
Vol.:(0123456789)

SN Computer Science (2024) 5:354
https://doi.org/10.1007/s42979-024-02682-y

SN Computer Science

ORIGINAL RESEARCH

Scheduling and Performance of Asynchronous Tasks in Fortran 2018
with FEATS

Brad Richardson1,2 · Damian Rouson1,2 · Harris Snyder2 · Robert Singleterry3

Received: 30 October 2023 / Accepted: 4 February 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024

Abstract
Most parallel scientific programs contain compiler directives (pragmas) such as those from OpenMP (Hermanns in Parallel
programming in Fortran 95 using openMP, 2002. School of Aeronautical Engineering, Universidad Politécnica de Madrid,
España, 2011), explicit calls to runtime library procedures such as those implementing the Message Passing Interface (MPI)
(in A message-passing interface standard version 4.0, 2021. https:// www. mpi- forum. org/ docs/ mpi-4. 0/ mpi40- report. pdf), or
compiler-specific language extensions such as those provided by CUDA (Ruetsch and Fatica in CUDA Fortran for scientists
and engineers: best practices for efficient CUDA Fortran programming, Elsevier, 2013). By contrast, the recent Fortran
standards empower developers to express parallel algorithms without directly referencing lower-level parallel program-
ming models (Numrich in Parallel programming with co-arrays, CRC Press, 2018, and Curcic in Modern Fortran: building
efficient parallel applications, Manning Publications, 2020). Fortran’s parallel features place the language within the Parti-
tioned Global Address Space (PGAS) class of programming models. When writing programs that exploit data parallelism,
application developers often find it straightforward to develop custom parallel algorithms. Problems involving complex,
heterogeneous, staged calculations, however, pose much greater challenges. Such applications require careful coordination
of tasks in a manner that respects dependencies prescribed by a directed acyclic graph. When rolling one’s own solution
proves difficult, extending a customizable framework becomes attractive. The paper presents the design, implementation,
and use of the Framework for Extensible Asynchronous Task Scheduling (FEATS), which we believe to be the first task
scheduling tool written in modern Fortran. We describe the benefits and compromises associated with choosing Fortran as the
implementation language, and we propose ways in which future Fortran standards can best support the use case in this paper.

Keywords Modern Fortran · Task scheduling · Framework · Coarray

Introduction

Modern computing hardware has evolved to offer a variety of
opportunities to exploit parallelism for high performance—
including multicore processors with vector units, supersca-
lar pipelines, and embedded or off-chip graphics processing
units. Exploiting the abundance of opportunities for parallel
execution requires searching for a variety of forms of paral-
lelism. Chief among the common parallel programming pat-
terns are data parallelism and task parallelism [6]. Parallel
programming languages have evolved native features that
support data parallelism. In Fortran 2018, for example, such
features include giving the programmer the ability to define
teams, sets of images that execute asynchronously, with each
image having one-sided access to other team members’ local
portions of “coarray” distributed data structures [4]. These
features have now seen use in production codes running at

This article is part of the topical collection “Applications and
Frameworks using the Asynchronous Many Task Paradigm” guest
edited by Patrick Diehl, Hartmut Kaiser, Peter Thoman, Steven R.
Brandt, and “Ram” Ramanujam.

 * Brad Richardson
 brad.richardson@lbl.gov

 Damian Rouson
 rouson@lbl.gov

 Harris Snyder
 harris@archaeologic.codes

 Robert Singleterry
 robert.c.singleterry@nasa.gov

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2 Archaeologic, Inc., Oakland, CA, USA
3 NASA Langley Research Center, Hampton, VA, USA

http://orcid.org/0000-0002-3205-2169
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02682-y&domain=pdf

 SN Computer Science (2024) 5:354 354 Page 2 of 10

SN Computer Science

scale for simulating systems ranging from weather [7] and
climate [8] to plasma fusion [9].

