
Vol.:(0123456789)

SN Computer Science (2024) 5:477
https://doi.org/10.1007/s42979-024-02711-w

SN Computer Science

ORIGINAL RESEARCH

Storage Assignment Using Nested Metropolis Sampling
and Approximations of Order Batching Travel Costs

Johan Oxenstierna1,2  · Jacek Malec1  · Volker Krueger1 

Received: 4 April 2023 / Accepted: 14 February 2024
© The Author(s) 2024

Abstract
The Storage Location Assignment Problem (SLAP) is of central importance in warehouse operations. An important research
challenge lies in generalizing the SLAP such that it is not tied to certain order-picking methodologies, constraints, or ware-
house layouts. We propose the OBP-based SLAP, where the quality of a location assignment is obtained by optimizing an
Order Batching Problem (OBP). For the optimization of the OBP-based SLAP, we propose a nested Metropolis algorithm.
The algorithm includes an OBP-optimizer to obtain the cost of an assignment, as well as a filter which approximates OBP
costs using a model based on the Quadratic Assignment Problem (QAP). In experiments, we tune two key parameters in the
QAP model, and test whether its predictive quality warrants its use within the SLAP optimizer. Results show that the QAP
model’s per-sample accuracy is only marginally better than a random baseline, but that it delivers predictions much faster
than the OBP optimizer, implying that it can be used as an effective filter. We then run the SLAP optimizer with and without
using the QAP model on industrial data. We observe a cost improvement of around 23% over 1 h with the QAP model, and
17% without it. We share results for public instances on the TSPLIB format.

Keywords  Storage location assignment problem · Order batching problem · Quadratic assignment problem · Metropolis
algorithm · Warehousing

Introduction

Charris et al. [7] gives the following definition of a Stor-
age Location Assignment Problem (SLAP): The “allo-
cation of products into a storage space and optimization
of the material handling (…) or storage space utilization
[costs]”. The relationship between material handling costs,
on the one hand, and storage assignment, on the other, can
be showcased in an example: If a vehicle needs to pick a

set of products, its travel cost clearly depends on where the
products are stored in the warehouse. At the same time, the
development of an effective storage strategy needs to con-
sider various features in material handling, such as vehicle
constraints, traffic conventions and picking methodologies.

In this paper, we work with a version of the SLAP which
is particularly generalizable. Kübler et al. [18], name this
version the “joint storage location assignment, order batch-
ing and picker routing problem”. The main characteristic of
this version is the inclusion of two optimization problems
in the SLAP:

1.	 The Order Batching Problem (OBP), where vehicles
are assigned to carry sets of orders (an order is a set of
products) [17].

2.	 The Picker Routing Problem, where a short picking path
of a vehicle is found for the products that the vehicle is
assigned to pick. The Picker Routing Problem is a Trave-
ling Salesman Problem (TSP) applied in a warehouse
environment [25].

This article is part of the topical collection “Innovative Intelligent
Industrial Production and Logistics 2022” guest edited by Alexander
Smirnov, Kurosh Madani, Hervé Panetto and Georg Weichhart.

 *	 Johan Oxenstierna
	 johan.oxenstierna@cs.lth.se

	 Jacek Malec
	 jacek.malec@cs.lth.se

	 Volker Krueger
	 volker.krueger@cs.lth.se

1	 Dept. of Computer Science, Lund University, Lund, Sweden
2	 Kairos Logic AB, Lund, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02711-w&domain=pdf
http://orcid.org/0000-0002-6608-9621
http://orcid.org/0000-0002-2121-1937
http://orcid.org/0000-0002-8836-8816

	 SN Computer Science (2024) 5:477 477   Page 2 of 17

SN Computer Science

Henceforth, we refer to this version as the OBP-based
SLAP. A key advantage of using the OBP within the SLAP
is the added flexibility and generality of the order on a con-
ceptual level: For example, optimizing the OBP-based SLAP
gives opportunity to also optimize the TSP-based SLAP
[23]. When it comes to product locations, the sole differ-
ence between the OBP and the OBP-based SLAP is that
locations for all products are assumed fixed in the former
while, in the latter, they are assumed mutable (for a subset
of locations in our case).

It is of scientific importance to be able to compare opti-
mization approaches and solutions. For the SLAP, this is
made difficult by the many versions of the problem. As the
extensive literature review by Charris et al. [7] shows, there
is little consensus regarding which versions are more impor-
tant, or specifically, which features would represent a stand-
ardized version. Examples of such features are dynamicity,
warehouse layout, vehicle types, cost functions, reassign-
ment scenarios and picking methodologies. There is also a
shortage of benchmark datasets for any version of the SLAP,
which prevents the reproducibility of experiments [2, 16].
As part of our contribution for a standardized version, we
suggest a modified TSPLIB format [26] (section “Datasets”).
There are several ways in which to balance between simplic-
ity, reproducibility and industrial applicability when devel-
oping SLAP versions and corresponding instances, however.
From the generalization perspective, our model is advanta-
geous in two main areas: Order-picking methodology and
warehouse layout. But it is weak in two other areas: dyna-
micity and reassignment scenarios. We describe the meaning
of these choices further in the light of prior work (section
“Related Work”) and in our problem formulation (section
“Problem Formulation”). We invite the community to debate
which features are more or less important for a standardized
version.

In section “Optimization Algorithm”, we introduce our
SLAP optimizer. It is based on the Metropolis algorithm,
a type of Markov Chain Monte Carlo (MCMC) method. A
core feature of the optimizer is that the quality of a location
assignment candidate is retrieved by optimizing an OBP.
Due to the OBP’s NP-hardness, it must be optimized in a
way that trades off solution quality with CPU-time. For this
purpose, we use an OBP optimizer with a high degree of
computational efficiency [22]. Within the SLAP optimizer,
the OBP optimizer is still computationally expensive, and
we show that it can be assisted by fast cost approxima-
tions from a Quadratic Assignment Problem (QAP) model.
Finally, we test the performance of the SLAP optimizer
with and without inclusion of the QAP approximations.
Cost improvements are around 23% over 1 h with the QAP
model, and 17% without. In summary, we make three con-
crete contributions:

1.	 Formulation of an OBP-based SLAP optimization model
and a corresponding benchmark instance standard.

2.	 QAP approximation model to predict OBP travel costs
and experiments on generated instances to test whether
the use of QAP approximations within a SLAP opti-
mizer can be justified.

3.	 An OBP-based SLAP optimizer (QAP-OBP) and experi-
ments on industry instances to test its computational effi-
ciency. Comparison of results with and without usage of
QAP approximations.

