for a few 
hundred products, Trindade et al. (2022) report best savings 
around 33%.

Nested Metropolis Sampling

The proposed optimizer (section “Optimization Algo-
rithm”) is based on a nested Metropolis algorithm first 
introduced by Christen and Fox [8]. The Metropolis algo-
rithm is a type of Markov Chain Monte Carlo (MCMC) 
method, which first draws a sample xi+1 based on a desired 
feature distance (excluding costs) to a previous sample 
xi . The distance is given by some probability distribution 
q
(
xi+1|xi

)
 , and it is usually chosen such that the distance 

between xi+1 and xi is low with a high probability (Mackay 
1998). The accept probability is then computed based on 
some function that takes the costs of the new and previ-
ous samples as input [29]. Common Metropolis sampling 
assumes that there is only one cost function, f ∗ , and since 
we wish to include an approximation of this cost, f  , we 
use a modification [8]. Nested Metropolis sampling is 
shown in flowchart form in Fig. 1.

After a first sample xi has been initialized (i), a new 
sample xi+1 is generated (ii) and its cost approximated 
f
(
xi+1

)
 (iii). If the approximation is deemed strong enough 

(probabilistically) relative to f
(
xi
)
 , the sample is promoted 

(iv) to the next step where its ground-truth cost f ∗
(
xi+1

)
 

is computed (v). The accept filter (vi) is only used for 
promoted samples.

For a cost minimization problem, the promote and accept 
probabilities can be computed based on the following equa-
tions [8]:

(1)�
(
xi+1|xi

)
= min

(
1, f

(
xi
)
∕f
(
xi+1

))

(2)�
∗
(
xi+1|xi

)
= min

(
1, f ∗

(
xi
)
∕f ∗

(
xi+1

))

 where �
(
xi+1|xi

)
 denotes the promote probability and 

�
∗
(
xi+1|xi

)
 the accept probability.

Problem Formulation

Objective Function

The objective function in the OBP-based SLAP is based on 
the ones formulated in Henn and Wäscher [14] and Oxen-
stierna et al. [24], i.e., the minimization of cost in an Order 
Batching Problem (OBP):

where O denotes orders, where B denotes batches and where 
Dx(b) denotes the distance of a TSP solution, i.e., the dis-
tance needed to pick batch b . Batch b is a set of orders and 
v ∈ V  denotes a vehicle. Each vehicle can carry one batch 
and the number of orders that can fit in the batch is governed 
by vehicle capacity (such as dimensions, bins, number of 
orders or products). avb denotes a binary variable set to 1 if 
vehicle v is assigned to pick b and 0 otherwise. Orders con-
sist of products O ∈ 2P , where each product p ∈ P is a tuple 
consisting of a unique key (Stock Keeping Unit), a Cartesian 
location loc(p) , and a positive quantity of how many p are 
available at loc(p) . The locations of all products are given by 
location assignment vector x , where the elements represent 

(3)f ∗(x) = min
∑

b∈B

Dx(b)avb, v ∈ V ,B ⊂ 2O

Fig. 1  Nested Metropolis Sampling. The inner loop computes a cheap 
(in terms of CPU-time) approximation of a sample cost and if the 
approximation is strong, the sample is promoted to the outer loop 
where an expensive ground-truth cost is computed
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products and the indices locations (each index is mapped to 
a Cartesian coordinate).

The mapping of location keys to coordinates and com-
putation of distances between pairs of locations is based on 
a digitization pipeline for warehouses on any 2D obstacle 
layout and usage of the Floyd-Warshall graph algorithm. 
Details on this digitization pipeline and the OBP (including 
TSP-optimization for Dx(b) and usage of vehicle capacity in 
avb ) are beyond the scope of this paper, so for specifics we 
refer to Oxenstierna et al. [24] and Rensburg [27].