By contrast, task parallelism generally proves to be a
larger challenge for application developers to exploit without
deep prior experience in parallel programming. Although
data parallelism maps straightforwardly onto a bulk synchro-
nous programming model in which periods of computation
are interspersed with periods of communication followed
by barrier synchronization, efficient execution of independ-
ent tasks generally requires asynchronous execution with
more loose forms of coordination such as semaphores. To
wit, it takes roughly 15 source lines of code to implement a
bulk synchronous “Hello, world!” program using Fortran’s
barrier synchronization mechanism, the sync all state-
ment; whereas it takes more than three times as many lines
to write a similar, asynchronous program taking advantage
of Fortran’s event_type derived type, the language’s
mechanism supporting semaphores [10].

A central challenge in writing asynchronous code to coor-
dinate tasks centers around task parallelism’s more irregular
execution and communication patterns. Whereas partial dif-
ferential equation solvers running in a data parallel manner
typically involve a predictable set of halo data exchanges
between grid partitions at every time step, task parallelism
generally enjoys no such regular communication pattern.
Programmers generally represent task ordering require-
ments in a Directed Acyclic Graph (DAG) of task depend-
encies [11]. Tasks can execute in any order that respects the
DAG. Moreover, the DAG can change considerably from
one problem to the next and even from one execution to the
next. For example, a DAG describing the steps for building
a software package will vary over the life of the software as
internal and external dependencies change.

Writing code to handle the level of flexibility needed effi-
ciently is daunting for most application developers, which
makes the use of a task scheduling framework attractive.
Fortran programmers face the additional challenge that
the task scheduling frameworks of which the authors are
aware are written in other programming languages such as
C++ [12] and UPC++ [13] or target-specific domains such
as linear algebra [14]. FEATS aims to support standard For-
tran 2018 with a standard Fortran 2018 framework and is
unique in these aspects.

Rumors of Fortran’s demise are greatly exaggerated.
Despite longstanding calls for Fortran’s retirement [15] and
descriptions of Fortran as an “infantile disorder” [16], the
world’s first widely used high-level programming language
continues to see important and significant use. Fortran is
arguably enjoying a renaissance characterized by a growing
list of new compiler projects over the past several years and
a burgeoning community of developers at all career stages
writing new libraries [17], including some in very non-tradi-
tional areas such as package management [18]. The National

Energy Research Scientific Computing Center (NERSC)
used system monitoring of runtime library usage to deter-
mine that approximately 70% of projects use Fortran [19]
and found that the vast majority of projects use MPI.

In MPI, the most advanced way to achieve the aforemen-
tioned requirements of loosely coordinated, high levels of
asynchronous execution required for efficient task scheduling
involves the use of the one-sided MPI_Put and MPI_Get
functions introduced in MPI-3. In the authors’ experience,
however, the overwhelming majority of parallel MPI appli-
cations use MPI’s older two-sided communication features,
such as the non-blocking MPI_ISend and MPI_IRecv
functions partly due to the challenges of writing one-sided
MPI. Our choice to write and support Fortran’s native coar-
ray communication mechanism enables us to take advantage
of the one-sided MPI built into some compiler’s parallel
runtime libraries, e.g., in the OpenCoarrays [20] runtime
used by gfortran, or whatever communication substrate
a given compiler offeror chooses to best suit particular hard-
ware. Moreover, this choice implies that switching from one
communication substrate to another might require no more
than switching compilers or even swapping compiler flags
and ultimately empowers scientists and engineers to focus
more on the application’s science and engineering and less
on the computer science.

Ultimately, the goal is reduce the time to solution,
increase the reliability of the solution, utilize state-of-the-
art hardware, and increase the solution’s maintainability over
the lifetime of the solution. Fortran and FEATS allow for a
task parallel solution that hits these marks.

Implementation

FEATS is designed around the use of Fortran coarrays to
provide distributed multiprocessing and data exchange
between application images. Tasks in FEATS are repre-
sented as objects. FEATS provides an abstract derived type
task_t, which the user should extend in their own derived
type definition and provide the necessary “execute” function
required to complete the task.