Related Work

This section goes through general strategies for conducting
storage location assignment, as well as ways in which their
quality can be evaluated. Various SLAP formulations and
proposed optimization algorithms are covered. Our primary
focus will be on the standard picker-to-parts arrangement.
We specifically refer to the work of Kübler et al. [18], as
their proposed model aligns with ours.

There exist numerous general strategies for conducting
storage location assignment [7]. Three key strategies are
Dedicated, Class-based and Random:

•	 Dedicated Each product is assigned to a specific location
which never changes. This strategy is suitable if the prod-
uct collection changes rarely and simplicity is desired.
Additionally, human pickers can leverage this strategy
by familiarizing themselves with specific products and
their corresponding locations, which might speed up
their picking [35].

•	 Random Each product can be assigned any available
location in the warehouse. This is suitable whenever the
product collection changes frequently.

•	 Class-based (zoning) The warehouse is partitioned into
sections, and the products are classified based on their
demand. Each class is assigned a zone. The outline of
the zone can be regarded as dedicated in that it does
not change, whereas the placement of each product in a
zone is assumed to be random [21]. Class-based storage
assignment can therefore be regarded as a middle ground
between dedicated and random.

The quality of a location assignment is commonly evalu-
ated based on some model of aggregate travel cost. For this
purpose, a simplified simulation of order-picking in the
warehouse can be used [7, 21]. Some proposals include the
simulation of order-picking by the Cube per Order Index
(COI) [15]. COI includes the volume of a product and the
frequency with which it is picked (historically or future-
forecasted). Products with high pick frequency and relatively
low volume are subsequently assigned to locations close to

SN Computer Science (2024) 5:477 	 Page 3 of 17  477

SN Computer Science

the depot. Since orders may contain products which are not
located close to each other, COI is only adequate for order-
picking scenarios where orders contain one product and
vehicles carry one product at a time. This may be sufficient
for pallet picking or when certain types of robots are used
[3]. Mantel et al. [21], introduced Order Oriented Slotting
(OOS) where the number of products in an order may be
greater than one. A similar model to OOS is used by Fon-
tana and Nepomuceno [10], Lee et al. [20] and Žulj et al.
[37]. The picking cost of an order in OOS can in some cases
be modeled using a Quadratic Assignment Problem (QAP)
[21]. The QAP computes the sum of element-wise products
of weights and frequencies [1] and for an order this can be
translated into distances between products and how often
they are picked. Nevertheless, a QAP on its own is often
not sufficient to model a SLAP without extensive use of
heuristics and constraints for warehouse layouts and pick-
ing methodologies [21]. For a layout-agnostic OBP-based
SLAP, graph-based QAP techniques could be attempted, but
hitherto they have only been applied on related problems
[31, 36].

There is only limited research on SLAPs where vehicles
are expected to carry multiple orders and where an Order
Batching Problem (OBP) is integrated into the SLAP opti-
mization process. One example is Xiang et al. (2018) and
[33], who use this approach in a robotic warehouse where
the vehicles are pods or mobile racks, which is not easily
comparable to a picker-to-parts system. Another example is
Kübler et al. [18], which we look closer at below.

Travel distance or time are commonly used to evaluate
SLAP solution quality in the above mentioned models, but
there are several alternatives and extensions. Lee et al. [20],
for example, study the effect of location assignment and traf-
fic congestion in the warehouse. Assigning too many prod-
ucts to locations close to the depot (the goal in common
COI) may lead to traffic congestion, which should ideally
be considered in an industrial model. Lee et al. [20], formu-
late Correlated and Traffic Balanced Storage Assignment
(C&TBSA) as a multi-objective problem with travel cost on
the one hand, and traffic congestion avoidance on the other.
Larco et al. [19], include worker welfare in their evaluation
of solution quality. If picking is conducted by humans who
move products from shelves onto a vehicle, the weight and
volume, as well as the height of the shelf the product is
placed on, can have an impact on worker welfare. Parameters
such as "ergonomic loading," "human energy expenditure,"
or "worker discomfort" [7] can be used to quantify worker
welfare.

The SLAP can be categorized into two main groups based
on the number of location assignments required. Either
the assignment is a “re-warehousing” operation, which
means that a large portion of the warehouse’s products are
(re)assigned [16]. Often, however, only a small subset of

products are (re)assigned a location and this is called “heal-
ing” [16]. Solution proposals involving healing often look
closely at different types of scenarios for carrying out initial
assignments for new products in the warehouse, or reassign-
ments for products already in the warehouse. Kübler et al.
[18], propose four such scenarios.

1.	 Empty storage location A product is assigned to a previ-
ously unoccupied location.

2.	 Direct exchange A product changes location with
another product.

3.	 Indirect exchange 1 A product is moved to another loca-
tion which is occupied by another product. The latter
product is moved to a third, empty location.

4.	 Indirect exchange 2 A product is moved to a new loca-
tion which is occupied by a second product. The second
product is moved to a new location which is occupied
by a third product. The third product is moved to the
original location of the first product.

The above scenarios are all associated with varying lev-
els of effort, ranging from the lightest in scenario I, to the
heaviest in IV. Kübler et al. quantify these efforts by includ-
ing both physical and administrative times, which are trans-
formed to effort terms by proposed proportionalities.

Concerning SLAP optimizers, proposals include mod-
els capable of obtaining optimal solutions, such as Mixed
Integer Linear Programming (MILP), dynamic program-
ming and branch and bound algorithms [7]. The warehouse
environment is often simplified to a significant degree when
optimal solutions are sought [7, 13, 16, 19]. The main sim-
plification relates to order-picking using COI or OOS. Other
simplifications involve limiting the number of products
[13], number of locations [30], or by requiring the conven-
tional warehouse rack layout [18]. The conventional layout
assumes Manhattan style blocks of aisles and cross-aisles,
and it is used almost exclusively in existing literature on the
SLAP (we are only aware of two exception cases using the
“fishbone” and “cascade” layouts [6, 7].

Most proposed SLAP optimizers provide non-exact solu-
tions using heuristics or meta-heuristics. One example is
multi-phase optimization where the first phase proposes
possible locations for products, and the second phase car-
ries out the assignments and evaluates them [32]. In Kübler
et al. [18], a heuristic zoning optimizer is used to generate
location assignments, and a Discrete Evolutionary Particle
Swarm Optimizer (DEPSO) is used to optimize an OBP for
the evaluation of the assignments. DEPSO is a modifica-
tion of a standard PSO algorithm that addresses the risk
of convergence on local minima and allows for a discrete
search space. Other heuristic or meta-heuristic approaches
include Genetic and Evolutionary Algorithms [9, 20], Ant
Colony Optimization [34] and Simulated Annealing [35].