The difference between the OBP and the OBP-based 
SLAP mainly concerns product locations. In Oxenstierna, 
van Rensburg, et al. (2021) each product p ∈  “has a [fixed] 
location”, meaning that x in f ∗(x) is immutable. In the OBP-
based SLAP, however, a subset of products Ps ⊂ P do not 
have fixed locations, which means that some elements in 
x can change indices in the vector. The OBP-based SLAP 
objective consists of finding location assignment x such that 
the OBP in Eq. 3 is minimized:

This objective lacks reassignment costs and is therefore a 
version of the “empty storage location” scenario I in Kübler 
et al. [18] (section “Related Work”). Exclusion of reassign-
ment costs is motivated for this scenario, since the initial 
location assignment of new products in a warehouse is not 
optional, but a requirement. The other of Kübler et al.’s sce-
narios are all reassignments. Contrary to the initial assign-
ments that we work with, reassignments are optional and 
potential gains in travel cost must there be weighed against 
reassignment costs.

Although reassignments should ideally be included in a 
complete SLAP model, a standardized SLAP needs to be a 
trade-off between simplicity and complexity. In the TSP-
based SLAP [23] it is shown that the optimization of reas-
signments is NP-hard and not easily combined with order-
picking optimization within a SLAP. The TSP-based SLAP 
includes reassignments, but uses the TSP instead of the OBP 
to optimize order-picking. The OBP-based SLAP excludes 
reassignments, but includes the OBP, a significantly more 
challenging problem than the TSP. As is often the case in lit-
erature on the SLAP, choice of optimization model depends 
on which features are considered more important for the 
usecase at hand.

Fast OBP Cost Approximation

One key difficulty with the OBP-based SLAP is that the 
OBP poses a highly intractable problem. Even for relatively 
small OBP instances, a significant amount of CPU-time is 
needed to obtain substantial cost improvements [18, 22]. In 

(4)argmin
x

∑

b∈B

Dx(b)avb, v ∈ V ,B ⊂ 2O

the case of the OBP-based SLAP, this means that it would 
require a large amount of CPU-time to minimize cost for 
many assignment candidates x (Eq. 4). To resolve this prob-
lem, we propose to include an approximation of f ∗(x):

where w denotes weight, where dx
l1l2

 denotes distance 
between two locations l1, l2 and a(p, l) a function which 
returns 1 if product p is located at location l and 0 otherwise. 
f (x) is the element-wise summation of weights times dis-
tances. The cell values in the weight matrix represent the 
number of times two products, p1, p2 , appear in the same 
order o ∈ O . The (shortest) distances between all pairs of 
product locations are assumed pre-computed and stored in 
memory. We refer to Eq. 5 as the Quadratic Assignment 
Problem (QAP) model. Note that we never minimize it. For 
the f (x) approximation to be of use, we proceed to discuss 
how its ability to predict f ∗(x) can be evaluated.

Assuming a dataset of finite samples with approxi-
mated and ground truth costs 

(
x, f (x), f ∗(x)

)
∈ X, |X| ∈ ℤ

+ , 
f (x), f ∗(x) ∈ ℝ

+ , the predictive quality of f (X) versus f ∗(X) 
is obtainable through softmax cross-entropy [4, 5]:

where ℙ
(
f
(
xi
))

 and ℙ
(
f ∗
(
xi
))

 denote the probabilities of 
approximate and ground truth costs of sample xi , respec-
tively, where 

(
xi, f

(
xi
)
, f

∗(
xi
))

∈ X . L is the loss, i.e., a dis-
tance heuristic between f (X) and f ∗(X) . This approach can 
be extended into Normalized Discounted Cumulative Gain 
(NDCG) [4].

(5)
f (x) =

∑

p1∈P

∑

p2 ∈ P

p1 ≠ p2

∑

l1∈LP

∑

l2 ∈ LP

l1 ≠ l2

wp1p2
dx
l1l2

× ×a
(
p1, l1

)
a
(
p2, l2

)

(6)ℙ
�
f
�
xi
��

=
ef (xi)

∑�X�
j=1

ef (xj)

(7)ℙ
�
f ∗
�
xi
��

=
f ∗(xi)

∑�X�
j=1

f ∗
�
xj
�

(8)L = −
1

|X|
∑

(xi,f (xi),f ∗(xi))
ℙ
(
f ∗
(
xi
))
logℙ

(
f
(
xi
))

(9)NDCG =
DCG

IDCG

(10)DCG =
∑|X|

i=1

rel(�f (X)(i))

log2
(
�f (X)(i) + 1

)