Tasks have inputs and outputs, so there must be a mecha-
nism by which to transmit those inputs and outputs between
images. This transmission is done using coarrays, though it
should be noted that all image control and coarray code is
internal to the FEATS library, meaning that the user needs
not directly deal with any details related to parallel program-
ming or even understand coarrays. The “execute” function
of each task accepts an array of payload_t objects, the
results of each task on which it depends, and returns a single
payload_t object result. Different tasks will of course
have different input and output types based on their pur-
pose, which brings up another difficulty of implementing

SN Computer Science (2024) 5:354 Page 3 of 10 354

SN Computer Science

FEATS as a library. Since the library code cannot know the
details of different tasks’ input and output types, it must rep-
resent these payloads in some generic way so that it can be
transmitted between images. Additionally, coarray elements
cannot contain polymorphic components. FEATS solves the
problem by storing payloads as an array of integers (just a
string of bytes in memory), and the user must use the Fortran
transfer statement to serialize their data into and out of
payloads. This serialization does come with some caveats;
the user needs to ensure that the types they use as payloads
can be serialized and deserialized safely (for example, a sim-
ple derived type with statically sized elements will work
correctly, whereas one with pointers and allocatable compo-
nents likely will not). Alternately, a string representation can
be used/is supported for the serialization and deserialization.
Although arguably an esthetically “inelegant” approach, the
authors see it as an acceptable engineering tradeoff in the
interest of generality.

The tasks are organized as a DAG. This is stored as an
array of vertices, where each vertex contains a task, and an
array of integers identifying the tasks on which it depends.
We note that in theory, it would be possible for a single
image to construct the DAG, and for FEATS to use co_
broadcast to send it to the remaining images, but not
all compilers have implemented the functionality to allow
co_broadcast of objects with polymorphic components,
so in practice, every image must provide exactly the same
DAG to FEATS for execution. It is the responsibility of the
framework user to define the derived types representing each
type of task for their application and to implement the logic
for defining the task DAG. Once the DAG is defined, the
FEATS framework executes it. The scheduler implementa-
tion is provided by the framework. It should be noted that
this does require that the entire DAG be defined prior to the
execution of any tasks.

Scheduling Task Execution

Two different algorithms for scheduling task execution have
been implemented and measured for performance. The algo-
rithms are described in the following subsections.

An Explicit Scheduler Image

This algorithm designates one image, the scheduler, respon-
sible for assigning tasks for the remaining images, executors,
to execute. The general algorithm performed by the sched-
uler image is as follows.

• Find an executor that has posted it is ready
– While it does this, it keeps track of what tasks have

been completed

• Find an uncompleted task with all dependencies com-
pleted

• “Wait” for the ready executor (balances posts/waits)
• Assign the task to the executor
• Post that the executor has been assigned a task
• Repeat

The general algorithm performed by an executor is as
follows.

• Post ready for a task
• Wait until it has been assigned a task
• Collect payload outputs from executors that ran depend-

ent tasks
– It accesses the history kept by the scheduler to deter-

mine where the outputs reside
• Execute task and store result in its payload mailbox
• Repeat

First to Claim

This algorithm requires no scheduler image, but rather puts
all executors on equal footing with respect to claiming and
executing tasks. The general algorithm performed by each
executor is as follows.

• Find task that has not been claimed, and all of its depend-
encies have been completed

• Attempt to claim that task
– Another executor may have claimed it by now

• Collect payload outputs from executors that ran depend-
ent tasks
– “Wait” on event that it was completed

• Execute task and store result in its payload mailbox
• Post to all executors that the task has been completed and

increment task completed counter
• Repeat

Advantages, Disadvantages, and Examples

This section discusses how the features of Fortran enable/
support the development of FEATS and aspects of the lan-
guage that currently serves as impediments to the desired
features of the framework.

