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Abstract
Most parallel scientific programs contain compiler directives (pragmas) such as those from OpenMP (Hermanns in Parallel 
programming in Fortran 95 using openMP, 2002. School of Aeronautical Engineering, Universidad Politécnica de Madrid, 
España, 2011), explicit calls to runtime library procedures such as those implementing the Message Passing Interface (MPI) 
(in A message-passing interface standard version 4.0, 2021. https:// www. mpi- forum. org/ docs/ mpi-4. 0/ mpi40- report. pdf), or 
compiler-specific language extensions such as those provided by CUDA (Ruetsch and Fatica in CUDA Fortran for scientists 
and engineers: best practices for efficient CUDA Fortran programming, Elsevier, 2013). By contrast, the recent Fortran 
standards empower developers to express parallel algorithms without directly referencing lower-level parallel program-
ming models (Numrich in Parallel programming with co-arrays, CRC Press, 2018, and Curcic in Modern Fortran: building 
efficient parallel applications, Manning Publications, 2020). Fortran’s parallel features place the language within the Parti-
tioned Global Address Space (PGAS) class of programming models. When writing programs that exploit data parallelism, 
application developers often find it straightforward to develop custom parallel algorithms. Problems involving complex, 
heterogeneous, staged calculations, however, pose much greater challenges. Such applications require careful coordination 
of tasks in a manner that respects dependencies prescribed by a directed acyclic graph. When rolling one’s own solution 
proves difficult, extending a customizable framework becomes attractive. The paper presents the design, implementation, 
and use of the Framework for Extensible Asynchronous Task Scheduling (FEATS), which we believe to be the first task 
scheduling tool written in modern Fortran. We describe the benefits and compromises associated with choosing Fortran as the 
implementation language, and we propose ways in which future Fortran standards can best support the use case in this paper.
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Introduction

Modern computing hardware has evolved to offer a variety of 
opportunities to exploit parallelism for high performance—
including multicore processors with vector units, supersca-
lar pipelines, and embedded or off-chip graphics processing 
units. Exploiting the abundance of opportunities for parallel 
execution requires searching for a variety of forms of paral-
lelism. Chief among the common parallel programming pat-
terns are data parallelism and task parallelism [6]. Parallel 
programming languages have evolved native features that 
support data parallelism. In Fortran 2018, for example, such 
features include giving the programmer the ability to define 
teams, sets of images that execute asynchronously, with each 
image having one-sided access to other team members’ local 
portions of “coarray” distributed data structures [4]. These 
features have now seen use in production codes running at 
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scale for simulating systems ranging from weather [7] and 
climate [8] to plasma fusion [9].

By contrast, task parallelism generally proves to be a 
larger challenge for application developers to exploit without 
deep prior experience in parallel programming. Although 
data parallelism maps straightforwardly onto a bulk synchro-
nous programming model in which periods of computation 
are interspersed with periods of communication followed 
by barrier synchronization, efficient execution of independ-
ent tasks generally requires asynchronous execution with 
more loose forms of coordination such as semaphores. To 
wit, it takes roughly 15 source lines of code to implement a 
bulk synchronous “Hello, world!” program using Fortran’s 
barrier synchronization mechanism, the sync all state-
ment; whereas it takes more than three times as many lines 
to write a similar, asynchronous program taking advantage 
of Fortran’s event_type derived type, the language’s 
mechanism supporting semaphores [10].

A central challenge in writing asynchronous code to coor-
dinate tasks centers around task parallelism’s more irregular 
execution and communication patterns. Whereas partial dif-
ferential equation solvers running in a data parallel manner 
typically involve a predictable set of halo data exchanges 
between grid partitions at every time step, task parallelism 
generally enjoys no such regular communication pattern. 
Programmers generally represent task ordering require-
ments in a Directed Acyclic Graph (DAG) of task depend-
encies [11]. Tasks can execute in any order that respects the 
DAG. Moreover, the DAG can change considerably from 
one problem to the next and even from one execution to the 
next. For example, a DAG describing the steps for building 
a software package will vary over the life of the software as 
internal and external dependencies change.