(11)IDCG =
∑|X|

i=1

rel(�f ∗(X)(i))

log2
(
�f ∗(X)(i) + 1

)
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�f (X) is a ranking (an ordering of samples X  accord-
ing to their costs f (X) ) and rel(�f (X)(i)) is the relevance 
at rank �f (X)(i) . IDCG denotes an ideal value, where 
rel(𝜋f ∗(X)(1)) > rel(𝜋f ∗(X)(2)) > ⋯ > rel(𝜋f ∗(X)(|X|)) , i.e., the 
case when the relevance of a sample corresponds with how 
highly it is ranked. Bruch et al. [4] argue that NDCG is a 
stronger choice than softmax cross-entropy whenever cost 
is non-binary, which is the case in f ∗(x) (Eq. 3). In Fig. 13 
(Appendix) an example is shown where NDCG is computed 
from |X| samples.

In summary, we can quantify the predictive quality of 
the QAP model by its ability to rank a list of samples X 
against a ground truth ranking by the OBP optimizer. Since 
the nested Metropolis algorithm in section “Nested Metropo-
lis Sampling” only stores two samples at any iteration, we 
modify the algorithm to instead work with more samples 
(section “Optimization Algorithm”). We also want to avoid 
the computation of f ∗(X) in each iteration, so in the opti-
mization algorithm we only compute f ∗

(
argminxf (X)

)
 . In 

section “Experiments”, we conduct an experiment to test 
the validity of using the NDCG-based f ∗

(
argminxf (X)

)
 in 

SLAP optimization. In section “Datasets” we also discuss 
choice of datatype for the relevance values.

Optimization Algorithm

Overview

The proposed optimization algorithm includes three main 
modules: 1. a sample (location assignment) generator. 2. 
a fast cost approximator based on a model of the Quad-
ratic Assignment Problem (QAP). 3. an Order Batching 
Problem (OBP) optimizer. In this paper, we mainly focus 
on how QAP approximations can be effectively utilized 
within the nested Metropolis sampler described in sec-
tion “Nested Metropolis Sampling”. In sections “Sam-
ple Generator” and “Promote and Accept Thresholds and 
Cost Computations”, we therefore describe two main 
modifications. The final version (QAP-OBP) is shown in 
flowchart form in Fig. 2 and pseudocode in Algorithm 1.

Sample x contains both the assigned products (products 
already in the warehouse) and the unassigned products Ps 
(section “Problem Formulation”). x1 is initialized such that 
products Ps are assigned locations randomly without replace-
ment. Choices for iterations K , the cost distance function Δ 
and constant c1 are discussed in section “Experiments”.

Fig. 2  QAP-OBP optimization algorithm
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Sample Generator

The input to the sample generator (step ii in Fig. 2) is a 
single sample xi and the output is a list of new samples 
Xi+1 . There are two main parameters in use by the sample 
generator. N ∈ ℤ

+ dictates how many new samples are 
generated, i.e., |Xi+1| , and λ ∈ ℝ

+ dictates how much each 
new sample in Xi+1 differs from xi . The way N  and λ are 
utilized to generate new samples is shown in Algorithm 2.

Every time the sample generator is called, an empty list 
is first initialized. Then, for N iterations, a new sample x is 
generated by first copying xi and then by computing m , the 
number of products for which the index in x can change. 
For m we use a truncated Poisson distribution with rate λ 
and upper bound m ≤ |Ps| . A uniform random selection 
of m products, Pm , are then removed from x . For each 
p ∈ Pm , a uniform random free index (either an empty 
location or an index holding a product in Ps ) in x is then 
selected such that the quantity ( q ) of the product does not 
exceed the location’s capacity. After x has been filled, it 
is appended to Xi+1.