Advantages

There are several features of the modern Fortran language
that makes it a natural fit for implementing a task scheduling
framework. Several aspects have featured prominently in the
implementation, but in this section, we will discuss what

 SN Computer Science (2024) 5:354 354 Page 4 of 10

SN Computer Science

makes them beneficial for implementing a task scheduling
framework.

Coarrays and Events

The fundamental problem of task scheduling requires meth-
ods of communicating data between tasks, and coordinating
the execution of those tasks to enforce prerequisite tasks
is completed before subsequent tasks begin. The coarray
feature of Fortran provides a simple and effective method
of performing one-sided communication between images to
facilitate data transfer between tasks. While other languages
and libraries have methods of communicating data between
processes, they often require two-sided operations (i.e., both
processes must participate in the communication), require
calls to external library procedures, or require significant
expertise to use correctly. Having the communication facili-
ties as a native feature of the language simplifies the syntax
and implementation complexities and reduces the number
of external dependencies.

Although other language and library communication
methods are generally sufficient for implementing coordi-
nation mechanisms, doing so manually requires a high level
of expertise and adds complexity to the implementation.
Having a native feature of the language explicitly designed
for the purposes of coordination, namely, event types, again
simplifies the syntax and implementation complexities and
reduces the number of external dependencies.

Teams

Although there are task scheduling algorithms that do not
require a reserved process to act as a scheduler, these algo-
rithms generally come at the cost of increased overhead in
terms of coordination and complexity of implementation.
However, having a dedicated scheduler can introduce a com-
munication and coordination bottleneck in case of large tasks
DAGs being executed by large numbers of processes. While
we have not yet implemented it, the teams feature of Fortran
allows for a simple and natural partitioning of processes such
that multiple schedulers can coordinate with segments of
executors operating on partitions of the task DAG.

Polymorphism

Although it may be possible to implement a task schedul-
ing framework without polymorphism, it would require
implementation of a predetermined set of possible task
interfaces, which would likely be limiting for potential
users. By making use of abstract type definitions and type
extension, and defining a generic interface for a task, the
procedure of defining a task and including it in a DAG
becomes a natural process for users, with help from the

compiler in enforcing that they have done so properly.
The process of defining new tasks involves creating a
new derived type which extends from the framework’s
task_t type and providing an implementation for the
run procedure. A task can then be created by instantiating
an object of this new type, to be included in the DAG.

Fortran’s History

Fortran’s long history of use in scientific computing means
that there are likely a large number of applications that
could benefit from a Fortran-specific task scheduling
framework. We have already identified a potential target
application in NASA’s OLTARIS [21], space radiation
shielding software. Other prime target applications are
those which perform a series of different, but long running
calculations, or those which perform parallel calculations
(or easily could), but which experience load balancing
issues.

Disadvantages

There are some ways in which the Fortran language lacks
some important features that would allow for an even better
implementation. We will discuss these shortcomings and the
ways in which the language could be improved to address
them, or how they can be worked around.

Data Communication

The lack of ability to utilize polymorphism in coarrays
means that communication of task input and output data
cannot be done as seamlessly as users would like. In order
to communicate the inputs and outputs between tasks, users
are forced to manually serialize and deserialize the data into
a pre-defined format for transfer between processes. This
means that it will also be difficult for users to make use
of polymorphism in their calculations, as deserialization of
polymorphic objects can be done only with a predefined
set of possible result types. Further, the lack of ability to
communicate polymorphic objects via coarrays means that
each executor must have a complete copy of the DAG and its
tasks, because the tasks themselves cannot be communicated
to the executors later. This represents a moderate inefficiency
in data storage and in initial execution for each executor
to compute/construct the DAG. A strategic relaxation of a
single constraint in the Fortran standard is all that would be
required to enable the use of polymorphism in the data com-
munication. The Fortran standard committee has accepted
this as an item to address for the upcoming F202Y revision.