	 SN Computer Science (2024) 5:477 477   Page 4 of 17

SN Computer Science

If TSP optimization is desired within a SLAP, S-shape or
Largest Gap algorithms [28] are often utilized. For TSP-
optimization on unconventional layouts with a pre-computed
distance matrix, Google OR-tools or Concorde have been
proposed [22, 27].

Evaluating the quality of results in prior work is chal-
lenging due to the variability of SLAP models. Below are a
few examples where result quality is judged based on a per-
centage saving in travel distance or time: For conventional
warehouse layouts, reassignment costs and dynamic picking
patterns, Kofler et al. [16], report best savings around 21%.
Kubler et al. (2020), report best savings around 22% in a
similar scenario. Zhang et al. [35] report best savings around
18% on simulated data with thousands of product locations,
but without reassignment costs. In a similar setting, for a few
hundred products, Trindade et al. (2022) report best savings
around 33%.

Nested Metropolis Sampling

The proposed optimizer (section “Optimization Algo-
rithm”) is based on a nested Metropolis algorithm first
introduced by Christen and Fox [8]. The Metropolis algo-
rithm is a type of Markov Chain Monte Carlo (MCMC)
method, which first draws a sample xi+1 based on a desired
feature distance (excluding costs) to a previous sample
xi . The distance is given by some probability distribution
q
(
xi+1|xi

)
 , and it is usually chosen such that the distance

between xi+1 and xi is low with a high probability (Mackay
1998). The accept probability is then computed based on
some function that takes the costs of the new and previ-
ous samples as input [29]. Common Metropolis sampling
assumes that there is only one cost function, f ∗ , and since
we wish to include an approximation of this cost, f  , we
use a modification [8]. Nested Metropolis sampling is
shown in flowchart form in Fig. 1.

After a first sample xi has been initialized (i), a new
sample xi+1 is generated (ii) and its cost approximated
f
(
xi+1

)
 (iii). If the approximation is deemed strong enough

(probabilistically) relative to f
(
xi
)
 , the sample is promoted

(iv) to the next step where its ground-truth cost f ∗
(
xi+1

)

is computed (v). The accept filter (vi) is only used for
promoted samples.

For a cost minimization problem, the promote and accept
probabilities can be computed based on the following equa-
tions [8]:

(1)�
(
xi+1|xi

)
= min

(
1, f

(
xi
)
∕f
(
xi+1

))

(2)�
∗
(
xi+1|xi

)
= min

(
1, f ∗

(
xi
)
∕f ∗

(
xi+1

))

 where �
(
xi+1|xi

)
 denotes the promote probability and

�
∗
(
xi+1|xi

)
 the accept probability.

Problem Formulation

Objective Function

The objective function in the OBP-based SLAP is based on
the ones formulated in Henn and Wäscher [14] and Oxen-
stierna et al. [24], i.e., the minimization of cost in an Order
Batching Problem (OBP):

where O denotes orders, where B denotes batches and where
Dx(b) denotes the distance of a TSP solution, i.e., the dis-
tance needed to pick batch b . Batch b is a set of orders and
v ∈ V denotes a vehicle. Each vehicle can carry one batch
and the number of orders that can fit in the batch is governed
by vehicle capacity (such as dimensions, bins, number of
orders or products). avb denotes a binary variable set to 1 if
vehicle v is assigned to pick b and 0 otherwise. Orders con-
sist of products O ∈ 2P , where each product p ∈ P is a tuple
consisting of a unique key (Stock Keeping Unit), a Cartesian
location loc(p) , and a positive quantity of how many p are
available at loc(p) . The locations of all products are given by
location assignment vector x , where the elements represent

(3)f ∗(x) = min
∑

b∈B

Dx(b)avb, v ∈ V ,B ⊂ 2O

Fig. 1   Nested Metropolis Sampling. The inner loop computes a cheap
(in terms of CPU-time) approximation of a sample cost and if the
approximation is strong, the sample is promoted to the outer loop
where an expensive ground-truth cost is computed

SN Computer Science (2024) 5:477 	 Page 5 of 17  477

SN Computer Science

products and the indices locations (each index is mapped to
a Cartesian coordinate).

The mapping of location keys to coordinates and com-
putation of distances between pairs of locations is based on
a digitization pipeline for warehouses on any 2D obstacle
layout and usage of the Floyd-Warshall graph algorithm.
Details on this digitization pipeline and the OBP (including
TSP-optimization for Dx(b) and usage of vehicle capacity in
avb ) are beyond the scope of this paper, so for specifics we
refer to Oxenstierna et al. [24] and Rensburg [27].

The difference between the OBP and the OBP-based
SLAP mainly concerns product locations. In Oxenstierna,
van Rensburg, et al. (2021) each product p ∈  “has a [fixed]
location”, meaning that x in f ∗(x) is immutable. In the OBP-
based SLAP, however, a subset of products Ps ⊂ P do not
have fixed locations, which means that some elements in
x can change indices in the vector. The OBP-based SLAP
objective consists of finding location assignment x such that
the OBP in Eq. 3 is minimized:

This objective lacks reassignment costs and is therefore a
version of the “empty storage location” scenario I in Kübler
et al. [18] (section “Related Work”). Exclusion of reassign-
ment costs is motivated for this scenario, since the initial
location assignment of new products in a warehouse is not
optional, but a requirement. The other of Kübler et al.’s sce-
narios are all reassignments. Contrary to the initial assign-
ments that we work with, reassignments are optional and
potential gains in travel cost must there be weighed against
reassignment costs.

Although reassignments should ideally be included in a
complete SLAP model, a standardized SLAP needs to be a
trade-off between simplicity and complexity. In the TSP-
based SLAP [23] it is shown that the optimization of reas-
signments is NP-hard and not easily combined with order-
picking optimization within a SLAP. The TSP-based SLAP
includes reassignments, but uses the TSP instead of the OBP
to optimize order-picking. The OBP-based SLAP excludes
reassignments, but includes the OBP, a significantly more
challenging problem than the TSP. As is often the case in lit-
erature on the SLAP, choice of optimization model depends
on which features are considered more important for the
usecase at hand.

Fast OBP Cost Approximation

One key difficulty with the OBP-based SLAP is that the
OBP poses a highly intractable problem. Even for relatively
small OBP instances, a significant amount of CPU-time is
needed to obtain substantial cost improvements [18, 22]. In

(4)argmin
x

∑

b∈B

Dx(b)avb, v ∈ V ,B ⊂ 2O

the case of the OBP-based SLAP, this means that it would
require a large amount of CPU-time to minimize cost for
many assignment candidates x (Eq. 4). To resolve this prob-
lem, we propose to include an approximation of f ∗(x):

where w denotes weight, where dx
l1l2

 denotes distance
between two locations l1, l2 and a(p, l) a function which
returns 1 if product p is located at location l and 0 otherwise.
f (x) is the element-wise summation of weights times dis-
tances. The cell values in the weight matrix represent the
number of times two products, p1, p2 , appear in the same
order o ∈ O . The (shortest) distances between all pairs of
product locations are assumed pre-computed and stored in
memory. We refer to Eq. 5 as the Quadratic Assignment
Problem (QAP) model. Note that we never minimize it. For
the f (x) approximation to be of use, we proceed to discuss
how its ability to predict f ∗(x) can be evaluated.