Promote and Accept Thresholds and Cost 
Computations

After a list of samples Xi+1 has been generated (step ii in 
Fig. 2), their costs are approximated using the QAP model (iii). 
The sample with the lowest cost approximation is then always 
promoted (iv). Steps ii, iii and iv in both the nested Metropolis 
sampler and QAP-OBP (Figs. 1 and 2, respectively) are the 
same considering that the final output is a single promoted 
sample. There are advantages and disadvantages of both ver-
sions regarding how they conduct this selection. In the nested 
Metropolis sampler, the promote probability depends on the 

ratio of approximated cost between previous and new single 
samples. In QAP-OBP, the sample generator is instead set 
to output N = ||Xi+1

|| candidates, followed by argmin (com-
pare step iv in Figs. 1 and 2). This modification simplifies 
evaluation of the QAP model’s accuracy, since we can set 
up an experiment to compute OBP costs on the same sam-
ples (Fig. 5). Generating multiple samples could also facili-
tate parallelization, which, for future work, could reduce the 
QAP model’s CPU-time. The main consideration, however, 
is that it simplifies the original algorithm for a particularly 
complex optimization scenario, where it cannot be expected 
to behave according to Christen and Fox’s [8] performance 
guarantees. The problem with the original algorithm is that 
it assumes optimal ground-truth costs, but these are not gen-
erally available for OBPs [22] (as far as we are aware, there 
exists no proposal for how to obtain optimal results for but 
the smallest OBP instances within reasonable CPU-time). 
A relatively minor problem with the modification is that it 
requires tuning of the number of samples ( N ) that the sample 
generator is outputting each iteration. The reason we use a 
Metropolis algorithm instead of possibly more capable meta-
heuristic alternatives, is mainly due to implementation. The 
Metropolis algorithm does not have many parameters which 
could be tuned based on iterations K (such as the temperature 
in Simulated Annealing) and therefore, a time-based condition 
can be used instead of K to terminate the algorithm (we will 
use this in section “SLAP optimization with and without QAP 
approximation”).

Concerning computation of f ∗(x) we use the Single Batch 
Iterated (SBI) optimizer and its main features are its high 
computational efficiency and its ability to handle warehouses 
with unconventional rack layouts [22]. OBP optimization 
and its internal use of TSP optimization, is beyond the scope 
of this paper, and we here treat SBI as a black-box which 
outputs a f ∗(x) for Eq. 3. The sample x with the lowest 
f ∗(x) found is always stored throughout the optimization 
procedure (sample storage is omitted in Figs. 1, 2 and the 
pseudo-code).

Datasets

For this paper, we have generated and shared instances in 
L17_533,1 which are based on OBP instances in L6_2032 
and L09_251.3 We also use data from a real warehouse (Aba 

1 https:// github. com/ johan oxens tierna/ L17_ 533, collected 13–02–
2023.
2 https:// github. com/ johan oxens tierna/ OBP_ insta nces, collected 
15–01–2023.
3 https:// github. com/ johan oxens tierna/ L09_ 251, collected 15–01–
2023.

https://github.com/johanoxenstierna/L17_533
https://github.com/johanoxenstierna/OBP_instances
https://github.com/johanoxenstierna/L09_251


 SN Computer Science           (2024) 5:477   477  Page 8 of 17

SN Computer Science

Skol AB). The generated instances use the TSPLIB format 
[26] with certain amendments for the SLAP, including 6 
types of warehouse obstacle layouts, various depot con-
figurations, vehicle capacities and orders (see Fig. 3 for an 
example of one of the layouts). L17_533 does not include 

any unidirectional travel rules, meaning that the distance 
between any two locations is equal both ways. The num-
ber of orders range between 4 to 1000 and number of prod-
ucts range between 10 to 3000. The products that are to be 
assigned a location, Ps , are tagged as “SKUsToSlot” in the 
instance set. The “assignmentOptions” includes the available 
empty locations and how cost is to be computed (it is always 
set to the “empty storage location” scenario). For analysis, 
instances are categorized according to vehicle capacities, 
number of orders, products and parameters N and λ.

The industrial warehouse dataset (Fig.  4) contains 
210,277 products in 37,014 orders collected using batch 
picking over a 4-month period. There are 1289 pick-loca-
tions (in the graph representation) and most batches exist 
within one of six picking zones, but 24.4% include picks 
from several zones. As with the generated instances, shortest 
distances and paths between any two locations are assumed 
equal. For a proof of concept, we select product subsets from 
this data to be of relevance to warehouse management and 
real-world utility, on the one hand, and comparability to 
the generated instances, on the other. We build 150 subsets 
from 3-week periods with selections of between 50–1800 
products for P and between 10 and 225 corresponding prod-
ucts for Ps . The subset selection is random apart from that 
the products in a subset must exist within the same 3 week 
period. Number of free locations is given on a per-product 
basis, since each product has specific constraints regarding 
where it can be placed, and on average it varies between 50 
– 481 locations. For parameters N and λ , we explore suitable 
values on the generated instances within shorter optimiza-
tion runs, followed by longer runs with chosen constants on 
the real dataset.