SN Computer Science (2024) 5:354 Page 5 of 10 354

SN Computer Science

Task Detection, Fusion, or Splitting

Because Fortran lacks any features for introspection or
reflection, it is not possible for the framework to automati-
cally detect tasks, fuse small tasks together, or split large
tasks apart. All task definition must be performed manu-
ally by the user, with no help from the framework. It would
be possible to allow users to manually provide information
about task and data sizes to encourage certain sequences of
tasks to be executed by one executor, but would likely be
difficult and error prone. Future work could involve explor-
ing avenues for annotating tasks to help the scheduler more
efficiently assign tasks to executors.

Task Independence

Task independence is a problem for all task-based applica-
tions, but Fortran provides few avenues for mitigating or
catching possible mistakes. Any data dependencies between
tasks not stated explicitly in the DAG and communicated as
arguments to the task or its output, allow for the possibility
of data races. In other words, all tasks must be pure func-
tions with all dependencies defined. Many existing Fortran
applications were not written in this style and may require
extensive work to refactor to a form in which they could take
advantage of a task scheduling framework. It is the opin-
ion of the authors that most applications could benefit from
such refactoring to enable parallel execution regardless of
the desire to use this framework, but understand that the
costs involved do not always make this refactoring feasible.
Users could make these dependencies explicit without using
the framework to transmit the data, but it may be benefi-
cial to develop tools to help users identify these “hidden”
dependencies.

Lagging Compiler Support

While the features necessary for developing this frame-
work have been defined by the language standard since
2018, compilers have been slow to implement them, and
support is still buggy and lacking. For example, we were
able to work around a bug in gfortran/OpenCoarrays

regarding access of allocatable components of derived
types in a corray on remote images by defining the pay-
load size to be static for the purpose of demonstrating the
examples shown below. Additionally, we had to simplify
the code, remove the use of external dependencies, and
work around various internal compiler errors in order to
get the examples shown to compile and execute with the
remaining compilers.

Examples

The examples described in this section can be found in the
FEATS repository at https:// github. com/ sourc eryin stitu te/
feats.

A Quadratic Root Finder

The typical algorithm/equation for finding the roots of a
quadratic equation can be defined as tasks, and FEATS can
then be used to perform the calculations. The use of such a
simple example can be beneficial for demonstrating the use
of the framework. Given a quadratic equation of the form:

then the equation to determine the values of x which satisfy
the equation (the roots) is:

The diagram in Fig. 1 illustrates how this equation can be
broken into separate steps and shows the dependencies
between them.

The equivalent FEATS application can be constructed
as follows, assuming that the tasks have been appropriately
defined.

(1)a ∗ x
2
+ b ∗ x + c = 0

(2)−b ±

√

b2 − 4 ∗ a ∗ c

2 ∗ a

Fig. 1 Graphical representa-
tion of the computational tasks
involved in calculating the roots
of a quadratic equation

a

b

c

#**2

4 * # * #

s q r t (# - #) - # ± #

2 * #

/ # p r in t r oo t s

https://github.com/sourceryinstitute/feats
https://github.com/sourceryinstitute/feats

 SN Computer Science (2024) 5:354 354 Page 6 of 10

SN Computer Science

s o l v e r = &
dag t ([&

ve r t e x t ([i n t e g e r : :] , a t (a)) &
, v e r t e x t ([i n t e g e r : :] , b t (b)) &
, v e r t e x t ([i n t e g e r : :] , c t (c)) &
, v e r t e x t ([2] , b squared t ()) &
, v e r t e x t ([1 , 3] , f o u r a c t ()) &
, v e r t e x t ([4 , 5] , s q u a r e r o o t t ()) &
, v e r t e x t ([2 , 6] , minus b pm square root t ()) &
, v e r t e x t ([1] , two a t ()) &
, v e r t e x t ([8 , 7] , d i v i s i o n t ()) &
, v e r t e x t ([9] , p r i n t e r t ()) &

])

This example produces output like the following, with
a slightly different order of execution being possible each
time except that an operation is never performed prior to the
results of the operations on which it depends.