Assuming a dataset of finite samples with approxi-
mated and ground truth costs

(
x, f (x), f ∗(x)

)
∈ X, |X| ∈ ℤ

+ ,
f (x), f ∗(x) ∈ ℝ

+ , the predictive quality of f (X) versus f ∗(X)
is obtainable through softmax cross-entropy [4, 5]:

where ℙ
(
f
(
xi
))

 and ℙ
(
f ∗
(
xi
))

 denote the probabilities of
approximate and ground truth costs of sample xi , respec-
tively, where

(
xi, f

(
xi
)
, f

∗(
xi
))

∈ X . L is the loss, i.e., a dis-
tance heuristic between f (X) and f ∗(X) . This approach can
be extended into Normalized Discounted Cumulative Gain
(NDCG) [4].

(5)
f (x) =

∑

p1∈P

∑

p2 ∈ P

p1 ≠ p2

∑

l1∈LP

∑

l2 ∈ LP

l1 ≠ l2

wp1p2
dx
l1l2

× ×a
(
p1, l1

)
a
(
p2, l2

)

(6)ℙ
�
f
�
xi
��

=
ef (xi)

∑�X�
j=1

ef (xj)

(7)ℙ
�
f ∗
�
xi
��

=
f ∗(xi)

∑�X�
j=1

f ∗
�
xj
�

(8)L = −
1

|X|
∑

(xi,f (xi),f ∗(xi))
ℙ
(
f ∗
(
xi
))
logℙ

(
f
(
xi
))

(9)NDCG =
DCG

IDCG

(10)DCG =
∑|X|

i=1

rel(�f (X)(i))

log2
(
�f (X)(i) + 1

)

(11)IDCG =
∑|X|

i=1

rel(�f ∗(X)(i))

log2
(
�f ∗(X)(i) + 1

)

	 SN Computer Science (2024) 5:477 477   Page 6 of 17

SN Computer Science

�f (X) is a ranking (an ordering of samples X accord-
ing to their costs f (X) ) and rel(�f (X)(i)) is the relevance
at rank �f (X)(i) . IDCG denotes an ideal value, where
rel(𝜋f ∗(X)(1)) > rel(𝜋f ∗(X)(2)) > ⋯ > rel(𝜋f ∗(X)(|X|)) , i.e., the
case when the relevance of a sample corresponds with how
highly it is ranked. Bruch et al. [4] argue that NDCG is a
stronger choice than softmax cross-entropy whenever cost
is non-binary, which is the case in f ∗(x) (Eq. 3). In Fig. 13
(Appendix) an example is shown where NDCG is computed
from |X| samples.

In summary, we can quantify the predictive quality of
the QAP model by its ability to rank a list of samples X
against a ground truth ranking by the OBP optimizer. Since
the nested Metropolis algorithm in section “Nested Metropo-
lis Sampling” only stores two samples at any iteration, we
modify the algorithm to instead work with more samples
(section “Optimization Algorithm”). We also want to avoid
the computation of f ∗(X) in each iteration, so in the opti-
mization algorithm we only compute f ∗

(
argminxf (X)

)
 . In

section “Experiments”, we conduct an experiment to test
the validity of using the NDCG-based f ∗

(
argminxf (X)

)
 in

SLAP optimization. In section “Datasets” we also discuss
choice of datatype for the relevance values.

Optimization Algorithm

Overview

The proposed optimization algorithm includes three main
modules: 1. a sample (location assignment) generator. 2.
a fast cost approximator based on a model of the Quad-
ratic Assignment Problem (QAP). 3. an Order Batching
Problem (OBP) optimizer. In this paper, we mainly focus
on how QAP approximations can be effectively utilized
within the nested Metropolis sampler described in sec-
tion “Nested Metropolis Sampling”. In sections “Sam-
ple Generator” and “Promote and Accept Thresholds and
Cost Computations”, we therefore describe two main
modifications. The final version (QAP-OBP) is shown in
flowchart form in Fig. 2 and pseudocode in Algorithm 1.

Sample x contains both the assigned products (products
already in the warehouse) and the unassigned products Ps
(section “Problem Formulation”). x1 is initialized such that
products Ps are assigned locations randomly without replace-
ment. Choices for iterations K , the cost distance function Δ
and constant c1 are discussed in section “Experiments”.

Fig. 2   QAP-OBP optimization algorithm

SN Computer Science (2024) 5:477 	 Page 7 of 17  477

SN Computer Science

Sample Generator

The input to the sample generator (step ii in Fig. 2) is a
single sample xi and the output is a list of new samples
Xi+1 . There are two main parameters in use by the sample
generator. N ∈ ℤ

+ dictates how many new samples are
generated, i.e., |Xi+1| , and λ ∈ ℝ

+ dictates how much each
new sample in Xi+1 differs from xi . The way N and λ are
utilized to generate new samples is shown in Algorithm 2.

Every time the sample generator is called, an empty list
is first initialized. Then, for N iterations, a new sample x is
generated by first copying xi and then by computing m , the
number of products for which the index in x can change.
For m we use a truncated Poisson distribution with rate λ
and upper bound m ≤ |Ps| . A uniform random selection
of m products, Pm , are then removed from x . For each
p ∈ Pm , a uniform random free index (either an empty
location or an index holding a product in Ps ) in x is then
selected such that the quantity ( q ) of the product does not
exceed the location’s capacity. After x has been filled, it
is appended to Xi+1.