Writing code to handle the level of flexibility needed effi-
ciently is daunting for most application developers, which 
makes the use of a task scheduling framework attractive. 
Fortran programmers face the additional challenge that 
the task scheduling frameworks of which the authors are 
aware are written in other programming languages such as 
C++ [12] and UPC++ [13] or target-specific domains such 
as linear algebra [14]. FEATS aims to support standard For-
tran 2018 with a standard Fortran 2018 framework and is 
unique in these aspects.

Rumors of Fortran’s demise are greatly exaggerated. 
Despite longstanding calls for Fortran’s retirement [15] and 
descriptions of Fortran as an “infantile disorder” [16], the 
world’s first widely used high-level programming language 
continues to see important and significant use. Fortran is 
arguably enjoying a renaissance characterized by a growing 
list of new compiler projects over the past several years and 
a burgeoning community of developers at all career stages 
writing new libraries [17], including some in very non-tradi-
tional areas such as package management [18]. The National 

Energy Research Scientific Computing Center (NERSC) 
used system monitoring of runtime library usage to deter-
mine that approximately 70% of projects use Fortran [19] 
and found that the vast majority of projects use MPI.

In MPI, the most advanced way to achieve the aforemen-
tioned requirements of loosely coordinated, high levels of 
asynchronous execution required for efficient task scheduling 
involves the use of the one-sided MPI_Put and MPI_Get 
functions introduced in MPI-3. In the authors’ experience, 
however, the overwhelming majority of parallel MPI appli-
cations use MPI’s older two-sided communication features, 
such as the non-blocking MPI_ISend and MPI_IRecv 
functions partly due to the challenges of writing one-sided 
MPI. Our choice to write and support Fortran’s native coar-
ray communication mechanism enables us to take advantage 
of the one-sided MPI built into some compiler’s parallel 
runtime libraries, e.g., in the OpenCoarrays [20] runtime 
used by gfortran, or whatever communication substrate 
a given compiler offeror chooses to best suit particular hard-
ware. Moreover, this choice implies that switching from one 
communication substrate to another might require no more 
than switching compilers or even swapping compiler flags 
and ultimately empowers scientists and engineers to focus 
more on the application’s science and engineering and less 
on the computer science.

Ultimately, the goal is reduce the time to solution, 
increase the reliability of the solution, utilize state-of-the-
art hardware, and increase the solution’s maintainability over 
the lifetime of the solution. Fortran and FEATS allow for a 
task parallel solution that hits these marks.

Implementation

FEATS is designed around the use of Fortran coarrays to 
provide distributed multiprocessing and data exchange 
between application images. Tasks in FEATS are repre-
sented as objects. FEATS provides an abstract derived type 
task_t, which the user should extend in their own derived 
type definition and provide the necessary “execute” function 
required to complete the task.

Tasks have inputs and outputs, so there must be a mecha-
nism by which to transmit those inputs and outputs between 
images. This transmission is done using coarrays, though it 
should be noted that all image control and coarray code is 
internal to the FEATS library, meaning that the user needs 
not directly deal with any details related to parallel program-
ming or even understand coarrays. The “execute” function 
of each task accepts an array of payload_t objects, the 
results of each task on which it depends, and returns a single 
payload_t object result. Different tasks will of course 
have different input and output types based on their pur-
pose, which brings up another difficulty of implementing 
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FEATS as a library. Since the library code cannot know the 
details of different tasks’ input and output types, it must rep-
resent these payloads in some generic way so that it can be 
transmitted between images. Additionally, coarray elements 
cannot contain polymorphic components. FEATS solves the 
problem by storing payloads as an array of integers (just a 
string of bytes in memory), and the user must use the Fortran 
transfer statement to serialize their data into and out of 
payloads. This serialization does come with some caveats; 
the user needs to ensure that the types they use as payloads 
can be serialized and deserialized safely (for example, a sim-
ple derived type with statically sized elements will work 
correctly, whereas one with pointers and allocatable compo-
nents likely will not). Alternately, a string representation can 
be used/is supported for the serialization and deserialization. 
Although arguably an esthetically “inelegant” approach, the 
authors see it as an acceptable engineering tradeoff in the 
interest of generality.