LU Decomposition

LU decomposition is a common, computationally intensive
operation. It involves finding the lower (L) and upper (U) tri-
angular matrices that when multiplied together result in the
original matrix. By breaking the task down into appropriate
steps, we can define a DAG to perform the operation. The
general algorithm is as follows in pseudocode.

The code to transform the above algorithm into a task
DAG executable by FEATS is as follows. It prints the initial
matrix, as well as the intermediate matrix at the completion
of each step. The final matrix printed is the L matrix, and
the penultimate matrix is the U matrix.

For a 3×3 matrix, the above code creates a task DAG like
the one shown in Fig. 2. Execution of the task DAG produces
output like shown below.

SN Computer Science (2024) 5:354 Page 7 of 10 354

SN Computer Science

Performance

Using the problem of finding the LU decomposition of a
100 × 100 matrix, the performance of both task schedul-
ing methods was evaluated. See sections 2.1.1 (explicit
scheduler image, ESI) and 2.1.2 (first to claim, FTC) for an
overview of the two strategies. Performance experiments
were conducted using two computer systems (a desktop

computer equipped with an Intel Core i5-6500 and the Per-
lmutter supercomputer) and three different Fortran com-
pilers (the NAG compiler version 7.1 Build 7138, gfor-
tran version 13.2.0 on the desktop computer and version
11.2.0 on Perlmutter with OpenCoarrays version 2.10.1,
and the Cray compiler version 15.0.1). Experiments using
the NAG compiler were done using the compile time flags
-O4 -Onoteams -Orounding -coarray. Experi-
ments with the Cray compiler and gfortran + opencoarrays
used -O3. Note that the ESI strategy was implemented
such that if there is only one running image, the scheduler
image does the work required for each task itself, rather
than assigning it to another image (though the scheduling
logic still runs in order to choose the next task).

With the NAG compiler, which was only available on
the Intel i5 desktop system, moving from the ESI imple-
mentation to the FTC implementation reduced the single-
image execution time from almost 12 s to under 5 s. Both
implementations saw the runtime cut approximately in half
by moving to two images, but adding a third or fourth
resulted in little change to the execution time (Figs. 3
and 4). On that system, which has four cores, more than
4 images was not expected to improve performance and
indeed it did not, with performance getting worse after
four images.

Gfortran with OpenCoarrays fared quite differently from
the NAG compiler. On the i5 system, the ESI strategy fin-
ished with less than half of the average runtime of the FTC
implementation, in a reversal of the performance of the
two algorithms under the NAG compiler. Scaling to mul-
tiple images resulted in longer execution times than with a
single image (Figs. 5 and 6). This was true for both algo-
rithms, though the ESI approach was dramatically worse.
Using multiple images also failed to produce a speedup on

Fig. 2 Task graph of LU decomposition for a 3x3 matrix

 SN Computer Science (2024) 5:354 354 Page 8 of 10

SN Computer Science

Perlmutter, at least with the FTC strategy (Fig. 7); the ESI
strategy was not tried.

The Cray compiler was only available on Perlmutter.
The ESI strategy ran with about a quarter the runtime of
the FTC in the single-image case. However, the ESI strat-
egy failed to scale; using two or more images (on the same
node) doubled the execution time, which remained roughly

constant with number of images thereafter (Figs. 8 and 9).
The FTC strategy, while slower in the single image case,
did produce reductions in execution time for adding addi-
tional images until 10 images were reached.

Scaling was also assessed on Perlmutter (using the Cray
compiler) when the images are on different physical nodes.

Fig. 3 Intel i5, NAG Compiler, Explicit Scheduler Image

Fig. 4 Intel i5, NAG Compiler, First to Claim

Fig. 5 Intel i5, Gfortran with OpenCoarrays, Explicit Scheduler
Image

Fig. 6 Intel i5, Gfortran with OpenCoarrays, First to Claim

Fig. 7 Perlmutter (1 node), Gfortran with OpenCoarrays, First to
Claim

Fig. 8 Perlmutter (1 node), Cray compiler, Explicit Scheduler Image

SN Computer Science (2024) 5:354 Page 9 of 10 354

SN Computer Science

The result for both strategies was that using multiple nodes
dramatically increases total runtime (Figs. 10 and 11).