Promote and Accept Thresholds and Cost
Computations

After a list of samples Xi+1 has been generated (step ii in
Fig. 2), their costs are approximated using the QAP model (iii).
The sample with the lowest cost approximation is then always
promoted (iv). Steps ii, iii and iv in both the nested Metropolis
sampler and QAP-OBP (Figs. 1 and 2, respectively) are the
same considering that the final output is a single promoted
sample. There are advantages and disadvantages of both ver-
sions regarding how they conduct this selection. In the nested
Metropolis sampler, the promote probability depends on the

ratio of approximated cost between previous and new single
samples. In QAP-OBP, the sample generator is instead set
to output N = ||Xi+1

|| candidates, followed by argmin (com-
pare step iv in Figs. 1 and 2). This modification simplifies
evaluation of the QAP model’s accuracy, since we can set
up an experiment to compute OBP costs on the same sam-
ples (Fig. 5). Generating multiple samples could also facili-
tate parallelization, which, for future work, could reduce the
QAP model’s CPU-time. The main consideration, however,
is that it simplifies the original algorithm for a particularly
complex optimization scenario, where it cannot be expected
to behave according to Christen and Fox’s [8] performance
guarantees. The problem with the original algorithm is that
it assumes optimal ground-truth costs, but these are not gen-
erally available for OBPs [22] (as far as we are aware, there
exists no proposal for how to obtain optimal results for but
the smallest OBP instances within reasonable CPU-time).
A relatively minor problem with the modification is that it
requires tuning of the number of samples ( N ) that the sample
generator is outputting each iteration. The reason we use a
Metropolis algorithm instead of possibly more capable meta-
heuristic alternatives, is mainly due to implementation. The
Metropolis algorithm does not have many parameters which
could be tuned based on iterations K (such as the temperature
in Simulated Annealing) and therefore, a time-based condition
can be used instead of K to terminate the algorithm (we will
use this in section “SLAP optimization with and without QAP
approximation”).

Concerning computation of f ∗(x) we use the Single Batch
Iterated (SBI) optimizer and its main features are its high
computational efficiency and its ability to handle warehouses
with unconventional rack layouts [22]. OBP optimization
and its internal use of TSP optimization, is beyond the scope
of this paper, and we here treat SBI as a black-box which
outputs a f ∗(x) for Eq. 3. The sample x with the lowest
f ∗(x) found is always stored throughout the optimization
procedure (sample storage is omitted in Figs. 1, 2 and the
pseudo-code).

Datasets

For this paper, we have generated and shared instances in
L17_533,1 which are based on OBP instances in L6_2032
and L09_251.3 We also use data from a real warehouse (Aba

1  https://​github.​com/​johan​oxens​tierna/​L17_​533, collected 13–02–
2023.
2  https://​github.​com/​johan​oxens​tierna/​OBP_​insta​nces, collected
15–01–2023.
3  https://​github.​com/​johan​oxens​tierna/​L09_​251, collected 15–01–
2023.

https://github.com/johanoxenstierna/L17_533
https://github.com/johanoxenstierna/OBP_instances
https://github.com/johanoxenstierna/L09_251

	 SN Computer Science (2024) 5:477 477   Page 8 of 17

SN Computer Science

Skol AB). The generated instances use the TSPLIB format
[26] with certain amendments for the SLAP, including 6
types of warehouse obstacle layouts, various depot con-
figurations, vehicle capacities and orders (see Fig. 3 for an
example of one of the layouts). L17_533 does not include

any unidirectional travel rules, meaning that the distance
between any two locations is equal both ways. The num-
ber of orders range between 4 to 1000 and number of prod-
ucts range between 10 to 3000. The products that are to be
assigned a location, Ps , are tagged as “SKUsToSlot” in the
instance set. The “assignmentOptions” includes the available
empty locations and how cost is to be computed (it is always
set to the “empty storage location” scenario). For analysis,
instances are categorized according to vehicle capacities,
number of orders, products and parameters N and λ.

The industrial warehouse dataset (Fig. 4) contains
210,277 products in 37,014 orders collected using batch
picking over a 4-month period. There are 1289 pick-loca-
tions (in the graph representation) and most batches exist
within one of six picking zones, but 24.4% include picks
from several zones. As with the generated instances, shortest
distances and paths between any two locations are assumed
equal. For a proof of concept, we select product subsets from
this data to be of relevance to warehouse management and
real-world utility, on the one hand, and comparability to
the generated instances, on the other. We build 150 subsets
from 3-week periods with selections of between 50–1800
products for P and between 10 and 225 corresponding prod-
ucts for Ps . The subset selection is random apart from that
the products in a subset must exist within the same 3 week
period. Number of free locations is given on a per-product
basis, since each product has specific constraints regarding
where it can be placed, and on average it varies between 50
– 481 locations. For parameters N and λ , we explore suitable
values on the generated instances within shorter optimiza-
tion runs, followed by longer runs with chosen constants on
the real dataset.

Experiments

Overview and Constants

The experiments are divided into two parts. The first part
involves tuning the QAP model and comparing its ability to
rank SLAP assignment samples against an OBP ground truth
model and a random baseline (Fig. 5).

A SLAP test-instance (orders with products) is first loaded
(i) and x1 initialized (products Ps are assigned free locations in
x1 randomly) (ii). Then, N location assignments, Xi+1 , are gen-
erated according to Algorithm 2 (iii). The cost of the generated
assignments is estimated using the QAP model and the OBP
optimizer SBI (iv). The samples and costs are used to com-
pute IDCG and DCG (v). IDCG is computed from the ranking
of costs according to the OBP optimizer and DCG is com-
puted from the ranking of costs according to the QAP model.
A random DCG value is also pre-computed using the aver-
age of 106 random rankings. This random baseline represents

Fig. 3   Example storage assignment of four products and subsequent
order-picking for the SLAP model used in the paper. Rectangles
denote warehouse racks. Red and blue diamonds denote origin/des-
tination for picking paths. Colored dots denote products and the four
orders they belong to. Black crosses denote available locations for the
new products. Note that products are often more spread out than what
is shown in this example

Fig. 4   Top-view of the Aba Skol AB warehouse. The picking zones
are color-coded. The red circle denotes the most commonly used
depot location

SN Computer Science (2024) 5:477 	 Page 9 of 17  477

SN Computer Science

the case when f
(
Xi+1

)
 and argminx+1f

(
Xi+1

)
 (steps iii and

iv in Fig. 3) cannot help produce a lower value in f ∗
(
xi+1

)

(step v) [11, 12]. Relevance values rel(�f ∗(X)) and rel(�f (X))
are chosen to be the ordinal ranks of samples x according
to respective cost functions. For N samples, the values are
rel

(
�f ∗(X)

)
= (�f ∗(X)(N),�f ∗(X)(N − 1),… ,�f ∗(X)(1)) a n d

rel
(
�f (X)

)
= (�f (X)(N),�f (X)(N − 1),… ,�f (X)(1)) (this corre-

sponds to the set up shown in Fig. 13 in Appendix). The DCG
value obtained from the QAP model is then used to compute
NDCG according to Eq. 9 (vi). The predictive quality is finally
calculated by subtracting the achieved NDCG value with the
random NDCG baseline, with a positive value implying that
the QAP model is stronger. We also record the CPU-time
needed for the QAP model and the OBP-optimizer, respec-
tively. The tuning of the QAP model concerns parameters N
(number of samples) and λ (rate of change for the samples)
to maximize NDCG. We further investigate whether NDCG
is impacted by other factors, including warehouse layout and
instance size. Instance size is used to provide a quantifica-
tion of instance difficulty, and here we restrict it to number
of orders, total number of products |P| and products which
are to be assigned a location |Ps| . The latter number, |Ps| , is
computed as 5–10% of |P| in the instance.