The tasks are organized as a DAG. This is stored as an 
array of vertices, where each vertex contains a task, and an 
array of integers identifying the tasks on which it depends. 
We note that in theory, it would be possible for a single 
image to construct the DAG, and for FEATS to use co_
broadcast to send it to the remaining images, but not 
all compilers have implemented the functionality to allow 
co_broadcast of objects with polymorphic components, 
so in practice, every image must provide exactly the same 
DAG to FEATS for execution. It is the responsibility of the 
framework user to define the derived types representing each 
type of task for their application and to implement the logic 
for defining the task DAG. Once the DAG is defined, the 
FEATS framework executes it. The scheduler implementa-
tion is provided by the framework. It should be noted that 
this does require that the entire DAG be defined prior to the 
execution of any tasks.

Scheduling Task Execution

Two different algorithms for scheduling task execution have 
been implemented and measured for performance. The algo-
rithms are described in the following subsections.

An Explicit Scheduler Image

This algorithm designates one image, the scheduler, respon-
sible for assigning tasks for the remaining images, executors, 
to execute. The general algorithm performed by the sched-
uler image is as follows.

• Find an executor that has posted it is ready
– While it does this, it keeps track of what tasks have 

been completed

• Find an uncompleted task with all dependencies com-
pleted

• “Wait” for the ready executor (balances posts/waits)
• Assign the task to the executor
• Post that the executor has been assigned a task
• Repeat

The general algorithm performed by an executor is as 
follows.

• Post ready for a task
• Wait until it has been assigned a task
• Collect payload outputs from executors that ran depend-

ent tasks
– It accesses the history kept by the scheduler to deter-

mine where the outputs reside
• Execute task and store result in its payload mailbox
• Repeat

First to Claim

This algorithm requires no scheduler image, but rather puts 
all executors on equal footing with respect to claiming and 
executing tasks. The general algorithm performed by each 
executor is as follows.

• Find task that has not been claimed, and all of its depend-
encies have been completed

• Attempt to claim that task
– Another executor may have claimed it by now

• Collect payload outputs from executors that ran depend-
ent tasks
– “Wait” on event that it was completed

• Execute task and store result in its payload mailbox
• Post to all executors that the task has been completed and 

increment task completed counter
• Repeat

Advantages, Disadvantages, and Examples

This section discusses how the features of Fortran enable/
support the development of FEATS and aspects of the lan-
guage that currently serves as impediments to the desired 
features of the framework.

Advantages

There are several features of the modern Fortran language 
that makes it a natural fit for implementing a task scheduling 
framework. Several aspects have featured prominently in the 
implementation, but in this section, we will discuss what 
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makes them beneficial for implementing a task scheduling 
framework.

Coarrays and Events

The fundamental problem of task scheduling requires meth-
ods of communicating data between tasks, and coordinating 
the execution of those tasks to enforce prerequisite tasks 
is completed before subsequent tasks begin. The coarray 
feature of Fortran provides a simple and effective method 
of performing one-sided communication between images to 
facilitate data transfer between tasks. While other languages 
and libraries have methods of communicating data between 
processes, they often require two-sided operations (i.e., both 
processes must participate in the communication), require 
calls to external library procedures, or require significant 
expertise to use correctly. Having the communication facili-
ties as a native feature of the language simplifies the syntax 
and implementation complexities and reduces the number 
of external dependencies.

Although other language and library communication 
methods are generally sufficient for implementing coordi-
nation mechanisms, doing so manually requires a high level 
of expertise and adds complexity to the implementation. 
Having a native feature of the language explicitly designed 
for the purposes of coordination, namely, event types, again 
simplifies the syntax and implementation complexities and 
reduces the number of external dependencies.

Teams

Although there are task scheduling algorithms that do not 
require a reserved process to act as a scheduler, these algo-
rithms generally come at the cost of increased overhead in 
terms of coordination and complexity of implementation. 
However, having a dedicated scheduler can introduce a com-
munication and coordination bottleneck in case of large tasks 
DAGs being executed by large numbers of processes. While 
we have not yet implemented it, the teams feature of Fortran 
allows for a simple and natural partitioning of processes such 
that multiple schedulers can coordinate with segments of 
executors operating on partitions of the task DAG.