The results from these experiments are not encourag-
ing. Admittedly, breaking down the LU decomposition of
a 100 × 100 matrix into 15,000 distinct tasks does make for
something of a toy problem, but regardless of whether this

example problem is well suited to scaling to many images
in the first place, the experiments conducted suggest that
some of the parallel features in Fortran 2018 do not enjoy
performance portability. The specific details of how coar-
ray communication and events are implemented by a given
compiler runtime clearly matter a great deal, which makes
it difficult for programmers to utilize them effectively. Fur-
ther investigation is needed to determine the exact cause of
the performance pathologies exhibited by certain compiler/
algorithm combinations.

Conclusion

We believe that the existing Fortran applications, and the
Fortran ecosystem generally, would greatly benefit from a
native tasking framework. The prototype implementation of
FEATS has successfully demonstrated that implementing a
task scheduling framework in Fortran is feasible. Working
around limitations of the language and the bugs in various
compilers’ coarray feature implementation has proven a
challenging but not impassible barrier. With this demonstra-
tion of a working prototype implementation, we have taken
a significant first step toward providing such a capability to
Fortran users.

We look forward to working on several unresolved issues
in FEATS. Longer term work planned will involve collabo-
rating with the Fortran standard committee to add capabili-
ties to the language that will enable FEATS behaviors such
as communication of polymorphic objects between images

using coarrays. We have identified a targeted relaxation of
a specific constraint in the standard to allow for the needed
functionality. We will also explore the applicability of dif-
ferent scheduling algorithms to various types of applica-
tions and compare the performance characteristics of FEATS

Fig. 9 Perlmutter (1 node), Cray compiler, First to Claim

Fig. 10 Perlmutter (multinode), Cray compiler, Explicit Scheduler
Image

Fig. 11 Perlmutter (multinode),
Cray compiler, First to Claim

 SN Computer Science (2024) 5:354 354 Page 10 of 10

SN Computer Science

with other task scheduling implementations. We also hope
to find potential users of the framework and help them to
integrate it into their applications. Possible initial target
applications include parallel builds with the Fortran pack-
age manager [18] and work-stealing with the Intermediate
Complexity Atmospheric Research model [8].

Supplementary Materials

The code for all examples is available on GitHub®.1

Funding The authors would like to thank NASA Langley Research
Center for providing the initial funding for this work.

Declarations

Conflict of interests The authors declare that they have no competing
interests.

Informed consent Not applicable, since human research subjects were
not used.

Research involving human participants and/or animals This article
does not contain any studies with human participants performed by
any of the authors.

References

 1. Hermanns M. Parallel programming in Fortran 95 using openMP,
2002. School of Aeronautical Engineering: Universidad Politéc-
nica de Madrid, España; 2011.

 2. Message Passing Interface Forum (MPI). A message-passing
interface standard version 4.0; 2021. https:// www. mpi- forum. org/
docs/ mpi-4. 0/ mpi40- report. pdf

 3. Ruetsch G, Fatica M. CUDA Fortran for scientists and engineers:
best practices for efficient CUDA Fortran programming. Elsevier;
2013.

 4. Numrich RW. Parallel programming with co-arrays. CRC Press;
2018.

 5. Curcic M. Modern Fortran: building efficient parallel applications.
Manning Publications; 2020.

 6. Mattson TG, Sanders B, Massingill B. Patterns for parallel pro-
gramming. Pearson Education; 2004.

 7. Mozdzynski G, Hamrud M, Wedi N. A partitioned global address
space implementation of the European Centre for medium range
weather forecasts integrated forecasting system. Int J High Per-
form Comput Appl. 2015;29(3):261–73.