We proceed with a second experiments part, where we run
the SLAP optimizer (Algorithm 1) on the industrial instances
with and without the QAP model. For the experiments without
the QAP model, N = 1 and lines 11 and 12 in Algorithm 1 are
removed. This second part is carried out after suitable con-
stants for N and λ values have been found on the L17_533. In

order to find such constants, we run the steps in Fig. 5 for 10
N values ranged between 1–200 and 10 λ values set between
5–50% of |Ps| . For the experiments to test N , we use λ = 15%
of |Ps| . For the experiment to test λ , we use N = 50 . For the
cost distance function Δ we use a scaled sigmoid, which is set
to approach 1 when the ratio f ∗

(
xi
)
∕f ∗

(
xi+1

)
 exceeds 1.05.

This means that sample xi+1 is unlikely to be accepted if its cost
is 5% higher than that of xi . For each instance, the global best
OBP result is tracked and uploaded as the current best result.
We refer to the documentation in L17_533 for further details.
We use Intel Core i7-4710MQ 2.5 GZ 4 cores, 32 GB RAM,
Python3, Cython and C.

Results

The Impact of Parameters N and λ on QAP Predictive
Quality

Concerning N  , we first observe that the average predic-
tive quality of the QAP model is equivalent to the random
baseline when N = 1 (Fig. 6). We further observe that mean
predictive quality rises steadily until N is 20, after which it
tapers off.

The result clearly shows that the QAP model is able to
rank samples better than the random baseline (negative val-
ues imply the opposite). The positive initial trend could be
impacted by the choice of ordinal relevance values rel(�f (X))
for the NDCG computation (section “Overview and Con-
stants”), which could favour the baseline for smaller N.

Concerning rate of change of new samples λ , the best
results are achieved when it is set toward the lower end of the
5–50% range of ||PS

|| (Fig. 7). This provides some validation

Fig. 5   Steps involved to obtain QAP predictive quality on samples
generated from an instance

Fig. 6   Boxplot showing number of samples ( N ) against QAP predic-
tive quality. The red line denotes the NDCG random baseline. The
box edges show the first and third quartiles of the data (Q1, Q3) and
the whiskers show (Q1 – 1.5 * IQR, Q3 + 1.5 * IQR), where IQR is
the Inter Quartile Range

	 SN Computer Science (2024) 5:477 477   Page 10 of 17

SN Computer Science

for the use of a Metropolis algorithm, since it shows that a
Markov Chain can be used to nudge samples closer towards
lower costs. Otherwise, NDCG would be similar regardless
of the x-axis in Fig. 7. This result is in line with Oxenstierna
et al. [23], where a slightly stronger pattern is observed on
the related TSP-based SLAP.

The Impact of Other Factors on QAP Predictive Quality

Results for all factors are shown in Tables 1, 2 and 3
(Appendix). We find that QAP predictive quality decreases
as instance size increases (Fig. 8). This may be due to that
the quality of f ∗(x) costs provided by the OBP optimizer

decrease with instance size (they are sub-optimal, see sec-
tion “Promote and Accept Thresholds and Cost Compu-
tations”), making analysis of results for larger instance
classes more difficult in general. We find that the fraction
of CPU-time required by the QAP model versus the OBP
optimizer is between 0.006–0.019, or around 50–150 times
faster. The difference is largest for the largest instances and
smallest for the smallest instances (Table 2). We do not
observe any relationship between QAP predictive quality
and warehouse layout.

Overall, the result provides evidence that QAP approxi-
mations of OBP costs within an OBP-based SLAP opti-
mizer may be justified. Its predictive quality may decrease
with instance size, relative to the OBP optimizer (Fig. 7),
but its relative usage of CPU-time also decreases. Another
way to visualize the performance difference between the
QAP model and the random baseline is through a fre-
quency distribution (Fig. 9).

SLAP Optimization With and Without QAP Approximation

We report results from running the QAP-OBP SLAP opti-
mizer (section “Optimization Algorithm”) on the indus-
trial dataset with and without the use of QAP approxi-
mations. Apart from general settings (section “Overview
and Constants”), K is set to 108 and the algorithm is set to
terminate after 60 min (which, given maximum OBP and
QAP CPU-times, ensures iterations never exceed K ). � is
set to 10% of ||PS

|| and c1 = 1 . N is set to 20, which means
that the QAP model will have a relatively small impact
on overall CPU-time. N could theoretically be set to a
much larger number, but this may not necessarily yield

Fig. 8   Instance size in terms of number of orders, versus the predic-
tive quality of the QAP model and the random baseline

Fig. 9   Frequency distribution of NDCG values (20 bins) from QAP
and random ranking of samples when N = 20 and � = 10% (of ||PS

||)Fig. 7   How much new samples are changed compared to previous
samples ( λ ) against QAP predictive power

SN Computer Science (2024) 5:477 	 Page 11 of 17  477

SN Computer Science

better results. The QAP model in the form of Eq. 5 likely
needs to be further developed before its extended use can
be motivated. One risk with setting N to a large number
is that the SLAP optimizer will spend too much time in
search regions with a low QAP cost, rather than in regions
with a low OBP cost.

In Fig. 10, we see that Algorithm 1, on average,
improves cost by around 23% in 1 h. Without QAP approx-
imations, cost improves by around 17%.

The size of the instances has a significant impact on
computational efficiency. In Figs. 11 and 12, we see that
the impact of instance size, in terms of number of products
that are assigned a location, | Ps |, has a similar effect on
computational efficiency regardless of whether the QAP
is used. The stronger performance of the smaller instances
can largely be attributed to more samples being generated
within the 60 min. On average, cost improvement contin-
ues throughout the time, which is explainable due to the
large SLAP search space.

Conclusion

In this paper, we:

•	 formulate an optimization model for the Storage Loca-
tion Assignment Problem (SLAP), where the costs of
assignments are evaluated using Order Batching Prob-
lem (OBP) optimization.

•	 share generated SLAP test instances, with the goal to
standardize formats and comparability between solution
approaches.

•	 propose a Quadratic Assignment Problem (QAP) model
to quickly approximate OBP costs in SLAP optimization.
The QAP model is tested and tuned on the generated
instances.

•	 propose a SLAP optimizer (QAP-OBP), which we test
on industrial instances with a 1 h optimization timeout.