Polymorphism

Although it may be possible to implement a task schedul-
ing framework without polymorphism, it would require 
implementation of a predetermined set of possible task 
interfaces, which would likely be limiting for potential 
users. By making use of abstract type definitions and type 
extension, and defining a generic interface for a task, the 
procedure of defining a task and including it in a DAG 
becomes a natural process for users, with help from the 

compiler in enforcing that they have done so properly. 
The process of defining new tasks involves creating a 
new derived type which extends from the framework’s 
task_t type and providing an implementation for the 
run procedure. A task can then be created by instantiating 
an object of this new type, to be included in the DAG.

Fortran’s History

Fortran’s long history of use in scientific computing means 
that there are likely a large number of applications that 
could benefit from a Fortran-specific task scheduling 
framework. We have already identified a potential target 
application in NASA’s OLTARIS [21], space radiation 
shielding software. Other prime target applications are 
those which perform a series of different, but long running 
calculations, or those which perform parallel calculations 
(or easily could), but which experience load balancing 
issues.

Disadvantages

There are some ways in which the Fortran language lacks 
some important features that would allow for an even better 
implementation. We will discuss these shortcomings and the 
ways in which the language could be improved to address 
them, or how they can be worked around.

Data Communication

The lack of ability to utilize polymorphism in coarrays 
means that communication of task input and output data 
cannot be done as seamlessly as users would like. In order 
to communicate the inputs and outputs between tasks, users 
are forced to manually serialize and deserialize the data into 
a pre-defined format for transfer between processes. This 
means that it will also be difficult for users to make use 
of polymorphism in their calculations, as deserialization of 
polymorphic objects can be done only with a predefined 
set of possible result types. Further, the lack of ability to 
communicate polymorphic objects via coarrays means that 
each executor must have a complete copy of the DAG and its 
tasks, because the tasks themselves cannot be communicated 
to the executors later. This represents a moderate inefficiency 
in data storage and in initial execution for each executor 
to compute/construct the DAG. A strategic relaxation of a 
single constraint in the Fortran standard is all that would be 
required to enable the use of polymorphism in the data com-
munication. The Fortran standard committee has accepted 
this as an item to address for the upcoming F202Y revision.
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Task Detection, Fusion, or Splitting

Because Fortran lacks any features for introspection or 
reflection, it is not possible for the framework to automati-
cally detect tasks, fuse small tasks together, or split large 
tasks apart. All task definition must be performed manu-
ally by the user, with no help from the framework. It would 
be possible to allow users to manually provide information 
about task and data sizes to encourage certain sequences of 
tasks to be executed by one executor, but would likely be 
difficult and error prone. Future work could involve explor-
ing avenues for annotating tasks to help the scheduler more 
efficiently assign tasks to executors.

Task Independence

Task independence is a problem for all task-based applica-
tions, but Fortran provides few avenues for mitigating or 
catching possible mistakes. Any data dependencies between 
tasks not stated explicitly in the DAG and communicated as 
arguments to the task or its output, allow for the possibility 
of data races. In other words, all tasks must be pure func-
tions with all dependencies defined. Many existing Fortran 
applications were not written in this style and may require 
extensive work to refactor to a form in which they could take 
advantage of a task scheduling framework. It is the opin-
ion of the authors that most applications could benefit from 
such refactoring to enable parallel execution regardless of 
the desire to use this framework, but understand that the 
costs involved do not always make this refactoring feasible. 
Users could make these dependencies explicit without using 
the framework to transmit the data, but it may be benefi-
cial to develop tools to help users identify these “hidden” 
dependencies.

Lagging Compiler Support

While the features necessary for developing this frame-
work have been defined by the language standard since 
2018, compilers have been slow to implement them, and 
support is still buggy and lacking. For example, we were 
able to work around a bug in gfortran/OpenCoarrays 

regarding access of allocatable components of derived 
types in a corray on remote images by defining the pay-
load size to be static for the purpose of demonstrating the 
examples shown below. Additionally, we had to simplify 
the code, remove the use of external dependencies, and 
work around various internal compiler errors in order to 
get the examples shown to compile and execute with the 
remaining compilers.

Examples

The examples described in this section can be found in the 
FEATS repository at https:// github. com/ sourc eryin stitu te/ 
feats.