Experiments

Overview and Constants

The experiments are divided into two parts. The first part 
involves tuning the QAP model and comparing its ability to 
rank SLAP assignment samples against an OBP ground truth 
model and a random baseline (Fig. 5).

A SLAP test-instance (orders with products) is first loaded 
(i) and x1 initialized (products Ps are assigned free locations in 
x1 randomly) (ii). Then, N location assignments, Xi+1 , are gen-
erated according to Algorithm 2 (iii). The cost of the generated 
assignments is estimated using the QAP model and the OBP 
optimizer SBI (iv). The samples and costs are used to com-
pute IDCG and DCG (v). IDCG is computed from the ranking 
of costs according to the OBP optimizer and DCG is com-
puted from the ranking of costs according to the QAP model. 
A random DCG value is also pre-computed using the aver-
age of 106 random rankings. This random baseline represents 

Fig. 3  Example storage assignment of four products and subsequent 
order-picking for the SLAP model used in the paper. Rectangles 
denote warehouse racks. Red and blue diamonds denote origin/des-
tination for picking paths. Colored dots denote products and the four 
orders they belong to. Black crosses denote available locations for the 
new products. Note that products are often more spread out than what 
is shown in this example

Fig. 4  Top-view of the Aba Skol AB warehouse. The picking zones 
are color-coded. The red circle denotes the most commonly used 
depot location
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the case when f
(
Xi+1

)
 and argminx+1f

(
Xi+1

)
 (steps iii and 

iv in Fig. 3) cannot help produce a lower value in  f ∗
(
xi+1

)
 

(step v) [11, 12]. Relevance values rel(�f ∗(X)) and rel(�f (X)) 
are chosen to be the ordinal ranks of samples x according 
to respective cost functions. For N samples, the values are 
rel

(
�f ∗(X)

)
= (�f ∗(X)(N),�f ∗(X)(N − 1),… ,�f ∗(X)(1))  a n d 

rel
(
�f (X)

)
= (�f (X)(N),�f (X)(N − 1),… ,�f (X)(1)) (this corre-

sponds to the set up shown in Fig. 13 in Appendix). The DCG 
value obtained from the QAP model is then used to compute 
NDCG according to Eq. 9 (vi). The predictive quality is finally 
calculated by subtracting the achieved NDCG value with the 
random NDCG baseline, with a positive value implying that 
the QAP model is stronger. We also record the CPU-time 
needed for the QAP model and the OBP-optimizer, respec-
tively. The tuning of the QAP model concerns parameters N 
(number of samples) and λ (rate of change for the samples) 
to maximize NDCG. We further investigate whether NDCG 
is impacted by other factors, including warehouse layout and 
instance size. Instance size is used to provide a quantifica-
tion of instance difficulty, and here we restrict it to number 
of orders, total number of products |P| and products which 
are to be assigned a location |Ps| . The latter number, |Ps| , is 
computed as 5–10% of |P| in the instance.

We proceed with a second experiments part, where we run 
the SLAP optimizer (Algorithm 1) on the industrial instances 
with and without the QAP model. For the experiments without 
the QAP model, N = 1 and lines 11 and 12 in Algorithm 1 are 
removed. This second part is carried out after suitable con-
stants for N and λ values have been found on the L17_533. In 

order to find such constants, we run the steps in Fig. 5 for 10 
N values ranged between 1–200 and 10 λ values set between 
5–50% of |Ps| . For the experiments to test N , we use λ = 15% 
of |Ps| . For the experiment to test λ , we use N = 50 . For the 
cost distance function Δ we use a scaled sigmoid, which is set 
to approach 1 when the ratio f ∗

(
xi
)
∕f ∗

(
xi+1

)
 exceeds 1.05. 