Within the QAP-OBP optimizer, the QAP and OBP
modules are utilized in a Metropolis algorithm, where sam-
ples are modified by a variable amount each iteration. The

Fig. 10   SLAP optimization cost improvements with and without the
QAP model during 1 h. The shaded areas denote 95% confidence
intervals

Fig. 11   QAP-OBP SLAP cost improvement using QAP approxima-
tions for 5 categories of instance sizes (in terms of | P

s
|). Shaded areas

denote data within 1 standard deviation

Fig. 12   Same as Fig. 11, but without using QAP approximations

	 SN Computer Science (2024) 5:477 477   Page 12 of 17

SN Computer Science

algorithm is nested such that OBP costs are only computed
for samples with a relatively strong QAP cost approximation.

In order to motive the use of the QAP model within the
algorithm, experiments are first conducted to test its predic-
tive quality against costs obtained by the OBP optimizer
and a random baseline. Results show that QAP predictive
quality is stronger than the baseline, and that they are around
50–150 times faster to compute than the cost obtained
through OBP optimization.

We then proceed to run the SLAP optimizer with and
without the QAP approximations. We find that the optimizer
performs better when using the QAP approximations, with
cost improvements of around 23% after 1 h. This result is
in line with results in related work on SLAPs that are less
difficult in some regards (for example concerning warehouse
layouts), but more difficult in others (dynamicity or larger
number of products).

For future work, the parameter which controls the num-
ber of samples that should be approximated by the QAP
model for every OBP cost computation, N , could be tuned.
The QAP computations could be significantly sped up by
the use of parallelization and Graphical Processing Units
(GPU), extending its utility within the SLAP optimizer for
larger N . Also, alternative optimization approaches could
be explored. These include meta-heuristic techniques such
as Simulated Annealing or Particle Swarm Optimization.
The QAP cost approximator could also be developed for a
Machine Learning approach and used in a similar fashion as
the weak estimators in boosting or aggregate bootstrapping.
The factorial search space remains a fundamental problem
for learning, however. Finally, we invite discussions into
how to best represent SLAP features in public benchmark
data and which features to choose for a standardized version
of the problem.

Appendix

NDCG flowchart: the below example shows how Normal-
ized Discounted Cumulative Gain (NDCG) can be computed
from input permutations (products to locations), approxi-
mated ( f  ) and ground truth ( f ∗ ) values. Note that f (X)
denotes a sorting of X according to the cost valuation of
elements in the cost step. Also note that relevance values
can be formulated in several ways.

Fig. 13   NDCG procedure flowchart

SN Computer Science (2024) 5:477 	 Page 13 of 17  477

SN Computer Science

Table 1   Summary of instances and results for different types of warehouse layouts

Also an aggregate of the results concerning the predictive quality of the QAP model

	 SN Computer Science (2024) 5:477 477   Page 14 of 17

SN Computer Science

Table 2   Summary of results with regard to instance size

These results exclude instances with more than 435products. All values are averages over instances with a certain number of products (num_
products)

SN Computer Science (2024) 5:477 	 Page 15 of 17  477

SN Computer Science

Table 3   Results on 60 min optimization runs

	 SN Computer Science (2024) 5:477 477   Page 16 of 17

SN Computer Science

Acknowledgements  This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. We also convey thanks
to Kairos Logic AB for software.

Funding  Open access funding provided by Lund University. This work
was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP).

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest. This article does not contain any studies with human partici-
pants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Abdel-Basset M, Manogaran G, Rashad H, et al. A comprehensive
review of quadratic assignment problem: variants, hybrids and
applications. J Ambient Intell Human Comput. 2018. https://​doi.​
org/​10.​1007/​s12652-​018-​0917-x.

	 2.	 Aerts B, Cornelissens T, Sörensen K. The joint order batching
and picker routing problem: modelled and solved as a clustered
vehicle routing problem. Comput Oper Res. 2021;129: 105168.
https://​doi.​org/​10.​1016/j.​cor.​2020.​105168.

	 3.	 Azadeh K, De Koster R, Roy D. Robotized warehouse systems:
developments and research opportunities. ERIM report series
research in management Erasmus Research Institute of Manage-
ment. ERS-2017-009-LIS. 2017.

	 4.	 Bruch S, Wang X, Bendersky M, Najork M. An analysis of the
softmax cross entropy loss for learning-to-rank with binary rel-
evance. In: Proceedings of the 2019 ACM SIGIR international
conference on the theory of information retrieval (ICTIR 2019).
2019. pp. 75–8.

	 5.	 Cao Z, Qin T, Liu T-Y, Tsai M-F, Li H. Learning to rank: from
pairwise approach to listwise approach. In: Proceedings of the
24th international conference on machine learning, vol. 227.
2007. pp. 129–36. https://​doi.​org/​10.​1145/​12734​96.​12735​13.

	 6.	 Cardona LF, Rivera L, Martínez HJ. Analytical study of the fish-
bone warehouse layout. Int J Log Res Appl. 2012;15(6):365–88.

	 7.	 Charris E, Rojas-Reyes J, Montoya-Torres J. The storage loca-
tion assignment problem: a literature review. Int J Ind Eng Com-
put. 2018;10.

	 8.	 Christen JA, Fox C. Markov Chain Monte Carlo using an
approximation. J Comput Graph Stat. 2005;14(4):795–810.

	 9.	 Ene S, Öztürk N. Storage location assignment and order picking
optimization in the automotive industry. Int J Adv Manuf Tech-
nol. 2011;60:1–11. https://​doi.​org/​10.​1007/​s00170-​011-​3593-y.

	10.	 Fontana ME, Nepomuceno VS. Multi-criteria approach for prod-
ucts classification and their storage location assignment. Int J
Adv Manuf Technol. 2017;88(9):3205–16.

	11.	 Freund Y, Iyer R, Schapire RE, Singer Y. An efficient boost-
ing algorithm for combining preferences. J Mach Learn Res.
2003;4(Nov):933–69.

	12.	 Freund Y, Schapire RE. Experiments with a new boosting algo-
rithm. 1996.

	13.	 Garfinkel M. Minimizing multi-zone orders in the correlated
storage assignment problem. School of Industrial and Systems
Engineering, Georgia Institute of Technology. 2005.

	14.	 Henn S, Wäscher G. Tabu search heuristics for the order batch-
ing problem in manual order picking systems. Eur J Oper Res.
2012;222(3):484–94.

	15.	 Kallina C, Lynn J. Application of the cube-per-order index
rule for stock location in a distribution warehouse. Interfaces.
1976;7(1):37–46.

	16.	 Kofler M, Beham A, Wagner S, Affenzeller M. Affinity based
slotting in warehouses with dynamic order patterns. Advanced
methods and applications in computational intelligence. 2014.
pp. 123–43.