 8. Gutmann E, Barstad I, Clark M, Arnold J, Rasmussen R. The
intermediate complexity atmospheric research model (ICAR). J
Hydrometeorol. 2016;17(3):957–73.

 9. Preissl R, Wichmann N, Long B, Shalf J, Ethier S, Koniges A.
Multithreaded global address space communication techniques for
gyrokinetic fusion applications on ultra-scale platforms. In: Pro-
ceedings of 2011 international conference for high performance
computing, networking, storage and analysis; 2011. pp. 1–11.

 10. Hello-world. Sourcery Institute. https:// github. com/ sourc eryin stitu
te/ hello- world

 11. DAG. Sourcery Institute. https:// github. com/ sourc eryin stitu te/ dag
 12. Bauer L, Grudnitsky A, Shafique M, Henkel J. Pats: a perfor-

mance aware task scheduler for runtime reconfigurable processors.
In: 2012 IEEE 20th international symposium on field-program-
mable custom computing machines. IEEE; 2012. pp. 208–215.

 13. Fraguela BB, Andrade D. The new UPC++ DepSpawn high per-
formance library for data-flow computing with hybrid parallelism.
In: International conference on computational science. Springer;
2022. pp. 761–774.

 14. Song F, YarKhan A, Dongarra J. Dynamic task scheduling for lin-
ear algebra algorithms on distributed-memory multicore systems.
In: Proceedings of the conference on high performance computing
networking, storage and analysis; 2009. pp. 1–11.

 15. Cann D. Retire Fortran? A debate rekindled. Commun ACM.
1992;35(8):81–9.

 16. Dijkstra EW. How do we tell truths that might hurt? ACM Sigplan
Not. 1982;17(5):13–5.

 17. Kedward LJ, Aradi B, Čertík O, Curcic M, Ehlert S, Engel P,
Goswami R, Hirsch M, Lozada-Blanco A, Magnin V, et al. The
state of Fortran. Comput Sci Eng. 2022;24(2):63–72.

 18. Ehlert S, Čertík O, Curcic M, Jelínek J, Kedward L, Magnin V,
Pagone E, Richardson B, Urban J. Fortran package manager. In:
International Fortran conference 2021; 2021.

 19. NERSC-10 Workload Analysis (Data from 2018). NERSC. https://
doi. org/ 10. 25344/ S4N30W

 20. Fanfarillo A, Burnus T, Cardellini V, Filippone S, Nagle D, Rou-
son D. Opencoarrays: open-source transport layers supporting
coarray Fortran compilers. In: Proceedings of the 8th interna-
tional conference on partitioned global address space program-
ming models; 2014. pp. 1–11.

 21. Singleterry RC Jr, Blattnig SR, Clowdsley MS, Qualls GD, San-
dridge CA, Simonsen LC, Slaba TC, Walker SA, Badavi FF, Span-
gler JL, et al. Oltaris: on-line tool for the assessment of radiation
in space. Acta Astronaut. 2011;68(7–8):1086–97.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

1 https:// github. com/ sourc eryin stitu te/ FEATS.

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://github.com/sourceryinstitute/hello-world
https://github.com/sourceryinstitute/hello-world
https://github.com/sourceryinstitute/dag
https://doi.org/10.25344/S4N30W
https://doi.org/10.25344/S4N30W
https://github.com/sourceryinstitute/FEATS

	Scheduling and Performance of Asynchronous Tasks in Fortran 2018 with FEATS
	Abstract
	Introduction
	Implementation
	Scheduling Task Execution
	An Explicit Scheduler Image
	First to Claim

	Advantages, Disadvantages, and Examples
	Advantages
	Coarrays and Events
	Teams
	Polymorphism
	Fortran’s History

	Disadvantages
	Data Communication
	Task Detection, Fusion, or Splitting
	Task Independence
	Lagging Compiler Support

	Examples
	A Quadratic Root Finder
	LU Decomposition

	Performance
	Conclusion
	Supplementary Materials
	References