A Quadratic Root Finder

The typical algorithm/equation for finding the roots of a 
quadratic equation can be defined as tasks, and FEATS can 
then be used to perform the calculations. The use of such a 
simple example can be beneficial for demonstrating the use 
of the framework. Given a quadratic equation of the form:

then the equation to determine the values of x which satisfy 
the equation (the roots) is:

The diagram in Fig. 1 illustrates how this equation can be 
broken into separate steps and shows the dependencies 
between them.

The equivalent FEATS application can be constructed 
as follows, assuming that the tasks have been appropriately 
defined.

(1)a ∗ x
2
+ b ∗ x + c = 0

(2)−b ±

√

b2 − 4 ∗ a ∗ c

2 ∗ a

Fig. 1  Graphical representa-
tion of the computational tasks 
involved in calculating the roots 
of a quadratic equation

a

b

c

#**2

4 * # * #

s q r t ( #  -  # ) - #  ±  #

2 * #

#  /  # p r in t  r oo t s
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s o l v e r = &
dag t ( [ &

ve r t e x t ( [ i n t e g e r : : ] , a t ( a ) ) &
, v e r t e x t ( [ i n t e g e r : : ] , b t (b ) ) &
, v e r t e x t ( [ i n t e g e r : : ] , c t ( c ) ) &
, v e r t e x t ( [ 2 ] , b squared t ( ) ) &
, v e r t e x t ( [ 1 , 3 ] , f o u r a c t ( ) ) &
, v e r t e x t ( [ 4 , 5 ] , s q u a r e r o o t t ( ) ) &
, v e r t e x t ( [ 2 , 6 ] , minus b pm square root t ( ) ) &
, v e r t e x t ( [ 1 ] , two a t ( ) ) &
, v e r t e x t ( [ 8 , 7 ] , d i v i s i o n t ( ) ) &
, v e r t e x t ( [ 9 ] , p r i n t e r t ( ) ) &

] )

This example produces output like the following, with 
a slightly different order of execution being possible each 
time except that an operation is never performed prior to the 
results of the operations on which it depends.

LU Decomposition

LU decomposition is a common, computationally intensive 
operation. It involves finding the lower (L) and upper (U) tri-
angular matrices that when multiplied together result in the 
original matrix. By breaking the task down into appropriate 
steps, we can define a DAG to perform the operation. The 
general algorithm is as follows in pseudocode.

The code to transform the above algorithm into a task 
DAG executable by FEATS is as follows. It prints the initial 
matrix, as well as the intermediate matrix at the completion 
of each step. The final matrix printed is the L matrix, and 
the penultimate matrix is the U matrix. 

For a 3×3 matrix, the above code creates a task DAG like 
the one shown in Fig. 2. Execution of the task DAG produces 
output like shown below.



SN Computer Science           (2024) 5:354  Page 7 of 10   354 

SN Computer Science

Performance

Using the problem of finding the LU decomposition of a 
100 × 100 matrix, the performance of both task schedul-
ing methods was evaluated. See sections 2.1.1 (explicit 
scheduler image, ESI) and 2.1.2 (first to claim, FTC) for an 
overview of the two strategies. Performance experiments 
were conducted using two computer systems (a desktop 

computer equipped with an Intel Core i5-6500 and the Per-
lmutter supercomputer) and three different Fortran com-
pilers (the NAG compiler version 7.1 Build 7138, gfor-
tran version 13.2.0 on the desktop computer and version 
11.2.0 on Perlmutter with OpenCoarrays version 2.10.1, 
and the Cray compiler version 15.0.1). Experiments using 
the NAG compiler were done using the compile time flags 
-O4 -Onoteams -Orounding -coarray. Experi-
ments with the Cray compiler and gfortran + opencoarrays 
used -O3. Note that the ESI strategy was implemented 
such that if there is only one running image, the scheduler 
image does the work required for each task itself, rather 
than assigning it to another image (though the scheduling 
logic still runs in order to choose the next task).

With the NAG compiler, which was only available on 
the Intel i5 desktop system, moving from the ESI imple-
mentation to the FTC implementation reduced the single-
image execution time from almost 12 s to under 5 s. Both 
implementations saw the runtime cut approximately in half 
by moving to two images, but adding a third or fourth 
resulted in little change to the execution time (Figs. 3 
and 4). On that system, which has four cores, more than 
4 images was not expected to improve performance and 
indeed it did not, with performance getting worse after 
four images.