	17.	 de Koster R, Le-Duc T, Roodbergen KJ. Design and control of
warehouse order picking: a literature review. Eur J Oper Res.
2007;182(2):481–501.

	18.	 Kübler P, Glock CH, Bauernhansl T. A new iterative method
for solving the joint dynamic storage location assignment, order
batching and picker routing problem in manual picker-to-parts
warehouses. Comput Ind Eng. 2020;147: 106645.

	19.	 Larco JA, de Koster R, Roodbergen KJ, Dul J. Managing ware-
house efficiency and worker discomfort through enhanced stor-
age assignment decisions. Int J Prod Res. 2017;55(21):6407–22.
https://​doi.​org/​10.​1080/​00207​543.​2016.​11658​80.

	20.	 Lee IG, Chung SH, Yoon SW. Two-stage storage assignment to
minimize travel time and congestion for warehouse order pick-
ing operations. Comput Ind Eng. 2020;139: 106129. https://​doi.​
org/​10.​1016/j.​cie.​2019.​106129.

	21.	 Mantel R, Schuur P, Heragu S. Order oriented slotting: a
new assignment strategy for warehouses. Eur J Ind Eng.
2007;1:301–16.

	22.	 Oxenstierna J, Malec J, Krueger V. Efficient order batching opti-
mization using seed heuristics and the metropolis algorithm. SN
Comput Sci. 2022;4(2):107.

	23.	 Oxenstierna J, Rensburg L, Stuckey P, Krueger V. Storage
assignment using nested annealing and hamming distances. In:
Proceedings of the 12th international conference on operations
research and enterprise systems—ICORES. 2023. pp. 94–105.
https://​doi.​org/​10.​5220/​00117​85100​003396.

	24.	 Oxenstierna J, van Rensburg LJ, Malec J, Krueger V. Formula-
tion of a layout-agnostic order batching problem. In: Dorronsoro
B, Amodeo L, Pavone M, Ruiz P, editors. Optimization and
learning. Berlin: Springer International Publishing; 2021. p.
216–26.

	25.	 Ratliff H, Rosenthal A. Order-picking in a rectangular ware-
house: a solvable case of the traveling salesman problem. Oper
Res. 1983;31:507–21.

	26.	 Reinelt G. TSPLIB—a traveling salesman problem library.
INFORMS J Comput. 1991;3:376–84.

	27.	 Rensburg LJ. Artificial intelligence for warehouse picking
optimization—an NP-hard problem [Master’s Thesis]. Uppsala
University. 2019.

	28.	 Roodbergen KJ, Koster R. Routing methods for warehouses with
multiple cross aisles. Int J Prod Res. 2001;39(9):1865–83.

	29.	 van Ravenzwaaij D, Cassey P, Brown SD. A simple introduc-
tion to Markov Chain Monte-Carlo sampling. Psychon Bull Rev.
2018;25(1):143–54. https://​doi.​org/​10.​3758/​s13423-​016-​1015-8.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12652-018-0917-x
https://doi.org/10.1007/s12652-018-0917-x
https://doi.org/10.1016/j.cor.2020.105168
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1007/s00170-011-3593-y
https://doi.org/10.1080/00207543.2016.1165880
https://doi.org/10.1016/j.cie.2019.106129
https://doi.org/10.1016/j.cie.2019.106129
https://doi.org/10.5220/0011785100003396
https://doi.org/10.3758/s13423-016-1015-8

SN Computer Science (2024) 5:477 	 Page 17 of 17  477

SN Computer Science

	30.	 Wu J, Qin T, Chen J, Si H, Lin K. Slotting optimization algo-
rithm of the stereo warehouse. In: Proceedings of the 2012 2nd
international conference on computer and information application
(ICCIA 2012). 2014. pp. 128–32. https://​doi.​org/​10.​2991/​iccia.​
2012.​31.

	31.	 Wu X, LuWuZhou JSX. Synchronizing time-dependent trans-
portation services: reformulation and solution algorithm using
quadratic assignment problem. Transport Res Part B Methodol.
2021;152:140–79. https://​doi.​org/​10.​1016/j.​trb.​2021.​08.​008.

	32.	 Wutthisirisart P, Noble JS, Chang CA. A two-phased heuristic for
relation-based item location. Comput Ind Eng. 2015;82:94–102.
https://​doi.​org/​10.​1016/j.​cie.​2015.​01.​020.

	33.	 Yang N et al. Evaluation of the joint impact of the storage assign-
ment and order batching in mobile-pod warehouse systems. Math
Probl Eng. 2022;2022.

	34.	 Yingde L, Smith JS. Dynamic slotting optimization based on
SKUs correlations in a zone-based wave-picking system. In:
IMHRC proceedings, vol. 12. 2012.

	35.	 Zhang R-Q, Wang M, Pan X. New model of the storage loca-
tion assignment problem considering demand correlation pattern.
Comput Ind Eng. 2019;129:210–9. https://​doi.​org/​10.​1016/j.​cie.​
2019.​01.​027.

	36.	 Zhou F, De la Torre F. Factorized graph matching. IEEE Trans
Pattern Anal Mach Intell. 2016;38(9):1774–89. https://​doi.​org/​10.​
1109/​TPAMI.​2015.​25018​02.

	37.	 Žulj I, Glock CH, Grosse EH, Schneider M. Picker routing and
storage-assignment strategies for precedence-constrained order
picking. Comput Ind Eng. 2018;123:338–47. https://​doi.​org/​10.​
1016/j.​cie.​2018.​06.​015.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2991/iccia.2012.31
https://doi.org/10.2991/iccia.2012.31
https://doi.org/10.1016/j.trb.2021.08.008
https://doi.org/10.1016/j.cie.2015.01.020
https://doi.org/10.1016/j.cie.2019.01.027
https://doi.org/10.1016/j.cie.2019.01.027
https://doi.org/10.1109/TPAMI.2015.2501802
https://doi.org/10.1109/TPAMI.2015.2501802
https://doi.org/10.1016/j.cie.2018.06.015
https://doi.org/10.1016/j.cie.2018.06.015

	Storage Assignment Using Nested Metropolis Sampling and Approximations of Order Batching Travel Costs
	Abstract
	Introduction
	Related Work
	Nested Metropolis Sampling
	Problem Formulation
	Objective Function
	Fast OBP Cost Approximation

	Optimization Algorithm
	Overview
	Sample Generator
	Promote and Accept Thresholds and Cost Computations

	Datasets
	Experiments
	Overview and Constants
	Results
	The Impact of Parameters and on QAP Predictive Quality
	The Impact of Other Factors on QAP Predictive Quality
	SLAP Optimization With and Without QAP Approximation

	Conclusion
	Appendix
	Acknowledgements
	References