This means that sample xi+1 is unlikely to be accepted if its cost 
is 5% higher than that of xi . For each instance, the global best 
OBP result is tracked and uploaded as the current best result. 
We refer to the documentation in L17_533 for further details. 
We use Intel Core i7-4710MQ 2.5 GZ 4 cores, 32 GB RAM, 
Python3, Cython and C.

Results

The Impact of Parameters N and λ on QAP Predictive 
Quality

Concerning N  , we first observe that the average predic-
tive quality of the QAP model is equivalent to the random 
baseline when N = 1 (Fig. 6). We further observe that mean 
predictive quality rises steadily until N is 20, after which it 
tapers off.

The result clearly shows that the QAP model is able to 
rank samples better than the random baseline (negative val-
ues imply the opposite). The positive initial trend could be 
impacted by the choice of ordinal relevance values rel(�f (X)) 
for the NDCG computation (section “Overview and Con-
stants”), which could favour the baseline for smaller N.

Concerning rate of change of new samples λ , the best 
results are achieved when it is set toward the lower end of the 
5–50% range of ||PS

|| (Fig. 7). This provides some validation 

Fig. 5  Steps involved to obtain QAP predictive quality on samples 
generated from an instance

Fig. 6  Boxplot showing number of samples ( N ) against QAP predic-
tive quality. The red line denotes the NDCG random baseline. The 
box edges show the first and third quartiles of the data (Q1, Q3) and 
the whiskers show (Q1 – 1.5 * IQR, Q3 + 1.5 * IQR), where IQR is 
the Inter Quartile Range
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for the use of a Metropolis algorithm, since it shows that a 
Markov Chain can be used to nudge samples closer towards 
lower costs. Otherwise, NDCG would be similar regardless 
of the x-axis in Fig. 7. This result is in line with Oxenstierna 
et al. [23], where a slightly stronger pattern is observed on 
the related TSP-based SLAP.

The Impact of Other Factors on QAP Predictive Quality

Results for all factors are shown in Tables 1, 2 and 3 
(Appendix). We find that QAP predictive quality decreases 
as instance size increases (Fig. 8). This may be due to that 
the quality of f ∗(x) costs provided by the OBP optimizer 

decrease with instance size (they are sub-optimal, see sec-
tion “Promote and Accept Thresholds and Cost Compu-
tations”), making analysis of results for larger instance 
classes more difficult in general. We find that the fraction 
of CPU-time required by the QAP model versus the OBP 
optimizer is between 0.006–0.019, or around 50–150 times 
faster. The difference is largest for the largest instances and 
smallest for the smallest instances (Table 2). We do not 
observe any relationship between QAP predictive quality 
and warehouse layout.

Overall, the result provides evidence that QAP approxi-
mations of OBP costs within an OBP-based SLAP opti-
mizer may be justified. Its predictive quality may decrease 
with instance size, relative to the OBP optimizer (Fig. 7), 
but its relative usage of CPU-time also decreases. Another 
way to visualize the performance difference between the 
QAP model and the random baseline is through a fre-
quency distribution (Fig. 9).

SLAP Optimization With and Without QAP Approximation

We report results from running the QAP-OBP SLAP opti-
mizer (section “Optimization Algorithm”) on the indus-
trial dataset with and without the use of QAP approxi-
mations. Apart from general settings (section “Overview 
and Constants”), K is set to 108 and the algorithm is set to 
terminate after 60 min (which, given maximum OBP and 
QAP CPU-times, ensures iterations never exceed K ). � is 
set to 10% of ||PS

|| and c1 = 1 . N  is set to 20, which means 
that the QAP model will have a relatively small impact 
on overall CPU-time. N  could theoretically be set to a 
much larger number, but this may not necessarily yield 

Fig. 8  Instance size in terms of number of orders, versus the predic-
tive quality of the QAP model and the random baseline

Fig. 9  Frequency distribution of NDCG values (20 bins) from QAP 
and random ranking of samples when N = 20 and � = 10% (of ||PS

||)Fig. 7  How much new samples are changed compared to previous 
samples ( λ ) against QAP predictive power
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better results. The QAP model in the form of Eq. 5 likely 
needs to be further developed before its extended use can 
be motivated. One risk with setting N  to a large number 
is that the SLAP optimizer will spend too much time in 
search regions with a low QAP cost, rather than in regions 
with a low OBP cost.