Gfortran with OpenCoarrays fared quite differently from 
the NAG compiler. On the i5 system, the ESI strategy fin-
ished with less than half of the average runtime of the FTC 
implementation, in a reversal of the performance of the 
two algorithms under the NAG compiler. Scaling to mul-
tiple images resulted in longer execution times than with a 
single image (Figs. 5 and 6). This was true for both algo-
rithms, though the ESI approach was dramatically worse. 
Using multiple images also failed to produce a speedup on 

Fig. 2  Task graph of LU decomposition for a 3x3 matrix
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Perlmutter, at least with the FTC strategy (Fig. 7); the ESI 
strategy was not tried.

The Cray compiler was only available on Perlmutter. 
The ESI strategy ran with about a quarter the runtime of 
the FTC in the single-image case. However, the ESI strat-
egy failed to scale; using two or more images (on the same 
node) doubled the execution time, which remained roughly 

constant with number of images thereafter (Figs. 8 and 9). 
The FTC strategy, while slower in the single image case, 
did produce reductions in execution time for adding addi-
tional images until 10 images were reached.

Scaling was also assessed on Perlmutter (using the Cray 
compiler) when the images are on different physical nodes. 

Fig. 3  Intel i5, NAG Compiler, Explicit Scheduler Image

Fig. 4  Intel i5, NAG Compiler, First to Claim

Fig. 5  Intel i5, Gfortran with OpenCoarrays, Explicit Scheduler 
Image

Fig. 6  Intel i5, Gfortran with OpenCoarrays, First to Claim

Fig. 7  Perlmutter (1 node), Gfortran with OpenCoarrays, First to 
Claim

Fig. 8  Perlmutter (1 node), Cray compiler, Explicit Scheduler Image
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The result for both strategies was that using multiple nodes 
dramatically increases total runtime (Figs. 10 and 11).

The results from these experiments are not encourag-
ing. Admittedly, breaking down the LU decomposition of 
a 100 × 100 matrix into 15,000 distinct tasks does make for 
something of a toy problem, but regardless of whether this 

example problem is well suited to scaling to many images 
in the first place, the experiments conducted suggest that 
some of the parallel features in Fortran 2018 do not enjoy 
performance portability. The specific details of how coar-
ray communication and events are implemented by a given 
compiler runtime clearly matter a great deal, which makes 
it difficult for programmers to utilize them effectively. Fur-
ther investigation is needed to determine the exact cause of 
the performance pathologies exhibited by certain compiler/
algorithm combinations.

Conclusion

We believe that the existing Fortran applications, and the 
Fortran ecosystem generally, would greatly benefit from a 
native tasking framework. The prototype implementation of 
FEATS has successfully demonstrated that implementing a 
task scheduling framework in Fortran is feasible. Working 
around limitations of the language and the bugs in various 
compilers’ coarray feature implementation has proven a 
challenging but not impassible barrier. With this demonstra-
tion of a working prototype implementation, we have taken 
a significant first step toward providing such a capability to 
Fortran users.

We look forward to working on several unresolved issues 
in FEATS. Longer term work planned will involve collabo-
rating with the Fortran standard committee to add capabili-
ties to the language that will enable FEATS behaviors such 
as communication of polymorphic objects between images 

using coarrays. We have identified a targeted relaxation of 
a specific constraint in the standard to allow for the needed 
functionality. We will also explore the applicability of dif-
ferent scheduling algorithms to various types of applica-
tions and compare the performance characteristics of FEATS 

Fig. 9  Perlmutter (1 node), Cray compiler, First to Claim

Fig. 10  Perlmutter (multinode), Cray compiler, Explicit Scheduler 
Image

Fig. 11  Perlmutter (multinode), 
Cray compiler, First to Claim
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with other task scheduling implementations. We also hope 
to find potential users of the framework and help them to 
integrate it into their applications. Possible initial target 
applications include parallel builds with the Fortran pack-
age manager [18] and work-stealing with the Intermediate 
Complexity Atmospheric Research model [8].

Supplementary Materials

The code for all examples is available on  GitHub®.1
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