In Fig.  10, we see that Algorithm  1, on average, 
improves cost by around 23% in 1 h. Without QAP approx-
imations, cost improves by around 17%.

The size of the instances has a significant impact on 
computational efficiency. In Figs. 11 and 12, we see that 
the impact of instance size, in terms of number of products 
that are assigned a location, | Ps |, has a similar effect on 
computational efficiency regardless of whether the QAP 
is used. The stronger performance of the smaller instances 
can largely be attributed to more samples being generated 
within the 60 min. On average, cost improvement contin-
ues throughout the time, which is explainable due to the 
large SLAP search space.

Conclusion

In this paper, we:

• formulate an optimization model for the Storage Loca-
tion Assignment Problem (SLAP), where the costs of 
assignments are evaluated using Order Batching Prob-
lem (OBP) optimization.

• share generated SLAP test instances, with the goal to 
standardize formats and comparability between solution 
approaches.

• propose a Quadratic Assignment Problem (QAP) model 
to quickly approximate OBP costs in SLAP optimization. 
The QAP model is tested and tuned on the generated 
instances.

• propose a SLAP optimizer (QAP-OBP), which we test 
on industrial instances with a 1 h optimization timeout.

Within the QAP-OBP optimizer, the QAP and OBP 
modules are utilized in a Metropolis algorithm, where sam-
ples are modified by a variable amount each iteration. The 

Fig. 10  SLAP optimization cost improvements with and without the 
QAP model during 1  h. The shaded areas denote 95% confidence 
intervals

Fig. 11  QAP-OBP SLAP cost improvement using QAP approxima-
tions for 5 categories of instance sizes (in terms of | P

s
|). Shaded areas 

denote data within 1 standard deviation

Fig. 12  Same as Fig. 11, but without using QAP approximations
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algorithm is nested such that OBP costs are only computed 
for samples with a relatively strong QAP cost approximation.

In order to motive the use of the QAP model within the 
algorithm, experiments are first conducted to test its predic-
tive quality against costs obtained by the OBP optimizer 
and a random baseline. Results show that QAP predictive 
quality is stronger than the baseline, and that they are around 
50–150 times faster to compute than the cost obtained 
through OBP optimization.

We then proceed to run the SLAP optimizer with and 
without the QAP approximations. We find that the optimizer 
performs better when using the QAP approximations, with 
cost improvements of around 23% after 1 h. This result is 
in line with results in related work on SLAPs that are less 
difficult in some regards (for example concerning warehouse 
layouts), but more difficult in others (dynamicity or larger 
number of products).

For future work, the parameter which controls the num-
ber of samples that should be approximated by the QAP 
model for every OBP cost computation, N , could be tuned. 
The QAP computations could be significantly sped up by 
the use of parallelization and Graphical Processing Units 
(GPU), extending its utility within the SLAP optimizer for 
larger N . Also, alternative optimization approaches could 
be explored. These include meta-heuristic techniques such 
as Simulated Annealing or Particle Swarm Optimization. 
The QAP cost approximator could also be developed for a 
Machine Learning approach and used in a similar fashion as 
the weak estimators in boosting or aggregate bootstrapping. 
The factorial search space remains a fundamental problem 
for learning, however. Finally, we invite discussions into 
how to best represent SLAP features in public benchmark 
data and which features to choose for a standardized version 
of the problem.

Appendix

NDCG flowchart: the below example shows how Normal-
ized Discounted Cumulative Gain (NDCG) can be computed 
from input permutations (products to locations), approxi-
mated ( f  ) and ground truth ( f ∗ ) values. Note that f (X) 
denotes a sorting of X according to the cost valuation of 
elements in the cost step. Also note that relevance values 
can be formulated in several ways.

Fig. 13  NDCG procedure flowchart
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Table 1  Summary of instances and results for different types of warehouse layouts

Also an aggregate of the results concerning the predictive quality of the QAP model
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Table 2  Summary of results with regard to instance size

These results exclude instances with more than 435products. All values are averages over instances with a certain number of products (num_
products)
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Table 3  Results on 60 min optimization runs
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